Energy budget and greenhouse gas balance evaluation of sustainable coppice systems for electricity production

The use of bio-energy crops for electricity production is considered an effective means to mitigate the greenhouse effect, mainly due to its ability to substitute fossil fuels. A whole range of crops qualify for bio-energy production and a rational choice is not readily made. This paper evaluates th...

Full description

Saved in:
Bibliographic Details
Published inBiomass & bioenergy Vol. 24; no. 3; pp. 179 - 197
Main Authors Lettens, Suzanna, Muys, Bart, Ceulemans, Reinhart, Moons, Ellen, Garcia, Juan, Coppin, Pol
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2003
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The use of bio-energy crops for electricity production is considered an effective means to mitigate the greenhouse effect, mainly due to its ability to substitute fossil fuels. A whole range of crops qualify for bio-energy production and a rational choice is not readily made. This paper evaluates the energy and greenhouse gas balance of a mixed indigenous hardwood coppice as an extensive, low-input bio-energy crop. The impact on fossil energy use and greenhouse gas emission is calculated and discussed by comparing its life cycle (cultivation, processing and conversion into energy) with two conventional bio-energy crops (short rotation systems of willow and Miscanthus). For each life cycle process, the flows of fossil energy and greenhouse gas that are created for the production of one functional unit are calculated. The results show that low-input bio-energy crops use comparatively less fossil fuel and avoid more greenhouse gas emission per unit of produced energy than conventional bio-energy crops during the first 100 yr . Where the mixed coppice system avoids up till 0.13 t CO 2 eq./GJ, Miscanthus does not exceed 0.07 t CO 2 eq./GJ. After 100 yr their performances become comparable, amounting to 0.05 t CO 2 eq./ha/GJ. However, if the land surface itself is chosen as a functional unit, conventional crops perform better with respect to mitigating the greenhouse effect. Miscanthus avoids a maximum of 12.9 t CO 2 eq./ha/yr, while mixed coppice attains 9.5 t CO 2 eq./ha/yr at the most.
AbstractList The energy and greenhouse gas balance of a mixed indigenous hardwood coppice was evaluated as an energy crop. The impact on fossil energy use and greenhouse gas emissions is determined and discussed by contrasting its life cycle with short rotation systems of willow and Miscanthus. The low-input bioenergy crop uses comparatively less fossil fuel and avoids more greenhouse gas emissions per unit of produced energy relative to conventional bioenergy crops during the first 100 yr. The mixed coppice systems avoids up to 0.13 tons of carbon dioxide equivalent (eq)/GJ while Miscanthus avoids only 0.7 tons of CO sub(2)-eq/GJ.
The use of bio-energy crops for electricity production is considered an effective means to mitigate the greenhouse effect, mainly due to its ability to substitute fossil fuels. A whole range of crops qualify for bio-energy production and a rational choice is not readily made. This paper evaluates the energy and greenhouse gas balance of a mixed indigenous hardwood coppice as an extensive, low-input bio-energy crop. The impact on fossil energy use and greenhouse gas emission is calculated and discussed by comparing its life cycle (cultivation, processing and conversion into energy) with two conventional bio-energy crops (short rotation systems of willow and Miscanthus). For each life cycle process, the flows of fossil energy and greenhouse gas that are created for the production of one functional unit are calculated. The results show that low-input bio-energy crops use comparatively less fossil fuel and avoid more greenhouse gas emission per unit of produced energy than conventional bio-energy crops during the first 100 yr . Where the mixed coppice system avoids up till 0.13 t CO 2 eq./GJ, Miscanthus does not exceed 0.07 t CO 2 eq./GJ. After 100 yr their performances become comparable, amounting to 0.05 t CO 2 eq./ha/GJ. However, if the land surface itself is chosen as a functional unit, conventional crops perform better with respect to mitigating the greenhouse effect. Miscanthus avoids a maximum of 12.9 t CO 2 eq./ha/yr, while mixed coppice attains 9.5 t CO 2 eq./ha/yr at the most.
Author Moons, Ellen
Ceulemans, Reinhart
Garcia, Juan
Lettens, Suzanna
Coppin, Pol
Muys, Bart
Author_xml – sequence: 1
  givenname: Suzanna
  surname: Lettens
  fullname: Lettens, Suzanna
  organization: Laboratory for Forest, Nature and Landscape Research, K.U.Leuven, Vital Decosterstraat 102, B-3000 Leuven, Belgium
– sequence: 2
  givenname: Bart
  surname: Muys
  fullname: Muys, Bart
  organization: Laboratory for Forest, Nature and Landscape Research, K.U.Leuven, Vital Decosterstraat 102, B-3000 Leuven, Belgium
– sequence: 3
  givenname: Reinhart
  surname: Ceulemans
  fullname: Ceulemans, Reinhart
  organization: Department of Biology, University of Antwerp, UIA, Universiteitsplein 1, B-2610 Wilrijk, Belgium
– sequence: 4
  givenname: Ellen
  surname: Moons
  fullname: Moons, Ellen
  organization: Centre for Economic Studies, K.U.Leuven, Naamsestraat 69, B-3000 Leuven, Belgium
– sequence: 5
  givenname: Juan
  surname: Garcia
  fullname: Garcia, Juan
  organization: Laboratory for Forest, Nature and Landscape Research, K.U.Leuven, Vital Decosterstraat 102, B-3000 Leuven, Belgium
– sequence: 6
  givenname: Pol
  surname: Coppin
  fullname: Coppin, Pol
  organization: Laboratory for Forest, Nature and Landscape Research, K.U.Leuven, Vital Decosterstraat 102, B-3000 Leuven, Belgium
BookMark eNqFkM9LwzAYhoNMcJv-CUJOoodq0qRpexIZ8wcMPKjnkKRfa6RtZtIO-t-bbeLV03d53vfjfRZo1rseELqk5JYSKu7eSCloUmaMX5P0hhBKeCJO0JwWOUvSkpQzNP9DztAihK8IccLpHHXrHnwzYT1WDQxY9RVuPED_6cYAuFEBa9Wq3gCGnWpHNVjXY1fjMIZB2V7pFrBx262NRJjCAF3AtfMYWjCDt8YOE956V41mnzxHp7VqA1z83iX6eFy_r56TzevTy-phkxjO6JAUWZrnmc4Z8MJkFQhOQdQZY5rqnFNj8iKljIiy4qIQNC1qk2qjINclNUwXbImujr3x9fcIYZCdDQbauATiMEm54CUnJILZETTeheChlltvO-UnSYncy5UHuXJvTpJUHuRKEXP3xxzEFTsLXgZjIWqqrI_DZeXsPw0_-MeE2w
CitedBy_id crossref_primary_10_1021_ef049865e
crossref_primary_10_1007_s10584_005_5934_z
crossref_primary_10_1007_s12155_014_9571_0
crossref_primary_10_1016_j_biombioe_2007_11_001
crossref_primary_10_1016_j_foreco_2004_10_030
crossref_primary_10_1016_j_ecolmodel_2011_06_021
crossref_primary_10_1016_j_biombioe_2011_10_014
crossref_primary_10_1016_j_envsci_2007_02_005
crossref_primary_10_1016_j_renene_2023_118917
crossref_primary_10_1007_s10584_007_9297_5
crossref_primary_10_1016_j_enpol_2007_08_020
crossref_primary_10_1016_j_tplants_2008_12_006
crossref_primary_10_1016_j_jclepro_2015_04_034
crossref_primary_10_1016_j_biombioe_2009_10_019
crossref_primary_10_1016_j_enbuild_2010_10_006
crossref_primary_10_1243_09576509JPE365
crossref_primary_10_2139_ssrn_962382
crossref_primary_10_1016_j_indcrop_2020_112281
crossref_primary_10_1111_gcbb_12111
crossref_primary_10_1016_j_foreco_2007_01_057
crossref_primary_10_1016_j_renene_2016_11_043
crossref_primary_10_1016_j_renene_2019_11_061
crossref_primary_10_1016_j_biombioe_2008_03_003
crossref_primary_10_1186_2192_0567_3_7
crossref_primary_10_1016_j_apenergy_2015_07_032
crossref_primary_10_1111_gcbb_12083
crossref_primary_10_1111_j_1757_1707_2010_01073_x
crossref_primary_10_3390_su71012974
crossref_primary_10_1007_s12155_019_09997_2
crossref_primary_10_1007_s12649_015_9375_2
crossref_primary_10_1016_j_wasman_2005_06_014
crossref_primary_10_1016_j_apenergy_2017_07_051
crossref_primary_10_1016_j_biortech_2010_08_010
crossref_primary_10_3832_efor0631_007
crossref_primary_10_1016_j_enpol_2007_08_030
crossref_primary_10_1111_j_1757_1707_2011_01116_x
crossref_primary_10_1016_j_biombioe_2013_10_020
crossref_primary_10_3390_f12111529
crossref_primary_10_1016_j_energy_2018_03_112
crossref_primary_10_1111_j_1757_1707_2008_01001_x
crossref_primary_10_1007_s11367_010_0195_0
crossref_primary_10_1016_j_biombioe_2013_05_004
crossref_primary_10_1111_gcbb_12341
crossref_primary_10_1016_j_biombioe_2005_07_015
crossref_primary_10_1016_j_biombioe_2007_01_002
crossref_primary_10_1039_C7EE00465F
crossref_primary_10_1007_s12155_021_10266_4
ContentType Journal Article
Copyright 2002 Elsevier Science Ltd
Copyright_xml – notice: 2002 Elsevier Science Ltd
DBID AAYXX
CITATION
7ST
C1K
SOI
DOI 10.1016/S0961-9534(02)00104-6
DatabaseName CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Environment Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1873-2909
EndPage 197
ExternalDocumentID 10_1016_S0961_9534_02_00104_6
S0961953402001046
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATLK
AAXUO
ABFNM
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSA
SSG
SSJ
SSR
SSZ
T5K
VH1
WUQ
~G-
~KM
AAHBH
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7ST
C1K
SOI
ID FETCH-LOGICAL-c431t-852775b73e48c5de641e6f533b1b741cc78213069d4686128fc2bcae7b91c3b83
IEDL.DBID .~1
ISSN 0961-9534
IngestDate Sat Aug 17 03:39:52 EDT 2024
Thu Sep 26 18:24:31 EDT 2024
Fri Feb 23 02:34:17 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Life cycle
Greenhouse effect
Willow
Fossil energy use
Miscanthus
Bio-energy crop
Bio-energy
Mixed coppice
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-852775b73e48c5de641e6f533b1b741cc78213069d4686128fc2bcae7b91c3b83
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 14649400
PQPubID 23462
PageCount 19
ParticipantIDs proquest_miscellaneous_14649400
crossref_primary_10_1016_S0961_9534_02_00104_6
elsevier_sciencedirect_doi_10_1016_S0961_9534_02_00104_6
PublicationCentury 2000
PublicationDate 2003-01-01
PublicationDateYYYYMMDD 2003-01-01
PublicationDate_xml – month: 01
  year: 2003
  text: 2003-01-01
  day: 01
PublicationDecade 2000
PublicationTitle Biomass & bioenergy
PublicationYear 2003
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dufey I. Impact environnemental global de la filière de production d’électricité à partir de taillis de Saules à très courtes rotations (mèmoire). Universitè Catholique de Louvain-La-Neuve (UCL), Louvain-La-Neuve, 1999. 93pp.
B 10221, 1998.
Laurier JP, Palicot B, Raynard O. Expérimentations sur l’ exploitation mécanisée d'un taillis de peupliers à courte rotation. ARMEF, Fontainebleau, 1990. 28pp.
Kaltschmitt M, Reinhardt GA. Nachwachsende energieträger—Grundlagen, verfahren, ökologische bilanzierung. Braunschweig/Wiesbaden: Vieweg, 1997. 527pp.
Royle, Ostry (BIB18) 1995; 9
Biewinga EE, van der Bijl G. Sustainability of energy crops in Europe, a methodology developed and applied. Utrecht: Centre for Agriculture and Environment (CLM), 1996. 209pp.
Hamilton, Christie (BIB27) 1971
Schober R. Ertragstafeln wichtiger Baumarten bei verschiedener Durchforstung. Frankfurt am Main: J.D. Sauerländer's Verlag, 1975.
Allen JE. Energy resources for a changing world. Cambridge: Cambridge University Press, 1996. 92pp.
Schlamadinger, Apps, Bohlin, Gustavsson, Jungmeier, Marland, Pingoud, Savolainen (BIB9) 1997; 13
Anonymus, ISO 14040 (1997), ISO 14041 (1998), ISO/DIS 14042 (1998), ISO/DIS 14043 (1998). Comité Européen de Normalisation (CEN), Brussel, 1997–1998.
Boeckx P, Van Cleemput O. Inventarisatie van de N
Tack G, Van Den Bremt P, Hermy M. Bossen van Vlaanderen—Een historische ecologie. Leuven: Davidsfonds, 1993. 320pp (in Dutch).
Janssens IA, Schauvliege M, Samson R, Lust N, Ceulemans R. Studie van de koolstofbalans van en de koolstofopslag in het Vlaamse bos. Eindverslag aan het Ministerie van de Vlaamse Gemeenschap, Administratie AMINAL, Afdeling Bos en Groen, Universiteit Antwerpen en Universiteit Gent, 1998 (in Dutch).
fixation in forest stands. European Forest Institute, Joensuu, 1999. 27pp.
Bullard, Kilpatrick (BIB24) 1997; 49
Nellist (BIB34) 1997; 49
Hanegraaf, Biewinga, van der Bijl (BIB5) 1998; 15
fixation in forest stands. De Dorschkamp Research Institute for Forestry and Urban Ecology, Report 624, Wageningen, 1990, 35pp. + app.
B 10527, 1999.
Jungmaier G, Schwaiger H. Changing carbon storage pools in LCA of bio-energy—a static accounting approach for a dynamic effect. COST E9: mid-term meeting, Helsinki/Espoo, March 27–29, 2000, 2000. 12pp, unpublished paper.
Steinmüller N. Common errors in biomass energy assessment. European Energy Crops InterNetwork
Hall DO, Rosillo-Calle F. Biomass as an environmentally acceptable fuel & implications for the Kyoto protocol. NNA Reports, Proceedings Forum: Forests and Energy, vol. 12, 1999. p. 92–9.
Watters MP, Mitchell CP, Sims REH, Lowe HT. Machinery options for harvesting, extracting and comminuting fuelwood from short rotation forestry. Eighth E.C. Conference on Biomass for Energy, Environment, Agriculture and Industry, vol. 1, 1995. p. 272–84.
Kofman (BIB37) 1997; 49
Van den Burg J. Een vergelijking van groeiplaatseisen van en teeltmethoden voor populier, wilg, olifantsgras en hennep in biomassacultures. Wageningen: Instituut voor Bos- en Natuuronderzoek (IBN-DLO), 1999. 38pp (in Dutch).
Mohren GMJ, Klein Goldewijk CGM. CO
Sanderson, Egg, Wiselogel (BIB40) 1997; 12
Torfs R, Huybrechts D, Wouters G. Broeikasgasemissies, verzurende emissies en energieverbruik voor levering van energiedragers vanaf de ontginning tot aan de eindgebruiker. Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol, 1998. 113pp (in Dutch).
Danfors B, Ledin S, Rosenqvist H. Short rotation willow coppice. Growers Manual, 1999. 40pp.
Lewandowski, Kicherer, Vonier (BIB16) 1995; 8
Anonymus, De haalbaarheid van de productie van biomassa voor de Nederlandse energiehuishouding. Nederlands Maatschappij voor Energie en Milieu (NOVEM), Apeldoorn, 1992. 95pp.
Ceuterick D, Spirinckx C. Comparative LCA of biodiesel and fossil fuel diesel. Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol, 1997. 37pp.
Nurmi (BIB35) 1995; 8
Knechtle N. Materialprofile von Holzerntesystemen—Analyse Ausgewählter Beispiele als Grundlage für eine Forsttechnische Ökoinventar (Diplomarbeit). Zürich: ETH, 1997. 65pp.
Börjesson (BIB36) 1996; 11
Matthews (BIB20) 1989
Bohlin, Vinterbäck, Wisniewski, Wisniewski (BIB3) 1998; 15
Van den Broek, Fraaij, van Wijk (BIB45) 1996; 11
Kristensen EF. Danish experiments on harvesting of Miscanthus. European Energy Crops InterNetwork
De Ruyck (BIB39) 1997; 4
Heilig PM. Houtvademecum, Deel I: eigenschappen van hout. Amsterdam: Stichting Centrum Hout, 1981 (in Dutch).
Vitlox, Michot (BIB43) 2000
O-emissies uit de landbouw met een onderverdeling per regio en een relatieve bijdrage van de verschillende N-input bronnen. Ministerie van de Vlaamse Gemeenschap, Afdeling Algemeen Milieu- en Natuurbeleid, Brussel, 1999. 39pp (in Dutch).
Dubuisson, Sintzoff (BIB26) 1998; 15
Fix: a dynamic model of the CO
Fix for Windows: a dynamic model of the CO
Buhler, Netzer, Riemenschneider, Hartzler (BIB23) 1998; 14
Bullard, Nixon, Heath (BIB25) 1997; 49
Mohren GMJ, Garza C, Masera O, Kanninen M, Karjalainen T, Nabuurs GJ. CO
Ledin S, Willebrand E, editors. Handbook on how to grow short rotation forests. Uppsala: IEA Bioenergy, 1996.
Jansen JJ, Sevenster J, Faber PJ, editors. Opbrengsttabellen voor belangrijke boomsoorten in Nederland. IBN-rapport 221, 1996 (in Dutch).
Kuesters J, Jenssen T. Life cycle analysis of different fertilizers. Proceedings of International Conference on Life Cycle Assessment in Agriculture, Agro-Industry and Forestry, organized by VITO, 1998. p. 131–9.
References_xml – volume: 8
  start-page: 81
  year: 1995
  end-page: 90
  ident: BIB16
  article-title: CO
  publication-title: Biomass and Bioenergy
  contributor:
    fullname: Vonier
– volume: 49
  start-page: 349
  year: 1997
  end-page: 359
  ident: BIB34
  article-title: Storage and drying of arable coppice
  publication-title: Aspects of Applied Biology
  contributor:
    fullname: Nellist
– volume: 8
  start-page: 245
  year: 1995
  end-page: 249
  ident: BIB35
  article-title: The effect of whole-tree storage on the fuelwood properties of short-rotation
  publication-title: Biomass and Bioenergy
  contributor:
    fullname: Nurmi
– volume: 11
  start-page: 271
  year: 1996
  end-page: 281
  ident: BIB45
  article-title: Biomass combustion for power generation
  publication-title: Biomass and Bioenergy
  contributor:
    fullname: van Wijk
– volume: 15
  start-page: 379
  year: 1998
  end-page: 390
  ident: BIB26
  article-title: Energy and CO
  publication-title: Biomass and Bioenergy
  contributor:
    fullname: Sintzoff
– volume: 49
  start-page: 417
  year: 1997
  end-page: 422
  ident: BIB37
  article-title: Storage of willow from short rotation forestry
  publication-title: Aspects of Applied Biology
  contributor:
    fullname: Kofman
– volume: 15
  start-page: 5
  year: 1998
  end-page: 20
  ident: BIB3
  article-title: Solid biofuels for carbon dioxide mitigation
  publication-title: Biomass and Bioenergy
  contributor:
    fullname: Wisniewski
– volume: 12
  start-page: 107
  year: 1997
  end-page: 114
  ident: BIB40
  article-title: Biomass losses during harvest and storage of Switchgrass
  publication-title: Biomass and Bioenergy
  contributor:
    fullname: Wiselogel
– volume: 11
  start-page: 305
  year: 1996
  end-page: 318
  ident: BIB36
  article-title: Energy analysis of biomass production and transportation
  publication-title: Biomass and Bioenergy
  contributor:
    fullname: Börjesson
– year: 1971
  ident: BIB27
  publication-title: Forest management tables (metric)
  contributor:
    fullname: Christie
– volume: 9
  start-page: 69
  year: 1995
  end-page: 79
  ident: BIB18
  article-title: Disease and pest control in the bioenergy crops poplar and willow
  publication-title: Biomass and Bioenergy
  contributor:
    fullname: Ostry
– volume: 49
  start-page: 199
  year: 1997
  end-page: 206
  ident: BIB25
  article-title: Quantifying the yield of
  publication-title: Aspects of Applied Biology
  contributor:
    fullname: Heath
– volume: 13
  start-page: 359
  year: 1997
  end-page: 375
  ident: BIB9
  article-title: Towards a standard methodology for greenhouse gas balances of energy systems in comparison with fossil energy systems
  publication-title: Biomass and Bioenergy
  contributor:
    fullname: Savolainen
– volume: 49
  start-page: 207
  year: 1997
  end-page: 214
  ident: BIB24
  article-title: The productivity of
  publication-title: Aspects of Applied Biology
  contributor:
    fullname: Kilpatrick
– year: 1989
  ident: BIB20
  publication-title: Sylvicultural systems
  contributor:
    fullname: Matthews
– start-page: 64
  year: 2000
  end-page: 82
  ident: BIB43
  article-title: Energy consumption in agricultural mechanization
  publication-title: Agricultural data for life cycle assessment
  contributor:
    fullname: Michot
– volume: 4
  start-page: 178
  year: 1997
  end-page: 183
  ident: BIB39
  article-title: De VUB Biomassa Vergassingscentrale in de Startblokken
  publication-title: Energie and Milieu
  contributor:
    fullname: De Ruyck
– volume: 15
  start-page: 345
  year: 1998
  end-page: 355
  ident: BIB5
  article-title: Assessing the ecological and economic sustainability of energy crops
  publication-title: Biomass and Bioenergy
  contributor:
    fullname: van der Bijl
– volume: 14
  start-page: 385
  year: 1998
  end-page: 394
  ident: BIB23
  article-title: Weed management in short rotation poplar and herbaceous perennial crops grown for biofuel production
  publication-title: Biomass and Bioenergy
  contributor:
    fullname: Hartzler
SSID ssj0014041
Score 2.0009294
Snippet The use of bio-energy crops for electricity production is considered an effective means to mitigate the greenhouse effect, mainly due to its ability to...
The energy and greenhouse gas balance of a mixed indigenous hardwood coppice was evaluated as an energy crop. The impact on fossil energy use and greenhouse...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 179
SubjectTerms Bio-energy
Bio-energy crop
Fossil energy use
Greenhouse effect
Life cycle
Miscanthus
Mixed coppice
Willow
Title Energy budget and greenhouse gas balance evaluation of sustainable coppice systems for electricity production
URI https://dx.doi.org/10.1016/S0961-9534(02)00104-6
https://search.proquest.com/docview/14649400
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqssCAoFDxWTwwwJC2cRwnGauqVQHRBSp1s2LHLh1II5Ku_HbOTkIACSGxWrYV-c537-K7dwhda81USBPPIUFsAxTtRIDTHSoSwL8B1a5l53-cs9mC3i_9ZQuN61oYk1ZZ2f7SpltrXY0MqtMcZOv14Mk0K4l8zwRAJqgwtNsUnBHodP_9M83DsMfYrnkw2TxV0qaKp9zBDt4Mya3dxGG_-acfltq6n-kB2q9wIx6Vn3aIWirtoL0vbIId1J00RWswtbq1-RF6ndgCPyy2yUoVOE4TvDLpNi8Q9Su8inMsTIKjVLjh_sYbjfOmuArLTZaBTcEl83OOAevisoXOWgKQx1nJHAsrj9FiOnkez5yqzYIjAT0UTuiTIPBF4CkaSj9RjLqKaYCBwhWAN6QEEAGejkUJZSEAolBLImSsAhG50hOh10XtdJOqE4RFxGQgXE0NCbxL_ZhqAvHIUAtFEkXCU9SvD5dnJZsGb9LMQBrcSIMPCbfS4OwUhbUI-De14GDx_1p6VYuMw5Ux7yBxquBgTbRDTT_4s_9vfo52bVaf_RdzgdrF21ZdAjopRM-qXw_tjO4eZvMPzdngVg
link.rule.ids 315,786,790,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYABQaGivOqBAYbQJnGcZKyqVi2PLrRSNyt27NKBNKLl_3N2UgJICInVsq3ozj5_l7v7DuBaa6YimvqOFybWQdFOjDjdoSJF_BtS7Vp2_qcxG07p_SyYbUFvUwtj0ipL21_YdGuty5F2Kc12vli0n02zkjjwjQNknAq2DTs0CF1ag53u6GE4_gwm0I5tYGnmm2glrQp5ik3s4E3Hu7X7OOy3J-qHsbYv0OAQDkroSLrF1x3BlsrqsP-FULAOjX5Vt4ZTy4u7OobXvq3xI-I9nas1SbKUzE3GzQs6_orMkxURJsdRKlLRf5OlJquqvorIZZ6jWSEF-fOKINwlRRedhUQsT_KCPBZXnsB00J_0hk7ZacGRCCDWThR4YRiI0Fc0kkGqGHUV04gEhSsQckiJOAIfOxanlEWIiSItPSETFYrYlb6I_AbUsmWmToGImMlQuJoaHniXBgnVHrokHS2UlyovasLdRrg8Lwg1eJVphtrgRhu843GrDc6aEG1UwL-dDI5G_6-lrY3KON4aEwpJMoWCNQ4PNS3hz_6_eQt2h5OnR_44Gj-cw55N8rO_Zi6gtn57V5cIVtbiqjyMH5uv4ww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+budget+and+greenhouse+gas+balance+evaluation+of+sustainable+coppice+systems+for+electricity+production&rft.jtitle=Biomass+%26+bioenergy&rft.au=Lettens%2C+S&rft.date=2003-01-01&rft.issn=0961-9534&rft.volume=24&rft.issue=3&rft.spage=179&rft.epage=197&rft_id=info:doi/10.1016%2FS0961-9534%2802%2900104-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0961_9534_02_00104_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-9534&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-9534&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-9534&client=summon