Practical variable selection for generalized additive models
The problem of variable selection within the class of generalized additive models, when there are many covariates to choose from but the number of predictors is still somewhat smaller than the number of observations, is considered. Two very simple but effective shrinkage methods and an extension of...
Saved in:
Published in | Computational statistics & data analysis Vol. 55; no. 7; pp. 2372 - 2387 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.07.2011
Elsevier |
Series | Computational Statistics & Data Analysis |
Subjects | |
Online Access | Get full text |
ISSN | 0167-9473 1872-7352 |
DOI | 10.1016/j.csda.2011.02.004 |
Cover
Loading…
Abstract | The problem of variable selection within the class of generalized additive models, when there are many covariates to choose from but the number of predictors is still somewhat smaller than the number of observations, is considered. Two very simple but effective shrinkage methods and an extension of the nonnegative garrote estimator are introduced. The proposals avoid having to use nonparametric testing methods for which there is no general reliable distributional theory. Moreover, component selection is carried out in one single step as opposed to many selection procedures which involve an exhaustive search of all possible models. The empirical performance of the proposed methods is compared to that of some available techniques via an extensive simulation study. The results show under which conditions one method can be preferred over another, hence providing applied researchers with some practical guidelines. The procedures are also illustrated analysing data on plasma beta-carotene levels from a cross-sectional study conducted in the United States. |
---|---|
AbstractList | The problem of variable selection within the class of generalized additive models, when there are many covariates to choose from but the number of predictors is still somewhat smaller than the number of observations, is considered. Two very simple but effective shrinkage methods and an extension of the nonnegative garrote estimator are introduced. The proposals avoid having to use nonparametric testing methods for which there is no general reliable distributional theory. Moreover, component selection is carried out in one single step as opposed to many selection procedures which involve an exhaustive search of all possible models. The empirical performance of the proposed methods is compared to that of some available techniques via an extensive simulation study. The results show under which conditions one method can be preferred over another, hence providing applied researchers with some practical guidelines. The procedures are also illustrated analysing data on plasma beta-carotene levels from a cross-sectional study conducted in the United States. |
Author | Marra, Giampiero Wood, Simon N. |
Author_xml | – sequence: 1 givenname: Giampiero surname: Marra fullname: Marra, Giampiero email: giampiero@stats.ucl.ac.uk organization: Department of Statistical Science, University College London, London WC1E 6BT, UK – sequence: 2 givenname: Simon N. surname: Wood fullname: Wood, Simon N. organization: Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24076455$$DView record in Pascal Francis http://econpapers.repec.org/article/eeecsdana/v_3a55_3ay_3a2011_3ai_3a7_3ap_3a2372-2387.htm$$DView record in RePEc |
BookMark | eNp9Uctq5DAQFEsWdvL4gT35EvZkp_WyZMglhH3BQHLInoUstTcaNPZEcgaSr4-cCTnkkEOrRVNV3VQdk6NxGpGQ7xQaCrS92DQue9swoLQB1gCIL2RFtWK14pIdkVUBqboTin8jxzlvAIAJpVfk8jZZNwdnY7W3Kdg-YpUxYplNYzVMqfqPIyYbwzP6ynof5rDHajt5jPmUfB1szHj21k_Iv18_767_1Oub33-vr9a1E5zOtZKgO9pKwZzw0LVAsaddR13vvfOgBim1BsE8et0DtZ5qUT7AO9V7h5KfkB8H3V2aHh4xz2YbssMY7YjTYzZad7xjsm0Lcn1AJtyhM7sUtjY9GURc_Bmt2RtupSzPU6nFrtJCKVVqt4y4YoZxrcz9vC1y52-LbS4WDcmOLuR3WSZAtUIuB7IDzqUp54TDO4SCWQIyG7McYF43AjMloELSH0guzHbxfU42xM-plwdqCQH3AZPJLuDo0IdUojN-Cp_RXwA9y6vz |
CitedBy_id | crossref_primary_10_3390_ijgi9100577 crossref_primary_10_1016_j_agrformet_2018_01_037 crossref_primary_10_1016_j_fishres_2021_106199 crossref_primary_10_1016_j_jhydrol_2022_128089 crossref_primary_10_3389_frsen_2022_940186 crossref_primary_10_1080_17550874_2017_1341961 crossref_primary_10_1016_j_biocon_2016_01_009 crossref_primary_10_1007_s11356_019_05689_8 crossref_primary_10_1016_j_jmarsys_2023_103883 crossref_primary_10_1111_sjos_12388 crossref_primary_10_5194_nhess_20_1267_2020 crossref_primary_10_1016_j_ecss_2023_108250 crossref_primary_10_1093_icesjms_fsae054 crossref_primary_10_1016_j_fishres_2019_105367 crossref_primary_10_1016_j_foreco_2023_121599 crossref_primary_10_1098_rstb_2019_0296 crossref_primary_10_1016_j_gsf_2024_101822 crossref_primary_10_1111_cogs_13201 crossref_primary_10_3390_su16031307 crossref_primary_10_1111_rssa_12866 crossref_primary_10_1007_s11629_024_8738_1 crossref_primary_10_1016_j_fishres_2023_106860 crossref_primary_10_13157_arla_71_2_2024_ra8 crossref_primary_10_1002_ece3_10855 crossref_primary_10_1016_j_scitotenv_2024_177677 crossref_primary_10_1111_fwb_13833 crossref_primary_10_3389_fmars_2022_829523 crossref_primary_10_1093_biostatistics_kxy003 crossref_primary_10_1016_j_biocon_2025_111047 crossref_primary_10_1007_s10533_021_00868_7 crossref_primary_10_1002_ece3_11708 crossref_primary_10_1016_j_scitotenv_2023_167212 crossref_primary_10_1126_sciadv_abo6602 crossref_primary_10_1007_s11222_015_9622_1 crossref_primary_10_1016_j_fishres_2020_105714 crossref_primary_10_1002_2688_8319_12310 crossref_primary_10_1016_j_techsoc_2024_102590 crossref_primary_10_1093_jac_dkaf043 crossref_primary_10_1093_icesjms_fsae161 crossref_primary_10_1007_s12603_023_2027_5 crossref_primary_10_1016_j_fishres_2023_106850 crossref_primary_10_1002_ajp_23047 crossref_primary_10_1111_cobi_14435 crossref_primary_10_1002_ajp_23288 crossref_primary_10_1111_gcb_16721 crossref_primary_10_1177_0962280218779408 crossref_primary_10_1186_s41512_020_00074_3 crossref_primary_10_1007_s11069_017_2770_1 crossref_primary_10_1111_ddi_12867 crossref_primary_10_1038_s41598_024_82937_z crossref_primary_10_1016_j_ecss_2024_108796 crossref_primary_10_1016_j_foreco_2021_119983 crossref_primary_10_1016_j_polar_2023_100974 crossref_primary_10_1007_s00477_019_01682_2 crossref_primary_10_1111_fog_12601 crossref_primary_10_1016_j_spasta_2021_100526 crossref_primary_10_1016_j_fishres_2023_106619 crossref_primary_10_3390_f14020304 crossref_primary_10_1002_rra_3886 crossref_primary_10_1038_s41559_023_02122_9 crossref_primary_10_1002_rse2_278 crossref_primary_10_1002_lno_11093 crossref_primary_10_1016_j_ejrh_2023_101462 crossref_primary_10_1073_pnas_1820389116 crossref_primary_10_1038_s41598_019_42288_6 crossref_primary_10_3233_JSA_240670 crossref_primary_10_1086_703534 crossref_primary_10_1002_aqc_3031 crossref_primary_10_1093_jmammal_gyad031 crossref_primary_10_1007_s00265_021_03104_2 crossref_primary_10_1111_mms_12092 crossref_primary_10_1093_icesjms_fsae068 crossref_primary_10_1002_aqc_4243 crossref_primary_10_3390_jmse9050484 crossref_primary_10_1136_bmjsem_2024_002069 crossref_primary_10_1016_j_scitotenv_2021_152309 crossref_primary_10_1098_rspb_2021_1394 crossref_primary_10_1016_j_actpsy_2020_103107 crossref_primary_10_1080_03088839_2021_1969601 crossref_primary_10_1111_ibi_12885 crossref_primary_10_1186_s40317_017_0129_8 crossref_primary_10_1093_icesjms_fsaf032 crossref_primary_10_1139_cjfas_2021_0097 crossref_primary_10_1016_j_fishres_2016_02_009 crossref_primary_10_1214_18_EJS1394 crossref_primary_10_1371_journal_pone_0106366 crossref_primary_10_1016_j_csda_2013_05_012 crossref_primary_10_1016_j_marpolbul_2021_112878 crossref_primary_10_1146_annurev_statistics_112723_034642 crossref_primary_10_1007_s10687_019_00342_6 crossref_primary_10_1016_j_agee_2021_107652 crossref_primary_10_1016_j_foreco_2021_119881 crossref_primary_10_7717_peerj_17457 crossref_primary_10_1016_j_ecolind_2021_107429 crossref_primary_10_1093_icesjms_fsac197 crossref_primary_10_1139_as_2024_0001 crossref_primary_10_3389_fenvs_2022_895531 crossref_primary_10_1016_j_scitotenv_2018_08_307 crossref_primary_10_1016_j_wace_2021_100352 crossref_primary_10_1111_mcn_13410 crossref_primary_10_1111_1365_2435_14499 crossref_primary_10_1016_j_scitotenv_2023_165083 crossref_primary_10_1093_icesjms_fsac073 crossref_primary_10_1242_jeb_249975 crossref_primary_10_5194_bg_19_2939_2022 crossref_primary_10_1007_s13253_023_00586_7 crossref_primary_10_3390_w15132422 crossref_primary_10_1016_j_scitotenv_2019_06_027 crossref_primary_10_1097_AUD_0000000000001506 crossref_primary_10_1071_MF19138 crossref_primary_10_3354_meps10958 crossref_primary_10_1111_ddi_12537 crossref_primary_10_1007_s00027_024_01056_z crossref_primary_10_1007_s12237_024_01416_w crossref_primary_10_1177_1471082X17748034 crossref_primary_10_1128_msystems_00459_24 crossref_primary_10_1111_fog_12419 crossref_primary_10_1080_24705357_2021_1938254 crossref_primary_10_1093_icesjms_fsae122 crossref_primary_10_1137_18M1167978 crossref_primary_10_1093_icesjms_fsae125 crossref_primary_10_1093_plankt_fbac024 crossref_primary_10_3390_rs8020149 crossref_primary_10_1080_10618600_2020_1806855 crossref_primary_10_2139_ssrn_2870308 crossref_primary_10_1002_fee_2506 crossref_primary_10_1002_eap_3023 crossref_primary_10_1016_j_fishres_2021_106179 crossref_primary_10_1016_j_fishres_2023_106773 crossref_primary_10_1021_acs_estlett_9b00214 crossref_primary_10_1371_journal_pone_0273707 crossref_primary_10_3354_esr00744 crossref_primary_10_1080_03949370_2023_2191339 crossref_primary_10_3389_fmars_2021_606975 crossref_primary_10_1016_j_jenvman_2021_112281 crossref_primary_10_1093_icesjms_fsaf005 crossref_primary_10_1111_jbi_14730 crossref_primary_10_1016_j_cub_2023_08_004 crossref_primary_10_1007_s00300_023_03113_z crossref_primary_10_1186_s42408_024_00320_9 crossref_primary_10_1016_j_actpsy_2024_104249 crossref_primary_10_1002_wics_1627 crossref_primary_10_1007_s13364_021_00613_3 crossref_primary_10_1068_b120023p crossref_primary_10_1073_pnas_2113628119 crossref_primary_10_1002_sta4_70 crossref_primary_10_7717_peerj_7035 crossref_primary_10_1002_aqc_4166 crossref_primary_10_1017_S0025315417000431 crossref_primary_10_1002_aqc_4167 crossref_primary_10_1016_j_csda_2020_107088 crossref_primary_10_1093_icesjms_fsx187 crossref_primary_10_1002_ecs2_3155 crossref_primary_10_1016_j_watres_2019_114858 crossref_primary_10_1073_pnas_2203511120 crossref_primary_10_1016_j_jmva_2017_04_006 crossref_primary_10_1016_j_ttbdis_2020_101419 crossref_primary_10_5194_acp_13_11473_2013 crossref_primary_10_1111_sjos_12548 crossref_primary_10_1371_journal_pone_0292644 crossref_primary_10_3390_rs11192267 crossref_primary_10_1007_s10530_018_1902_1 crossref_primary_10_3389_fevo_2022_875578 crossref_primary_10_1007_s00227_023_04253_w crossref_primary_10_1002_ece3_9248 crossref_primary_10_1029_2024JD041805 crossref_primary_10_1098_rspb_2023_1095 crossref_primary_10_1371_journal_pone_0316946 crossref_primary_10_1007_s10530_023_03200_6 crossref_primary_10_1016_j_funeco_2017_12_003 crossref_primary_10_1371_journal_pntd_0008411 crossref_primary_10_1007_s10530_016_1241_z crossref_primary_10_3390_f5112626 crossref_primary_10_1121_10_0025540 crossref_primary_10_3390_f16020225 crossref_primary_10_1016_j_marenvres_2020_104953 crossref_primary_10_1016_j_fishres_2015_11_017 crossref_primary_10_3354_esr01140 crossref_primary_10_1111_1365_2656_13396 crossref_primary_10_1016_j_agee_2021_107581 crossref_primary_10_1016_j_applanim_2023_105853 crossref_primary_10_1016_j_envsoft_2018_08_031 crossref_primary_10_1016_j_scitotenv_2020_138330 crossref_primary_10_1007_s12237_022_01061_1 crossref_primary_10_1002_ece3_70074 crossref_primary_10_1371_journal_pone_0152466 crossref_primary_10_1007_s10452_021_09939_1 crossref_primary_10_1038_s41598_024_84641_4 crossref_primary_10_1111_1365_2664_13008 crossref_primary_10_1007_s10750_022_05098_y crossref_primary_10_1007_s10750_022_04822_y crossref_primary_10_1029_2022JG007261 crossref_primary_10_1007_s10641_022_01270_4 crossref_primary_10_1007_s11222_015_9581_6 crossref_primary_10_1016_j_eja_2013_12_002 crossref_primary_10_1002_eap_2931 crossref_primary_10_1002_pan3_10771 crossref_primary_10_1016_j_xjidi_2021_100062 crossref_primary_10_1111_fme_12148 crossref_primary_10_1007_s10260_016_0357_8 crossref_primary_10_1016_j_scitotenv_2022_154241 crossref_primary_10_1016_j_ecolind_2022_108699 crossref_primary_10_3389_fenvs_2023_1223219 crossref_primary_10_1016_j_landurbplan_2018_08_008 crossref_primary_10_5194_tc_18_1359_2024 crossref_primary_10_1214_17_EJS1307 crossref_primary_10_1093_conphys_coad082 crossref_primary_10_1136_bmjopen_2023_080135 crossref_primary_10_3390_plants14060843 crossref_primary_10_1016_j_scitotenv_2023_166995 crossref_primary_10_1080_14697688_2017_1417625 crossref_primary_10_1111_2041_210X_13974 crossref_primary_10_1007_s13253_021_00450_6 crossref_primary_10_3389_fmars_2022_921594 crossref_primary_10_1016_j_vetmic_2025_110415 crossref_primary_10_1111_fwb_13214 crossref_primary_10_1675_063_038_0305 crossref_primary_10_1016_j_fishres_2022_106539 crossref_primary_10_1016_j_ttbdis_2021_101833 crossref_primary_10_1016_j_ecoinf_2023_102080 crossref_primary_10_1016_j_scitotenv_2024_171158 crossref_primary_10_1111_gcb_16435 crossref_primary_10_1007_s10750_023_05467_1 crossref_primary_10_3354_meps13849 crossref_primary_10_1080_10627197_2019_1645590 crossref_primary_10_2139_ssrn_2836587 crossref_primary_10_1016_j_oneear_2022_05_008 crossref_primary_10_1016_j_psychres_2024_116006 crossref_primary_10_1186_s13595_022_01148_6 crossref_primary_10_1111_ecog_07489 crossref_primary_10_1177_10943420231179417 crossref_primary_10_1016_j_biocon_2024_110834 crossref_primary_10_2215_CJN_0000000000000370 crossref_primary_10_1002_ecm_1486 crossref_primary_10_1002_eco_2362 crossref_primary_10_1098_rsos_190216 crossref_primary_10_3390_ani14091309 crossref_primary_10_1002_lno_12354 crossref_primary_10_1111_eea_13065 crossref_primary_10_2139_ssrn_3288347 crossref_primary_10_1016_j_jhepr_2024_101295 crossref_primary_10_2139_ssrn_4089592 crossref_primary_10_1016_j_jas_2016_09_004 crossref_primary_10_1016_j_landurbplan_2017_11_006 crossref_primary_10_1016_j_apsoil_2025_105965 crossref_primary_10_1093_icesjms_fsad201 crossref_primary_10_1177_09622802241280784 crossref_primary_10_1371_journal_pone_0163441 crossref_primary_10_1002_wics_1327 crossref_primary_10_3389_feart_2022_768836 crossref_primary_10_1016_j_ecolind_2023_110831 crossref_primary_10_1016_j_fishres_2014_02_013 crossref_primary_10_3354_esr01225 crossref_primary_10_1016_j_marenvres_2024_106659 crossref_primary_10_1371_journal_pone_0138582 crossref_primary_10_3354_meps11648 crossref_primary_10_1007_s00248_018_1178_0 crossref_primary_10_1016_j_pocean_2024_103388 crossref_primary_10_1080_01621459_2012_737742 crossref_primary_10_1016_j_pocean_2019_102257 crossref_primary_10_1016_j_rsase_2024_101184 crossref_primary_10_7717_peerj_6367 crossref_primary_10_1038_nature22975 crossref_primary_10_1002_rcm_9489 crossref_primary_10_1002_sim_8701 crossref_primary_10_1016_j_agee_2012_06_023 crossref_primary_10_1016_j_apsoil_2017_03_022 crossref_primary_10_5253_arde_2022_a37 crossref_primary_10_1371_journal_pone_0155817 crossref_primary_10_1371_journal_pone_0102060 crossref_primary_10_1111_mms_12610 crossref_primary_10_3390_rs15102614 crossref_primary_10_1016_j_pocean_2022_102823 crossref_primary_10_1007_s00521_020_05197_8 crossref_primary_10_1016_j_marenvres_2017_03_004 crossref_primary_10_1002_iroh_202302146 crossref_primary_10_1002_pan3_10736 crossref_primary_10_1289_EHP2207 crossref_primary_10_2139_ssrn_3804578 crossref_primary_10_3354_meps13930 crossref_primary_10_1016_j_dendro_2025_126298 crossref_primary_10_1029_2022JG007112 crossref_primary_10_1016_j_rsma_2021_101736 crossref_primary_10_1007_s10530_021_02671_9 crossref_primary_10_1007_s11252_024_01594_2 crossref_primary_10_1017_S0033291721001148 crossref_primary_10_1111_gcb_16642 crossref_primary_10_32609_0042_8736_2024_5_5_20 crossref_primary_10_3389_fmicb_2022_844432 crossref_primary_10_1080_10618600_2024_2319684 crossref_primary_10_1073_pnas_2212925119 crossref_primary_10_1016_j_cageo_2022_105161 crossref_primary_10_1016_j_scitotenv_2024_177977 crossref_primary_10_1016_j_envsoft_2023_105709 crossref_primary_10_3390_s22197247 crossref_primary_10_1007_s11356_023_26672_4 crossref_primary_10_1002_jwmg_22213 crossref_primary_10_1162_jocn_a_01878 crossref_primary_10_1093_icesjms_fsac241 crossref_primary_10_1016_j_fishres_2022_106509 crossref_primary_10_1080_10618600_2014_912136 crossref_primary_10_1111_gcb_14453 crossref_primary_10_5194_bg_10_3817_2013 crossref_primary_10_1038_srep29405 crossref_primary_10_1016_j_pocean_2024_103332 crossref_primary_10_1097_MD_0000000000039328 crossref_primary_10_1007_s00442_024_05523_0 crossref_primary_10_2139_ssrn_3320525 crossref_primary_10_3389_fmars_2023_1208262 crossref_primary_10_5194_bg_22_1301_2025 crossref_primary_10_1111_rssc_12252 crossref_primary_10_1590_2675_2824071_20019adfl crossref_primary_10_1002_ece3_70102 crossref_primary_10_1080_00949655_2020_1807981 crossref_primary_10_1111_ecog_04485 crossref_primary_10_1111_ecog_05575 crossref_primary_10_1111_ecog_06540 crossref_primary_10_1016_j_dcn_2022_101100 crossref_primary_10_1890_12_1903_1 crossref_primary_10_3390_oceans1030012 crossref_primary_10_1016_j_eswa_2023_121398 crossref_primary_10_1111_j_1467_9876_2012_01050_x crossref_primary_10_1073_pnas_2004535117 crossref_primary_10_1002_ecs2_1367 crossref_primary_10_3389_fmars_2020_00107 crossref_primary_10_1002_sim_9262 crossref_primary_10_1016_j_foreco_2025_122582 crossref_primary_10_1080_17550874_2017_1345997 crossref_primary_10_1111_csp2_12639 crossref_primary_10_3389_fmicb_2020_569879 crossref_primary_10_1002_ecs2_3409 crossref_primary_10_1016_j_aquabot_2021_103376 crossref_primary_10_1002_bse_2311 crossref_primary_10_1038_s41598_022_18851_z crossref_primary_10_3390_nu15204400 crossref_primary_10_3389_fmars_2021_770424 crossref_primary_10_1038_s41598_019_47618_2 crossref_primary_10_1016_j_egyr_2022_01_123 crossref_primary_10_1002_ece3_70235 crossref_primary_10_3354_meps14106 crossref_primary_10_1007_s10584_024_03829_9 crossref_primary_10_1016_j_socscimed_2022_115220 crossref_primary_10_1007_s00248_017_1039_2 crossref_primary_10_1111_j_1467_629X_2012_00479_x crossref_primary_10_1111_rssc_12368 crossref_primary_10_1111_jbi_15075 crossref_primary_10_1186_s12870_024_05348_2 crossref_primary_10_1016_j_mex_2024_102955 crossref_primary_10_1007_s10530_020_02453_9 crossref_primary_10_7717_peerj_13950 crossref_primary_10_1002_eap_1565 crossref_primary_10_1111_gean_12310 crossref_primary_10_3389_fmars_2023_1233249 crossref_primary_10_1016_j_watres_2019_02_010 crossref_primary_10_1007_s00227_023_04278_1 crossref_primary_10_3354_meps12128 crossref_primary_10_1007_s10641_022_01251_7 crossref_primary_10_1016_j_jclepro_2022_133008 crossref_primary_10_1016_j_gecco_2024_e02951 crossref_primary_10_1111_ecog_05597 crossref_primary_10_1016_j_ecss_2024_109083 crossref_primary_10_1007_s00382_018_4101_y crossref_primary_10_1111_mms_12784 crossref_primary_10_3389_fmars_2024_1383063 crossref_primary_10_1007_s10985_019_09465_1 crossref_primary_10_1016_j_rsma_2023_103114 crossref_primary_10_1007_s10182_013_0211_3 crossref_primary_10_3389_fspor_2024_1352114 crossref_primary_10_1016_j_jhazmat_2020_123796 crossref_primary_10_1016_j_csda_2011_04_016 crossref_primary_10_3389_fmars_2022_868566 crossref_primary_10_1016_j_uclim_2024_101965 crossref_primary_10_1111_ecog_07527 crossref_primary_10_1002_rra_4191 crossref_primary_10_1038_s41467_025_56175_4 crossref_primary_10_1002_joc_4607 crossref_primary_10_1016_j_foreco_2022_120753 crossref_primary_10_1111_rssc_12267 crossref_primary_10_1186_s40462_018_0125_5 crossref_primary_10_1016_j_pocean_2023_103070 crossref_primary_10_3354_meps12592 crossref_primary_10_3389_fpubh_2024_1321361 crossref_primary_10_1016_j_eja_2023_126890 crossref_primary_10_1080_02664763_2016_1155109 crossref_primary_10_1016_j_rse_2024_114587 crossref_primary_10_1002_ecs2_4840 crossref_primary_10_1371_journal_pone_0221408 crossref_primary_10_3354_meps14493 crossref_primary_10_1080_10618600_2024_2327577 crossref_primary_10_3354_meps14252 crossref_primary_10_1016_j_econlet_2025_112188 crossref_primary_10_1002_eap_1866 crossref_primary_10_1007_s11222_017_9799_6 crossref_primary_10_1038_s43247_024_01568_4 crossref_primary_10_1002_lno_11786 crossref_primary_10_3390_ani12030222 crossref_primary_10_3389_fmicb_2021_657508 crossref_primary_10_1007_s10531_024_02911_z crossref_primary_10_1371_journal_pcbi_1009874 crossref_primary_10_3389_feart_2021_641760 crossref_primary_10_1002_ecs2_4832 crossref_primary_10_1038_ismej_2014_147 crossref_primary_10_3389_fmars_2021_770224 crossref_primary_10_3390_f12050552 crossref_primary_10_1080_24749508_2020_1809060 crossref_primary_10_1007_s13157_024_01830_7 crossref_primary_10_1073_pnas_2203230119 crossref_primary_10_3354_meps11368 crossref_primary_10_3354_meps13787 crossref_primary_10_1002_aqc_3775 crossref_primary_10_1111_stan_12133 crossref_primary_10_1088_1748_9326_aca8bf crossref_primary_10_3389_fenvs_2022_880619 crossref_primary_10_1080_07474938_2019_1690193 crossref_primary_10_1214_14_AOS1260 crossref_primary_10_1038_s41598_024_59552_z crossref_primary_10_7717_peerj_8945 crossref_primary_10_1017_qua_2018_99 crossref_primary_10_1016_j_agee_2024_109133 crossref_primary_10_1080_00036846_2025_2467260 crossref_primary_10_3389_fpsyg_2024_1396163 crossref_primary_10_1002_bimj_202200178 crossref_primary_10_1111_oik_08629 crossref_primary_10_3390_soilsystems7010010 crossref_primary_10_1002_sim_5961 crossref_primary_10_1016_j_agee_2020_106931 crossref_primary_10_1016_j_fishres_2025_107305 crossref_primary_10_1111_1365_2435_13742 crossref_primary_10_7717_peerj_6876 crossref_primary_10_1017_S1748499521000026 crossref_primary_10_1139_cjfas_2023_0249 crossref_primary_10_3389_fmars_2022_877580 crossref_primary_10_1002_ecs2_1886 crossref_primary_10_1016_j_sigpro_2020_107465 crossref_primary_10_1071_CP23320 crossref_primary_10_3390_rs13132435 crossref_primary_10_1016_j_dsr_2024_104371 crossref_primary_10_1109_ACCESS_2021_3131740 crossref_primary_10_1007_s11222_016_9662_1 crossref_primary_10_1111_fwb_14193 crossref_primary_10_1214_14_STS510 crossref_primary_10_1139_cjfas_2023_0361 crossref_primary_10_1002_aqc_2669 crossref_primary_10_1029_2023RG000825 crossref_primary_10_1007_s11852_025_01101_5 crossref_primary_10_1016_j_epidem_2020_100416 crossref_primary_10_1016_j_jclepro_2020_120551 crossref_primary_10_1007_s13592_022_00950_5 crossref_primary_10_1098_rspb_2021_1631 crossref_primary_10_1080_21683565_2022_2131691 crossref_primary_10_1177_1471082X17748083 crossref_primary_10_1002_mcf2_10025 crossref_primary_10_1016_j_dsr2_2018_06_002 crossref_primary_10_1016_j_ecolmodel_2023_110568 crossref_primary_10_1111_irv_13087 crossref_primary_10_1038_s41598_024_59964_x crossref_primary_10_1111_2041_210X_14367 crossref_primary_10_1111_nph_19806 crossref_primary_10_1016_j_agrformet_2023_109828 crossref_primary_10_7717_peerj_12113 crossref_primary_10_1016_j_heliyon_2023_e15252 crossref_primary_10_1136_bmjsem_2024_001919 crossref_primary_10_1111_jfb_15151 crossref_primary_10_3354_meps14742 crossref_primary_10_1002_ecy_3979 crossref_primary_10_1016_j_trpro_2024_12_183 crossref_primary_10_1007_s00382_012_1590_y crossref_primary_10_1016_j_algal_2021_102490 crossref_primary_10_1007_s10463_021_00810_6 crossref_primary_10_1111_2041_210X_14498 crossref_primary_10_3389_fevo_2023_1149097 crossref_primary_10_1007_s00027_022_00872_5 crossref_primary_10_1016_j_ecolind_2023_110696 crossref_primary_10_1016_j_fishres_2024_106979 crossref_primary_10_3390_educsci13020160 crossref_primary_10_1002_cjs_11739 crossref_primary_10_3390_f11121259 crossref_primary_10_1002_ece3_6316 crossref_primary_10_1002_mcf2_10002 crossref_primary_10_1016_j_seares_2014_09_009 crossref_primary_10_1071_WR23004 crossref_primary_10_1093_inthealth_ihad035 crossref_primary_10_1007_s10531_022_02416_7 crossref_primary_10_1038_s41467_023_38806_w crossref_primary_10_1111_jvs_13214 crossref_primary_10_1080_10643389_2022_2093595 crossref_primary_10_1111_fog_12685 crossref_primary_10_1007_s00180_022_01292_7 crossref_primary_10_1007_s00181_024_02681_1 crossref_primary_10_1002_eap_2493 crossref_primary_10_1016_j_csda_2013_03_017 crossref_primary_10_1111_gcb_15900 crossref_primary_10_1016_j_rsma_2024_103805 crossref_primary_10_1016_j_scitotenv_2021_152150 crossref_primary_10_1111_rssc_12548 crossref_primary_10_1016_j_scitotenv_2023_162817 crossref_primary_10_3390_pr10051009 crossref_primary_10_1038_s41598_021_94861_7 crossref_primary_10_1016_j_jtrangeo_2025_104115 crossref_primary_10_1038_s41598_022_23705_9 crossref_primary_10_3389_fmars_2017_00230 crossref_primary_10_1016_j_fishres_2021_105954 crossref_primary_10_1111_mms_13225 crossref_primary_10_1111_afe_12626 crossref_primary_10_1002_bimj_202100355 crossref_primary_10_3389_fphys_2018_01462 crossref_primary_10_1080_10618600_2014_901914 crossref_primary_10_1007_s12110_020_09383_4 crossref_primary_10_1093_schbul_sbae103 crossref_primary_10_1029_2021WR030909 crossref_primary_10_1016_j_scitotenv_2023_164826 crossref_primary_10_1111_ele_70065 crossref_primary_10_1016_j_scitotenv_2023_161445 crossref_primary_10_1080_0740817X_2014_982840 crossref_primary_10_1111_mms_13057 crossref_primary_10_1016_j_fishres_2018_10_011 crossref_primary_10_1016_j_marpolbul_2024_116398 crossref_primary_10_1038_s41380_024_02860_7 crossref_primary_10_1002_mcf2_10073 crossref_primary_10_1002_mcf2_10075 crossref_primary_10_1016_j_psychres_2024_115770 crossref_primary_10_3389_fmars_2017_00121 crossref_primary_10_1016_j_scitotenv_2023_163849 crossref_primary_10_1061_AJRUA6_RUENG_1266 crossref_primary_10_1016_j_apsoil_2018_08_020 crossref_primary_10_1111_jvs_12792 crossref_primary_10_1111_ecog_05763 crossref_primary_10_1177_1471082X16689188 crossref_primary_10_1016_j_scitotenv_2022_160483 crossref_primary_10_2139_ssrn_5003048 crossref_primary_10_1016_j_spasta_2022_100637 crossref_primary_10_1093_jmammal_gyy021 crossref_primary_10_2989_1814232X_2016_1218367 crossref_primary_10_1111_1365_2656_13913 crossref_primary_10_3354_meps13386 crossref_primary_10_3354_meps13020 crossref_primary_10_1016_j_scitotenv_2024_172739 crossref_primary_10_3390_a16100486 crossref_primary_10_1016_j_scitotenv_2021_150167 crossref_primary_10_1007_s11252_019_00843_z crossref_primary_10_1038_s41598_022_10850_4 crossref_primary_10_3354_meps14430 crossref_primary_10_1111_ecog_06769 crossref_primary_10_1186_s12940_022_00934_z crossref_primary_10_1111_icad_12701 crossref_primary_10_3354_meps12168 crossref_primary_10_3354_meps14317 crossref_primary_10_1111_jbi_14695 crossref_primary_10_1111_fog_12005 crossref_primary_10_1111_eff_12817 crossref_primary_10_1002_sim_9483 crossref_primary_10_1016_j_cub_2022_10_007 crossref_primary_10_1098_rsbl_2024_0346 crossref_primary_10_1098_rspb_2023_2749 crossref_primary_10_3354_meps14680 crossref_primary_10_3389_fmars_2018_00016 crossref_primary_10_3390_ijerph17134698 crossref_primary_10_1016_j_ocecoaman_2024_107419 crossref_primary_10_1002_ecs2_4080 crossref_primary_10_1088_1755_1315_429_1_012041 crossref_primary_10_1525_elementa_2023_00033 crossref_primary_10_1016_j_cpnec_2021_100074 crossref_primary_10_3389_fneur_2018_01107 crossref_primary_10_1214_16_EJS1123 crossref_primary_10_1038_s41545_020_0077_3 crossref_primary_10_1111_mms_13147 crossref_primary_10_1002_jgrc_20216 crossref_primary_10_1080_01621459_2016_1180986 crossref_primary_10_1071_BT20036 crossref_primary_10_1093_ije_dyae080 crossref_primary_10_1111_gcb_17285 |
Cites_doi | 10.1198/016214506000000735 10.1111/1467-9868.00281 10.1016/j.csda.2008.12.006 10.1111/j.1467-9868.2005.00532.x 10.1007/s11222-009-9148-5 10.1198/jcgs.2009.0008 10.1214/009053606000000722 10.1177/1471082X1001100304 10.1016/j.csda.2006.10.007 10.1016/j.csda.2010.01.036 10.1016/S0304-3800(02)00204-1 10.1016/j.csda.2006.11.041 10.1111/1467-9868.00374 10.1214/009053604000000067 10.1093/oxfordjournals.aje.a115365 10.1111/j.1467-9868.2008.00695.x 10.1111/j.1541-0420.2006.00578.x 10.1177/0962280208096688 10.1111/j.1467-842X.2007.00473.x 10.1198/016214503000125 10.1214/aos/1176349743 10.1016/j.csda.2007.01.025 10.1111/j.1467-9868.2010.00749.x 10.1080/00401706.1995.10484371 10.1214/08-SS035 10.1093/biomet/89.2.251 10.1214/aoms/1177697089 10.1111/j.2517-6161.1996.tb02080.x 10.1007/s11222-007-9040-0 10.1198/106186007X180723 10.1111/j.1467-9868.2007.00646.x 10.1016/j.csda.2008.11.007 10.1016/j.csda.2007.10.022 |
ContentType | Journal Article |
Copyright | 2011 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW DKI X2L 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.csda.2011.02.004 |
DatabaseName | CrossRef Pascal-Francis RePEc IDEAS RePEc Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Statistics |
EISSN | 1872-7352 |
EndPage | 2387 |
ExternalDocumentID | eeecsdana_v_3a55_3ay_3a2011_3ai_3a7_3ap_3a2372_2387_htm 24076455 10_1016_j_csda_2011_02_004 S0167947311000491 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDS SES SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K VH1 VOH WUQ XPP ZMT ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 02 0R 1 8P ABFLS ABPTK ADALY DKI G- HZ IPNFZ K M STF X X2L 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c431t-7508916542c4d09601eb1991cbddcd07f5588042ded8b01ad1848b00397bdce53 |
IEDL.DBID | .~1 |
ISSN | 0167-9473 |
IngestDate | Fri Jul 11 10:49:15 EDT 2025 Wed Aug 18 04:17:17 EDT 2021 Mon Jul 21 09:14:16 EDT 2025 Tue Jul 01 05:22:21 EDT 2025 Thu Apr 24 23:03:44 EDT 2025 Fri Feb 23 02:19:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Penalized thin plate regression spline Practical variable selection Generalized additive model Shrinkage smoother Nonnegative garrote estimator Ridge regression Rank statistic Shrinkage estimator Non parametric method Thin plate Non parametric estimation Covariate Additive model Penalty method Parametric method Statistical test Cross sectional study Selection method Regression spline Simulation model Variable selection Data analysis Model selection Empirical method Statistical estimation Statistical regression Selection problem Statistical computation |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c431t-7508916542c4d09601eb1991cbddcd07f5588042ded8b01ad1848b00397bdce53 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 889392566 |
PQPubID | 23500 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_889392566 repec_primary_eeecsdana_v_3a55_3ay_3a2011_3ai_3a7_3ap_3a2372_2387_htm pascalfrancis_primary_24076455 crossref_primary_10_1016_j_csda_2011_02_004 crossref_citationtrail_10_1016_j_csda_2011_02_004 elsevier_sciencedirect_doi_10_1016_j_csda_2011_02_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-07-01 |
PublicationDateYYYYMMDD | 2011-07-01 |
PublicationDate_xml | – month: 07 year: 2011 text: 2011-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationSeriesTitle | Computational Statistics & Data Analysis |
PublicationTitle | Computational statistics & data analysis |
PublicationYear | 2011 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Bühlmann, Yu (br000030) 2003; 98 Marra, Radice (br000110) 2010; 19 Kauermann, Tutz (br000095) 2001; 63 Shafik, Tutz (br000145) 2009; 53 Nierenberg, Stukel, Baron, Dain, Greenberg (br000120) 1989; 130 Tibshirani (br000155) 1996; 58 Wahba (br000175) 1985; 13 Yuan, M., 2007. Nonnegative garrote component selection in functional anova models. In: Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics. Puerto Rico. Yuan, Lin (br000210) 2006; 68 Cantoni, Flemming, Ronchetti (br000035) 2011; 11 Zhang, Lin (br000215) 2006; 16 Breiman (br000020) 1995; 37 Belitz, Lang (br000010) 2008; 51 Lin, Zhang (br000105) 2006; 34 Wood (br000195) 2011; 73 Hastie, Tibshirani (br000080) 1990 Efron, Hastie, Johnstone, Tibshirani (br000055) 2004; 32 Tutz, Binder (br000165) 2007; 51 Xue (br000200) 2009; 19 Guisan, Edwards, Hastie (br000070) 2002; 157 Avalos, Grandvalet, Ambroise (br000005) 2007; 51 Similä, Tikka (br000150) 2007; 52 Bühlmann, Hothorn (br000025) 2010; 20 Cantoni, Hastie (br000040) 2002; 89 Härdle, Hall, Marron (br000075) 1988; 83 Nott, Leng (br000125) 2010; 54 Scheipl, Greven, Kuchenhoff (br000140) 2008; 52 McCullagh, Nelder (br000115) 1989 Zou (br000220) 2006; 101 Greven, S., Kneib, T., 2009. On the behavior of marginal and conditional Akaike information criteria in linear mixed models. Johns Hopkins University, Department of Biostatistics Working Papers. Paper 179. . Gentle (br000060) 2003 Wager, Vaida, Kauermann (br000170) 2007; 49 Wood (br000180) 2003; 65 Binder, Tutz (br000015) 2008; 18 Daye, Jeng (br000050) 2009; 53 Wood (br000185) 2006 Hesterberg, Choi, Meier, Fraley (br000085) 2008; 2 Tutz, Binder (br000160) 2006; 62 Kauermann, Claeskens, Opsomer (br000090) 2009; 18 Kimeldorf, Wahba (br000100) 1970; 41 R Development Core Team, 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0. URL Wood (br000190) 2008; 70 Chib, Greenberg (br000045) 2007; 16 Reiss, Ogden (br000135) 2009; 71 Nott (10.1016/j.csda.2011.02.004_br000125) 2010; 54 10.1016/j.csda.2011.02.004_br000130 Cantoni (10.1016/j.csda.2011.02.004_br000035) 2011; 11 Kauermann (10.1016/j.csda.2011.02.004_br000095) 2001; 63 Efron (10.1016/j.csda.2011.02.004_br000055) 2004; 32 Daye (10.1016/j.csda.2011.02.004_br000050) 2009; 53 Gentle (10.1016/j.csda.2011.02.004_br000060) 2003 Wood (10.1016/j.csda.2011.02.004_br000195) 2011; 73 Chib (10.1016/j.csda.2011.02.004_br000045) 2007; 16 Kauermann (10.1016/j.csda.2011.02.004_br000090) 2009; 18 Scheipl (10.1016/j.csda.2011.02.004_br000140) 2008; 52 Hesterberg (10.1016/j.csda.2011.02.004_br000085) 2008; 2 Xue (10.1016/j.csda.2011.02.004_br000200) 2009; 19 Binder (10.1016/j.csda.2011.02.004_br000015) 2008; 18 Marra (10.1016/j.csda.2011.02.004_br000110) 2010; 19 Tutz (10.1016/j.csda.2011.02.004_br000165) 2007; 51 Wahba (10.1016/j.csda.2011.02.004_br000175) 1985; 13 Zou (10.1016/j.csda.2011.02.004_br000220) 2006; 101 10.1016/j.csda.2011.02.004_br000065 Reiss (10.1016/j.csda.2011.02.004_br000135) 2009; 71 Guisan (10.1016/j.csda.2011.02.004_br000070) 2002; 157 Wood (10.1016/j.csda.2011.02.004_br000185) 2006 Belitz (10.1016/j.csda.2011.02.004_br000010) 2008; 51 Avalos (10.1016/j.csda.2011.02.004_br000005) 2007; 51 Wood (10.1016/j.csda.2011.02.004_br000190) 2008; 70 Shafik (10.1016/j.csda.2011.02.004_br000145) 2009; 53 Wood (10.1016/j.csda.2011.02.004_br000180) 2003; 65 Hastie (10.1016/j.csda.2011.02.004_br000080) 1990 Kimeldorf (10.1016/j.csda.2011.02.004_br000100) 1970; 41 10.1016/j.csda.2011.02.004_br000205 Yuan (10.1016/j.csda.2011.02.004_br000210) 2006; 68 Breiman (10.1016/j.csda.2011.02.004_br000020) 1995; 37 Lin (10.1016/j.csda.2011.02.004_br000105) 2006; 34 McCullagh (10.1016/j.csda.2011.02.004_br000115) 1989 Similä (10.1016/j.csda.2011.02.004_br000150) 2007; 52 Bühlmann (10.1016/j.csda.2011.02.004_br000030) 2003; 98 Bühlmann (10.1016/j.csda.2011.02.004_br000025) 2010; 20 Nierenberg (10.1016/j.csda.2011.02.004_br000120) 1989; 130 Wager (10.1016/j.csda.2011.02.004_br000170) 2007; 49 Cantoni (10.1016/j.csda.2011.02.004_br000040) 2002; 89 Zhang (10.1016/j.csda.2011.02.004_br000215) 2006; 16 Tutz (10.1016/j.csda.2011.02.004_br000160) 2006; 62 Härdle (10.1016/j.csda.2011.02.004_br000075) 1988; 83 Tibshirani (10.1016/j.csda.2011.02.004_br000155) 1996; 58 |
References_xml | – volume: 32 start-page: 407 year: 2004 end-page: 451 ident: br000055 article-title: Least angle regression publication-title: The Annals of Statistics – reference: Greven, S., Kneib, T., 2009. On the behavior of marginal and conditional Akaike information criteria in linear mixed models. Johns Hopkins University, Department of Biostatistics Working Papers. Paper 179. – year: 1990 ident: br000080 article-title: Generalized Additive Models – volume: 52 start-page: 3283 year: 2008 end-page: 3299 ident: br000140 article-title: Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models publication-title: Computational Statistics and Data Analysis – volume: 73 start-page: 3 year: 2011 end-page: 36 ident: br000195 article-title: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models publication-title: Journal of the Royal Statistical Society Series B – volume: 37 start-page: 373 year: 1995 end-page: 384 ident: br000020 article-title: Better subset regression using the nonnegative garrote publication-title: Technometrics – volume: 98 start-page: 324 year: 2003 end-page: 339 ident: br000030 article-title: Boosting with the L2 loss: regression and classification publication-title: Journal of the American Statistical Association – volume: 89 start-page: 251 year: 2002 end-page: 263 ident: br000040 article-title: Degrees of freedom tests for smoothing splines publication-title: Biometrika – volume: 71 start-page: 505 year: 2009 end-page: 524 ident: br000135 article-title: Smoothing parameter selection for a class of semiparametric linear models publication-title: Journal of the Royal Statistical Society Series B – volume: 53 start-page: 1284 year: 2009 end-page: 1298 ident: br000050 article-title: Shrinkage and model selection with correlated variables via weighted fusion publication-title: Computational Statistics and Data Analysis – volume: 65 start-page: 95 year: 2003 end-page: 114 ident: br000180 article-title: Thin plate regression splines publication-title: Journal of the Royal Statistical Society Series B – year: 2003 ident: br000060 article-title: Random Number Generation and Monte Carlo Methods – volume: 51 start-page: 6044 year: 2008 end-page: 6059 ident: br000010 article-title: Simultaneous selection of variables and smoothing parameters in structured additive regression models publication-title: Computational Statistics and Data Analysis – volume: 11 start-page: 165 year: 2011 end-page: 180 ident: br000035 article-title: Variable selection in additive models by nonnegative garrote publication-title: Statistical Modelling – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: br000155 article-title: Regression shrinkage and selection via the lasso publication-title: Journal of the Royal Statistical Society Series B – volume: 49 start-page: 173 year: 2007 end-page: 190 ident: br000170 article-title: Model selection for penalized spline smoothing using akaike information criteria publication-title: Australian and New Zealand Journal of Statistics – year: 2006 ident: br000185 article-title: Generalized Additive Models: An Introduction with R – volume: 157 start-page: 89 year: 2002 end-page: 100 ident: br000070 article-title: Generalized linear and generalized additive models in studies of species distributions: setting the scene publication-title: Ecological Modelling – volume: 62 start-page: 961 year: 2006 end-page: 971 ident: br000160 article-title: Generalized additive modeling with implicit variable selection by likelihood-based boosting publication-title: Biometrics – volume: 130 start-page: 511 year: 1989 end-page: 521 ident: br000120 article-title: The skin cancer prevention study group. Determinants of plasma levels of beta-carotene and retinol publication-title: American Journal of Epidemiology – volume: 51 start-page: 2851 year: 2007 end-page: 2870 ident: br000005 article-title: Parsimonious additive models publication-title: Computational Statistics and Data Analysis – volume: 51 start-page: 6044 year: 2007 end-page: 6059 ident: br000165 article-title: Boosting ridge regression publication-title: Computational Statistics and Data Analysis – volume: 13 start-page: 1378 year: 1985 end-page: 1402 ident: br000175 article-title: A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem publication-title: The Annals of Statistics – volume: 16 start-page: 1021 year: 2006 end-page: 1041 ident: br000215 article-title: Component selection and smoothing for nonparametric regression in exponential families publication-title: Statistica Sinica – volume: 70 start-page: 495 year: 2008 end-page: 518 ident: br000190 article-title: Fast stable direct fitting and smoothness selection for generalized additive models publication-title: Journal of the Royal Statistical Society Series B – reference: R Development Core Team, 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0. URL: – year: 1989 ident: br000115 article-title: Generalized Linear Models – reference: Yuan, M., 2007. Nonnegative garrote component selection in functional anova models. In: Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics. Puerto Rico. – volume: 52 start-page: 406 year: 2007 end-page: 422 ident: br000150 article-title: Input selection and shrinkage in multiresponse linear regression publication-title: Computational Statistics and Data Analysis – volume: 63 start-page: 147 year: 2001 end-page: 166 ident: br000095 article-title: Testing generalized linear and semiparametric models against smooth alternatives publication-title: Journal of the Royal Statistical Society Series B – volume: 34 start-page: 2272 year: 2006 end-page: 2297 ident: br000105 article-title: Component selection and smoothing in multivariate nonparametric regression publication-title: Annals of Statistics – volume: 2 start-page: 61 year: 2008 end-page: 93 ident: br000085 article-title: Least angle and publication-title: Statistics Surveys – volume: 19 start-page: 1281 year: 2009 end-page: 1296 ident: br000200 article-title: Consistent variable selection in additive models publication-title: Statistica Sinica – volume: 54 start-page: 3227 year: 2010 end-page: 3241 ident: br000125 article-title: Bayesian projection approaches to variable selection in generalized linear models publication-title: Computational Statistics and Data Analysis – volume: 20 start-page: 119 year: 2010 end-page: 138 ident: br000025 article-title: Twin boosting: improved feature selection and prediction publication-title: Statistics and Computing – volume: 53 start-page: 2453 year: 2009 end-page: 2464 ident: br000145 article-title: Boosting nonlinear additive autoregressive time series publication-title: Computational Statistics and Data Analysis – volume: 18 start-page: 87 year: 2008 end-page: 99 ident: br000015 article-title: A comparison of methods for the fitting of generalized additive models publication-title: Statistics and Computing – volume: 41 start-page: 495 year: 1970 end-page: 502 ident: br000100 article-title: A correspondence between Bayesian estimation of stochastic processes and smoothing by splines publication-title: Annals of Mathematical Statistics – volume: 19 start-page: 107 year: 2010 end-page: 125 ident: br000110 article-title: Penalised regression splines: theory and application to medical research publication-title: Statistical Methods in Medical Research – volume: 18 start-page: 126 year: 2009 end-page: 146 ident: br000090 article-title: Bootstrapping for penalized spline regression publication-title: Journal of Computational and Graphical Statistics – volume: 68 start-page: 49 year: 2006 end-page: 67 ident: br000210 article-title: Model selection and estimation in regression with grouped variables publication-title: Journal of the Royal Statistical Society Series B – volume: 101 start-page: 1418 year: 2006 end-page: 1429 ident: br000220 article-title: The adaptive LASSO and its oracle properties publication-title: Journal of the American Statistical Association – volume: 16 start-page: 86 year: 2007 end-page: 114 ident: br000045 article-title: Semiparametric modeling and estimation of instrumental variable models publication-title: Journal of Computational and Graphical Statistics – volume: 83 start-page: 86 year: 1988 end-page: 95 ident: br000075 article-title: How far are automatically chosen regression smoothing parameters from their optimum? publication-title: Journal of the American Statistical Association – reference: . – volume: 101 start-page: 1418 year: 2006 ident: 10.1016/j.csda.2011.02.004_br000220 article-title: The adaptive LASSO and its oracle properties publication-title: Journal of the American Statistical Association doi: 10.1198/016214506000000735 – volume: 63 start-page: 147 year: 2001 ident: 10.1016/j.csda.2011.02.004_br000095 article-title: Testing generalized linear and semiparametric models against smooth alternatives publication-title: Journal of the Royal Statistical Society Series B doi: 10.1111/1467-9868.00281 – ident: 10.1016/j.csda.2011.02.004_br000205 – volume: 53 start-page: 2453 year: 2009 ident: 10.1016/j.csda.2011.02.004_br000145 article-title: Boosting nonlinear additive autoregressive time series publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2008.12.006 – volume: 68 start-page: 49 year: 2006 ident: 10.1016/j.csda.2011.02.004_br000210 article-title: Model selection and estimation in regression with grouped variables publication-title: Journal of the Royal Statistical Society Series B doi: 10.1111/j.1467-9868.2005.00532.x – volume: 20 start-page: 119 year: 2010 ident: 10.1016/j.csda.2011.02.004_br000025 article-title: Twin boosting: improved feature selection and prediction publication-title: Statistics and Computing doi: 10.1007/s11222-009-9148-5 – volume: 18 start-page: 126 year: 2009 ident: 10.1016/j.csda.2011.02.004_br000090 article-title: Bootstrapping for penalized spline regression publication-title: Journal of Computational and Graphical Statistics doi: 10.1198/jcgs.2009.0008 – year: 2003 ident: 10.1016/j.csda.2011.02.004_br000060 – volume: 34 start-page: 2272 year: 2006 ident: 10.1016/j.csda.2011.02.004_br000105 article-title: Component selection and smoothing in multivariate nonparametric regression publication-title: Annals of Statistics doi: 10.1214/009053606000000722 – volume: 11 start-page: 165 year: 2011 ident: 10.1016/j.csda.2011.02.004_br000035 article-title: Variable selection in additive models by nonnegative garrote publication-title: Statistical Modelling doi: 10.1177/1471082X1001100304 – volume: 51 start-page: 2851 year: 2007 ident: 10.1016/j.csda.2011.02.004_br000005 article-title: Parsimonious additive models publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2006.10.007 – volume: 54 start-page: 3227 year: 2010 ident: 10.1016/j.csda.2011.02.004_br000125 article-title: Bayesian projection approaches to variable selection in generalized linear models publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2010.01.036 – ident: 10.1016/j.csda.2011.02.004_br000130 – volume: 157 start-page: 89 year: 2002 ident: 10.1016/j.csda.2011.02.004_br000070 article-title: Generalized linear and generalized additive models in studies of species distributions: setting the scene publication-title: Ecological Modelling doi: 10.1016/S0304-3800(02)00204-1 – volume: 51 start-page: 6044 year: 2007 ident: 10.1016/j.csda.2011.02.004_br000165 article-title: Boosting ridge regression publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2006.11.041 – volume: 65 start-page: 95 year: 2003 ident: 10.1016/j.csda.2011.02.004_br000180 article-title: Thin plate regression splines publication-title: Journal of the Royal Statistical Society Series B doi: 10.1111/1467-9868.00374 – volume: 32 start-page: 407 year: 2004 ident: 10.1016/j.csda.2011.02.004_br000055 article-title: Least angle regression publication-title: The Annals of Statistics doi: 10.1214/009053604000000067 – volume: 130 start-page: 511 year: 1989 ident: 10.1016/j.csda.2011.02.004_br000120 article-title: The skin cancer prevention study group. Determinants of plasma levels of beta-carotene and retinol publication-title: American Journal of Epidemiology doi: 10.1093/oxfordjournals.aje.a115365 – ident: 10.1016/j.csda.2011.02.004_br000065 – volume: 71 start-page: 505 year: 2009 ident: 10.1016/j.csda.2011.02.004_br000135 article-title: Smoothing parameter selection for a class of semiparametric linear models publication-title: Journal of the Royal Statistical Society Series B doi: 10.1111/j.1467-9868.2008.00695.x – volume: 62 start-page: 961 year: 2006 ident: 10.1016/j.csda.2011.02.004_br000160 article-title: Generalized additive modeling with implicit variable selection by likelihood-based boosting publication-title: Biometrics doi: 10.1111/j.1541-0420.2006.00578.x – year: 2006 ident: 10.1016/j.csda.2011.02.004_br000185 – volume: 19 start-page: 107 year: 2010 ident: 10.1016/j.csda.2011.02.004_br000110 article-title: Penalised regression splines: theory and application to medical research publication-title: Statistical Methods in Medical Research doi: 10.1177/0962280208096688 – volume: 49 start-page: 173 year: 2007 ident: 10.1016/j.csda.2011.02.004_br000170 article-title: Model selection for penalized spline smoothing using akaike information criteria publication-title: Australian and New Zealand Journal of Statistics doi: 10.1111/j.1467-842X.2007.00473.x – volume: 98 start-page: 324 year: 2003 ident: 10.1016/j.csda.2011.02.004_br000030 article-title: Boosting with the L2 loss: regression and classification publication-title: Journal of the American Statistical Association doi: 10.1198/016214503000125 – volume: 13 start-page: 1378 year: 1985 ident: 10.1016/j.csda.2011.02.004_br000175 article-title: A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem publication-title: The Annals of Statistics doi: 10.1214/aos/1176349743 – volume: 52 start-page: 406 year: 2007 ident: 10.1016/j.csda.2011.02.004_br000150 article-title: Input selection and shrinkage in multiresponse linear regression publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2007.01.025 – volume: 73 start-page: 3 year: 2011 ident: 10.1016/j.csda.2011.02.004_br000195 article-title: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models publication-title: Journal of the Royal Statistical Society Series B doi: 10.1111/j.1467-9868.2010.00749.x – volume: 37 start-page: 373 year: 1995 ident: 10.1016/j.csda.2011.02.004_br000020 article-title: Better subset regression using the nonnegative garrote publication-title: Technometrics doi: 10.1080/00401706.1995.10484371 – volume: 2 start-page: 61 year: 2008 ident: 10.1016/j.csda.2011.02.004_br000085 article-title: Least angle and l1 penalized regression: a review publication-title: Statistics Surveys doi: 10.1214/08-SS035 – year: 1989 ident: 10.1016/j.csda.2011.02.004_br000115 – volume: 16 start-page: 1021 year: 2006 ident: 10.1016/j.csda.2011.02.004_br000215 article-title: Component selection and smoothing for nonparametric regression in exponential families publication-title: Statistica Sinica – year: 1990 ident: 10.1016/j.csda.2011.02.004_br000080 – volume: 89 start-page: 251 year: 2002 ident: 10.1016/j.csda.2011.02.004_br000040 article-title: Degrees of freedom tests for smoothing splines publication-title: Biometrika doi: 10.1093/biomet/89.2.251 – volume: 19 start-page: 1281 year: 2009 ident: 10.1016/j.csda.2011.02.004_br000200 article-title: Consistent variable selection in additive models publication-title: Statistica Sinica – volume: 41 start-page: 495 year: 1970 ident: 10.1016/j.csda.2011.02.004_br000100 article-title: A correspondence between Bayesian estimation of stochastic processes and smoothing by splines publication-title: Annals of Mathematical Statistics doi: 10.1214/aoms/1177697089 – volume: 58 start-page: 267 year: 1996 ident: 10.1016/j.csda.2011.02.004_br000155 article-title: Regression shrinkage and selection via the lasso publication-title: Journal of the Royal Statistical Society Series B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 18 start-page: 87 year: 2008 ident: 10.1016/j.csda.2011.02.004_br000015 article-title: A comparison of methods for the fitting of generalized additive models publication-title: Statistics and Computing doi: 10.1007/s11222-007-9040-0 – volume: 16 start-page: 86 year: 2007 ident: 10.1016/j.csda.2011.02.004_br000045 article-title: Semiparametric modeling and estimation of instrumental variable models publication-title: Journal of Computational and Graphical Statistics doi: 10.1198/106186007X180723 – volume: 51 start-page: 6044 year: 2008 ident: 10.1016/j.csda.2011.02.004_br000010 article-title: Simultaneous selection of variables and smoothing parameters in structured additive regression models publication-title: Computational Statistics and Data Analysis – volume: 70 start-page: 495 year: 2008 ident: 10.1016/j.csda.2011.02.004_br000190 article-title: Fast stable direct fitting and smoothness selection for generalized additive models publication-title: Journal of the Royal Statistical Society Series B doi: 10.1111/j.1467-9868.2007.00646.x – volume: 53 start-page: 1284 year: 2009 ident: 10.1016/j.csda.2011.02.004_br000050 article-title: Shrinkage and model selection with correlated variables via weighted fusion publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2008.11.007 – volume: 52 start-page: 3283 year: 2008 ident: 10.1016/j.csda.2011.02.004_br000140 article-title: Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2007.10.022 – volume: 83 start-page: 86 year: 1988 ident: 10.1016/j.csda.2011.02.004_br000075 article-title: How far are automatically chosen regression smoothing parameters from their optimum? publication-title: Journal of the American Statistical Association |
SSID | ssj0002478 |
Score | 2.5204563 |
Snippet | The problem of variable selection within the class of generalized additive models, when there are many covariates to choose from but the number of predictors... |
SourceID | proquest repec pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2372 |
SubjectTerms | Additives Computer simulation Cross sections Data processing Estimators Exact sciences and technology General topics Generalized additive model Generalized additive model Nonnegative garrote estimator Penalized thin plate regression spline Practical variable selection Shrinkage smoother Guidelines Linear inference, regression Mathematical models Mathematics Multivariate analysis Nonnegative garrote estimator Numerical analysis Numerical analysis. Scientific computation Numerical methods in probability and statistics Penalized thin plate regression spline Practical variable selection Probability and statistics Sciences and techniques of general use Shrinkage smoother Statistics |
Title | Practical variable selection for generalized additive models |
URI | https://dx.doi.org/10.1016/j.csda.2011.02.004 http://econpapers.repec.org/article/eeecsdana/v_3a55_3ay_3a2011_3ai_3a7_3ap_3a2372-2387.htm https://www.proquest.com/docview/889392566 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4huIBWiNdqy6PygRvKliZ24khcEA8VKjjw0HKzHNvZ7QpCRAoSHPjtzMRJoQc4cHArOXGczNjjb5KZzwDbOGpyI52m7PYw4HFsAynyPHBSxzJJLB6n9x1n5_Hgmp_eiJsZOGhzYSissrH93qbX1rqp6TXS7JWjUe-SAuhTnkREeoY4t85g5wnx5_9-fQ_zCLm3xsTvTWc3iTM-xstUVjc0nsTbyT9bnH6UukKR5X6viykwOvfgSmc-rEnHS7DYgEm27-93GWZcsQILZxMm1moV9jwhEV6WPaFbTIlSrKr3vkGFMESs7K8nnh69OMsouojsH6s3yKnW4Pr46OpgEDQ7JgQGgcA4wOVfppSfFBpuyTnpoylGBGgyaw3KPRcC5ysPrbMy2-1ri_6dpImdJpk1TkQ_Yba4L9wvYNzIXIfo8NQfUk2coUIdLu65jYWRqelAvxWVMg2dOO1qcavauLH_isSrSLxqN1Qo3g7sTNqUnkzjy7NFqwE1NSQUWvsv23Wn1DXpipxXfBzRAdbqT-Fkoi8kunD3j5WSiN5SBIFxB45qvU7aOueon0KrJxVpIfDnGUvdbaRHWBIsJVVFSagQCCXq3_hu_ZvPsAHz_uU1xQVvwuz44dFtIfoZZ916eHdhbv9kODin_-HFnyHWHg5P3gCJDARi |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFH6q6AHQNG0MtLKt84HbFJUmceJIuyBUVFbaCyBxsxzbgSIIESlI8Ot5L3ai9TAOOziHtI6T9-zn7yXvfQ_gAGdNoYVVlN0eBnGSmEDwogisUIlIU4O_0_uO-SKZXsZ_rvhVD47bXBgKq_S239n0xlr7MyMvzVG1XI7OKYA-i9OISM8Q56IL1Cd2Kpzs_aPT2XTRGeQwdgaZKL6pg8-dcWFeujbKM3kSdWf8r_3pQ6VqlFrhyl2s4dH-o62s_mtbOvkEHz2eZEfulj9Dz5Y7sD3vyFjrL_DbcRLhZdkzesaUK8XqpvwN6oQhaGXXjnt6-WoNowAjMoGsqZFT78LlyeTieBr4ogmBRiywChABiIxSlEIdG_JPxmiNEQTq3BiNoi84xyUbh8YakR-OlUEXT9DaztLcaMujPdgoH0r7FVisRaFC9Hmab6k6yVGnFvf3wiRci0wPYNyKSmrPKE6FLe5kGzp2K0m8ksQrD0OJ4h3Ar65P5fg03v03bzUg12aFRIP_br_hmrq6och_xcfhA2Ct_iSuJ_pIokr78FRLgQAuQxyYDGDS6LXra62lcUoln2WkOMfDC7Zm2EgtsaXYKjoVpaFELJTKm9X9_n8-w0_YnF7Mz-TZ6WL2Dbbcu2wKE_4OG6vHJ_sDwdAqH_rJ_gYySAR3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Practical+variable+selection+for+generalized+additive+models&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Marra%2C+Giampiero&rft.au=Wood%2C+Simon+N.&rft.date=2011-07-01&rft.pub=Elsevier+B.V&rft.issn=0167-9473&rft.eissn=1872-7352&rft.volume=55&rft.issue=7&rft.spage=2372&rft.epage=2387&rft_id=info:doi/10.1016%2Fj.csda.2011.02.004&rft.externalDocID=S0167947311000491 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon |