Practical variable selection for generalized additive models

The problem of variable selection within the class of generalized additive models, when there are many covariates to choose from but the number of predictors is still somewhat smaller than the number of observations, is considered. Two very simple but effective shrinkage methods and an extension of...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics & data analysis Vol. 55; no. 7; pp. 2372 - 2387
Main Authors Marra, Giampiero, Wood, Simon N.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.07.2011
Elsevier
SeriesComputational Statistics & Data Analysis
Subjects
Online AccessGet full text
ISSN0167-9473
1872-7352
DOI10.1016/j.csda.2011.02.004

Cover

Loading…
Abstract The problem of variable selection within the class of generalized additive models, when there are many covariates to choose from but the number of predictors is still somewhat smaller than the number of observations, is considered. Two very simple but effective shrinkage methods and an extension of the nonnegative garrote estimator are introduced. The proposals avoid having to use nonparametric testing methods for which there is no general reliable distributional theory. Moreover, component selection is carried out in one single step as opposed to many selection procedures which involve an exhaustive search of all possible models. The empirical performance of the proposed methods is compared to that of some available techniques via an extensive simulation study. The results show under which conditions one method can be preferred over another, hence providing applied researchers with some practical guidelines. The procedures are also illustrated analysing data on plasma beta-carotene levels from a cross-sectional study conducted in the United States.
AbstractList The problem of variable selection within the class of generalized additive models, when there are many covariates to choose from but the number of predictors is still somewhat smaller than the number of observations, is considered. Two very simple but effective shrinkage methods and an extension of the nonnegative garrote estimator are introduced. The proposals avoid having to use nonparametric testing methods for which there is no general reliable distributional theory. Moreover, component selection is carried out in one single step as opposed to many selection procedures which involve an exhaustive search of all possible models. The empirical performance of the proposed methods is compared to that of some available techniques via an extensive simulation study. The results show under which conditions one method can be preferred over another, hence providing applied researchers with some practical guidelines. The procedures are also illustrated analysing data on plasma beta-carotene levels from a cross-sectional study conducted in the United States.
Author Marra, Giampiero
Wood, Simon N.
Author_xml – sequence: 1
  givenname: Giampiero
  surname: Marra
  fullname: Marra, Giampiero
  email: giampiero@stats.ucl.ac.uk
  organization: Department of Statistical Science, University College London, London WC1E 6BT, UK
– sequence: 2
  givenname: Simon N.
  surname: Wood
  fullname: Wood, Simon N.
  organization: Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24076455$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeecsdana/v_3a55_3ay_3a2011_3ai_3a7_3ap_3a2372-2387.htm$$DView record in RePEc
BookMark eNp9Uctq5DAQFEsWdvL4gT35EvZkp_WyZMglhH3BQHLInoUstTcaNPZEcgaSr4-cCTnkkEOrRVNV3VQdk6NxGpGQ7xQaCrS92DQue9swoLQB1gCIL2RFtWK14pIdkVUBqboTin8jxzlvAIAJpVfk8jZZNwdnY7W3Kdg-YpUxYplNYzVMqfqPIyYbwzP6ynof5rDHajt5jPmUfB1szHj21k_Iv18_767_1Oub33-vr9a1E5zOtZKgO9pKwZzw0LVAsaddR13vvfOgBim1BsE8et0DtZ5qUT7AO9V7h5KfkB8H3V2aHh4xz2YbssMY7YjTYzZad7xjsm0Lcn1AJtyhM7sUtjY9GURc_Bmt2RtupSzPU6nFrtJCKVVqt4y4YoZxrcz9vC1y52-LbS4WDcmOLuR3WSZAtUIuB7IDzqUp54TDO4SCWQIyG7McYF43AjMloELSH0guzHbxfU42xM-plwdqCQH3AZPJLuDo0IdUojN-Cp_RXwA9y6vz
CitedBy_id crossref_primary_10_3390_ijgi9100577
crossref_primary_10_1016_j_agrformet_2018_01_037
crossref_primary_10_1016_j_fishres_2021_106199
crossref_primary_10_1016_j_jhydrol_2022_128089
crossref_primary_10_3389_frsen_2022_940186
crossref_primary_10_1080_17550874_2017_1341961
crossref_primary_10_1016_j_biocon_2016_01_009
crossref_primary_10_1007_s11356_019_05689_8
crossref_primary_10_1016_j_jmarsys_2023_103883
crossref_primary_10_1111_sjos_12388
crossref_primary_10_5194_nhess_20_1267_2020
crossref_primary_10_1016_j_ecss_2023_108250
crossref_primary_10_1093_icesjms_fsae054
crossref_primary_10_1016_j_fishres_2019_105367
crossref_primary_10_1016_j_foreco_2023_121599
crossref_primary_10_1098_rstb_2019_0296
crossref_primary_10_1016_j_gsf_2024_101822
crossref_primary_10_1111_cogs_13201
crossref_primary_10_3390_su16031307
crossref_primary_10_1111_rssa_12866
crossref_primary_10_1007_s11629_024_8738_1
crossref_primary_10_1016_j_fishres_2023_106860
crossref_primary_10_13157_arla_71_2_2024_ra8
crossref_primary_10_1002_ece3_10855
crossref_primary_10_1016_j_scitotenv_2024_177677
crossref_primary_10_1111_fwb_13833
crossref_primary_10_3389_fmars_2022_829523
crossref_primary_10_1093_biostatistics_kxy003
crossref_primary_10_1016_j_biocon_2025_111047
crossref_primary_10_1007_s10533_021_00868_7
crossref_primary_10_1002_ece3_11708
crossref_primary_10_1016_j_scitotenv_2023_167212
crossref_primary_10_1126_sciadv_abo6602
crossref_primary_10_1007_s11222_015_9622_1
crossref_primary_10_1016_j_fishres_2020_105714
crossref_primary_10_1002_2688_8319_12310
crossref_primary_10_1016_j_techsoc_2024_102590
crossref_primary_10_1093_jac_dkaf043
crossref_primary_10_1093_icesjms_fsae161
crossref_primary_10_1007_s12603_023_2027_5
crossref_primary_10_1016_j_fishres_2023_106850
crossref_primary_10_1002_ajp_23047
crossref_primary_10_1111_cobi_14435
crossref_primary_10_1002_ajp_23288
crossref_primary_10_1111_gcb_16721
crossref_primary_10_1177_0962280218779408
crossref_primary_10_1186_s41512_020_00074_3
crossref_primary_10_1007_s11069_017_2770_1
crossref_primary_10_1111_ddi_12867
crossref_primary_10_1038_s41598_024_82937_z
crossref_primary_10_1016_j_ecss_2024_108796
crossref_primary_10_1016_j_foreco_2021_119983
crossref_primary_10_1016_j_polar_2023_100974
crossref_primary_10_1007_s00477_019_01682_2
crossref_primary_10_1111_fog_12601
crossref_primary_10_1016_j_spasta_2021_100526
crossref_primary_10_1016_j_fishres_2023_106619
crossref_primary_10_3390_f14020304
crossref_primary_10_1002_rra_3886
crossref_primary_10_1038_s41559_023_02122_9
crossref_primary_10_1002_rse2_278
crossref_primary_10_1002_lno_11093
crossref_primary_10_1016_j_ejrh_2023_101462
crossref_primary_10_1073_pnas_1820389116
crossref_primary_10_1038_s41598_019_42288_6
crossref_primary_10_3233_JSA_240670
crossref_primary_10_1086_703534
crossref_primary_10_1002_aqc_3031
crossref_primary_10_1093_jmammal_gyad031
crossref_primary_10_1007_s00265_021_03104_2
crossref_primary_10_1111_mms_12092
crossref_primary_10_1093_icesjms_fsae068
crossref_primary_10_1002_aqc_4243
crossref_primary_10_3390_jmse9050484
crossref_primary_10_1136_bmjsem_2024_002069
crossref_primary_10_1016_j_scitotenv_2021_152309
crossref_primary_10_1098_rspb_2021_1394
crossref_primary_10_1016_j_actpsy_2020_103107
crossref_primary_10_1080_03088839_2021_1969601
crossref_primary_10_1111_ibi_12885
crossref_primary_10_1186_s40317_017_0129_8
crossref_primary_10_1093_icesjms_fsaf032
crossref_primary_10_1139_cjfas_2021_0097
crossref_primary_10_1016_j_fishres_2016_02_009
crossref_primary_10_1214_18_EJS1394
crossref_primary_10_1371_journal_pone_0106366
crossref_primary_10_1016_j_csda_2013_05_012
crossref_primary_10_1016_j_marpolbul_2021_112878
crossref_primary_10_1146_annurev_statistics_112723_034642
crossref_primary_10_1007_s10687_019_00342_6
crossref_primary_10_1016_j_agee_2021_107652
crossref_primary_10_1016_j_foreco_2021_119881
crossref_primary_10_7717_peerj_17457
crossref_primary_10_1016_j_ecolind_2021_107429
crossref_primary_10_1093_icesjms_fsac197
crossref_primary_10_1139_as_2024_0001
crossref_primary_10_3389_fenvs_2022_895531
crossref_primary_10_1016_j_scitotenv_2018_08_307
crossref_primary_10_1016_j_wace_2021_100352
crossref_primary_10_1111_mcn_13410
crossref_primary_10_1111_1365_2435_14499
crossref_primary_10_1016_j_scitotenv_2023_165083
crossref_primary_10_1093_icesjms_fsac073
crossref_primary_10_1242_jeb_249975
crossref_primary_10_5194_bg_19_2939_2022
crossref_primary_10_1007_s13253_023_00586_7
crossref_primary_10_3390_w15132422
crossref_primary_10_1016_j_scitotenv_2019_06_027
crossref_primary_10_1097_AUD_0000000000001506
crossref_primary_10_1071_MF19138
crossref_primary_10_3354_meps10958
crossref_primary_10_1111_ddi_12537
crossref_primary_10_1007_s00027_024_01056_z
crossref_primary_10_1007_s12237_024_01416_w
crossref_primary_10_1177_1471082X17748034
crossref_primary_10_1128_msystems_00459_24
crossref_primary_10_1111_fog_12419
crossref_primary_10_1080_24705357_2021_1938254
crossref_primary_10_1093_icesjms_fsae122
crossref_primary_10_1137_18M1167978
crossref_primary_10_1093_icesjms_fsae125
crossref_primary_10_1093_plankt_fbac024
crossref_primary_10_3390_rs8020149
crossref_primary_10_1080_10618600_2020_1806855
crossref_primary_10_2139_ssrn_2870308
crossref_primary_10_1002_fee_2506
crossref_primary_10_1002_eap_3023
crossref_primary_10_1016_j_fishres_2021_106179
crossref_primary_10_1016_j_fishres_2023_106773
crossref_primary_10_1021_acs_estlett_9b00214
crossref_primary_10_1371_journal_pone_0273707
crossref_primary_10_3354_esr00744
crossref_primary_10_1080_03949370_2023_2191339
crossref_primary_10_3389_fmars_2021_606975
crossref_primary_10_1016_j_jenvman_2021_112281
crossref_primary_10_1093_icesjms_fsaf005
crossref_primary_10_1111_jbi_14730
crossref_primary_10_1016_j_cub_2023_08_004
crossref_primary_10_1007_s00300_023_03113_z
crossref_primary_10_1186_s42408_024_00320_9
crossref_primary_10_1016_j_actpsy_2024_104249
crossref_primary_10_1002_wics_1627
crossref_primary_10_1007_s13364_021_00613_3
crossref_primary_10_1068_b120023p
crossref_primary_10_1073_pnas_2113628119
crossref_primary_10_1002_sta4_70
crossref_primary_10_7717_peerj_7035
crossref_primary_10_1002_aqc_4166
crossref_primary_10_1017_S0025315417000431
crossref_primary_10_1002_aqc_4167
crossref_primary_10_1016_j_csda_2020_107088
crossref_primary_10_1093_icesjms_fsx187
crossref_primary_10_1002_ecs2_3155
crossref_primary_10_1016_j_watres_2019_114858
crossref_primary_10_1073_pnas_2203511120
crossref_primary_10_1016_j_jmva_2017_04_006
crossref_primary_10_1016_j_ttbdis_2020_101419
crossref_primary_10_5194_acp_13_11473_2013
crossref_primary_10_1111_sjos_12548
crossref_primary_10_1371_journal_pone_0292644
crossref_primary_10_3390_rs11192267
crossref_primary_10_1007_s10530_018_1902_1
crossref_primary_10_3389_fevo_2022_875578
crossref_primary_10_1007_s00227_023_04253_w
crossref_primary_10_1002_ece3_9248
crossref_primary_10_1029_2024JD041805
crossref_primary_10_1098_rspb_2023_1095
crossref_primary_10_1371_journal_pone_0316946
crossref_primary_10_1007_s10530_023_03200_6
crossref_primary_10_1016_j_funeco_2017_12_003
crossref_primary_10_1371_journal_pntd_0008411
crossref_primary_10_1007_s10530_016_1241_z
crossref_primary_10_3390_f5112626
crossref_primary_10_1121_10_0025540
crossref_primary_10_3390_f16020225
crossref_primary_10_1016_j_marenvres_2020_104953
crossref_primary_10_1016_j_fishres_2015_11_017
crossref_primary_10_3354_esr01140
crossref_primary_10_1111_1365_2656_13396
crossref_primary_10_1016_j_agee_2021_107581
crossref_primary_10_1016_j_applanim_2023_105853
crossref_primary_10_1016_j_envsoft_2018_08_031
crossref_primary_10_1016_j_scitotenv_2020_138330
crossref_primary_10_1007_s12237_022_01061_1
crossref_primary_10_1002_ece3_70074
crossref_primary_10_1371_journal_pone_0152466
crossref_primary_10_1007_s10452_021_09939_1
crossref_primary_10_1038_s41598_024_84641_4
crossref_primary_10_1111_1365_2664_13008
crossref_primary_10_1007_s10750_022_05098_y
crossref_primary_10_1007_s10750_022_04822_y
crossref_primary_10_1029_2022JG007261
crossref_primary_10_1007_s10641_022_01270_4
crossref_primary_10_1007_s11222_015_9581_6
crossref_primary_10_1016_j_eja_2013_12_002
crossref_primary_10_1002_eap_2931
crossref_primary_10_1002_pan3_10771
crossref_primary_10_1016_j_xjidi_2021_100062
crossref_primary_10_1111_fme_12148
crossref_primary_10_1007_s10260_016_0357_8
crossref_primary_10_1016_j_scitotenv_2022_154241
crossref_primary_10_1016_j_ecolind_2022_108699
crossref_primary_10_3389_fenvs_2023_1223219
crossref_primary_10_1016_j_landurbplan_2018_08_008
crossref_primary_10_5194_tc_18_1359_2024
crossref_primary_10_1214_17_EJS1307
crossref_primary_10_1093_conphys_coad082
crossref_primary_10_1136_bmjopen_2023_080135
crossref_primary_10_3390_plants14060843
crossref_primary_10_1016_j_scitotenv_2023_166995
crossref_primary_10_1080_14697688_2017_1417625
crossref_primary_10_1111_2041_210X_13974
crossref_primary_10_1007_s13253_021_00450_6
crossref_primary_10_3389_fmars_2022_921594
crossref_primary_10_1016_j_vetmic_2025_110415
crossref_primary_10_1111_fwb_13214
crossref_primary_10_1675_063_038_0305
crossref_primary_10_1016_j_fishres_2022_106539
crossref_primary_10_1016_j_ttbdis_2021_101833
crossref_primary_10_1016_j_ecoinf_2023_102080
crossref_primary_10_1016_j_scitotenv_2024_171158
crossref_primary_10_1111_gcb_16435
crossref_primary_10_1007_s10750_023_05467_1
crossref_primary_10_3354_meps13849
crossref_primary_10_1080_10627197_2019_1645590
crossref_primary_10_2139_ssrn_2836587
crossref_primary_10_1016_j_oneear_2022_05_008
crossref_primary_10_1016_j_psychres_2024_116006
crossref_primary_10_1186_s13595_022_01148_6
crossref_primary_10_1111_ecog_07489
crossref_primary_10_1177_10943420231179417
crossref_primary_10_1016_j_biocon_2024_110834
crossref_primary_10_2215_CJN_0000000000000370
crossref_primary_10_1002_ecm_1486
crossref_primary_10_1002_eco_2362
crossref_primary_10_1098_rsos_190216
crossref_primary_10_3390_ani14091309
crossref_primary_10_1002_lno_12354
crossref_primary_10_1111_eea_13065
crossref_primary_10_2139_ssrn_3288347
crossref_primary_10_1016_j_jhepr_2024_101295
crossref_primary_10_2139_ssrn_4089592
crossref_primary_10_1016_j_jas_2016_09_004
crossref_primary_10_1016_j_landurbplan_2017_11_006
crossref_primary_10_1016_j_apsoil_2025_105965
crossref_primary_10_1093_icesjms_fsad201
crossref_primary_10_1177_09622802241280784
crossref_primary_10_1371_journal_pone_0163441
crossref_primary_10_1002_wics_1327
crossref_primary_10_3389_feart_2022_768836
crossref_primary_10_1016_j_ecolind_2023_110831
crossref_primary_10_1016_j_fishres_2014_02_013
crossref_primary_10_3354_esr01225
crossref_primary_10_1016_j_marenvres_2024_106659
crossref_primary_10_1371_journal_pone_0138582
crossref_primary_10_3354_meps11648
crossref_primary_10_1007_s00248_018_1178_0
crossref_primary_10_1016_j_pocean_2024_103388
crossref_primary_10_1080_01621459_2012_737742
crossref_primary_10_1016_j_pocean_2019_102257
crossref_primary_10_1016_j_rsase_2024_101184
crossref_primary_10_7717_peerj_6367
crossref_primary_10_1038_nature22975
crossref_primary_10_1002_rcm_9489
crossref_primary_10_1002_sim_8701
crossref_primary_10_1016_j_agee_2012_06_023
crossref_primary_10_1016_j_apsoil_2017_03_022
crossref_primary_10_5253_arde_2022_a37
crossref_primary_10_1371_journal_pone_0155817
crossref_primary_10_1371_journal_pone_0102060
crossref_primary_10_1111_mms_12610
crossref_primary_10_3390_rs15102614
crossref_primary_10_1016_j_pocean_2022_102823
crossref_primary_10_1007_s00521_020_05197_8
crossref_primary_10_1016_j_marenvres_2017_03_004
crossref_primary_10_1002_iroh_202302146
crossref_primary_10_1002_pan3_10736
crossref_primary_10_1289_EHP2207
crossref_primary_10_2139_ssrn_3804578
crossref_primary_10_3354_meps13930
crossref_primary_10_1016_j_dendro_2025_126298
crossref_primary_10_1029_2022JG007112
crossref_primary_10_1016_j_rsma_2021_101736
crossref_primary_10_1007_s10530_021_02671_9
crossref_primary_10_1007_s11252_024_01594_2
crossref_primary_10_1017_S0033291721001148
crossref_primary_10_1111_gcb_16642
crossref_primary_10_32609_0042_8736_2024_5_5_20
crossref_primary_10_3389_fmicb_2022_844432
crossref_primary_10_1080_10618600_2024_2319684
crossref_primary_10_1073_pnas_2212925119
crossref_primary_10_1016_j_cageo_2022_105161
crossref_primary_10_1016_j_scitotenv_2024_177977
crossref_primary_10_1016_j_envsoft_2023_105709
crossref_primary_10_3390_s22197247
crossref_primary_10_1007_s11356_023_26672_4
crossref_primary_10_1002_jwmg_22213
crossref_primary_10_1162_jocn_a_01878
crossref_primary_10_1093_icesjms_fsac241
crossref_primary_10_1016_j_fishres_2022_106509
crossref_primary_10_1080_10618600_2014_912136
crossref_primary_10_1111_gcb_14453
crossref_primary_10_5194_bg_10_3817_2013
crossref_primary_10_1038_srep29405
crossref_primary_10_1016_j_pocean_2024_103332
crossref_primary_10_1097_MD_0000000000039328
crossref_primary_10_1007_s00442_024_05523_0
crossref_primary_10_2139_ssrn_3320525
crossref_primary_10_3389_fmars_2023_1208262
crossref_primary_10_5194_bg_22_1301_2025
crossref_primary_10_1111_rssc_12252
crossref_primary_10_1590_2675_2824071_20019adfl
crossref_primary_10_1002_ece3_70102
crossref_primary_10_1080_00949655_2020_1807981
crossref_primary_10_1111_ecog_04485
crossref_primary_10_1111_ecog_05575
crossref_primary_10_1111_ecog_06540
crossref_primary_10_1016_j_dcn_2022_101100
crossref_primary_10_1890_12_1903_1
crossref_primary_10_3390_oceans1030012
crossref_primary_10_1016_j_eswa_2023_121398
crossref_primary_10_1111_j_1467_9876_2012_01050_x
crossref_primary_10_1073_pnas_2004535117
crossref_primary_10_1002_ecs2_1367
crossref_primary_10_3389_fmars_2020_00107
crossref_primary_10_1002_sim_9262
crossref_primary_10_1016_j_foreco_2025_122582
crossref_primary_10_1080_17550874_2017_1345997
crossref_primary_10_1111_csp2_12639
crossref_primary_10_3389_fmicb_2020_569879
crossref_primary_10_1002_ecs2_3409
crossref_primary_10_1016_j_aquabot_2021_103376
crossref_primary_10_1002_bse_2311
crossref_primary_10_1038_s41598_022_18851_z
crossref_primary_10_3390_nu15204400
crossref_primary_10_3389_fmars_2021_770424
crossref_primary_10_1038_s41598_019_47618_2
crossref_primary_10_1016_j_egyr_2022_01_123
crossref_primary_10_1002_ece3_70235
crossref_primary_10_3354_meps14106
crossref_primary_10_1007_s10584_024_03829_9
crossref_primary_10_1016_j_socscimed_2022_115220
crossref_primary_10_1007_s00248_017_1039_2
crossref_primary_10_1111_j_1467_629X_2012_00479_x
crossref_primary_10_1111_rssc_12368
crossref_primary_10_1111_jbi_15075
crossref_primary_10_1186_s12870_024_05348_2
crossref_primary_10_1016_j_mex_2024_102955
crossref_primary_10_1007_s10530_020_02453_9
crossref_primary_10_7717_peerj_13950
crossref_primary_10_1002_eap_1565
crossref_primary_10_1111_gean_12310
crossref_primary_10_3389_fmars_2023_1233249
crossref_primary_10_1016_j_watres_2019_02_010
crossref_primary_10_1007_s00227_023_04278_1
crossref_primary_10_3354_meps12128
crossref_primary_10_1007_s10641_022_01251_7
crossref_primary_10_1016_j_jclepro_2022_133008
crossref_primary_10_1016_j_gecco_2024_e02951
crossref_primary_10_1111_ecog_05597
crossref_primary_10_1016_j_ecss_2024_109083
crossref_primary_10_1007_s00382_018_4101_y
crossref_primary_10_1111_mms_12784
crossref_primary_10_3389_fmars_2024_1383063
crossref_primary_10_1007_s10985_019_09465_1
crossref_primary_10_1016_j_rsma_2023_103114
crossref_primary_10_1007_s10182_013_0211_3
crossref_primary_10_3389_fspor_2024_1352114
crossref_primary_10_1016_j_jhazmat_2020_123796
crossref_primary_10_1016_j_csda_2011_04_016
crossref_primary_10_3389_fmars_2022_868566
crossref_primary_10_1016_j_uclim_2024_101965
crossref_primary_10_1111_ecog_07527
crossref_primary_10_1002_rra_4191
crossref_primary_10_1038_s41467_025_56175_4
crossref_primary_10_1002_joc_4607
crossref_primary_10_1016_j_foreco_2022_120753
crossref_primary_10_1111_rssc_12267
crossref_primary_10_1186_s40462_018_0125_5
crossref_primary_10_1016_j_pocean_2023_103070
crossref_primary_10_3354_meps12592
crossref_primary_10_3389_fpubh_2024_1321361
crossref_primary_10_1016_j_eja_2023_126890
crossref_primary_10_1080_02664763_2016_1155109
crossref_primary_10_1016_j_rse_2024_114587
crossref_primary_10_1002_ecs2_4840
crossref_primary_10_1371_journal_pone_0221408
crossref_primary_10_3354_meps14493
crossref_primary_10_1080_10618600_2024_2327577
crossref_primary_10_3354_meps14252
crossref_primary_10_1016_j_econlet_2025_112188
crossref_primary_10_1002_eap_1866
crossref_primary_10_1007_s11222_017_9799_6
crossref_primary_10_1038_s43247_024_01568_4
crossref_primary_10_1002_lno_11786
crossref_primary_10_3390_ani12030222
crossref_primary_10_3389_fmicb_2021_657508
crossref_primary_10_1007_s10531_024_02911_z
crossref_primary_10_1371_journal_pcbi_1009874
crossref_primary_10_3389_feart_2021_641760
crossref_primary_10_1002_ecs2_4832
crossref_primary_10_1038_ismej_2014_147
crossref_primary_10_3389_fmars_2021_770224
crossref_primary_10_3390_f12050552
crossref_primary_10_1080_24749508_2020_1809060
crossref_primary_10_1007_s13157_024_01830_7
crossref_primary_10_1073_pnas_2203230119
crossref_primary_10_3354_meps11368
crossref_primary_10_3354_meps13787
crossref_primary_10_1002_aqc_3775
crossref_primary_10_1111_stan_12133
crossref_primary_10_1088_1748_9326_aca8bf
crossref_primary_10_3389_fenvs_2022_880619
crossref_primary_10_1080_07474938_2019_1690193
crossref_primary_10_1214_14_AOS1260
crossref_primary_10_1038_s41598_024_59552_z
crossref_primary_10_7717_peerj_8945
crossref_primary_10_1017_qua_2018_99
crossref_primary_10_1016_j_agee_2024_109133
crossref_primary_10_1080_00036846_2025_2467260
crossref_primary_10_3389_fpsyg_2024_1396163
crossref_primary_10_1002_bimj_202200178
crossref_primary_10_1111_oik_08629
crossref_primary_10_3390_soilsystems7010010
crossref_primary_10_1002_sim_5961
crossref_primary_10_1016_j_agee_2020_106931
crossref_primary_10_1016_j_fishres_2025_107305
crossref_primary_10_1111_1365_2435_13742
crossref_primary_10_7717_peerj_6876
crossref_primary_10_1017_S1748499521000026
crossref_primary_10_1139_cjfas_2023_0249
crossref_primary_10_3389_fmars_2022_877580
crossref_primary_10_1002_ecs2_1886
crossref_primary_10_1016_j_sigpro_2020_107465
crossref_primary_10_1071_CP23320
crossref_primary_10_3390_rs13132435
crossref_primary_10_1016_j_dsr_2024_104371
crossref_primary_10_1109_ACCESS_2021_3131740
crossref_primary_10_1007_s11222_016_9662_1
crossref_primary_10_1111_fwb_14193
crossref_primary_10_1214_14_STS510
crossref_primary_10_1139_cjfas_2023_0361
crossref_primary_10_1002_aqc_2669
crossref_primary_10_1029_2023RG000825
crossref_primary_10_1007_s11852_025_01101_5
crossref_primary_10_1016_j_epidem_2020_100416
crossref_primary_10_1016_j_jclepro_2020_120551
crossref_primary_10_1007_s13592_022_00950_5
crossref_primary_10_1098_rspb_2021_1631
crossref_primary_10_1080_21683565_2022_2131691
crossref_primary_10_1177_1471082X17748083
crossref_primary_10_1002_mcf2_10025
crossref_primary_10_1016_j_dsr2_2018_06_002
crossref_primary_10_1016_j_ecolmodel_2023_110568
crossref_primary_10_1111_irv_13087
crossref_primary_10_1038_s41598_024_59964_x
crossref_primary_10_1111_2041_210X_14367
crossref_primary_10_1111_nph_19806
crossref_primary_10_1016_j_agrformet_2023_109828
crossref_primary_10_7717_peerj_12113
crossref_primary_10_1016_j_heliyon_2023_e15252
crossref_primary_10_1136_bmjsem_2024_001919
crossref_primary_10_1111_jfb_15151
crossref_primary_10_3354_meps14742
crossref_primary_10_1002_ecy_3979
crossref_primary_10_1016_j_trpro_2024_12_183
crossref_primary_10_1007_s00382_012_1590_y
crossref_primary_10_1016_j_algal_2021_102490
crossref_primary_10_1007_s10463_021_00810_6
crossref_primary_10_1111_2041_210X_14498
crossref_primary_10_3389_fevo_2023_1149097
crossref_primary_10_1007_s00027_022_00872_5
crossref_primary_10_1016_j_ecolind_2023_110696
crossref_primary_10_1016_j_fishres_2024_106979
crossref_primary_10_3390_educsci13020160
crossref_primary_10_1002_cjs_11739
crossref_primary_10_3390_f11121259
crossref_primary_10_1002_ece3_6316
crossref_primary_10_1002_mcf2_10002
crossref_primary_10_1016_j_seares_2014_09_009
crossref_primary_10_1071_WR23004
crossref_primary_10_1093_inthealth_ihad035
crossref_primary_10_1007_s10531_022_02416_7
crossref_primary_10_1038_s41467_023_38806_w
crossref_primary_10_1111_jvs_13214
crossref_primary_10_1080_10643389_2022_2093595
crossref_primary_10_1111_fog_12685
crossref_primary_10_1007_s00180_022_01292_7
crossref_primary_10_1007_s00181_024_02681_1
crossref_primary_10_1002_eap_2493
crossref_primary_10_1016_j_csda_2013_03_017
crossref_primary_10_1111_gcb_15900
crossref_primary_10_1016_j_rsma_2024_103805
crossref_primary_10_1016_j_scitotenv_2021_152150
crossref_primary_10_1111_rssc_12548
crossref_primary_10_1016_j_scitotenv_2023_162817
crossref_primary_10_3390_pr10051009
crossref_primary_10_1038_s41598_021_94861_7
crossref_primary_10_1016_j_jtrangeo_2025_104115
crossref_primary_10_1038_s41598_022_23705_9
crossref_primary_10_3389_fmars_2017_00230
crossref_primary_10_1016_j_fishres_2021_105954
crossref_primary_10_1111_mms_13225
crossref_primary_10_1111_afe_12626
crossref_primary_10_1002_bimj_202100355
crossref_primary_10_3389_fphys_2018_01462
crossref_primary_10_1080_10618600_2014_901914
crossref_primary_10_1007_s12110_020_09383_4
crossref_primary_10_1093_schbul_sbae103
crossref_primary_10_1029_2021WR030909
crossref_primary_10_1016_j_scitotenv_2023_164826
crossref_primary_10_1111_ele_70065
crossref_primary_10_1016_j_scitotenv_2023_161445
crossref_primary_10_1080_0740817X_2014_982840
crossref_primary_10_1111_mms_13057
crossref_primary_10_1016_j_fishres_2018_10_011
crossref_primary_10_1016_j_marpolbul_2024_116398
crossref_primary_10_1038_s41380_024_02860_7
crossref_primary_10_1002_mcf2_10073
crossref_primary_10_1002_mcf2_10075
crossref_primary_10_1016_j_psychres_2024_115770
crossref_primary_10_3389_fmars_2017_00121
crossref_primary_10_1016_j_scitotenv_2023_163849
crossref_primary_10_1061_AJRUA6_RUENG_1266
crossref_primary_10_1016_j_apsoil_2018_08_020
crossref_primary_10_1111_jvs_12792
crossref_primary_10_1111_ecog_05763
crossref_primary_10_1177_1471082X16689188
crossref_primary_10_1016_j_scitotenv_2022_160483
crossref_primary_10_2139_ssrn_5003048
crossref_primary_10_1016_j_spasta_2022_100637
crossref_primary_10_1093_jmammal_gyy021
crossref_primary_10_2989_1814232X_2016_1218367
crossref_primary_10_1111_1365_2656_13913
crossref_primary_10_3354_meps13386
crossref_primary_10_3354_meps13020
crossref_primary_10_1016_j_scitotenv_2024_172739
crossref_primary_10_3390_a16100486
crossref_primary_10_1016_j_scitotenv_2021_150167
crossref_primary_10_1007_s11252_019_00843_z
crossref_primary_10_1038_s41598_022_10850_4
crossref_primary_10_3354_meps14430
crossref_primary_10_1111_ecog_06769
crossref_primary_10_1186_s12940_022_00934_z
crossref_primary_10_1111_icad_12701
crossref_primary_10_3354_meps12168
crossref_primary_10_3354_meps14317
crossref_primary_10_1111_jbi_14695
crossref_primary_10_1111_fog_12005
crossref_primary_10_1111_eff_12817
crossref_primary_10_1002_sim_9483
crossref_primary_10_1016_j_cub_2022_10_007
crossref_primary_10_1098_rsbl_2024_0346
crossref_primary_10_1098_rspb_2023_2749
crossref_primary_10_3354_meps14680
crossref_primary_10_3389_fmars_2018_00016
crossref_primary_10_3390_ijerph17134698
crossref_primary_10_1016_j_ocecoaman_2024_107419
crossref_primary_10_1002_ecs2_4080
crossref_primary_10_1088_1755_1315_429_1_012041
crossref_primary_10_1525_elementa_2023_00033
crossref_primary_10_1016_j_cpnec_2021_100074
crossref_primary_10_3389_fneur_2018_01107
crossref_primary_10_1214_16_EJS1123
crossref_primary_10_1038_s41545_020_0077_3
crossref_primary_10_1111_mms_13147
crossref_primary_10_1002_jgrc_20216
crossref_primary_10_1080_01621459_2016_1180986
crossref_primary_10_1071_BT20036
crossref_primary_10_1093_ije_dyae080
crossref_primary_10_1111_gcb_17285
Cites_doi 10.1198/016214506000000735
10.1111/1467-9868.00281
10.1016/j.csda.2008.12.006
10.1111/j.1467-9868.2005.00532.x
10.1007/s11222-009-9148-5
10.1198/jcgs.2009.0008
10.1214/009053606000000722
10.1177/1471082X1001100304
10.1016/j.csda.2006.10.007
10.1016/j.csda.2010.01.036
10.1016/S0304-3800(02)00204-1
10.1016/j.csda.2006.11.041
10.1111/1467-9868.00374
10.1214/009053604000000067
10.1093/oxfordjournals.aje.a115365
10.1111/j.1467-9868.2008.00695.x
10.1111/j.1541-0420.2006.00578.x
10.1177/0962280208096688
10.1111/j.1467-842X.2007.00473.x
10.1198/016214503000125
10.1214/aos/1176349743
10.1016/j.csda.2007.01.025
10.1111/j.1467-9868.2010.00749.x
10.1080/00401706.1995.10484371
10.1214/08-SS035
10.1093/biomet/89.2.251
10.1214/aoms/1177697089
10.1111/j.2517-6161.1996.tb02080.x
10.1007/s11222-007-9040-0
10.1198/106186007X180723
10.1111/j.1467-9868.2007.00646.x
10.1016/j.csda.2008.11.007
10.1016/j.csda.2007.10.022
ContentType Journal Article
Copyright 2011 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DKI
X2L
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.csda.2011.02.004
DatabaseName CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Statistics
EISSN 1872-7352
EndPage 2387
ExternalDocumentID eeecsdana_v_3a55_3ay_3a2011_3ai_3a7_3ap_3a2372_2387_htm
24076455
10_1016_j_csda_2011_02_004
S0167947311000491
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
02
0R
1
8P
ABFLS
ABPTK
ADALY
DKI
G-
HZ
IPNFZ
K
M
STF
X
X2L
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c431t-7508916542c4d09601eb1991cbddcd07f5588042ded8b01ad1848b00397bdce53
IEDL.DBID .~1
ISSN 0167-9473
IngestDate Fri Jul 11 10:49:15 EDT 2025
Wed Aug 18 04:17:17 EDT 2021
Mon Jul 21 09:14:16 EDT 2025
Tue Jul 01 05:22:21 EDT 2025
Thu Apr 24 23:03:44 EDT 2025
Fri Feb 23 02:19:47 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Penalized thin plate regression spline
Practical variable selection
Generalized additive model
Shrinkage smoother
Nonnegative garrote estimator
Ridge regression
Rank statistic
Shrinkage estimator
Non parametric method
Thin plate
Non parametric estimation
Covariate
Additive model
Penalty method
Parametric method
Statistical test
Cross sectional study
Selection method
Regression spline
Simulation model
Variable selection
Data analysis
Model selection
Empirical method
Statistical estimation
Statistical regression
Selection problem
Statistical computation
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-7508916542c4d09601eb1991cbddcd07f5588042ded8b01ad1848b00397bdce53
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 889392566
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_889392566
repec_primary_eeecsdana_v_3a55_3ay_3a2011_3ai_3a7_3ap_3a2372_2387_htm
pascalfrancis_primary_24076455
crossref_primary_10_1016_j_csda_2011_02_004
crossref_citationtrail_10_1016_j_csda_2011_02_004
elsevier_sciencedirect_doi_10_1016_j_csda_2011_02_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-07-01
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: 2011-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle Computational Statistics & Data Analysis
PublicationTitle Computational statistics & data analysis
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Bühlmann, Yu (br000030) 2003; 98
Marra, Radice (br000110) 2010; 19
Kauermann, Tutz (br000095) 2001; 63
Shafik, Tutz (br000145) 2009; 53
Nierenberg, Stukel, Baron, Dain, Greenberg (br000120) 1989; 130
Tibshirani (br000155) 1996; 58
Wahba (br000175) 1985; 13
Yuan, M., 2007. Nonnegative garrote component selection in functional anova models. In: Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics. Puerto Rico.
Yuan, Lin (br000210) 2006; 68
Cantoni, Flemming, Ronchetti (br000035) 2011; 11
Zhang, Lin (br000215) 2006; 16
Breiman (br000020) 1995; 37
Belitz, Lang (br000010) 2008; 51
Lin, Zhang (br000105) 2006; 34
Wood (br000195) 2011; 73
Hastie, Tibshirani (br000080) 1990
Efron, Hastie, Johnstone, Tibshirani (br000055) 2004; 32
Tutz, Binder (br000165) 2007; 51
Xue (br000200) 2009; 19
Guisan, Edwards, Hastie (br000070) 2002; 157
Avalos, Grandvalet, Ambroise (br000005) 2007; 51
Similä, Tikka (br000150) 2007; 52
Bühlmann, Hothorn (br000025) 2010; 20
Cantoni, Hastie (br000040) 2002; 89
Härdle, Hall, Marron (br000075) 1988; 83
Nott, Leng (br000125) 2010; 54
Scheipl, Greven, Kuchenhoff (br000140) 2008; 52
McCullagh, Nelder (br000115) 1989
Zou (br000220) 2006; 101
Greven, S., Kneib, T., 2009. On the behavior of marginal and conditional Akaike information criteria in linear mixed models. Johns Hopkins University, Department of Biostatistics Working Papers. Paper 179.
.
Gentle (br000060) 2003
Wager, Vaida, Kauermann (br000170) 2007; 49
Wood (br000180) 2003; 65
Binder, Tutz (br000015) 2008; 18
Daye, Jeng (br000050) 2009; 53
Wood (br000185) 2006
Hesterberg, Choi, Meier, Fraley (br000085) 2008; 2
Tutz, Binder (br000160) 2006; 62
Kauermann, Claeskens, Opsomer (br000090) 2009; 18
Kimeldorf, Wahba (br000100) 1970; 41
R Development Core Team, 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0. URL
Wood (br000190) 2008; 70
Chib, Greenberg (br000045) 2007; 16
Reiss, Ogden (br000135) 2009; 71
Nott (10.1016/j.csda.2011.02.004_br000125) 2010; 54
10.1016/j.csda.2011.02.004_br000130
Cantoni (10.1016/j.csda.2011.02.004_br000035) 2011; 11
Kauermann (10.1016/j.csda.2011.02.004_br000095) 2001; 63
Efron (10.1016/j.csda.2011.02.004_br000055) 2004; 32
Daye (10.1016/j.csda.2011.02.004_br000050) 2009; 53
Gentle (10.1016/j.csda.2011.02.004_br000060) 2003
Wood (10.1016/j.csda.2011.02.004_br000195) 2011; 73
Chib (10.1016/j.csda.2011.02.004_br000045) 2007; 16
Kauermann (10.1016/j.csda.2011.02.004_br000090) 2009; 18
Scheipl (10.1016/j.csda.2011.02.004_br000140) 2008; 52
Hesterberg (10.1016/j.csda.2011.02.004_br000085) 2008; 2
Xue (10.1016/j.csda.2011.02.004_br000200) 2009; 19
Binder (10.1016/j.csda.2011.02.004_br000015) 2008; 18
Marra (10.1016/j.csda.2011.02.004_br000110) 2010; 19
Tutz (10.1016/j.csda.2011.02.004_br000165) 2007; 51
Wahba (10.1016/j.csda.2011.02.004_br000175) 1985; 13
Zou (10.1016/j.csda.2011.02.004_br000220) 2006; 101
10.1016/j.csda.2011.02.004_br000065
Reiss (10.1016/j.csda.2011.02.004_br000135) 2009; 71
Guisan (10.1016/j.csda.2011.02.004_br000070) 2002; 157
Wood (10.1016/j.csda.2011.02.004_br000185) 2006
Belitz (10.1016/j.csda.2011.02.004_br000010) 2008; 51
Avalos (10.1016/j.csda.2011.02.004_br000005) 2007; 51
Wood (10.1016/j.csda.2011.02.004_br000190) 2008; 70
Shafik (10.1016/j.csda.2011.02.004_br000145) 2009; 53
Wood (10.1016/j.csda.2011.02.004_br000180) 2003; 65
Hastie (10.1016/j.csda.2011.02.004_br000080) 1990
Kimeldorf (10.1016/j.csda.2011.02.004_br000100) 1970; 41
10.1016/j.csda.2011.02.004_br000205
Yuan (10.1016/j.csda.2011.02.004_br000210) 2006; 68
Breiman (10.1016/j.csda.2011.02.004_br000020) 1995; 37
Lin (10.1016/j.csda.2011.02.004_br000105) 2006; 34
McCullagh (10.1016/j.csda.2011.02.004_br000115) 1989
Similä (10.1016/j.csda.2011.02.004_br000150) 2007; 52
Bühlmann (10.1016/j.csda.2011.02.004_br000030) 2003; 98
Bühlmann (10.1016/j.csda.2011.02.004_br000025) 2010; 20
Nierenberg (10.1016/j.csda.2011.02.004_br000120) 1989; 130
Wager (10.1016/j.csda.2011.02.004_br000170) 2007; 49
Cantoni (10.1016/j.csda.2011.02.004_br000040) 2002; 89
Zhang (10.1016/j.csda.2011.02.004_br000215) 2006; 16
Tutz (10.1016/j.csda.2011.02.004_br000160) 2006; 62
Härdle (10.1016/j.csda.2011.02.004_br000075) 1988; 83
Tibshirani (10.1016/j.csda.2011.02.004_br000155) 1996; 58
References_xml – volume: 32
  start-page: 407
  year: 2004
  end-page: 451
  ident: br000055
  article-title: Least angle regression
  publication-title: The Annals of Statistics
– reference: Greven, S., Kneib, T., 2009. On the behavior of marginal and conditional Akaike information criteria in linear mixed models. Johns Hopkins University, Department of Biostatistics Working Papers. Paper 179.
– year: 1990
  ident: br000080
  article-title: Generalized Additive Models
– volume: 52
  start-page: 3283
  year: 2008
  end-page: 3299
  ident: br000140
  article-title: Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models
  publication-title: Computational Statistics and Data Analysis
– volume: 73
  start-page: 3
  year: 2011
  end-page: 36
  ident: br000195
  article-title: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models
  publication-title: Journal of the Royal Statistical Society Series B
– volume: 37
  start-page: 373
  year: 1995
  end-page: 384
  ident: br000020
  article-title: Better subset regression using the nonnegative garrote
  publication-title: Technometrics
– volume: 98
  start-page: 324
  year: 2003
  end-page: 339
  ident: br000030
  article-title: Boosting with the L2 loss: regression and classification
  publication-title: Journal of the American Statistical Association
– volume: 89
  start-page: 251
  year: 2002
  end-page: 263
  ident: br000040
  article-title: Degrees of freedom tests for smoothing splines
  publication-title: Biometrika
– volume: 71
  start-page: 505
  year: 2009
  end-page: 524
  ident: br000135
  article-title: Smoothing parameter selection for a class of semiparametric linear models
  publication-title: Journal of the Royal Statistical Society Series B
– volume: 53
  start-page: 1284
  year: 2009
  end-page: 1298
  ident: br000050
  article-title: Shrinkage and model selection with correlated variables via weighted fusion
  publication-title: Computational Statistics and Data Analysis
– volume: 65
  start-page: 95
  year: 2003
  end-page: 114
  ident: br000180
  article-title: Thin plate regression splines
  publication-title: Journal of the Royal Statistical Society Series B
– year: 2003
  ident: br000060
  article-title: Random Number Generation and Monte Carlo Methods
– volume: 51
  start-page: 6044
  year: 2008
  end-page: 6059
  ident: br000010
  article-title: Simultaneous selection of variables and smoothing parameters in structured additive regression models
  publication-title: Computational Statistics and Data Analysis
– volume: 11
  start-page: 165
  year: 2011
  end-page: 180
  ident: br000035
  article-title: Variable selection in additive models by nonnegative garrote
  publication-title: Statistical Modelling
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: br000155
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society Series B
– volume: 49
  start-page: 173
  year: 2007
  end-page: 190
  ident: br000170
  article-title: Model selection for penalized spline smoothing using akaike information criteria
  publication-title: Australian and New Zealand Journal of Statistics
– year: 2006
  ident: br000185
  article-title: Generalized Additive Models: An Introduction with R
– volume: 157
  start-page: 89
  year: 2002
  end-page: 100
  ident: br000070
  article-title: Generalized linear and generalized additive models in studies of species distributions: setting the scene
  publication-title: Ecological Modelling
– volume: 62
  start-page: 961
  year: 2006
  end-page: 971
  ident: br000160
  article-title: Generalized additive modeling with implicit variable selection by likelihood-based boosting
  publication-title: Biometrics
– volume: 130
  start-page: 511
  year: 1989
  end-page: 521
  ident: br000120
  article-title: The skin cancer prevention study group. Determinants of plasma levels of beta-carotene and retinol
  publication-title: American Journal of Epidemiology
– volume: 51
  start-page: 2851
  year: 2007
  end-page: 2870
  ident: br000005
  article-title: Parsimonious additive models
  publication-title: Computational Statistics and Data Analysis
– volume: 51
  start-page: 6044
  year: 2007
  end-page: 6059
  ident: br000165
  article-title: Boosting ridge regression
  publication-title: Computational Statistics and Data Analysis
– volume: 13
  start-page: 1378
  year: 1985
  end-page: 1402
  ident: br000175
  article-title: A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem
  publication-title: The Annals of Statistics
– volume: 16
  start-page: 1021
  year: 2006
  end-page: 1041
  ident: br000215
  article-title: Component selection and smoothing for nonparametric regression in exponential families
  publication-title: Statistica Sinica
– volume: 70
  start-page: 495
  year: 2008
  end-page: 518
  ident: br000190
  article-title: Fast stable direct fitting and smoothness selection for generalized additive models
  publication-title: Journal of the Royal Statistical Society Series B
– reference: R Development Core Team, 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0. URL:
– year: 1989
  ident: br000115
  article-title: Generalized Linear Models
– reference: Yuan, M., 2007. Nonnegative garrote component selection in functional anova models. In: Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics. Puerto Rico.
– volume: 52
  start-page: 406
  year: 2007
  end-page: 422
  ident: br000150
  article-title: Input selection and shrinkage in multiresponse linear regression
  publication-title: Computational Statistics and Data Analysis
– volume: 63
  start-page: 147
  year: 2001
  end-page: 166
  ident: br000095
  article-title: Testing generalized linear and semiparametric models against smooth alternatives
  publication-title: Journal of the Royal Statistical Society Series B
– volume: 34
  start-page: 2272
  year: 2006
  end-page: 2297
  ident: br000105
  article-title: Component selection and smoothing in multivariate nonparametric regression
  publication-title: Annals of Statistics
– volume: 2
  start-page: 61
  year: 2008
  end-page: 93
  ident: br000085
  article-title: Least angle and
  publication-title: Statistics Surveys
– volume: 19
  start-page: 1281
  year: 2009
  end-page: 1296
  ident: br000200
  article-title: Consistent variable selection in additive models
  publication-title: Statistica Sinica
– volume: 54
  start-page: 3227
  year: 2010
  end-page: 3241
  ident: br000125
  article-title: Bayesian projection approaches to variable selection in generalized linear models
  publication-title: Computational Statistics and Data Analysis
– volume: 20
  start-page: 119
  year: 2010
  end-page: 138
  ident: br000025
  article-title: Twin boosting: improved feature selection and prediction
  publication-title: Statistics and Computing
– volume: 53
  start-page: 2453
  year: 2009
  end-page: 2464
  ident: br000145
  article-title: Boosting nonlinear additive autoregressive time series
  publication-title: Computational Statistics and Data Analysis
– volume: 18
  start-page: 87
  year: 2008
  end-page: 99
  ident: br000015
  article-title: A comparison of methods for the fitting of generalized additive models
  publication-title: Statistics and Computing
– volume: 41
  start-page: 495
  year: 1970
  end-page: 502
  ident: br000100
  article-title: A correspondence between Bayesian estimation of stochastic processes and smoothing by splines
  publication-title: Annals of Mathematical Statistics
– volume: 19
  start-page: 107
  year: 2010
  end-page: 125
  ident: br000110
  article-title: Penalised regression splines: theory and application to medical research
  publication-title: Statistical Methods in Medical Research
– volume: 18
  start-page: 126
  year: 2009
  end-page: 146
  ident: br000090
  article-title: Bootstrapping for penalized spline regression
  publication-title: Journal of Computational and Graphical Statistics
– volume: 68
  start-page: 49
  year: 2006
  end-page: 67
  ident: br000210
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: Journal of the Royal Statistical Society Series B
– volume: 101
  start-page: 1418
  year: 2006
  end-page: 1429
  ident: br000220
  article-title: The adaptive LASSO and its oracle properties
  publication-title: Journal of the American Statistical Association
– volume: 16
  start-page: 86
  year: 2007
  end-page: 114
  ident: br000045
  article-title: Semiparametric modeling and estimation of instrumental variable models
  publication-title: Journal of Computational and Graphical Statistics
– volume: 83
  start-page: 86
  year: 1988
  end-page: 95
  ident: br000075
  article-title: How far are automatically chosen regression smoothing parameters from their optimum?
  publication-title: Journal of the American Statistical Association
– reference: .
– volume: 101
  start-page: 1418
  year: 2006
  ident: 10.1016/j.csda.2011.02.004_br000220
  article-title: The adaptive LASSO and its oracle properties
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214506000000735
– volume: 63
  start-page: 147
  year: 2001
  ident: 10.1016/j.csda.2011.02.004_br000095
  article-title: Testing generalized linear and semiparametric models against smooth alternatives
  publication-title: Journal of the Royal Statistical Society Series B
  doi: 10.1111/1467-9868.00281
– ident: 10.1016/j.csda.2011.02.004_br000205
– volume: 53
  start-page: 2453
  year: 2009
  ident: 10.1016/j.csda.2011.02.004_br000145
  article-title: Boosting nonlinear additive autoregressive time series
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2008.12.006
– volume: 68
  start-page: 49
  year: 2006
  ident: 10.1016/j.csda.2011.02.004_br000210
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: Journal of the Royal Statistical Society Series B
  doi: 10.1111/j.1467-9868.2005.00532.x
– volume: 20
  start-page: 119
  year: 2010
  ident: 10.1016/j.csda.2011.02.004_br000025
  article-title: Twin boosting: improved feature selection and prediction
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-009-9148-5
– volume: 18
  start-page: 126
  year: 2009
  ident: 10.1016/j.csda.2011.02.004_br000090
  article-title: Bootstrapping for penalized spline regression
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/jcgs.2009.0008
– year: 2003
  ident: 10.1016/j.csda.2011.02.004_br000060
– volume: 34
  start-page: 2272
  year: 2006
  ident: 10.1016/j.csda.2011.02.004_br000105
  article-title: Component selection and smoothing in multivariate nonparametric regression
  publication-title: Annals of Statistics
  doi: 10.1214/009053606000000722
– volume: 11
  start-page: 165
  year: 2011
  ident: 10.1016/j.csda.2011.02.004_br000035
  article-title: Variable selection in additive models by nonnegative garrote
  publication-title: Statistical Modelling
  doi: 10.1177/1471082X1001100304
– volume: 51
  start-page: 2851
  year: 2007
  ident: 10.1016/j.csda.2011.02.004_br000005
  article-title: Parsimonious additive models
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2006.10.007
– volume: 54
  start-page: 3227
  year: 2010
  ident: 10.1016/j.csda.2011.02.004_br000125
  article-title: Bayesian projection approaches to variable selection in generalized linear models
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2010.01.036
– ident: 10.1016/j.csda.2011.02.004_br000130
– volume: 157
  start-page: 89
  year: 2002
  ident: 10.1016/j.csda.2011.02.004_br000070
  article-title: Generalized linear and generalized additive models in studies of species distributions: setting the scene
  publication-title: Ecological Modelling
  doi: 10.1016/S0304-3800(02)00204-1
– volume: 51
  start-page: 6044
  year: 2007
  ident: 10.1016/j.csda.2011.02.004_br000165
  article-title: Boosting ridge regression
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2006.11.041
– volume: 65
  start-page: 95
  year: 2003
  ident: 10.1016/j.csda.2011.02.004_br000180
  article-title: Thin plate regression splines
  publication-title: Journal of the Royal Statistical Society Series B
  doi: 10.1111/1467-9868.00374
– volume: 32
  start-page: 407
  year: 2004
  ident: 10.1016/j.csda.2011.02.004_br000055
  article-title: Least angle regression
  publication-title: The Annals of Statistics
  doi: 10.1214/009053604000000067
– volume: 130
  start-page: 511
  year: 1989
  ident: 10.1016/j.csda.2011.02.004_br000120
  article-title: The skin cancer prevention study group. Determinants of plasma levels of beta-carotene and retinol
  publication-title: American Journal of Epidemiology
  doi: 10.1093/oxfordjournals.aje.a115365
– ident: 10.1016/j.csda.2011.02.004_br000065
– volume: 71
  start-page: 505
  year: 2009
  ident: 10.1016/j.csda.2011.02.004_br000135
  article-title: Smoothing parameter selection for a class of semiparametric linear models
  publication-title: Journal of the Royal Statistical Society Series B
  doi: 10.1111/j.1467-9868.2008.00695.x
– volume: 62
  start-page: 961
  year: 2006
  ident: 10.1016/j.csda.2011.02.004_br000160
  article-title: Generalized additive modeling with implicit variable selection by likelihood-based boosting
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2006.00578.x
– year: 2006
  ident: 10.1016/j.csda.2011.02.004_br000185
– volume: 19
  start-page: 107
  year: 2010
  ident: 10.1016/j.csda.2011.02.004_br000110
  article-title: Penalised regression splines: theory and application to medical research
  publication-title: Statistical Methods in Medical Research
  doi: 10.1177/0962280208096688
– volume: 49
  start-page: 173
  year: 2007
  ident: 10.1016/j.csda.2011.02.004_br000170
  article-title: Model selection for penalized spline smoothing using akaike information criteria
  publication-title: Australian and New Zealand Journal of Statistics
  doi: 10.1111/j.1467-842X.2007.00473.x
– volume: 98
  start-page: 324
  year: 2003
  ident: 10.1016/j.csda.2011.02.004_br000030
  article-title: Boosting with the L2 loss: regression and classification
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214503000125
– volume: 13
  start-page: 1378
  year: 1985
  ident: 10.1016/j.csda.2011.02.004_br000175
  article-title: A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176349743
– volume: 52
  start-page: 406
  year: 2007
  ident: 10.1016/j.csda.2011.02.004_br000150
  article-title: Input selection and shrinkage in multiresponse linear regression
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2007.01.025
– volume: 73
  start-page: 3
  year: 2011
  ident: 10.1016/j.csda.2011.02.004_br000195
  article-title: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models
  publication-title: Journal of the Royal Statistical Society Series B
  doi: 10.1111/j.1467-9868.2010.00749.x
– volume: 37
  start-page: 373
  year: 1995
  ident: 10.1016/j.csda.2011.02.004_br000020
  article-title: Better subset regression using the nonnegative garrote
  publication-title: Technometrics
  doi: 10.1080/00401706.1995.10484371
– volume: 2
  start-page: 61
  year: 2008
  ident: 10.1016/j.csda.2011.02.004_br000085
  article-title: Least angle and l1 penalized regression: a review
  publication-title: Statistics Surveys
  doi: 10.1214/08-SS035
– year: 1989
  ident: 10.1016/j.csda.2011.02.004_br000115
– volume: 16
  start-page: 1021
  year: 2006
  ident: 10.1016/j.csda.2011.02.004_br000215
  article-title: Component selection and smoothing for nonparametric regression in exponential families
  publication-title: Statistica Sinica
– year: 1990
  ident: 10.1016/j.csda.2011.02.004_br000080
– volume: 89
  start-page: 251
  year: 2002
  ident: 10.1016/j.csda.2011.02.004_br000040
  article-title: Degrees of freedom tests for smoothing splines
  publication-title: Biometrika
  doi: 10.1093/biomet/89.2.251
– volume: 19
  start-page: 1281
  year: 2009
  ident: 10.1016/j.csda.2011.02.004_br000200
  article-title: Consistent variable selection in additive models
  publication-title: Statistica Sinica
– volume: 41
  start-page: 495
  year: 1970
  ident: 10.1016/j.csda.2011.02.004_br000100
  article-title: A correspondence between Bayesian estimation of stochastic processes and smoothing by splines
  publication-title: Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177697089
– volume: 58
  start-page: 267
  year: 1996
  ident: 10.1016/j.csda.2011.02.004_br000155
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society Series B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 18
  start-page: 87
  year: 2008
  ident: 10.1016/j.csda.2011.02.004_br000015
  article-title: A comparison of methods for the fitting of generalized additive models
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-007-9040-0
– volume: 16
  start-page: 86
  year: 2007
  ident: 10.1016/j.csda.2011.02.004_br000045
  article-title: Semiparametric modeling and estimation of instrumental variable models
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/106186007X180723
– volume: 51
  start-page: 6044
  year: 2008
  ident: 10.1016/j.csda.2011.02.004_br000010
  article-title: Simultaneous selection of variables and smoothing parameters in structured additive regression models
  publication-title: Computational Statistics and Data Analysis
– volume: 70
  start-page: 495
  year: 2008
  ident: 10.1016/j.csda.2011.02.004_br000190
  article-title: Fast stable direct fitting and smoothness selection for generalized additive models
  publication-title: Journal of the Royal Statistical Society Series B
  doi: 10.1111/j.1467-9868.2007.00646.x
– volume: 53
  start-page: 1284
  year: 2009
  ident: 10.1016/j.csda.2011.02.004_br000050
  article-title: Shrinkage and model selection with correlated variables via weighted fusion
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2008.11.007
– volume: 52
  start-page: 3283
  year: 2008
  ident: 10.1016/j.csda.2011.02.004_br000140
  article-title: Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2007.10.022
– volume: 83
  start-page: 86
  year: 1988
  ident: 10.1016/j.csda.2011.02.004_br000075
  article-title: How far are automatically chosen regression smoothing parameters from their optimum?
  publication-title: Journal of the American Statistical Association
SSID ssj0002478
Score 2.5204563
Snippet The problem of variable selection within the class of generalized additive models, when there are many covariates to choose from but the number of predictors...
SourceID proquest
repec
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2372
SubjectTerms Additives
Computer simulation
Cross sections
Data processing
Estimators
Exact sciences and technology
General topics
Generalized additive model
Generalized additive model Nonnegative garrote estimator Penalized thin plate regression spline Practical variable selection Shrinkage smoother
Guidelines
Linear inference, regression
Mathematical models
Mathematics
Multivariate analysis
Nonnegative garrote estimator
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in probability and statistics
Penalized thin plate regression spline
Practical variable selection
Probability and statistics
Sciences and techniques of general use
Shrinkage smoother
Statistics
Title Practical variable selection for generalized additive models
URI https://dx.doi.org/10.1016/j.csda.2011.02.004
http://econpapers.repec.org/article/eeecsdana/v_3a55_3ay_3a2011_3ai_3a7_3ap_3a2372-2387.htm
https://www.proquest.com/docview/889392566
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4huIBWiNdqy6PygRvKliZ24khcEA8VKjjw0HKzHNvZ7QpCRAoSHPjtzMRJoQc4cHArOXGczNjjb5KZzwDbOGpyI52m7PYw4HFsAynyPHBSxzJJLB6n9x1n5_Hgmp_eiJsZOGhzYSissrH93qbX1rqp6TXS7JWjUe-SAuhTnkREeoY4t85g5wnx5_9-fQ_zCLm3xsTvTWc3iTM-xstUVjc0nsTbyT9bnH6UukKR5X6viykwOvfgSmc-rEnHS7DYgEm27-93GWZcsQILZxMm1moV9jwhEV6WPaFbTIlSrKr3vkGFMESs7K8nnh69OMsouojsH6s3yKnW4Pr46OpgEDQ7JgQGgcA4wOVfppSfFBpuyTnpoylGBGgyaw3KPRcC5ysPrbMy2-1ri_6dpImdJpk1TkQ_Yba4L9wvYNzIXIfo8NQfUk2coUIdLu65jYWRqelAvxWVMg2dOO1qcavauLH_isSrSLxqN1Qo3g7sTNqUnkzjy7NFqwE1NSQUWvsv23Wn1DXpipxXfBzRAdbqT-Fkoi8kunD3j5WSiN5SBIFxB45qvU7aOueon0KrJxVpIfDnGUvdbaRHWBIsJVVFSagQCCXq3_hu_ZvPsAHz_uU1xQVvwuz44dFtIfoZZ916eHdhbv9kODin_-HFnyHWHg5P3gCJDARi
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFH6q6AHQNG0MtLKt84HbFJUmceJIuyBUVFbaCyBxsxzbgSIIESlI8Ot5L3ai9TAOOziHtI6T9-zn7yXvfQ_gAGdNoYVVlN0eBnGSmEDwogisUIlIU4O_0_uO-SKZXsZ_rvhVD47bXBgKq_S239n0xlr7MyMvzVG1XI7OKYA-i9OISM8Q56IL1Cd2Kpzs_aPT2XTRGeQwdgaZKL6pg8-dcWFeujbKM3kSdWf8r_3pQ6VqlFrhyl2s4dH-o62s_mtbOvkEHz2eZEfulj9Dz5Y7sD3vyFjrL_DbcRLhZdkzesaUK8XqpvwN6oQhaGXXjnt6-WoNowAjMoGsqZFT78LlyeTieBr4ogmBRiywChABiIxSlEIdG_JPxmiNEQTq3BiNoi84xyUbh8YakR-OlUEXT9DaztLcaMujPdgoH0r7FVisRaFC9Hmab6k6yVGnFvf3wiRci0wPYNyKSmrPKE6FLe5kGzp2K0m8ksQrD0OJ4h3Ar65P5fg03v03bzUg12aFRIP_br_hmrq6och_xcfhA2Ct_iSuJ_pIokr78FRLgQAuQxyYDGDS6LXra62lcUoln2WkOMfDC7Zm2EgtsaXYKjoVpaFELJTKm9X9_n8-w0_YnF7Mz-TZ6WL2Dbbcu2wKE_4OG6vHJ_sDwdAqH_rJ_gYySAR3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Practical+variable+selection+for+generalized+additive+models&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Marra%2C+Giampiero&rft.au=Wood%2C+Simon+N.&rft.date=2011-07-01&rft.pub=Elsevier+B.V&rft.issn=0167-9473&rft.eissn=1872-7352&rft.volume=55&rft.issue=7&rft.spage=2372&rft.epage=2387&rft_id=info:doi/10.1016%2Fj.csda.2011.02.004&rft.externalDocID=S0167947311000491
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon