Deep Embedding Learning With Auto-Encoder for Large-Scale Ontology Matching

Ontology matching is an efficient method to establish interoperability among heterogeneous ontologies. Large-scale ontology matching still remains a big challenge for its long time and large memory space consumption. The actual solution to this problem is ontology partitioning which is also challeng...

Full description

Saved in:
Bibliographic Details
Published inInternational journal on semantic web and information systems Vol. 18; no. 1; pp. 1 - 18
Main Authors Khoudja, Meriem Ali, Fareh, Messaouda, Bouarfa, Hafida
Format Journal Article
LanguageEnglish
Published Hershey IGI Global 01.01.2022
Subjects
Online AccessGet full text
ISSN1552-6283
1552-6291
DOI10.4018/IJSWIS.297042

Cover

Abstract Ontology matching is an efficient method to establish interoperability among heterogeneous ontologies. Large-scale ontology matching still remains a big challenge for its long time and large memory space consumption. The actual solution to this problem is ontology partitioning which is also challenging. This paper presents DeepOM, an ontology matching system to deal with this large-scale heterogeneity problem without partitioning using deep learning techniques. It consists on creating semantic embeddings for concepts of input ontologies using a reference ontology, and use them to train an auto-encoder in order to learn more accurate and less dimensional representations for concepts. The experimental results of its evaluation on large ontologies, and its comparison with different ontology matching systems which have participated to the same test challenge, are very encouraging with a precision score of 0.99. They demonstrate the higher efficiency of the proposed system to increase the performance of the large-scale ontology matching task.
AbstractList Ontology matching is an efficient method to establish interoperability among heterogeneous ontologies. Large-scale ontology matching still remains a big challenge for its long time and large memory space consumption. The actual solution to this problem is ontology partitioning which is also challenging. This paper presents DeepOM, an ontology matching system to deal with this large-scale heterogeneity problem without partitioning using deep learning techniques. It consists on creating semantic embeddings for concepts of input ontologies using a reference ontology, and use them to train an auto-encoder in order to learn more accurate and less dimensional representations for concepts. The experimental results of its evaluation on large ontologies, and its comparison with different ontology matching systems which have participated to the same test challenge, are very encouraging with a precision score of 0.99. They demonstrate the higher efficiency of the proposed system to increase the performance of the large-scale ontology matching task.
Ontology matching is an efficient method to establish interoperability among heterogeneous ontologies. Large-scale ontology matching still remains a big challenge for its time and large memory space consumption. The actual solution to this problem is ontology partitioning, which is also challenging. This paper presents DeepOM, an ontology matching system, to deal with this large-scale heterogeneity problem without partitioning using deep learning techniques. It consists of creating semantic embeddings for concepts of input ontologies using a reference ontology and uses them to train an auto-encoder in order to learn more accurate and less dimensional representations for concepts. The experimental results of its evaluation on large ontologies and its comparison with different ontology matching systems which have participated to the same test challenge are very encouraging with a precision score of 0.99. They demonstrate the higher efficiency of the proposed system to increase the performance of the large-scale ontology matching task.
Audience Academic
Author Bouarfa, Hafida
Khoudja, Meriem Ali
Fareh, Messaouda
AuthorAffiliation LRDSI Laboratory, Faculty of Science, University of Blida 1, Algeria
AuthorAffiliation_xml – name: LRDSI Laboratory, Faculty of Science, University of Blida 1, Algeria
Author_xml – sequence: 1
  givenname: Meriem
  surname: Khoudja
  middlename: Ali
  fullname: Khoudja, Meriem Ali
  organization: LRDSI Laboratory, Faculty of Science, University of Blida 1, Algeria
– sequence: 2
  givenname: Messaouda
  surname: Fareh
  fullname: Fareh, Messaouda
  organization: LRDSI Laboratory, Faculty of Science, University of Blida 1, Algeria
– sequence: 3
  givenname: Hafida
  surname: Bouarfa
  fullname: Bouarfa, Hafida
  organization: LRDSI Laboratory, Faculty of Science, University of Blida 1, Algeria
BookMark eNp1kUtPAjEUhRuDiYAu3U_ierCP6TyWBFFRDAs0LJtOpx1KoMVOWfDvLRmFaDBd9KY959zbfj3QMdZIAG4RHCQQ5feTl_liMh_gIoMJvgBdRCmOU1ygzrHOyRXoNc0KQkIJQV3w-iDlNhpvSllV2tTRVHJnDsVC-2U03Hkbj42wlXSRsi6aclfLeC74WkYz4-3a1vvojXuxDJ5rcKn4upE333sffDyO30fP8XT2NBkNp7FICPIxRTnECcKQ05QiUuSlUjmWQsmcInW4oKgqYQqrslASpgQVPMsEzyrJlRKU9MFdm7t19nMnG89WdudMaMlwiAhOWMCTqg7DMm2U9Y6LjW4EG2a0IDgpUB5UgzOqsCq50SL8r9Lh_Jchbg3C2aZxUrGt0xvu9gxBdsDAWgysxRD05I9eaM-9tiY00ut_XaPWpWt9et0RE_vBxA6YzmeEWb8AromhRA
CitedBy_id crossref_primary_10_1038_s41598_023_49869_6
crossref_primary_10_1007_s00500_024_09938_y
crossref_primary_10_1016_j_knosys_2024_112392
crossref_primary_10_4018_IJSWIS_334556
crossref_primary_10_1109_ACCESS_2024_3393909
crossref_primary_10_1007_s11220_023_00457_y
crossref_primary_10_1016_j_techfore_2024_123395
crossref_primary_10_3934_era_2023291
crossref_primary_10_31083_j_fbl2902075
crossref_primary_10_1016_j_rcim_2024_102837
Cites_doi 10.4018/jswis.2007040101
10.1007/978-3-642-32518-2_17
10.1007/978-3-319-12277-9_4
10.1007/s12652-018-0919-8
10.1109/TKDE.2011.253
10.1145/3412841.3442059
10.1038/s41597-019-0055-0
10.4018/IJSWIS.2015070102
10.18653/v1/D15-1289
10.1109/ICASS.2018.8652049
10.3928/1081597X-20190124-02
10.1145/3365109.3368779
10.1007/s00521-020-05410-8
10.1109/ICHI-W.2018.00012
10.4018/IJSWIS.2020010103
10.1016/j.eswa.2014.08.032
10.4018/IJSSCI.2020070101
10.3233/SW-190366
10.1145/3297280.3297507
10.1016/j.jocs.2017.11.006
10.1145/2350716.2350757
10.1109/ICWR.2016.7498461
10.1007/s10586-017-0844-1
10.1504/IJBET.2019.102120
ContentType Journal Article
Copyright COPYRIGHT 2022 IGI Global
2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 IGI Global
– notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.4018/IJSWIS.297042
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1552-6291
EndPage 18
ExternalDocumentID A759324918
10_4018_IJSWIS_297042
Embedding_Learning_With_10_4018_IJSWIS_29704218
GeographicLocations Algeria
GeographicLocations_xml – name: Algeria
GroupedDBID 0R~
29J
4.4
5GY
AAYVP
ABBKS
ABEPT
ABGRR
ADEKF
AENEX
ALMA_UNASSIGNED_HOLDINGS
AXMGO
BAWSF
BDBYZ
BLRFH
BTFVE
BYHXH
CBWLS
CDTDJ
CIGCI
CKMBR
CNQXE
COVLG
CTSEY
EBS
F5P
H13
HZ~
IAO
ICD
IGYUU
JRD
MV1
NEEBM
O9-
P2P
RIF
XH6
AAYXX
ABJCF
ABPHS
ADMLS
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
ITC
K7-
M7S
PHGZM
PHGZT
PTHSS
PMFND
7SC
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c431t-518024120a5651398bff82ecfe851f412051db060db9fe06319a77ca7deaffc53
IEDL.DBID 8FG
ISSN 1552-6283
IngestDate Fri Jul 25 12:04:11 EDT 2025
Tue Jun 17 21:48:35 EDT 2025
Tue Jun 10 21:20:38 EDT 2025
Tue Jul 01 02:29:14 EDT 2025
Thu Apr 24 22:53:22 EDT 2025
Wed Aug 23 04:21:53 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by/3.0/deed.en_US
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-518024120a5651398bff82ecfe851f412051db060db9fe06319a77ca7deaffc53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.igi-global.com/ViewTitle.aspx?TitleId=297042&isxn=9781799893967
PQID 2851060090
PQPubID 2045800
PageCount 18
ParticipantIDs gale_infotracmisc_A759324918
igi_journals_Embedding_Learning_With_10_4018_IJSWIS_29704218
crossref_primary_10_4018_IJSWIS_297042
gale_infotracacademiconefile_A759324918
proquest_journals_2851060090
crossref_citationtrail_10_4018_IJSWIS_297042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Hershey
PublicationPlace_xml – name: Hershey
PublicationTitle International journal on semantic web and information systems
PublicationYear 2022
Publisher IGI Global
Publisher_xml – name: IGI Global
References S.Hertling (IJSWIS.297042-13) 2020; 2788
M.Ali Khoudja (IJSWIS.297042-1) 2018
E.Jiménez-Ruiz (IJSWIS.297042-14) 2018; 2288
IJSWIS.297042-9
IJSWIS.297042-7
IJSWIS.297042-6
IJSWIS.297042-5
IJSWIS.297042-4
IJSWIS.297042-3
IJSWIS.297042-2
IJSWIS.297042-0
A.Laadhar (IJSWIS.297042-16) 2018
IJSWIS.297042-23
IJSWIS.297042-22
IJSWIS.297042-25
IJSWIS.297042-24
IJSWIS.297042-27
IJSWIS.297042-26
IJSWIS.297042-29
IJSWIS.297042-28
IJSWIS.297042-30
IJSWIS.297042-10
I.Nkisi-Orji (IJSWIS.297042-21) 2018
IJSWIS.297042-32
IJSWIS.297042-31
IJSWIS.297042-19
M.Monych (IJSWIS.297042-20) 2020; 2788
M. T.Dhouib (IJSWIS.297042-8) 2019
IJSWIS.297042-12
IJSWIS.297042-34
IJSWIS.297042-11
IJSWIS.297042-33
IJSWIS.297042-15
IJSWIS.297042-18
IJSWIS.297042-17
References_xml – ident: IJSWIS.297042-32
  doi: 10.4018/jswis.2007040101
– ident: IJSWIS.297042-23
– ident: IJSWIS.297042-25
– ident: IJSWIS.297042-19
– ident: IJSWIS.297042-9
  doi: 10.1007/978-3-642-32518-2_17
– ident: IJSWIS.297042-34
  doi: 10.1007/978-3-319-12277-9_4
– volume: 2788
  start-page: 181
  year: 2020
  ident: IJSWIS.297042-20
  article-title: DESKMatcher.
  publication-title: CEUR Workshop Proceedings
– ident: IJSWIS.297042-11
  doi: 10.1007/s12652-018-0919-8
– ident: IJSWIS.297042-27
  doi: 10.1109/TKDE.2011.253
– ident: IJSWIS.297042-5
  doi: 10.1145/3412841.3442059
– ident: IJSWIS.297042-33
  doi: 10.1038/s41597-019-0055-0
– ident: IJSWIS.297042-15
  doi: 10.4018/IJSWIS.2015070102
– start-page: 557
  year: 2018
  ident: IJSWIS.297042-21
  article-title: Ontology alignment based on word embedding and random forest classification.
  publication-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases
– ident: IJSWIS.297042-30
  doi: 10.18653/v1/D15-1289
– ident: IJSWIS.297042-2
  doi: 10.1109/ICASS.2018.8652049
– volume: 2288
  start-page: 13
  year: 2018
  ident: IJSWIS.297042-14
  article-title: We divide, you conquer: From large-scale ontology alignment to manageable subtasks with a lexical index and neural embeddings.
  publication-title: CEUR Workshop Proceedings
– ident: IJSWIS.297042-7
  doi: 10.3928/1081597X-20190124-02
– ident: IJSWIS.297042-18
  doi: 10.1145/3365109.3368779
– ident: IJSWIS.297042-26
  doi: 10.1007/s00521-020-05410-8
– ident: IJSWIS.297042-6
  doi: 10.1109/ICHI-W.2018.00012
– start-page: 542
  year: 2018
  ident: IJSWIS.297042-1
  article-title: A new supervised learning based ontology matching approach using neural networks.
  publication-title: International Conference Europe Middle East & North Africa Information Systems and Technologies to Support Learning
– ident: IJSWIS.297042-31
  doi: 10.4018/IJSWIS.2020010103
– volume: 2788
  start-page: 168
  year: 2020
  ident: IJSWIS.297042-13
  article-title: ATBox results for OAEI 2020.
  publication-title: CEUR Workshop Proceedings
– ident: IJSWIS.297042-22
  doi: 10.1016/j.eswa.2014.08.032
– ident: IJSWIS.297042-12
– ident: IJSWIS.297042-10
  doi: 10.4018/IJSSCI.2020070101
– ident: IJSWIS.297042-28
  doi: 10.3233/SW-190366
– ident: IJSWIS.297042-17
  doi: 10.1145/3297280.3297507
– ident: IJSWIS.297042-0
  doi: 10.1016/j.jocs.2017.11.006
– start-page: 191
  year: 2019
  ident: IJSWIS.297042-8
  article-title: An ontology alignment approach combining word embedding and the radius measure.
  publication-title: International Conference on Semantic Systems
– start-page: 220
  year: 2018
  ident: IJSWIS.297042-16
  article-title: Partitioning and matching tuning of large biomedical ontologies.
  publication-title: 13th International Workshop on Ontology Matching co-located with the 17th International Semantic Web Conference (OM 2018)
– ident: IJSWIS.297042-29
  doi: 10.1145/2350716.2350757
– ident: IJSWIS.297042-3
  doi: 10.1109/ICWR.2016.7498461
– ident: IJSWIS.297042-24
  doi: 10.1007/s10586-017-0844-1
– ident: IJSWIS.297042-4
  doi: 10.1504/IJBET.2019.102120
SSID ssj0035331
Score 2.3391566
Snippet Ontology matching is an efficient method to establish interoperability among heterogeneous ontologies. Large-scale ontology matching still remains a big...
SourceID proquest
gale
crossref
igi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
Coders
Computational linguistics
Deep learning
Heterogeneity
Language processing
Matching
Natural language interfaces
Partitioning
Title Deep Embedding Learning With Auto-Encoder for Large-Scale Ontology Matching
URI http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSWIS.297042
https://www.proquest.com/docview/2851060090
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZ4XOihAtqq2wLyAdFLDUlINrZUqVpgl_dDLAhulp-wEs0uEA78e2YSB1hRONuyrG88D4893xCybBJuDLcZs8LkLNWgc0pVD47KRorrWFgsFD48au-cp3uX2WVIuN2Hb5WNTawMtR0azJGvJRAaROCdRfR3dMuwaxS-roYWGpNkOgZPg-ec97YbS7ye1f0IkWWMtcGP1hybcKPga7t7_Yvd_moi8ihNxnxSsMyTg6vBG_tcOZ3eLPkcokXaqcU7RyZcMU8-veIQ_EL2t5wb0e4_7Sy6IRoIU6_oxaC8pp2Hcsi6BRau31GIT-kB_vxmfZCMo8dF1bz2kR6CPcZM1Fdy3uuebe6w0CGBGXD8JcuQvy2Nk0hBXAaxHNfe88QZ7wAtjwNZbDXAZrXwDqKRWKg8Nyq3TnlvsvVvZKoYFu47oUJHyuTCWtNWSNqmtEp0m-fepoY771vkd4ORNIE-HLtY3Ei4RiCksoZU1pC2yMrz9FHNm_HexF8IuER9gvWMCmUBsCtkppKdPIMQMxUxb5GFsZmgB2Zs-A-ITAYVvJfPwMsGeInA_38X1eqNrF_WeDl0Pz4e_klmEqyLqHIzC2SqvHtwixCtlHqpOpJLZHqje3Ry-gS69ufR
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKegAOiKcaKMUHHhdMd81u1paoUEpTJc0DRFq1N-NniQSb0G6F-qf6G5nZR0vE49azLa_1ecbf2N75hpDnlgtrhUuZkzZjiQGf07p8cNQu0sLE0mGi8HjS6R8ke0fp0Qq5aHJh8LfKZk8sN2o3t3hHvskhNIiAnWX0fvGDYdUofF1tSmhUZjH05z_hyHa6NdiB9X3B-W5v_0Of1VUFmAWyLFiKmmdJzCMNsQzEP8KEILi3wcMXAjaksTPwKWdk8MDgsdRZZnXmvA7BYpUI2PJXE8xobZHV7d7k0-dm73-bVhUQUdeMdYC5K1VPOMOIzcHe9HAwfcNlFiV8iQVrLrgxO579wQglze3eJXfq-JR2K4O6R1Z8fp_c_k218AEZ7ni_oL3vxjskPlpLtB7Tw1nxlXbPijnr5Zgqf0IhIqYj_NecTcEWPP2Yl-Vyz-kYGADvvh6Sg2tB7xFp5fPcrxEqTaRtJp2zHY0ycdpobjoiCy6xwofQJq8bjJStBcuxbsY3BQcXhFRVkKoK0jZ5edl9USl1_KvjKwRcoQfDeFbXiQgwK9TCUt0shaA2kbFok_WlnuB5dqn5HSyZqp3-VF0CrxrgFQL_91mUozdrfTXGlZk__n_zM3Kzvz8eqdFgMnxCbnHMyihvhtZJqzg5808hVirMRm2glHy5bp_4BRuZJEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Embedding+Learning+With+Auto-Encoder+for+Large-Scale+Ontology+Matching&rft.jtitle=International+journal+on+semantic+web+and+information+systems&rft.au=Khoudja%2C+Meriem+Ali&rft.au=Fareh%2C+Messaouda&rft.au=Bouarfa%2C+Hafida&rft.date=2022-01-01&rft.issn=1552-6283&rft.eissn=1552-6291&rft.volume=18&rft.issue=1&rft.spage=1&rft.epage=18&rft_id=info:doi/10.4018%2FIJSWIS.297042&rft.externalDBID=n%2Fa&rft.externalDocID=10_4018_IJSWIS_297042
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-6283&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-6283&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-6283&client=summon