Deep Embedding Learning With Auto-Encoder for Large-Scale Ontology Matching
Ontology matching is an efficient method to establish interoperability among heterogeneous ontologies. Large-scale ontology matching still remains a big challenge for its long time and large memory space consumption. The actual solution to this problem is ontology partitioning which is also challeng...
Saved in:
Published in | International journal on semantic web and information systems Vol. 18; no. 1; pp. 1 - 18 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hershey
IGI Global
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1552-6283 1552-6291 |
DOI | 10.4018/IJSWIS.297042 |
Cover
Abstract | Ontology matching is an efficient method to establish interoperability among heterogeneous ontologies. Large-scale ontology matching still remains a big challenge for its long time and large memory space consumption. The actual solution to this problem is ontology partitioning which is also challenging. This paper presents DeepOM, an ontology matching system to deal with this large-scale heterogeneity problem without partitioning using deep learning techniques. It consists on creating semantic embeddings for concepts of input ontologies using a reference ontology, and use them to train an auto-encoder in order to learn more accurate and less dimensional representations for concepts. The experimental results of its evaluation on large ontologies, and its comparison with different ontology matching systems which have participated to the same test challenge, are very encouraging with a precision score of 0.99. They demonstrate the higher efficiency of the proposed system to increase the performance of the large-scale ontology matching task. |
---|---|
AbstractList | Ontology matching is an efficient method to establish interoperability among heterogeneous ontologies. Large-scale ontology matching still remains a big challenge for its long time and large memory space consumption. The actual solution to this problem is ontology partitioning which is also challenging. This paper presents DeepOM, an ontology matching system to deal with this large-scale heterogeneity problem without partitioning using deep learning techniques. It consists on creating semantic embeddings for concepts of input ontologies using a reference ontology, and use them to train an auto-encoder in order to learn more accurate and less dimensional representations for concepts. The experimental results of its evaluation on large ontologies, and its comparison with different ontology matching systems which have participated to the same test challenge, are very encouraging with a precision score of 0.99. They demonstrate the higher efficiency of the proposed system to increase the performance of the large-scale ontology matching task. Ontology matching is an efficient method to establish interoperability among heterogeneous ontologies. Large-scale ontology matching still remains a big challenge for its time and large memory space consumption. The actual solution to this problem is ontology partitioning, which is also challenging. This paper presents DeepOM, an ontology matching system, to deal with this large-scale heterogeneity problem without partitioning using deep learning techniques. It consists of creating semantic embeddings for concepts of input ontologies using a reference ontology and uses them to train an auto-encoder in order to learn more accurate and less dimensional representations for concepts. The experimental results of its evaluation on large ontologies and its comparison with different ontology matching systems which have participated to the same test challenge are very encouraging with a precision score of 0.99. They demonstrate the higher efficiency of the proposed system to increase the performance of the large-scale ontology matching task. |
Audience | Academic |
Author | Bouarfa, Hafida Khoudja, Meriem Ali Fareh, Messaouda |
AuthorAffiliation | LRDSI Laboratory, Faculty of Science, University of Blida 1, Algeria |
AuthorAffiliation_xml | – name: LRDSI Laboratory, Faculty of Science, University of Blida 1, Algeria |
Author_xml | – sequence: 1 givenname: Meriem surname: Khoudja middlename: Ali fullname: Khoudja, Meriem Ali organization: LRDSI Laboratory, Faculty of Science, University of Blida 1, Algeria – sequence: 2 givenname: Messaouda surname: Fareh fullname: Fareh, Messaouda organization: LRDSI Laboratory, Faculty of Science, University of Blida 1, Algeria – sequence: 3 givenname: Hafida surname: Bouarfa fullname: Bouarfa, Hafida organization: LRDSI Laboratory, Faculty of Science, University of Blida 1, Algeria |
BookMark | eNp1kUtPAjEUhRuDiYAu3U_ierCP6TyWBFFRDAs0LJtOpx1KoMVOWfDvLRmFaDBd9KY959zbfj3QMdZIAG4RHCQQ5feTl_liMh_gIoMJvgBdRCmOU1ygzrHOyRXoNc0KQkIJQV3w-iDlNhpvSllV2tTRVHJnDsVC-2U03Hkbj42wlXSRsi6aclfLeC74WkYz4-3a1vvojXuxDJ5rcKn4upE333sffDyO30fP8XT2NBkNp7FICPIxRTnECcKQ05QiUuSlUjmWQsmcInW4oKgqYQqrslASpgQVPMsEzyrJlRKU9MFdm7t19nMnG89WdudMaMlwiAhOWMCTqg7DMm2U9Y6LjW4EG2a0IDgpUB5UgzOqsCq50SL8r9Lh_Jchbg3C2aZxUrGt0xvu9gxBdsDAWgysxRD05I9eaM-9tiY00ut_XaPWpWt9et0RE_vBxA6YzmeEWb8AromhRA |
CitedBy_id | crossref_primary_10_1038_s41598_023_49869_6 crossref_primary_10_1007_s00500_024_09938_y crossref_primary_10_1016_j_knosys_2024_112392 crossref_primary_10_4018_IJSWIS_334556 crossref_primary_10_1109_ACCESS_2024_3393909 crossref_primary_10_1007_s11220_023_00457_y crossref_primary_10_1016_j_techfore_2024_123395 crossref_primary_10_3934_era_2023291 crossref_primary_10_31083_j_fbl2902075 crossref_primary_10_1016_j_rcim_2024_102837 |
Cites_doi | 10.4018/jswis.2007040101 10.1007/978-3-642-32518-2_17 10.1007/978-3-319-12277-9_4 10.1007/s12652-018-0919-8 10.1109/TKDE.2011.253 10.1145/3412841.3442059 10.1038/s41597-019-0055-0 10.4018/IJSWIS.2015070102 10.18653/v1/D15-1289 10.1109/ICASS.2018.8652049 10.3928/1081597X-20190124-02 10.1145/3365109.3368779 10.1007/s00521-020-05410-8 10.1109/ICHI-W.2018.00012 10.4018/IJSWIS.2020010103 10.1016/j.eswa.2014.08.032 10.4018/IJSSCI.2020070101 10.3233/SW-190366 10.1145/3297280.3297507 10.1016/j.jocs.2017.11.006 10.1145/2350716.2350757 10.1109/ICWR.2016.7498461 10.1007/s10586-017-0844-1 10.1504/IJBET.2019.102120 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 IGI Global 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 IGI Global – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SC 8FD 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
DOI | 10.4018/IJSWIS.297042 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1552-6291 |
EndPage | 18 |
ExternalDocumentID | A759324918 10_4018_IJSWIS_297042 Embedding_Learning_With_10_4018_IJSWIS_29704218 |
GeographicLocations | Algeria |
GeographicLocations_xml | – name: Algeria |
GroupedDBID | 0R~ 29J 4.4 5GY AAYVP ABBKS ABEPT ABGRR ADEKF AENEX ALMA_UNASSIGNED_HOLDINGS AXMGO BAWSF BDBYZ BLRFH BTFVE BYHXH CBWLS CDTDJ CIGCI CKMBR CNQXE COVLG CTSEY EBS F5P H13 HZ~ IAO ICD IGYUU JRD MV1 NEEBM O9- P2P RIF XH6 AAYXX ABJCF ABPHS ADMLS AFKRA ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ ITC K7- M7S PHGZM PHGZT PTHSS PMFND 7SC 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V L7M L~C L~D P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c431t-518024120a5651398bff82ecfe851f412051db060db9fe06319a77ca7deaffc53 |
IEDL.DBID | 8FG |
ISSN | 1552-6283 |
IngestDate | Fri Jul 25 12:04:11 EDT 2025 Tue Jun 17 21:48:35 EDT 2025 Tue Jun 10 21:20:38 EDT 2025 Tue Jul 01 02:29:14 EDT 2025 Thu Apr 24 22:53:22 EDT 2025 Wed Aug 23 04:21:53 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://creativecommons.org/licenses/by/3.0/deed.en_US |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c431t-518024120a5651398bff82ecfe851f412051db060db9fe06319a77ca7deaffc53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.igi-global.com/ViewTitle.aspx?TitleId=297042&isxn=9781799893967 |
PQID | 2851060090 |
PQPubID | 2045800 |
PageCount | 18 |
ParticipantIDs | gale_infotracmisc_A759324918 igi_journals_Embedding_Learning_With_10_4018_IJSWIS_29704218 crossref_primary_10_4018_IJSWIS_297042 gale_infotracacademiconefile_A759324918 proquest_journals_2851060090 crossref_citationtrail_10_4018_IJSWIS_297042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hershey |
PublicationPlace_xml | – name: Hershey |
PublicationTitle | International journal on semantic web and information systems |
PublicationYear | 2022 |
Publisher | IGI Global |
Publisher_xml | – name: IGI Global |
References | S.Hertling (IJSWIS.297042-13) 2020; 2788 M.Ali Khoudja (IJSWIS.297042-1) 2018 E.Jiménez-Ruiz (IJSWIS.297042-14) 2018; 2288 IJSWIS.297042-9 IJSWIS.297042-7 IJSWIS.297042-6 IJSWIS.297042-5 IJSWIS.297042-4 IJSWIS.297042-3 IJSWIS.297042-2 IJSWIS.297042-0 A.Laadhar (IJSWIS.297042-16) 2018 IJSWIS.297042-23 IJSWIS.297042-22 IJSWIS.297042-25 IJSWIS.297042-24 IJSWIS.297042-27 IJSWIS.297042-26 IJSWIS.297042-29 IJSWIS.297042-28 IJSWIS.297042-30 IJSWIS.297042-10 I.Nkisi-Orji (IJSWIS.297042-21) 2018 IJSWIS.297042-32 IJSWIS.297042-31 IJSWIS.297042-19 M.Monych (IJSWIS.297042-20) 2020; 2788 M. T.Dhouib (IJSWIS.297042-8) 2019 IJSWIS.297042-12 IJSWIS.297042-34 IJSWIS.297042-11 IJSWIS.297042-33 IJSWIS.297042-15 IJSWIS.297042-18 IJSWIS.297042-17 |
References_xml | – ident: IJSWIS.297042-32 doi: 10.4018/jswis.2007040101 – ident: IJSWIS.297042-23 – ident: IJSWIS.297042-25 – ident: IJSWIS.297042-19 – ident: IJSWIS.297042-9 doi: 10.1007/978-3-642-32518-2_17 – ident: IJSWIS.297042-34 doi: 10.1007/978-3-319-12277-9_4 – volume: 2788 start-page: 181 year: 2020 ident: IJSWIS.297042-20 article-title: DESKMatcher. publication-title: CEUR Workshop Proceedings – ident: IJSWIS.297042-11 doi: 10.1007/s12652-018-0919-8 – ident: IJSWIS.297042-27 doi: 10.1109/TKDE.2011.253 – ident: IJSWIS.297042-5 doi: 10.1145/3412841.3442059 – ident: IJSWIS.297042-33 doi: 10.1038/s41597-019-0055-0 – ident: IJSWIS.297042-15 doi: 10.4018/IJSWIS.2015070102 – start-page: 557 year: 2018 ident: IJSWIS.297042-21 article-title: Ontology alignment based on word embedding and random forest classification. publication-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases – ident: IJSWIS.297042-30 doi: 10.18653/v1/D15-1289 – ident: IJSWIS.297042-2 doi: 10.1109/ICASS.2018.8652049 – volume: 2288 start-page: 13 year: 2018 ident: IJSWIS.297042-14 article-title: We divide, you conquer: From large-scale ontology alignment to manageable subtasks with a lexical index and neural embeddings. publication-title: CEUR Workshop Proceedings – ident: IJSWIS.297042-7 doi: 10.3928/1081597X-20190124-02 – ident: IJSWIS.297042-18 doi: 10.1145/3365109.3368779 – ident: IJSWIS.297042-26 doi: 10.1007/s00521-020-05410-8 – ident: IJSWIS.297042-6 doi: 10.1109/ICHI-W.2018.00012 – start-page: 542 year: 2018 ident: IJSWIS.297042-1 article-title: A new supervised learning based ontology matching approach using neural networks. publication-title: International Conference Europe Middle East & North Africa Information Systems and Technologies to Support Learning – ident: IJSWIS.297042-31 doi: 10.4018/IJSWIS.2020010103 – volume: 2788 start-page: 168 year: 2020 ident: IJSWIS.297042-13 article-title: ATBox results for OAEI 2020. publication-title: CEUR Workshop Proceedings – ident: IJSWIS.297042-22 doi: 10.1016/j.eswa.2014.08.032 – ident: IJSWIS.297042-12 – ident: IJSWIS.297042-10 doi: 10.4018/IJSSCI.2020070101 – ident: IJSWIS.297042-28 doi: 10.3233/SW-190366 – ident: IJSWIS.297042-17 doi: 10.1145/3297280.3297507 – ident: IJSWIS.297042-0 doi: 10.1016/j.jocs.2017.11.006 – start-page: 191 year: 2019 ident: IJSWIS.297042-8 article-title: An ontology alignment approach combining word embedding and the radius measure. publication-title: International Conference on Semantic Systems – start-page: 220 year: 2018 ident: IJSWIS.297042-16 article-title: Partitioning and matching tuning of large biomedical ontologies. publication-title: 13th International Workshop on Ontology Matching co-located with the 17th International Semantic Web Conference (OM 2018) – ident: IJSWIS.297042-29 doi: 10.1145/2350716.2350757 – ident: IJSWIS.297042-3 doi: 10.1109/ICWR.2016.7498461 – ident: IJSWIS.297042-24 doi: 10.1007/s10586-017-0844-1 – ident: IJSWIS.297042-4 doi: 10.1504/IJBET.2019.102120 |
SSID | ssj0035331 |
Score | 2.3391566 |
Snippet | Ontology matching is an efficient method to establish interoperability among heterogeneous ontologies. Large-scale ontology matching still remains a big... |
SourceID | proquest gale crossref igi |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Analysis Coders Computational linguistics Deep learning Heterogeneity Language processing Matching Natural language interfaces Partitioning |
Title | Deep Embedding Learning With Auto-Encoder for Large-Scale Ontology Matching |
URI | http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSWIS.297042 https://www.proquest.com/docview/2851060090 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZ4XOihAtqq2wLyAdFLDUlINrZUqVpgl_dDLAhulp-wEs0uEA78e2YSB1hRONuyrG88D4893xCybBJuDLcZs8LkLNWgc0pVD47KRorrWFgsFD48au-cp3uX2WVIuN2Hb5WNTawMtR0azJGvJRAaROCdRfR3dMuwaxS-roYWGpNkOgZPg-ec97YbS7ye1f0IkWWMtcGP1hybcKPga7t7_Yvd_moi8ihNxnxSsMyTg6vBG_tcOZ3eLPkcokXaqcU7RyZcMU8-veIQ_EL2t5wb0e4_7Sy6IRoIU6_oxaC8pp2Hcsi6BRau31GIT-kB_vxmfZCMo8dF1bz2kR6CPcZM1Fdy3uuebe6w0CGBGXD8JcuQvy2Nk0hBXAaxHNfe88QZ7wAtjwNZbDXAZrXwDqKRWKg8Nyq3TnlvsvVvZKoYFu47oUJHyuTCWtNWSNqmtEp0m-fepoY771vkd4ORNIE-HLtY3Ei4RiCksoZU1pC2yMrz9FHNm_HexF8IuER9gvWMCmUBsCtkppKdPIMQMxUxb5GFsZmgB2Zs-A-ITAYVvJfPwMsGeInA_38X1eqNrF_WeDl0Pz4e_klmEqyLqHIzC2SqvHtwixCtlHqpOpJLZHqje3Ry-gS69ufR |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKegAOiKcaKMUHHhdMd81u1paoUEpTJc0DRFq1N-NniQSb0G6F-qf6G5nZR0vE49azLa_1ecbf2N75hpDnlgtrhUuZkzZjiQGf07p8cNQu0sLE0mGi8HjS6R8ke0fp0Qq5aHJh8LfKZk8sN2o3t3hHvskhNIiAnWX0fvGDYdUofF1tSmhUZjH05z_hyHa6NdiB9X3B-W5v_0Of1VUFmAWyLFiKmmdJzCMNsQzEP8KEILi3wcMXAjaksTPwKWdk8MDgsdRZZnXmvA7BYpUI2PJXE8xobZHV7d7k0-dm73-bVhUQUdeMdYC5K1VPOMOIzcHe9HAwfcNlFiV8iQVrLrgxO579wQglze3eJXfq-JR2K4O6R1Z8fp_c_k218AEZ7ni_oL3vxjskPlpLtB7Tw1nxlXbPijnr5Zgqf0IhIqYj_NecTcEWPP2Yl-Vyz-kYGADvvh6Sg2tB7xFp5fPcrxEqTaRtJp2zHY0ycdpobjoiCy6xwofQJq8bjJStBcuxbsY3BQcXhFRVkKoK0jZ5edl9USl1_KvjKwRcoQfDeFbXiQgwK9TCUt0shaA2kbFok_WlnuB5dqn5HSyZqp3-VF0CrxrgFQL_91mUozdrfTXGlZk__n_zM3Kzvz8eqdFgMnxCbnHMyihvhtZJqzg5808hVirMRm2glHy5bp_4BRuZJEE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Embedding+Learning+With+Auto-Encoder+for+Large-Scale+Ontology+Matching&rft.jtitle=International+journal+on+semantic+web+and+information+systems&rft.au=Khoudja%2C+Meriem+Ali&rft.au=Fareh%2C+Messaouda&rft.au=Bouarfa%2C+Hafida&rft.date=2022-01-01&rft.issn=1552-6283&rft.eissn=1552-6291&rft.volume=18&rft.issue=1&rft.spage=1&rft.epage=18&rft_id=info:doi/10.4018%2FIJSWIS.297042&rft.externalDBID=n%2Fa&rft.externalDocID=10_4018_IJSWIS_297042 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-6283&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-6283&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-6283&client=summon |