Role of brittle sigma phase in cryogenic-temperature-strength improvement of non-equi-atomic Fe-rich VCrMnFeCoNi high entropy alloys
An equi-atomic single-fcc-phase CrMnFeCoNi high entropy alloy (HEA) shows much higher tensile properties at cryogenic temperature than at room temperature because of its fcc characteristics and abundant twinning at cryogenic temperature. In order to further improve the cryogenic-temperature tensile...
Saved in:
Published in | Materials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 724; pp. 403 - 410 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
02.05.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An equi-atomic single-fcc-phase CrMnFeCoNi high entropy alloy (HEA) shows much higher tensile properties at cryogenic temperature than at room temperature because of its fcc characteristics and abundant twinning at cryogenic temperature. In order to further improve the cryogenic-temperature tensile properties of single-fcc-phase HEAs, we propose non-equi-atomic Fe-rich VCrMnFeCoNi HEAs, and analyze the strengthening effects of the brittle intermetallic sigma (σ) phase. The σ phase is unintentionally obtained, but favorably shows a pronounced strengthening by its hardness and grain refinement effect due to grain-boundary pinning, which leads to high yield and tensile strengths of 0.76 GPa and 1.23 GPa, respectively, together with good ductility of 54%. This positive utilization of the σ phase is unexpected because its formation has been suppressed in typical HEAs. Our results demonstrate that the present Fe-rich VCrMnFeCoNi design and σ-phase strengthening has potential in high-strength HEA studies. |
---|---|
AbstractList | An equi-atomic single-fcc-phase CrMnFeCoNi high entropy alloy (HEA) shows much higher tensile properties at cryogenic temperature than at room temperature because of its fcc characteristics and abundant twinning at cryogenic temperature. In order to further improve the cryogenic-temperature tensile properties of single-fcc-phase HEAs, we propose non-equi-atomic Fe-rich VCrMnFeCoNi HEAs, and analyze the strengthening effects of the brittle intermetallic sigma (σ) phase. The σ phase is unintentionally obtained, but favorably shows a pronounced strengthening by its hardness and grain refinement effect due to grain-boundary pinning, which leads to high yield and tensile strengths of 0.76 GPa and 1.23 GPa, respectively, together with good ductility of 54%. This positive utilization of the σ phase is unexpected because its formation has been suppressed in typical HEAs. Our results demonstrate that the present Fe-rich VCrMnFeCoNi design and σ-phase strengthening has potential in high-strength HEA studies. |
Author | Sohn, Seok Su Lee, Sunghak Lee, Byeong-Joo Kim, Hyoung Seop Jo, Yong Hee Choi, Won-Mi |
Author_xml | – sequence: 1 givenname: Yong Hee surname: Jo fullname: Jo, Yong Hee – sequence: 2 givenname: Won-Mi surname: Choi fullname: Choi, Won-Mi – sequence: 3 givenname: Seok Su surname: Sohn fullname: Sohn, Seok Su email: bbosil7@postech.ac.kr – sequence: 4 givenname: Hyoung Seop surname: Kim fullname: Kim, Hyoung Seop – sequence: 5 givenname: Byeong-Joo orcidid: 0000-0001-6263-7996 surname: Lee fullname: Lee, Byeong-Joo – sequence: 6 givenname: Sunghak surname: Lee fullname: Lee, Sunghak |
BookMark | eNp9kEFrGzEQhUVJoU7aP9CTIGdtpNXu2oJegomTQpJCaXsVsjTrHbMrbSQ54Ht_eGXcUw45zRzeN_PeuyQXPngg5KvgleCiu9lXUwJT1VysKi4rIdoPZCFWS8kaJbsLsuCqFqzlSn4ilyntOeei4e2C_P0ZRqChp9uIOZc14W4ydB5MAoqe2ngMO_BoWYZphmjyIQJLOYLf5YHiNMfwChP4fDpSXDF4OSAzOUxo6QZYRDvQP-v45DewDs9IB9wNtOhjmI_UjGM4ps_kY2_GBF_-zyvye3P3a_3AHn_cf1_fPjLbSJFZs2wNgJKudlaIxjrluq7ujWiXwnDVlPCwlEa1Utad2krXOyO4U1Zsm84qJ6_I9fluMf1ygJT1PhyiLy91zTvVctkqWVSrs8rGkFKEXlvMJmMong2OWnB96lzv9alzfepcc6lL5wWt36BzxMnE4_vQtzMEJforQtTJIngLDiPYrF3A9_B_HEGfMQ |
CitedBy_id | crossref_primary_10_1007_s10853_022_07066_2 crossref_primary_10_1007_s10853_023_08846_0 crossref_primary_10_1016_j_jallcom_2021_162789 crossref_primary_10_3390_ma12040587 crossref_primary_10_1016_j_matlet_2024_137516 crossref_primary_10_3390_met13020282 crossref_primary_10_1016_j_wear_2019_03_002 crossref_primary_10_1016_j_ijrmhm_2024_106733 crossref_primary_10_1016_j_apmt_2021_101037 crossref_primary_10_1016_j_msea_2021_141727 crossref_primary_10_1016_j_actamat_2022_117974 crossref_primary_10_3390_ma17061265 crossref_primary_10_1016_j_msea_2024_147206 crossref_primary_10_1016_j_jallcom_2019_152000 crossref_primary_10_1016_j_vacuum_2018_05_027 crossref_primary_10_3390_met11122005 crossref_primary_10_1016_j_msea_2024_146917 crossref_primary_10_1016_j_corsci_2019_108426 crossref_primary_10_1016_j_msea_2018_11_136 crossref_primary_10_1016_j_actamat_2020_116498 crossref_primary_10_1016_j_matchemphys_2020_123675 crossref_primary_10_1016_j_matchar_2023_112951 crossref_primary_10_1088_2053_1591_ab7a64 crossref_primary_10_2139_ssrn_3949513 crossref_primary_10_1016_j_msea_2020_140661 crossref_primary_10_1016_j_msea_2023_145695 crossref_primary_10_1016_j_msea_2021_141670 crossref_primary_10_1016_j_jmrt_2022_11_072 crossref_primary_10_1016_j_jmrt_2024_05_200 crossref_primary_10_1016_j_surfcoat_2024_130908 crossref_primary_10_1002_adem_201901311 crossref_primary_10_1016_j_jallcom_2019_05_088 crossref_primary_10_1016_j_msea_2019_01_112 crossref_primary_10_2320_matertrans_MT_MA2024005 crossref_primary_10_1016_j_scriptamat_2019_06_026 crossref_primary_10_1016_j_jmrt_2023_09_143 crossref_primary_10_2139_ssrn_4132011 crossref_primary_10_1016_j_intermet_2025_108667 crossref_primary_10_1016_j_msea_2021_142039 crossref_primary_10_1016_j_jallcom_2024_177143 crossref_primary_10_1016_j_matdes_2024_113058 crossref_primary_10_3390_s25030609 crossref_primary_10_1002_advs_202100870 crossref_primary_10_1016_j_msea_2023_144579 crossref_primary_10_3390_coatings15010092 crossref_primary_10_3390_met14091065 crossref_primary_10_1007_s42864_021_00092_8 crossref_primary_10_1016_j_apsusc_2024_160367 crossref_primary_10_1016_j_jmrt_2024_01_111 crossref_primary_10_1007_s12540_020_00886_4 crossref_primary_10_1016_j_msea_2023_145828 crossref_primary_10_1016_j_jallcom_2020_153981 crossref_primary_10_1016_j_intermet_2023_107945 crossref_primary_10_1016_j_msea_2018_05_041 crossref_primary_10_1016_j_mtla_2024_102162 crossref_primary_10_1107_S2053229621002370 crossref_primary_10_1016_j_msea_2019_01_041 crossref_primary_10_1016_j_msea_2022_143111 crossref_primary_10_1016_S1003_6326_20_65489_9 |
Cites_doi | 10.1038/ncomms10602 10.1007/s12540-016-6034-5 10.1002/srin.201500133 10.1016/j.actamat.2014.08.026 10.1016/j.actamat.2015.08.076 10.1016/j.jallcom.2008.07.124 10.1016/j.scriptamat.2013.09.030 10.1038/ncomms15719 10.1080/21663831.2014.985855 10.1016/j.msea.2012.07.003 10.1038/nature17981 10.1016/0364-5916(85)90021-5 10.1016/j.intermet.2011.01.004 10.1016/j.actamat.2013.06.018 10.1016/j.actamat.2012.11.032 10.1007/s12540-017-6701-1 10.1016/j.matchar.2005.11.003 10.1155/2012/154617 10.1080/21663831.2014.912690 10.1016/j.intermet.2010.05.014 10.1016/j.pmatsci.2013.10.001 10.1002/adem.200700240 10.1016/j.jallcom.2010.06.032 10.1016/j.actamat.2010.05.049 10.1016/j.intermet.2013.10.024 10.3390/e16010494 10.1016/j.actamat.2016.04.005 10.1016/j.jallcom.2013.12.210 10.1016/j.actamat.2016.10.038 10.1016/j.msea.2015.09.010 10.1080/21663831.2013.831382 10.1557/JMR.1992.1564 10.1007/s11661-010-0344-x 10.1007/s12540-016-6304-2 10.1007/s12540-017-6583-2 10.1016/j.jallcom.2014.12.157 10.1002/adem.200300567 10.1016/j.msea.2003.10.257 10.1016/j.jallcom.2015.05.224 10.1016/j.msea.2010.02.058 10.1016/j.msea.2008.12.053 10.1016/j.matdes.2017.02.029 10.1016/j.intermet.2013.03.018 10.1080/10408436.2011.589232 10.1016/j.actamat.2016.08.072 10.1016/0364-5916(91)90006-6 10.1016/j.actamat.2016.06.063 10.1016/j.wear.2009.10.013 10.1126/science.1254581 10.1016/j.actamat.2016.07.038 10.1016/j.actamat.2003.08.023 10.1016/j.proeng.2012.03.043 10.1016/j.actamat.2015.07.030 10.1016/j.msea.2016.04.089 10.1016/S1359-6454(99)00383-3 10.1063/1.4730327 10.1016/j.actamat.2015.08.027 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright Elsevier BV May 2, 2018 |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier BV May 2, 2018 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.msea.2018.03.115 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4936 |
EndPage | 410 |
ExternalDocumentID | 10_1016_j_msea_2018_03_115 S0921509318304878 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SMS SPC SPCBC SSM SSZ T5K ~02 ~G- 29M 6TJ 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SEW SSH WUQ 7SR 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c431t-475aee93d2dc114cd9d662fa1571a094018e73a9533269b3dfda10d9c1b46c9d3 |
IEDL.DBID | .~1 |
ISSN | 0921-5093 |
IngestDate | Fri Jul 25 07:33:48 EDT 2025 Thu Apr 24 22:57:01 EDT 2025 Tue Jul 01 03:29:41 EDT 2025 Fri Feb 23 02:28:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cryogenic Sigma phase High entropy alloy Thermodynamic calculation Mechanical property |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c431t-475aee93d2dc114cd9d662fa1571a094018e73a9533269b3dfda10d9c1b46c9d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6263-7996 |
PQID | 2069503593 |
PQPubID | 2045432 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2069503593 crossref_citationtrail_10_1016_j_msea_2018_03_115 crossref_primary_10_1016_j_msea_2018_03_115 elsevier_sciencedirect_doi_10_1016_j_msea_2018_03_115 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-02 |
PublicationDateYYYYMMDD | 2018-05-02 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Kozak, Sologubenko, Steurer (bib4) 2015; 230 Cantor, Chang, Knight, Vincent (bib11) 2004; 375 Dubiel, Cieślak (bib46) 2011; 36 Cai, Cui, Jin, Liu, Zheng, Li, Wang (bib56) 2017; 23 Wu, Bei, Pharr, George (bib36) 2014; 81 Hsieh, Wu (bib49) 2012; 2012 Curtze, Kuokkala (bib58) 2010; 58 Karaman, Sehitoglu, Gall, Chumlyakov, Maier (bib60) 2000; 48 Zhang, Zuo, Tang, Gao, Dahmen, Liaw, Lu (bib9) 2014; 61 Gludovatz, Hohenwarter, Catoor, Chang, George, Robert (bib13) 2014; 345 Sundman, Jansson, Andersson (bib39) 1985; 9 Gali, George (bib35) 2013; 39 Jang, Joo, Tsai, Yeh, Kim (bib52) 2016; 22 Lucas, Wilks, Mauger, Muñoz, Senkov, Michel, Horwath, Semiatin, Stone, Abernathy, Karapetrova (bib2) 2012; 100 Tsai, Tsai, Tsai, Lee, Juan, Yeh (bib55) 2013; 1 Park, Jin, Han, Hwang, Choi, Lee (bib59) 2010; 527 Li, Pradeep, Deng, Raabe, Tasan (bib30) 2016; 534 He, Wang, Huang, Xu, Chen, Wu, Liu, Nieh, An, Lu (bib19) 2016; 102 Miracle, Miller, Senkov, Woodward, Uchic, Tiley (bib45) 2014; 16 Lee, Lee (bib47) 1991; 15 Yang, Zhang, Liaw (bib6) 2012; 36 Li, Li, Feng, Zhang, Sha, Lewandowski, Liaw, Zhang (bib18) 2017; 123 Stepanov, Shaysultanov, Salishchev, Tikhonovsky, Oleynik, Tortika, Senkov (bib54) 2015; 628 Sohn, Hong, Lee, Suh, Kim, Lee, Kim, Lee (bib61) 2015; 100 Senkov, Wilks, Miracle, Chuang, Liaw (bib15) 2010; 18 Gludovatz, Hohenwarter, Thurston, Bei, Wu, George, Ritchie (bib31) 2016; 7 Jo, Jung, Choi, Sohn, Kim, Lee, Kim, Lee (bib34) 2017; 8 Ma, Yao, Pradeep, Tasan, Springer, Raabe (bib27) 2015; 98 Wu, Bei, Otto, Pharr, George (bib3) 2014; 46 Varalakshmi, Kamaraj, Murty (bib24) 2010; 41 Chin, Lee, Kwak, Kang, Lee (bib41) 2010; 505 Raabe, Tasan, Springer, Bausch (bib33) 2015; 86 Yao, Pradeep, Tasan, Raabe (bib17) 2014; 72–73 Reed, Zhu, Sato, Crudden (bib44) 2016; 667 Oliver, Pharr (bib37) 1992; 7 de Boer, Boom, Mattens, Miedema, Niessen (bib38) 1988 Choi, Jung, Jo, Lee, Lee (bib42) 2017; 23 Zhang, Zhou, Lin, Chen, Liaw (bib26) 2008; 10 Pradeep, Tasan, Yao, Deng, Springer, Raabe (bib29) 2015; 648 Hsu, Sheu, Yeh, Chen (bib32) 2010; 268 Liu, Lu, He, Luan, Wang, Liu, Yong Liu, Chen, Liu (bib20) 2016; 116 Yeh, chen, Lin, Gan, Chin, Shun, Tsau, Chang (bib7) 2004; 6 Laplanche, Kostka, Horst, Eggeler, George (bib14) 2016; 118 Zhuang, Liu, Chen, Xue, He (bib16) 2012; 556 Otto, Dlouhý, Somsen, Bei, Eggeler, George (bib12) 2013; 61 Tsai, Yeh (bib10) 2014; 2 Xian, Zhong, Zhang, Song, Chen, Wang, Cheng, Wu (bib28) 2017; 121 Senkov, Senkova, Woodward, Miracle (bib5) 2013; 61 Wu, Parish, Bei (bib21) 2015; 647 B.J. Lee, B. Sundman, TCFE2000: The Thermo-Calc Steels Database, KTH, Stockholm, 1999. Youssef, Zaddach, Niu, Irving, Koch (bib8) 2015; 3 Otto, Dlouhý, Pradeep, Kuběnová, Raabe, Eggeler, George (bib51) 2016; 112 Salishchev, Tikhonovsky, Shaysultanov, Stepanov, Kuznetsov, Kolodiy, Tortika, Senkov (bib53) 2014; 591 Wang, Baker, Cai, Chen, Poplawsky, Guo (bib22) 2016; 120 Gao, Yeh, Liaw, Zhang (bib50) 2016 Williams, Starke (bib43) 2003; 51 Senkov, Wilks, Scott, Miracle (bib1) 2011; 19 Zhang, Fu, Zhang, Wang, Wang, Wang, Zhang, Shi (bib23) 2009; 508 Michalska, Sozanska (bib48) 2006; 56 Park, Na, Hong, Kim, Kim, Lim, Park, Kim (bib57) 2016; 22 Li, Li, Zhao, Jiang (bib25) 2009; 475 Curtze (10.1016/j.msea.2018.03.115_bib58) 2010; 58 Xian (10.1016/j.msea.2018.03.115_bib28) 2017; 121 Hsieh (10.1016/j.msea.2018.03.115_bib49) 2012; 2012 Cantor (10.1016/j.msea.2018.03.115_bib11) 2004; 375 Tsai (10.1016/j.msea.2018.03.115_bib55) 2013; 1 Kozak (10.1016/j.msea.2018.03.115_bib4) 2015; 230 Liu (10.1016/j.msea.2018.03.115_bib20) 2016; 116 Zhang (10.1016/j.msea.2018.03.115_bib23) 2009; 508 Senkov (10.1016/j.msea.2018.03.115_bib1) 2011; 19 Pradeep (10.1016/j.msea.2018.03.115_bib29) 2015; 648 Senkov (10.1016/j.msea.2018.03.115_bib15) 2010; 18 Zhuang (10.1016/j.msea.2018.03.115_bib16) 2012; 556 Miracle (10.1016/j.msea.2018.03.115_bib45) 2014; 16 Wang (10.1016/j.msea.2018.03.115_bib22) 2016; 120 Ma (10.1016/j.msea.2018.03.115_bib27) 2015; 98 10.1016/j.msea.2018.03.115_bib40 Raabe (10.1016/j.msea.2018.03.115_bib33) 2015; 86 Chin (10.1016/j.msea.2018.03.115_bib41) 2010; 505 Varalakshmi (10.1016/j.msea.2018.03.115_bib24) 2010; 41 Gludovatz (10.1016/j.msea.2018.03.115_bib13) 2014; 345 Reed (10.1016/j.msea.2018.03.115_bib44) 2016; 667 He (10.1016/j.msea.2018.03.115_bib19) 2016; 102 Salishchev (10.1016/j.msea.2018.03.115_bib53) 2014; 591 Williams (10.1016/j.msea.2018.03.115_bib43) 2003; 51 Karaman (10.1016/j.msea.2018.03.115_bib60) 2000; 48 Li (10.1016/j.msea.2018.03.115_bib25) 2009; 475 Li (10.1016/j.msea.2018.03.115_bib30) 2016; 534 Gao (10.1016/j.msea.2018.03.115_bib50) 2016 Zhang (10.1016/j.msea.2018.03.115_bib26) 2008; 10 de Boer (10.1016/j.msea.2018.03.115_bib38) 1988 Sundman (10.1016/j.msea.2018.03.115_bib39) 1985; 9 Dubiel (10.1016/j.msea.2018.03.115_bib46) 2011; 36 Tsai (10.1016/j.msea.2018.03.115_bib10) 2014; 2 Wu (10.1016/j.msea.2018.03.115_bib3) 2014; 46 Michalska (10.1016/j.msea.2018.03.115_bib48) 2006; 56 Sohn (10.1016/j.msea.2018.03.115_bib61) 2015; 100 Wu (10.1016/j.msea.2018.03.115_bib36) 2014; 81 Cai (10.1016/j.msea.2018.03.115_bib56) 2017; 23 Park (10.1016/j.msea.2018.03.115_bib57) 2016; 22 Otto (10.1016/j.msea.2018.03.115_bib51) 2016; 112 Stepanov (10.1016/j.msea.2018.03.115_bib54) 2015; 628 Lee (10.1016/j.msea.2018.03.115_bib47) 1991; 15 Yang (10.1016/j.msea.2018.03.115_bib6) 2012; 36 Hsu (10.1016/j.msea.2018.03.115_bib32) 2010; 268 Jang (10.1016/j.msea.2018.03.115_bib52) 2016; 22 Oliver (10.1016/j.msea.2018.03.115_bib37) 1992; 7 Park (10.1016/j.msea.2018.03.115_bib59) 2010; 527 Lucas (10.1016/j.msea.2018.03.115_bib2) 2012; 100 Yao (10.1016/j.msea.2018.03.115_bib17) 2014; 72–73 Yeh (10.1016/j.msea.2018.03.115_bib7) 2004; 6 Senkov (10.1016/j.msea.2018.03.115_bib5) 2013; 61 Wu (10.1016/j.msea.2018.03.115_bib21) 2015; 647 Zhang (10.1016/j.msea.2018.03.115_bib9) 2014; 61 Gludovatz (10.1016/j.msea.2018.03.115_bib31) 2016; 7 Otto (10.1016/j.msea.2018.03.115_bib12) 2013; 61 Choi (10.1016/j.msea.2018.03.115_bib42) 2017; 23 Youssef (10.1016/j.msea.2018.03.115_bib8) 2015; 3 Laplanche (10.1016/j.msea.2018.03.115_bib14) 2016; 118 Jo (10.1016/j.msea.2018.03.115_bib34) 2017; 8 Li (10.1016/j.msea.2018.03.115_bib18) 2017; 123 Gali (10.1016/j.msea.2018.03.115_bib35) 2013; 39 |
References_xml | – volume: 86 start-page: 1127 year: 2015 end-page: 1138 ident: bib33 article-title: From high-entropy alloys to high entropy steels publication-title: Steel Res. Int. – volume: 58 start-page: 5129 year: 2010 end-page: 5141 ident: bib58 article-title: Dependence of tensile deformation of TWIP steels on stacking fault energy, temperature and strain rate publication-title: Acta Mater. – volume: 118 start-page: 152 year: 2016 end-page: 163 ident: bib14 article-title: Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy publication-title: Acta Mater. – volume: 39 start-page: 74 year: 2013 end-page: 78 ident: bib35 article-title: Tensile properties of high-and medium-entropy alloys publication-title: Intermetallics – volume: 375 start-page: 213 year: 2004 end-page: 218 ident: bib11 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mater. Sci. Eng. A – volume: 505 start-page: 217 year: 2010 end-page: 223 ident: bib41 article-title: Thermodynamic calculation on the stability of (Fe, Mn)3 AlC carbide in high aluminum steels publication-title: J. Alloy. Compd. – volume: 7 start-page: 10602 year: 2016 ident: bib31 article-title: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures publication-title: Nat. Commun. – volume: 2012 start-page: 1 year: 2012 end-page: 16 ident: bib49 article-title: Overview of intermetallic sigma (σ) phase precipitaion in stainless steels publication-title: ISEN Metall. – volume: 123 start-page: 285 year: 2017 end-page: 294 ident: bib18 article-title: High-entropy Al publication-title: Acta Mater. – volume: 8 start-page: 15719 year: 2017 ident: bib34 article-title: Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy publication-title: Nat. Commun. – volume: 121 start-page: 229 year: 2017 end-page: 236 ident: bib28 article-title: A high-entropy V35Ti35Fe15Cr10Zr5 alloy with excellent high-temperature strength publication-title: Mater. Des. – volume: 648 start-page: 183 year: 2015 end-page: 192 ident: bib29 article-title: Non-equiatomic high entropy alloys: approach towards rapid alloy screening and property-oriented design publication-title: Mater. Sci. Eng. A – volume: 2 start-page: 107 year: 2014 end-page: 123 ident: bib10 article-title: High-entropy alloys: a critical review publication-title: Mater. Res. Lett. – volume: 36 start-page: 191 year: 2011 end-page: 217 ident: bib46 article-title: Sigma-phase in Fe-Cr and Fe-V alloy systems and its physical properties publication-title: Crit. Rev. Sol. Stat. Mater. Sci. – volume: 56 start-page: 355 year: 2006 end-page: 362 ident: bib48 article-title: Effect of intermetallic precipitations on the properties of duplex stainless steel publication-title: Mater. Charact. – volume: 46 start-page: 131 year: 2014 end-page: 140 ident: bib3 article-title: Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys publication-title: Intermetallics – volume: 16 start-page: 494 year: 2014 end-page: 525 ident: bib45 article-title: Exploration and development of high entropy alloys for structural applications publication-title: Entropy – volume: 3 start-page: 95 year: 2015 end-page: 99 ident: bib8 article-title: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures publication-title: Mater. Res. Lett. – volume: 647 start-page: 815 year: 2015 end-page: 822 ident: bib21 article-title: Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys publication-title: J. Alloy. Compd. – volume: 508 start-page: 214 year: 2009 end-page: 219 ident: bib23 article-title: Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys publication-title: Mater. Sci. Eng. A – volume: 1 start-page: 207 year: 2013 end-page: 212 ident: bib55 article-title: Criterion for sigma phase formation in Cr- and V-containing high entropy alloys publication-title: Mater. Res. Lett. – volume: 230 start-page: 55 year: 2015 end-page: 68 ident: bib4 article-title: Single-phase high-entropy alloys – an overview publication-title: Z. Krist. – volume: 6 start-page: 299 year: 2004 end-page: 303 ident: bib7 article-title: Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. – volume: 556 start-page: 395 year: 2012 end-page: 399 ident: bib16 article-title: Effect of elemental interaction on microstructure and mechanical properties of FeCoNiCuAl alloys publication-title: Mater. Sci. Eng. A – volume: 534 start-page: 227 year: 2016 end-page: 230 ident: bib30 article-title: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off publication-title: Nature – volume: 51 start-page: 5775 year: 2003 end-page: 5799 ident: bib43 article-title: Progress in structural materials for aerospace systems publication-title: Acta Mater. – volume: 527 start-page: 3651 year: 2010 end-page: 3661 ident: bib59 article-title: Stacking fault energy and plastic deformation of fully austenitic high manganese steels: effect of Al addition publication-title: Mater. Sci. Eng. A – volume: 628 start-page: 170 year: 2015 end-page: 185 ident: bib54 article-title: Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiV publication-title: J. Alloy. Compd. – volume: 15 start-page: 283 year: 1991 end-page: 291 ident: bib47 article-title: A thermodynamic study on the V-C and Fe-V systems publication-title: Calphad – volume: 36 start-page: 292 year: 2012 end-page: 298 ident: bib6 article-title: Microstructure and compressive properties of NbTiVTaAlx high entropy alloys publication-title: Procedia Eng. – volume: 61 start-page: 5743 year: 2013 end-page: 5755 ident: bib12 article-title: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy publication-title: Acta Mater. – volume: 667 start-page: 261 year: 2016 end-page: 278 ident: bib44 article-title: Isolation and testing of new single crystal superalloys using alloys-by-design method publication-title: Mater. Sci. Eng. A – volume: 48 start-page: 1345 year: 2000 end-page: 1359 ident: bib60 article-title: Deformation of single crystal hadfield steel by twinning and slip publication-title: Acta Mater. – volume: 100 start-page: 251907 year: 2012 ident: bib2 article-title: Absence of long-range chemical ordering in equimolar FeCoCrNi publication-title: Appl. Phys. Lett. – volume: 9 start-page: 153 year: 1985 end-page: 190 ident: bib39 article-title: The thermo-calc databank system publication-title: Calphad – year: 1988 ident: bib38 article-title: Cohesion in Metals: Transition Metal Alloys – volume: 18 start-page: 1758 year: 2010 end-page: 1765 ident: bib15 article-title: Refractory high-entropy alloys publication-title: Intermetallics – volume: 98 start-page: 288 year: 2015 end-page: 296 ident: bib27 article-title: Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys publication-title: Acta Mater. – volume: 22 start-page: 982 year: 2016 end-page: 986 ident: bib52 article-title: Compressive deformation behavior of CrMnFeCoNi high-entropy alloy publication-title: Met. Mater. Int. – volume: 23 start-page: 1012 year: 2017 end-page: 1018 ident: bib56 article-title: Microstructure and thermal stability of a Ni-Cr-Co-Ti-V-Al high-entropy alloy coating by laser surface alloying publication-title: Met. Mater. Int. – volume: 22 start-page: 551 year: 2016 end-page: 556 ident: bib57 article-title: Phase evolution, microstructure and mechanical properties of equi-atomic substituted TiZrHfNiCu and TiZrHfNiCuM (M = Co, Nb) high-entropy alloys publication-title: Met. Mater. Int. – volume: 475 start-page: 752 year: 2009 end-page: 757 ident: bib25 article-title: Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys publication-title: J. Alloy. Compd. – volume: 41 start-page: 2703 year: 2010 end-page: 2709 ident: bib24 article-title: Formation and stability of equiatomic and nonequiatomic nanocrystalline CuNiCoZnAlTi high-entropy alloys by mechanical alloying publication-title: Metall. Mater. Trans. A – volume: 268 start-page: 653 year: 2010 end-page: 659 ident: bib32 article-title: Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys publication-title: Wear – volume: 81 start-page: 428 year: 2014 end-page: 441 ident: bib36 article-title: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures publication-title: Acta Mater. – year: 2016 ident: bib50 article-title: High-Entropy Alloys: Fundamentals and Applications – volume: 23 start-page: 839 year: 2017 end-page: 847 ident: bib42 article-title: Design of new face-cantered cubic high entropy alloys by thermodynamic calculation publication-title: Met. Mater. Int. – volume: 7 start-page: 1564 year: 1992 end-page: 1583 ident: bib37 article-title: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments publication-title: J. Mater. Res. – volume: 19 start-page: 698 year: 2011 end-page: 706 ident: bib1 article-title: Mechanical properties of Nb publication-title: Intermetallics – volume: 10 start-page: 534 year: 2008 end-page: 538 ident: bib26 article-title: Solid‐solution phase formation rules for multi‐component alloys publication-title: Adv. Eng. Mater. – volume: 72–73 start-page: 5 year: 2014 end-page: 8 ident: bib17 article-title: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility publication-title: Scr. Mater. – volume: 61 start-page: 1 year: 2014 end-page: 93 ident: bib9 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater. Sci. – volume: 591 start-page: 11 year: 2014 end-page: 21 ident: bib53 article-title: Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system publication-title: J. Alloy. Compd. – volume: 61 start-page: 1545 year: 2013 end-page: 1557 ident: bib5 article-title: Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: microstructure and phase analysis publication-title: Acta Mater. – reference: B.J. Lee, B. Sundman, TCFE2000: The Thermo-Calc Steels Database, KTH, Stockholm, 1999. – volume: 116 start-page: 332 year: 2016 end-page: 342 ident: bib20 article-title: Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases publication-title: Acta Mater. – volume: 345 start-page: 1153 year: 2014 end-page: 1158 ident: bib13 article-title: A fracture-resistant high-entropy alloy for cryogenic applications publication-title: Science – volume: 102 start-page: 187 year: 2016 end-page: 196 ident: bib19 article-title: A precipitation-hardened high-entropy alloy with outstanding tensile properties publication-title: Acta Mater. – volume: 100 start-page: 39 year: 2015 end-page: 52 ident: bib61 article-title: Effects of Mn and Al contents on cryogenic-temperature tensile and Charpy impact properties in four austenitic high-Mn steels publication-title: Acta Mater. – volume: 112 start-page: 40 year: 2016 end-page: 52 ident: bib51 article-title: Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures publication-title: Acta Mater. – volume: 120 start-page: 228 year: 2016 end-page: 239 ident: bib22 article-title: The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys publication-title: Acta Mater. – volume: 7 start-page: 10602 year: 2016 ident: 10.1016/j.msea.2018.03.115_bib31 article-title: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures publication-title: Nat. Commun. doi: 10.1038/ncomms10602 – volume: 22 start-page: 551 year: 2016 ident: 10.1016/j.msea.2018.03.115_bib57 article-title: Phase evolution, microstructure and mechanical properties of equi-atomic substituted TiZrHfNiCu and TiZrHfNiCuM (M = Co, Nb) high-entropy alloys publication-title: Met. Mater. Int. doi: 10.1007/s12540-016-6034-5 – volume: 86 start-page: 1127 year: 2015 ident: 10.1016/j.msea.2018.03.115_bib33 article-title: From high-entropy alloys to high entropy steels publication-title: Steel Res. Int. doi: 10.1002/srin.201500133 – volume: 81 start-page: 428 year: 2014 ident: 10.1016/j.msea.2018.03.115_bib36 article-title: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.08.026 – volume: 102 start-page: 187 year: 2016 ident: 10.1016/j.msea.2018.03.115_bib19 article-title: A precipitation-hardened high-entropy alloy with outstanding tensile properties publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.08.076 – volume: 475 start-page: 752 year: 2009 ident: 10.1016/j.msea.2018.03.115_bib25 article-title: Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2008.07.124 – volume: 72–73 start-page: 5 year: 2014 ident: 10.1016/j.msea.2018.03.115_bib17 article-title: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2013.09.030 – volume: 8 start-page: 15719 year: 2017 ident: 10.1016/j.msea.2018.03.115_bib34 article-title: Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy publication-title: Nat. Commun. doi: 10.1038/ncomms15719 – volume: 3 start-page: 95 year: 2015 ident: 10.1016/j.msea.2018.03.115_bib8 article-title: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2014.985855 – volume: 556 start-page: 395 year: 2012 ident: 10.1016/j.msea.2018.03.115_bib16 article-title: Effect of elemental interaction on microstructure and mechanical properties of FeCoNiCuAl alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2012.07.003 – volume: 534 start-page: 227 year: 2016 ident: 10.1016/j.msea.2018.03.115_bib30 article-title: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off publication-title: Nature doi: 10.1038/nature17981 – volume: 9 start-page: 153 year: 1985 ident: 10.1016/j.msea.2018.03.115_bib39 article-title: The thermo-calc databank system publication-title: Calphad doi: 10.1016/0364-5916(85)90021-5 – volume: 19 start-page: 698 year: 2011 ident: 10.1016/j.msea.2018.03.115_bib1 article-title: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2011.01.004 – volume: 61 start-page: 5743 year: 2013 ident: 10.1016/j.msea.2018.03.115_bib12 article-title: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.06.018 – volume: 61 start-page: 1545 year: 2013 ident: 10.1016/j.msea.2018.03.115_bib5 article-title: Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: microstructure and phase analysis publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.11.032 – year: 1988 ident: 10.1016/j.msea.2018.03.115_bib38 – volume: 230 start-page: 55 year: 2015 ident: 10.1016/j.msea.2018.03.115_bib4 article-title: Single-phase high-entropy alloys – an overview publication-title: Z. Krist. – volume: 23 start-page: 839 year: 2017 ident: 10.1016/j.msea.2018.03.115_bib42 article-title: Design of new face-cantered cubic high entropy alloys by thermodynamic calculation publication-title: Met. Mater. Int. doi: 10.1007/s12540-017-6701-1 – volume: 56 start-page: 355 year: 2006 ident: 10.1016/j.msea.2018.03.115_bib48 article-title: Effect of intermetallic precipitations on the properties of duplex stainless steel publication-title: Mater. Charact. doi: 10.1016/j.matchar.2005.11.003 – volume: 2012 start-page: 1 year: 2012 ident: 10.1016/j.msea.2018.03.115_bib49 article-title: Overview of intermetallic sigma (σ) phase precipitaion in stainless steels publication-title: ISEN Metall. doi: 10.1155/2012/154617 – volume: 2 start-page: 107 year: 2014 ident: 10.1016/j.msea.2018.03.115_bib10 article-title: High-entropy alloys: a critical review publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2014.912690 – volume: 18 start-page: 1758 year: 2010 ident: 10.1016/j.msea.2018.03.115_bib15 article-title: Refractory high-entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2010.05.014 – volume: 61 start-page: 1 year: 2014 ident: 10.1016/j.msea.2018.03.115_bib9 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2013.10.001 – volume: 10 start-page: 534 year: 2008 ident: 10.1016/j.msea.2018.03.115_bib26 article-title: Solid‐solution phase formation rules for multi‐component alloys publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200700240 – volume: 505 start-page: 217 year: 2010 ident: 10.1016/j.msea.2018.03.115_bib41 article-title: Thermodynamic calculation on the stability of (Fe, Mn)3 AlC carbide in high aluminum steels publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2010.06.032 – volume: 58 start-page: 5129 year: 2010 ident: 10.1016/j.msea.2018.03.115_bib58 article-title: Dependence of tensile deformation of TWIP steels on stacking fault energy, temperature and strain rate publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.05.049 – volume: 46 start-page: 131 year: 2014 ident: 10.1016/j.msea.2018.03.115_bib3 article-title: Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2013.10.024 – volume: 16 start-page: 494 year: 2014 ident: 10.1016/j.msea.2018.03.115_bib45 article-title: Exploration and development of high entropy alloys for structural applications publication-title: Entropy doi: 10.3390/e16010494 – volume: 112 start-page: 40 year: 2016 ident: 10.1016/j.msea.2018.03.115_bib51 article-title: Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.04.005 – volume: 591 start-page: 11 year: 2014 ident: 10.1016/j.msea.2018.03.115_bib53 article-title: Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2013.12.210 – volume: 123 start-page: 285 year: 2017 ident: 10.1016/j.msea.2018.03.115_bib18 article-title: High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.10.038 – volume: 648 start-page: 183 year: 2015 ident: 10.1016/j.msea.2018.03.115_bib29 article-title: Non-equiatomic high entropy alloys: approach towards rapid alloy screening and property-oriented design publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.09.010 – volume: 1 start-page: 207 year: 2013 ident: 10.1016/j.msea.2018.03.115_bib55 article-title: Criterion for sigma phase formation in Cr- and V-containing high entropy alloys publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2013.831382 – volume: 7 start-page: 1564 year: 1992 ident: 10.1016/j.msea.2018.03.115_bib37 article-title: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments publication-title: J. Mater. Res. doi: 10.1557/JMR.1992.1564 – volume: 41 start-page: 2703 year: 2010 ident: 10.1016/j.msea.2018.03.115_bib24 article-title: Formation and stability of equiatomic and nonequiatomic nanocrystalline CuNiCoZnAlTi high-entropy alloys by mechanical alloying publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-010-0344-x – volume: 22 start-page: 982 year: 2016 ident: 10.1016/j.msea.2018.03.115_bib52 article-title: Compressive deformation behavior of CrMnFeCoNi high-entropy alloy publication-title: Met. Mater. Int. doi: 10.1007/s12540-016-6304-2 – volume: 23 start-page: 1012 year: 2017 ident: 10.1016/j.msea.2018.03.115_bib56 article-title: Microstructure and thermal stability of a Ni-Cr-Co-Ti-V-Al high-entropy alloy coating by laser surface alloying publication-title: Met. Mater. Int. doi: 10.1007/s12540-017-6583-2 – volume: 628 start-page: 170 year: 2015 ident: 10.1016/j.msea.2018.03.115_bib54 article-title: Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2014.12.157 – year: 2016 ident: 10.1016/j.msea.2018.03.115_bib50 – volume: 6 start-page: 299 year: 2004 ident: 10.1016/j.msea.2018.03.115_bib7 article-title: Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200300567 – volume: 375 start-page: 213 year: 2004 ident: 10.1016/j.msea.2018.03.115_bib11 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2003.10.257 – volume: 647 start-page: 815 year: 2015 ident: 10.1016/j.msea.2018.03.115_bib21 article-title: Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2015.05.224 – volume: 527 start-page: 3651 year: 2010 ident: 10.1016/j.msea.2018.03.115_bib59 article-title: Stacking fault energy and plastic deformation of fully austenitic high manganese steels: effect of Al addition publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2010.02.058 – volume: 508 start-page: 214 year: 2009 ident: 10.1016/j.msea.2018.03.115_bib23 article-title: Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2008.12.053 – volume: 121 start-page: 229 year: 2017 ident: 10.1016/j.msea.2018.03.115_bib28 article-title: A high-entropy V35Ti35Fe15Cr10Zr5 alloy with excellent high-temperature strength publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.02.029 – volume: 39 start-page: 74 year: 2013 ident: 10.1016/j.msea.2018.03.115_bib35 article-title: Tensile properties of high-and medium-entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2013.03.018 – volume: 36 start-page: 191 year: 2011 ident: 10.1016/j.msea.2018.03.115_bib46 article-title: Sigma-phase in Fe-Cr and Fe-V alloy systems and its physical properties publication-title: Crit. Rev. Sol. Stat. Mater. Sci. doi: 10.1080/10408436.2011.589232 – volume: 120 start-page: 228 year: 2016 ident: 10.1016/j.msea.2018.03.115_bib22 article-title: The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.08.072 – volume: 15 start-page: 283 year: 1991 ident: 10.1016/j.msea.2018.03.115_bib47 article-title: A thermodynamic study on the V-C and Fe-V systems publication-title: Calphad doi: 10.1016/0364-5916(91)90006-6 – ident: 10.1016/j.msea.2018.03.115_bib40 – volume: 116 start-page: 332 year: 2016 ident: 10.1016/j.msea.2018.03.115_bib20 article-title: Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.06.063 – volume: 268 start-page: 653 year: 2010 ident: 10.1016/j.msea.2018.03.115_bib32 article-title: Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys publication-title: Wear doi: 10.1016/j.wear.2009.10.013 – volume: 345 start-page: 1153 year: 2014 ident: 10.1016/j.msea.2018.03.115_bib13 article-title: A fracture-resistant high-entropy alloy for cryogenic applications publication-title: Science doi: 10.1126/science.1254581 – volume: 118 start-page: 152 year: 2016 ident: 10.1016/j.msea.2018.03.115_bib14 article-title: Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.07.038 – volume: 51 start-page: 5775 year: 2003 ident: 10.1016/j.msea.2018.03.115_bib43 article-title: Progress in structural materials for aerospace systems publication-title: Acta Mater. doi: 10.1016/j.actamat.2003.08.023 – volume: 36 start-page: 292 year: 2012 ident: 10.1016/j.msea.2018.03.115_bib6 article-title: Microstructure and compressive properties of NbTiVTaAlx high entropy alloys publication-title: Procedia Eng. doi: 10.1016/j.proeng.2012.03.043 – volume: 98 start-page: 288 year: 2015 ident: 10.1016/j.msea.2018.03.115_bib27 article-title: Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.07.030 – volume: 667 start-page: 261 year: 2016 ident: 10.1016/j.msea.2018.03.115_bib44 article-title: Isolation and testing of new single crystal superalloys using alloys-by-design method publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.04.089 – volume: 48 start-page: 1345 year: 2000 ident: 10.1016/j.msea.2018.03.115_bib60 article-title: Deformation of single crystal hadfield steel by twinning and slip publication-title: Acta Mater. doi: 10.1016/S1359-6454(99)00383-3 – volume: 100 start-page: 251907 year: 2012 ident: 10.1016/j.msea.2018.03.115_bib2 article-title: Absence of long-range chemical ordering in equimolar FeCoCrNi publication-title: Appl. Phys. Lett. doi: 10.1063/1.4730327 – volume: 100 start-page: 39 year: 2015 ident: 10.1016/j.msea.2018.03.115_bib61 article-title: Effects of Mn and Al contents on cryogenic-temperature tensile and Charpy impact properties in four austenitic high-Mn steels publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.08.027 |
SSID | ssj0001405 |
Score | 2.4973447 |
Snippet | An equi-atomic single-fcc-phase CrMnFeCoNi high entropy alloy (HEA) shows much higher tensile properties at cryogenic temperature than at room temperature... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 403 |
SubjectTerms | Alloys Cryogenic Cryogenic temperature Ductility Grain boundaries Grain refinement High entropy alloy High entropy alloys Iron Mechanical property Microstructure Sigma phase Tensile properties Tensile strength Thermodynamic calculation Twinning |
Title | Role of brittle sigma phase in cryogenic-temperature-strength improvement of non-equi-atomic Fe-rich VCrMnFeCoNi high entropy alloys |
URI | https://dx.doi.org/10.1016/j.msea.2018.03.115 https://www.proquest.com/docview/2069503593 |
Volume | 724 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcquLDDND4m2KDygRsyrWsnqY-oWlVA9ABj4hb5K9SIJl1bDr1w4g_fe6nDxjRx2DGJbUV-L-_D-b3fI-RYau5cgc1dnPVMur5mSoNAvOhqVUAI7XwNkB2no1t5cZfctcigqYVBWGW0_WubXlvreKcTd7MzC6Fz01XgriAhB6UENcyw4FfKDLX89Pk3zAMSiBrGCIMZjo6FM2uM1xTUCeFdfSQ65dga99_O6S8zXfue4SfyMQaN9Gz9Xtuk5csd8uEPKsFd8nJdPXpaFdRAtg_yp4twP9V0NgEvRUNJ7XxVga4Ey5CMKjIpM6wUKe-XExrqs4X6qBAXKauS-Z9PgUFKPg2WDj0DezmhPwbzq3LoB9U4UCQ6png2XM1WFH_frxZ75Hb47ftgxGKHBWYhcFgymSXaeyVcz1lIjKxTLk17heZJxjUy6_G-z4RGCGovVUa4wmnedcpyI1OrnPhMNuCN_D6hBkI9mXJjdAEZneF9A47PygJsghDWmgPCm63NbaQfxy4Yj3mDM3vIURw5iiPvCkhNkgNy8jpntibfeHd00kgsf6NCOXiHd-cdNuLN4we8gOepSpDeUHz5z2W_ki28qsGRvUOysZw_-SMIYJamXWtom2yenV-Oxr8AI47x9A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELZoeqA9VJSCShtaH3pDJnG8u1kfq4gobSGH8hA3y68lRmQ3TcIhl576wzuz8QJFiEOv64csz3ge3s_fEPIl0dy5Aou7OOtZ4nLNpAaBeNHVsoAQ2vkaIDvORufJ98v0coMMmrcwCKuMtn9t02trHb904m52ZiF0TrsS3BUk5KCUoIb9_AV5mcDxxTIGh7_vcR6QQdQ4RujNsHt8ObMGeU1BnxDflSPTKcfauE97p0d2unY-wy3yJkaN9Ot6YW_Jhi-3yesHXILvyJ-f1Y2nVUENpPugAHQRrqaazibgpmgoqZ2vKlCWYBmyUUUqZYZPRcqr5YSG-nKhvivEScqqZP7XbWCQk0-DpUPPwGBO6MVgflIO_aAaB4pMxxQvh6vZiuL_-9Vih5wPj84GIxZLLDALkcOSJf1Uey-F6zkLmZF10mVZr9A87XON1Ho8932hEYPay6QRrnCad5203CSZlU7skhasyL8n1ECsl2TcGF1ASmd4bsDz2aQAoyCEtWaP8GZrlY3841gG40Y1QLNrheJQKA7VFZCbpHvk4G7MbM2-8WzvtJGY-keHFLiHZ8e1G_GqeIIX0J7JFPkNxYf_nPYz2RydnRyr42_jHx_JK2ypkZK9Nmkt57d-H6KZpflUa-tfrQnzgg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+brittle+sigma+phase+in+cryogenic-temperature-strength+improvement+of+non-equi-atomic+Fe-rich+VCrMnFeCoNi+high+entropy+alloys&rft.jtitle=Materials+science+%26+engineering.+A%2C+Structural+materials+%3A+properties%2C+microstructure+and+processing&rft.au=Jo%2C+Yong+Hee&rft.au=Choi%2C+Won-Mi&rft.au=Sohn%2C+Seok+Su&rft.au=Kim%2C+Hyoung+Seop&rft.date=2018-05-02&rft.pub=Elsevier+B.V&rft.issn=0921-5093&rft.eissn=1873-4936&rft.volume=724&rft.spage=403&rft.epage=410&rft_id=info:doi/10.1016%2Fj.msea.2018.03.115&rft.externalDocID=S0921509318304878 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5093&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5093&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5093&client=summon |