Role of brittle sigma phase in cryogenic-temperature-strength improvement of non-equi-atomic Fe-rich VCrMnFeCoNi high entropy alloys

An equi-atomic single-fcc-phase CrMnFeCoNi high entropy alloy (HEA) shows much higher tensile properties at cryogenic temperature than at room temperature because of its fcc characteristics and abundant twinning at cryogenic temperature. In order to further improve the cryogenic-temperature tensile...

Full description

Saved in:
Bibliographic Details
Published inMaterials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 724; pp. 403 - 410
Main Authors Jo, Yong Hee, Choi, Won-Mi, Sohn, Seok Su, Kim, Hyoung Seop, Lee, Byeong-Joo, Lee, Sunghak
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 02.05.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An equi-atomic single-fcc-phase CrMnFeCoNi high entropy alloy (HEA) shows much higher tensile properties at cryogenic temperature than at room temperature because of its fcc characteristics and abundant twinning at cryogenic temperature. In order to further improve the cryogenic-temperature tensile properties of single-fcc-phase HEAs, we propose non-equi-atomic Fe-rich VCrMnFeCoNi HEAs, and analyze the strengthening effects of the brittle intermetallic sigma (σ) phase. The σ phase is unintentionally obtained, but favorably shows a pronounced strengthening by its hardness and grain refinement effect due to grain-boundary pinning, which leads to high yield and tensile strengths of 0.76 GPa and 1.23 GPa, respectively, together with good ductility of 54%. This positive utilization of the σ phase is unexpected because its formation has been suppressed in typical HEAs. Our results demonstrate that the present Fe-rich VCrMnFeCoNi design and σ-phase strengthening has potential in high-strength HEA studies.
AbstractList An equi-atomic single-fcc-phase CrMnFeCoNi high entropy alloy (HEA) shows much higher tensile properties at cryogenic temperature than at room temperature because of its fcc characteristics and abundant twinning at cryogenic temperature. In order to further improve the cryogenic-temperature tensile properties of single-fcc-phase HEAs, we propose non-equi-atomic Fe-rich VCrMnFeCoNi HEAs, and analyze the strengthening effects of the brittle intermetallic sigma (σ) phase. The σ phase is unintentionally obtained, but favorably shows a pronounced strengthening by its hardness and grain refinement effect due to grain-boundary pinning, which leads to high yield and tensile strengths of 0.76 GPa and 1.23 GPa, respectively, together with good ductility of 54%. This positive utilization of the σ phase is unexpected because its formation has been suppressed in typical HEAs. Our results demonstrate that the present Fe-rich VCrMnFeCoNi design and σ-phase strengthening has potential in high-strength HEA studies.
Author Sohn, Seok Su
Lee, Sunghak
Lee, Byeong-Joo
Kim, Hyoung Seop
Jo, Yong Hee
Choi, Won-Mi
Author_xml – sequence: 1
  givenname: Yong Hee
  surname: Jo
  fullname: Jo, Yong Hee
– sequence: 2
  givenname: Won-Mi
  surname: Choi
  fullname: Choi, Won-Mi
– sequence: 3
  givenname: Seok Su
  surname: Sohn
  fullname: Sohn, Seok Su
  email: bbosil7@postech.ac.kr
– sequence: 4
  givenname: Hyoung Seop
  surname: Kim
  fullname: Kim, Hyoung Seop
– sequence: 5
  givenname: Byeong-Joo
  orcidid: 0000-0001-6263-7996
  surname: Lee
  fullname: Lee, Byeong-Joo
– sequence: 6
  givenname: Sunghak
  surname: Lee
  fullname: Lee, Sunghak
BookMark eNp9kEFrGzEQhUVJoU7aP9CTIGdtpNXu2oJegomTQpJCaXsVsjTrHbMrbSQ54Ht_eGXcUw45zRzeN_PeuyQXPngg5KvgleCiu9lXUwJT1VysKi4rIdoPZCFWS8kaJbsLsuCqFqzlSn4ilyntOeei4e2C_P0ZRqChp9uIOZc14W4ydB5MAoqe2ngMO_BoWYZphmjyIQJLOYLf5YHiNMfwChP4fDpSXDF4OSAzOUxo6QZYRDvQP-v45DewDs9IB9wNtOhjmI_UjGM4ps_kY2_GBF_-zyvye3P3a_3AHn_cf1_fPjLbSJFZs2wNgJKudlaIxjrluq7ujWiXwnDVlPCwlEa1Utad2krXOyO4U1Zsm84qJ6_I9fluMf1ygJT1PhyiLy91zTvVctkqWVSrs8rGkFKEXlvMJmMong2OWnB96lzv9alzfepcc6lL5wWt36BzxMnE4_vQtzMEJforQtTJIngLDiPYrF3A9_B_HEGfMQ
CitedBy_id crossref_primary_10_1007_s10853_022_07066_2
crossref_primary_10_1007_s10853_023_08846_0
crossref_primary_10_1016_j_jallcom_2021_162789
crossref_primary_10_3390_ma12040587
crossref_primary_10_1016_j_matlet_2024_137516
crossref_primary_10_3390_met13020282
crossref_primary_10_1016_j_wear_2019_03_002
crossref_primary_10_1016_j_ijrmhm_2024_106733
crossref_primary_10_1016_j_apmt_2021_101037
crossref_primary_10_1016_j_msea_2021_141727
crossref_primary_10_1016_j_actamat_2022_117974
crossref_primary_10_3390_ma17061265
crossref_primary_10_1016_j_msea_2024_147206
crossref_primary_10_1016_j_jallcom_2019_152000
crossref_primary_10_1016_j_vacuum_2018_05_027
crossref_primary_10_3390_met11122005
crossref_primary_10_1016_j_msea_2024_146917
crossref_primary_10_1016_j_corsci_2019_108426
crossref_primary_10_1016_j_msea_2018_11_136
crossref_primary_10_1016_j_actamat_2020_116498
crossref_primary_10_1016_j_matchemphys_2020_123675
crossref_primary_10_1016_j_matchar_2023_112951
crossref_primary_10_1088_2053_1591_ab7a64
crossref_primary_10_2139_ssrn_3949513
crossref_primary_10_1016_j_msea_2020_140661
crossref_primary_10_1016_j_msea_2023_145695
crossref_primary_10_1016_j_msea_2021_141670
crossref_primary_10_1016_j_jmrt_2022_11_072
crossref_primary_10_1016_j_jmrt_2024_05_200
crossref_primary_10_1016_j_surfcoat_2024_130908
crossref_primary_10_1002_adem_201901311
crossref_primary_10_1016_j_jallcom_2019_05_088
crossref_primary_10_1016_j_msea_2019_01_112
crossref_primary_10_2320_matertrans_MT_MA2024005
crossref_primary_10_1016_j_scriptamat_2019_06_026
crossref_primary_10_1016_j_jmrt_2023_09_143
crossref_primary_10_2139_ssrn_4132011
crossref_primary_10_1016_j_intermet_2025_108667
crossref_primary_10_1016_j_msea_2021_142039
crossref_primary_10_1016_j_jallcom_2024_177143
crossref_primary_10_1016_j_matdes_2024_113058
crossref_primary_10_3390_s25030609
crossref_primary_10_1002_advs_202100870
crossref_primary_10_1016_j_msea_2023_144579
crossref_primary_10_3390_coatings15010092
crossref_primary_10_3390_met14091065
crossref_primary_10_1007_s42864_021_00092_8
crossref_primary_10_1016_j_apsusc_2024_160367
crossref_primary_10_1016_j_jmrt_2024_01_111
crossref_primary_10_1007_s12540_020_00886_4
crossref_primary_10_1016_j_msea_2023_145828
crossref_primary_10_1016_j_jallcom_2020_153981
crossref_primary_10_1016_j_intermet_2023_107945
crossref_primary_10_1016_j_msea_2018_05_041
crossref_primary_10_1016_j_mtla_2024_102162
crossref_primary_10_1107_S2053229621002370
crossref_primary_10_1016_j_msea_2019_01_041
crossref_primary_10_1016_j_msea_2022_143111
crossref_primary_10_1016_S1003_6326_20_65489_9
Cites_doi 10.1038/ncomms10602
10.1007/s12540-016-6034-5
10.1002/srin.201500133
10.1016/j.actamat.2014.08.026
10.1016/j.actamat.2015.08.076
10.1016/j.jallcom.2008.07.124
10.1016/j.scriptamat.2013.09.030
10.1038/ncomms15719
10.1080/21663831.2014.985855
10.1016/j.msea.2012.07.003
10.1038/nature17981
10.1016/0364-5916(85)90021-5
10.1016/j.intermet.2011.01.004
10.1016/j.actamat.2013.06.018
10.1016/j.actamat.2012.11.032
10.1007/s12540-017-6701-1
10.1016/j.matchar.2005.11.003
10.1155/2012/154617
10.1080/21663831.2014.912690
10.1016/j.intermet.2010.05.014
10.1016/j.pmatsci.2013.10.001
10.1002/adem.200700240
10.1016/j.jallcom.2010.06.032
10.1016/j.actamat.2010.05.049
10.1016/j.intermet.2013.10.024
10.3390/e16010494
10.1016/j.actamat.2016.04.005
10.1016/j.jallcom.2013.12.210
10.1016/j.actamat.2016.10.038
10.1016/j.msea.2015.09.010
10.1080/21663831.2013.831382
10.1557/JMR.1992.1564
10.1007/s11661-010-0344-x
10.1007/s12540-016-6304-2
10.1007/s12540-017-6583-2
10.1016/j.jallcom.2014.12.157
10.1002/adem.200300567
10.1016/j.msea.2003.10.257
10.1016/j.jallcom.2015.05.224
10.1016/j.msea.2010.02.058
10.1016/j.msea.2008.12.053
10.1016/j.matdes.2017.02.029
10.1016/j.intermet.2013.03.018
10.1080/10408436.2011.589232
10.1016/j.actamat.2016.08.072
10.1016/0364-5916(91)90006-6
10.1016/j.actamat.2016.06.063
10.1016/j.wear.2009.10.013
10.1126/science.1254581
10.1016/j.actamat.2016.07.038
10.1016/j.actamat.2003.08.023
10.1016/j.proeng.2012.03.043
10.1016/j.actamat.2015.07.030
10.1016/j.msea.2016.04.089
10.1016/S1359-6454(99)00383-3
10.1063/1.4730327
10.1016/j.actamat.2015.08.027
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV May 2, 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV May 2, 2018
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.msea.2018.03.115
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4936
EndPage 410
ExternalDocumentID 10_1016_j_msea_2018_03_115
S0921509318304878
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SSM
SSZ
T5K
~02
~G-
29M
6TJ
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SSH
WUQ
7SR
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c431t-475aee93d2dc114cd9d662fa1571a094018e73a9533269b3dfda10d9c1b46c9d3
IEDL.DBID .~1
ISSN 0921-5093
IngestDate Fri Jul 25 07:33:48 EDT 2025
Thu Apr 24 22:57:01 EDT 2025
Tue Jul 01 03:29:41 EDT 2025
Fri Feb 23 02:28:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cryogenic
Sigma phase
High entropy alloy
Thermodynamic calculation
Mechanical property
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-475aee93d2dc114cd9d662fa1571a094018e73a9533269b3dfda10d9c1b46c9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6263-7996
PQID 2069503593
PQPubID 2045432
PageCount 8
ParticipantIDs proquest_journals_2069503593
crossref_citationtrail_10_1016_j_msea_2018_03_115
crossref_primary_10_1016_j_msea_2018_03_115
elsevier_sciencedirect_doi_10_1016_j_msea_2018_03_115
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-02
PublicationDateYYYYMMDD 2018-05-02
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-02
  day: 02
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Materials science & engineering. A, Structural materials : properties, microstructure and processing
PublicationYear 2018
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Kozak, Sologubenko, Steurer (bib4) 2015; 230
Cantor, Chang, Knight, Vincent (bib11) 2004; 375
Dubiel, Cieślak (bib46) 2011; 36
Cai, Cui, Jin, Liu, Zheng, Li, Wang (bib56) 2017; 23
Wu, Bei, Pharr, George (bib36) 2014; 81
Hsieh, Wu (bib49) 2012; 2012
Curtze, Kuokkala (bib58) 2010; 58
Karaman, Sehitoglu, Gall, Chumlyakov, Maier (bib60) 2000; 48
Zhang, Zuo, Tang, Gao, Dahmen, Liaw, Lu (bib9) 2014; 61
Gludovatz, Hohenwarter, Catoor, Chang, George, Robert (bib13) 2014; 345
Sundman, Jansson, Andersson (bib39) 1985; 9
Gali, George (bib35) 2013; 39
Jang, Joo, Tsai, Yeh, Kim (bib52) 2016; 22
Lucas, Wilks, Mauger, Muñoz, Senkov, Michel, Horwath, Semiatin, Stone, Abernathy, Karapetrova (bib2) 2012; 100
Tsai, Tsai, Tsai, Lee, Juan, Yeh (bib55) 2013; 1
Park, Jin, Han, Hwang, Choi, Lee (bib59) 2010; 527
Li, Pradeep, Deng, Raabe, Tasan (bib30) 2016; 534
He, Wang, Huang, Xu, Chen, Wu, Liu, Nieh, An, Lu (bib19) 2016; 102
Miracle, Miller, Senkov, Woodward, Uchic, Tiley (bib45) 2014; 16
Lee, Lee (bib47) 1991; 15
Yang, Zhang, Liaw (bib6) 2012; 36
Li, Li, Feng, Zhang, Sha, Lewandowski, Liaw, Zhang (bib18) 2017; 123
Stepanov, Shaysultanov, Salishchev, Tikhonovsky, Oleynik, Tortika, Senkov (bib54) 2015; 628
Sohn, Hong, Lee, Suh, Kim, Lee, Kim, Lee (bib61) 2015; 100
Senkov, Wilks, Miracle, Chuang, Liaw (bib15) 2010; 18
Gludovatz, Hohenwarter, Thurston, Bei, Wu, George, Ritchie (bib31) 2016; 7
Jo, Jung, Choi, Sohn, Kim, Lee, Kim, Lee (bib34) 2017; 8
Ma, Yao, Pradeep, Tasan, Springer, Raabe (bib27) 2015; 98
Wu, Bei, Otto, Pharr, George (bib3) 2014; 46
Varalakshmi, Kamaraj, Murty (bib24) 2010; 41
Chin, Lee, Kwak, Kang, Lee (bib41) 2010; 505
Raabe, Tasan, Springer, Bausch (bib33) 2015; 86
Yao, Pradeep, Tasan, Raabe (bib17) 2014; 72–73
Reed, Zhu, Sato, Crudden (bib44) 2016; 667
Oliver, Pharr (bib37) 1992; 7
de Boer, Boom, Mattens, Miedema, Niessen (bib38) 1988
Choi, Jung, Jo, Lee, Lee (bib42) 2017; 23
Zhang, Zhou, Lin, Chen, Liaw (bib26) 2008; 10
Pradeep, Tasan, Yao, Deng, Springer, Raabe (bib29) 2015; 648
Hsu, Sheu, Yeh, Chen (bib32) 2010; 268
Liu, Lu, He, Luan, Wang, Liu, Yong Liu, Chen, Liu (bib20) 2016; 116
Yeh, chen, Lin, Gan, Chin, Shun, Tsau, Chang (bib7) 2004; 6
Laplanche, Kostka, Horst, Eggeler, George (bib14) 2016; 118
Zhuang, Liu, Chen, Xue, He (bib16) 2012; 556
Otto, Dlouhý, Somsen, Bei, Eggeler, George (bib12) 2013; 61
Tsai, Yeh (bib10) 2014; 2
Xian, Zhong, Zhang, Song, Chen, Wang, Cheng, Wu (bib28) 2017; 121
Senkov, Senkova, Woodward, Miracle (bib5) 2013; 61
Wu, Parish, Bei (bib21) 2015; 647
B.J. Lee, B. Sundman, TCFE2000: The Thermo-Calc Steels Database, KTH, Stockholm, 1999.
Youssef, Zaddach, Niu, Irving, Koch (bib8) 2015; 3
Otto, Dlouhý, Pradeep, Kuběnová, Raabe, Eggeler, George (bib51) 2016; 112
Salishchev, Tikhonovsky, Shaysultanov, Stepanov, Kuznetsov, Kolodiy, Tortika, Senkov (bib53) 2014; 591
Wang, Baker, Cai, Chen, Poplawsky, Guo (bib22) 2016; 120
Gao, Yeh, Liaw, Zhang (bib50) 2016
Williams, Starke (bib43) 2003; 51
Senkov, Wilks, Scott, Miracle (bib1) 2011; 19
Zhang, Fu, Zhang, Wang, Wang, Wang, Zhang, Shi (bib23) 2009; 508
Michalska, Sozanska (bib48) 2006; 56
Park, Na, Hong, Kim, Kim, Lim, Park, Kim (bib57) 2016; 22
Li, Li, Zhao, Jiang (bib25) 2009; 475
Curtze (10.1016/j.msea.2018.03.115_bib58) 2010; 58
Xian (10.1016/j.msea.2018.03.115_bib28) 2017; 121
Hsieh (10.1016/j.msea.2018.03.115_bib49) 2012; 2012
Cantor (10.1016/j.msea.2018.03.115_bib11) 2004; 375
Tsai (10.1016/j.msea.2018.03.115_bib55) 2013; 1
Kozak (10.1016/j.msea.2018.03.115_bib4) 2015; 230
Liu (10.1016/j.msea.2018.03.115_bib20) 2016; 116
Zhang (10.1016/j.msea.2018.03.115_bib23) 2009; 508
Senkov (10.1016/j.msea.2018.03.115_bib1) 2011; 19
Pradeep (10.1016/j.msea.2018.03.115_bib29) 2015; 648
Senkov (10.1016/j.msea.2018.03.115_bib15) 2010; 18
Zhuang (10.1016/j.msea.2018.03.115_bib16) 2012; 556
Miracle (10.1016/j.msea.2018.03.115_bib45) 2014; 16
Wang (10.1016/j.msea.2018.03.115_bib22) 2016; 120
Ma (10.1016/j.msea.2018.03.115_bib27) 2015; 98
10.1016/j.msea.2018.03.115_bib40
Raabe (10.1016/j.msea.2018.03.115_bib33) 2015; 86
Chin (10.1016/j.msea.2018.03.115_bib41) 2010; 505
Varalakshmi (10.1016/j.msea.2018.03.115_bib24) 2010; 41
Gludovatz (10.1016/j.msea.2018.03.115_bib13) 2014; 345
Reed (10.1016/j.msea.2018.03.115_bib44) 2016; 667
He (10.1016/j.msea.2018.03.115_bib19) 2016; 102
Salishchev (10.1016/j.msea.2018.03.115_bib53) 2014; 591
Williams (10.1016/j.msea.2018.03.115_bib43) 2003; 51
Karaman (10.1016/j.msea.2018.03.115_bib60) 2000; 48
Li (10.1016/j.msea.2018.03.115_bib25) 2009; 475
Li (10.1016/j.msea.2018.03.115_bib30) 2016; 534
Gao (10.1016/j.msea.2018.03.115_bib50) 2016
Zhang (10.1016/j.msea.2018.03.115_bib26) 2008; 10
de Boer (10.1016/j.msea.2018.03.115_bib38) 1988
Sundman (10.1016/j.msea.2018.03.115_bib39) 1985; 9
Dubiel (10.1016/j.msea.2018.03.115_bib46) 2011; 36
Tsai (10.1016/j.msea.2018.03.115_bib10) 2014; 2
Wu (10.1016/j.msea.2018.03.115_bib3) 2014; 46
Michalska (10.1016/j.msea.2018.03.115_bib48) 2006; 56
Sohn (10.1016/j.msea.2018.03.115_bib61) 2015; 100
Wu (10.1016/j.msea.2018.03.115_bib36) 2014; 81
Cai (10.1016/j.msea.2018.03.115_bib56) 2017; 23
Park (10.1016/j.msea.2018.03.115_bib57) 2016; 22
Otto (10.1016/j.msea.2018.03.115_bib51) 2016; 112
Stepanov (10.1016/j.msea.2018.03.115_bib54) 2015; 628
Lee (10.1016/j.msea.2018.03.115_bib47) 1991; 15
Yang (10.1016/j.msea.2018.03.115_bib6) 2012; 36
Hsu (10.1016/j.msea.2018.03.115_bib32) 2010; 268
Jang (10.1016/j.msea.2018.03.115_bib52) 2016; 22
Oliver (10.1016/j.msea.2018.03.115_bib37) 1992; 7
Park (10.1016/j.msea.2018.03.115_bib59) 2010; 527
Lucas (10.1016/j.msea.2018.03.115_bib2) 2012; 100
Yao (10.1016/j.msea.2018.03.115_bib17) 2014; 72–73
Yeh (10.1016/j.msea.2018.03.115_bib7) 2004; 6
Senkov (10.1016/j.msea.2018.03.115_bib5) 2013; 61
Wu (10.1016/j.msea.2018.03.115_bib21) 2015; 647
Zhang (10.1016/j.msea.2018.03.115_bib9) 2014; 61
Gludovatz (10.1016/j.msea.2018.03.115_bib31) 2016; 7
Otto (10.1016/j.msea.2018.03.115_bib12) 2013; 61
Choi (10.1016/j.msea.2018.03.115_bib42) 2017; 23
Youssef (10.1016/j.msea.2018.03.115_bib8) 2015; 3
Laplanche (10.1016/j.msea.2018.03.115_bib14) 2016; 118
Jo (10.1016/j.msea.2018.03.115_bib34) 2017; 8
Li (10.1016/j.msea.2018.03.115_bib18) 2017; 123
Gali (10.1016/j.msea.2018.03.115_bib35) 2013; 39
References_xml – volume: 86
  start-page: 1127
  year: 2015
  end-page: 1138
  ident: bib33
  article-title: From high-entropy alloys to high entropy steels
  publication-title: Steel Res. Int.
– volume: 58
  start-page: 5129
  year: 2010
  end-page: 5141
  ident: bib58
  article-title: Dependence of tensile deformation of TWIP steels on stacking fault energy, temperature and strain rate
  publication-title: Acta Mater.
– volume: 118
  start-page: 152
  year: 2016
  end-page: 163
  ident: bib14
  article-title: Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy
  publication-title: Acta Mater.
– volume: 39
  start-page: 74
  year: 2013
  end-page: 78
  ident: bib35
  article-title: Tensile properties of high-and medium-entropy alloys
  publication-title: Intermetallics
– volume: 375
  start-page: 213
  year: 2004
  end-page: 218
  ident: bib11
  article-title: Microstructural development in equiatomic multicomponent alloys
  publication-title: Mater. Sci. Eng. A
– volume: 505
  start-page: 217
  year: 2010
  end-page: 223
  ident: bib41
  article-title: Thermodynamic calculation on the stability of (Fe, Mn)3 AlC carbide in high aluminum steels
  publication-title: J. Alloy. Compd.
– volume: 7
  start-page: 10602
  year: 2016
  ident: bib31
  article-title: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures
  publication-title: Nat. Commun.
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 16
  ident: bib49
  article-title: Overview of intermetallic sigma (σ) phase precipitaion in stainless steels
  publication-title: ISEN Metall.
– volume: 123
  start-page: 285
  year: 2017
  end-page: 294
  ident: bib18
  article-title: High-entropy Al
  publication-title: Acta Mater.
– volume: 8
  start-page: 15719
  year: 2017
  ident: bib34
  article-title: Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy
  publication-title: Nat. Commun.
– volume: 121
  start-page: 229
  year: 2017
  end-page: 236
  ident: bib28
  article-title: A high-entropy V35Ti35Fe15Cr10Zr5 alloy with excellent high-temperature strength
  publication-title: Mater. Des.
– volume: 648
  start-page: 183
  year: 2015
  end-page: 192
  ident: bib29
  article-title: Non-equiatomic high entropy alloys: approach towards rapid alloy screening and property-oriented design
  publication-title: Mater. Sci. Eng. A
– volume: 2
  start-page: 107
  year: 2014
  end-page: 123
  ident: bib10
  article-title: High-entropy alloys: a critical review
  publication-title: Mater. Res. Lett.
– volume: 36
  start-page: 191
  year: 2011
  end-page: 217
  ident: bib46
  article-title: Sigma-phase in Fe-Cr and Fe-V alloy systems and its physical properties
  publication-title: Crit. Rev. Sol. Stat. Mater. Sci.
– volume: 56
  start-page: 355
  year: 2006
  end-page: 362
  ident: bib48
  article-title: Effect of intermetallic precipitations on the properties of duplex stainless steel
  publication-title: Mater. Charact.
– volume: 46
  start-page: 131
  year: 2014
  end-page: 140
  ident: bib3
  article-title: Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys
  publication-title: Intermetallics
– volume: 16
  start-page: 494
  year: 2014
  end-page: 525
  ident: bib45
  article-title: Exploration and development of high entropy alloys for structural applications
  publication-title: Entropy
– volume: 3
  start-page: 95
  year: 2015
  end-page: 99
  ident: bib8
  article-title: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures
  publication-title: Mater. Res. Lett.
– volume: 647
  start-page: 815
  year: 2015
  end-page: 822
  ident: bib21
  article-title: Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys
  publication-title: J. Alloy. Compd.
– volume: 508
  start-page: 214
  year: 2009
  end-page: 219
  ident: bib23
  article-title: Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys
  publication-title: Mater. Sci. Eng. A
– volume: 1
  start-page: 207
  year: 2013
  end-page: 212
  ident: bib55
  article-title: Criterion for sigma phase formation in Cr- and V-containing high entropy alloys
  publication-title: Mater. Res. Lett.
– volume: 230
  start-page: 55
  year: 2015
  end-page: 68
  ident: bib4
  article-title: Single-phase high-entropy alloys – an overview
  publication-title: Z. Krist.
– volume: 6
  start-page: 299
  year: 2004
  end-page: 303
  ident: bib7
  article-title: Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
– volume: 556
  start-page: 395
  year: 2012
  end-page: 399
  ident: bib16
  article-title: Effect of elemental interaction on microstructure and mechanical properties of FeCoNiCuAl alloys
  publication-title: Mater. Sci. Eng. A
– volume: 534
  start-page: 227
  year: 2016
  end-page: 230
  ident: bib30
  article-title: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off
  publication-title: Nature
– volume: 51
  start-page: 5775
  year: 2003
  end-page: 5799
  ident: bib43
  article-title: Progress in structural materials for aerospace systems
  publication-title: Acta Mater.
– volume: 527
  start-page: 3651
  year: 2010
  end-page: 3661
  ident: bib59
  article-title: Stacking fault energy and plastic deformation of fully austenitic high manganese steels: effect of Al addition
  publication-title: Mater. Sci. Eng. A
– volume: 628
  start-page: 170
  year: 2015
  end-page: 185
  ident: bib54
  article-title: Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiV
  publication-title: J. Alloy. Compd.
– volume: 15
  start-page: 283
  year: 1991
  end-page: 291
  ident: bib47
  article-title: A thermodynamic study on the V-C and Fe-V systems
  publication-title: Calphad
– volume: 36
  start-page: 292
  year: 2012
  end-page: 298
  ident: bib6
  article-title: Microstructure and compressive properties of NbTiVTaAlx high entropy alloys
  publication-title: Procedia Eng.
– volume: 61
  start-page: 5743
  year: 2013
  end-page: 5755
  ident: bib12
  article-title: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy
  publication-title: Acta Mater.
– volume: 667
  start-page: 261
  year: 2016
  end-page: 278
  ident: bib44
  article-title: Isolation and testing of new single crystal superalloys using alloys-by-design method
  publication-title: Mater. Sci. Eng. A
– volume: 48
  start-page: 1345
  year: 2000
  end-page: 1359
  ident: bib60
  article-title: Deformation of single crystal hadfield steel by twinning and slip
  publication-title: Acta Mater.
– volume: 100
  start-page: 251907
  year: 2012
  ident: bib2
  article-title: Absence of long-range chemical ordering in equimolar FeCoCrNi
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 153
  year: 1985
  end-page: 190
  ident: bib39
  article-title: The thermo-calc databank system
  publication-title: Calphad
– year: 1988
  ident: bib38
  article-title: Cohesion in Metals: Transition Metal Alloys
– volume: 18
  start-page: 1758
  year: 2010
  end-page: 1765
  ident: bib15
  article-title: Refractory high-entropy alloys
  publication-title: Intermetallics
– volume: 98
  start-page: 288
  year: 2015
  end-page: 296
  ident: bib27
  article-title: Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys
  publication-title: Acta Mater.
– volume: 22
  start-page: 982
  year: 2016
  end-page: 986
  ident: bib52
  article-title: Compressive deformation behavior of CrMnFeCoNi high-entropy alloy
  publication-title: Met. Mater. Int.
– volume: 23
  start-page: 1012
  year: 2017
  end-page: 1018
  ident: bib56
  article-title: Microstructure and thermal stability of a Ni-Cr-Co-Ti-V-Al high-entropy alloy coating by laser surface alloying
  publication-title: Met. Mater. Int.
– volume: 22
  start-page: 551
  year: 2016
  end-page: 556
  ident: bib57
  article-title: Phase evolution, microstructure and mechanical properties of equi-atomic substituted TiZrHfNiCu and TiZrHfNiCuM (M = Co, Nb) high-entropy alloys
  publication-title: Met. Mater. Int.
– volume: 475
  start-page: 752
  year: 2009
  end-page: 757
  ident: bib25
  article-title: Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys
  publication-title: J. Alloy. Compd.
– volume: 41
  start-page: 2703
  year: 2010
  end-page: 2709
  ident: bib24
  article-title: Formation and stability of equiatomic and nonequiatomic nanocrystalline CuNiCoZnAlTi high-entropy alloys by mechanical alloying
  publication-title: Metall. Mater. Trans. A
– volume: 268
  start-page: 653
  year: 2010
  end-page: 659
  ident: bib32
  article-title: Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys
  publication-title: Wear
– volume: 81
  start-page: 428
  year: 2014
  end-page: 441
  ident: bib36
  article-title: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures
  publication-title: Acta Mater.
– year: 2016
  ident: bib50
  article-title: High-Entropy Alloys: Fundamentals and Applications
– volume: 23
  start-page: 839
  year: 2017
  end-page: 847
  ident: bib42
  article-title: Design of new face-cantered cubic high entropy alloys by thermodynamic calculation
  publication-title: Met. Mater. Int.
– volume: 7
  start-page: 1564
  year: 1992
  end-page: 1583
  ident: bib37
  article-title: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments
  publication-title: J. Mater. Res.
– volume: 19
  start-page: 698
  year: 2011
  end-page: 706
  ident: bib1
  article-title: Mechanical properties of Nb
  publication-title: Intermetallics
– volume: 10
  start-page: 534
  year: 2008
  end-page: 538
  ident: bib26
  article-title: Solid‐solution phase formation rules for multi‐component alloys
  publication-title: Adv. Eng. Mater.
– volume: 72–73
  start-page: 5
  year: 2014
  end-page: 8
  ident: bib17
  article-title: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility
  publication-title: Scr. Mater.
– volume: 61
  start-page: 1
  year: 2014
  end-page: 93
  ident: bib9
  article-title: Microstructures and properties of high-entropy alloys
  publication-title: Prog. Mater. Sci.
– volume: 591
  start-page: 11
  year: 2014
  end-page: 21
  ident: bib53
  article-title: Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system
  publication-title: J. Alloy. Compd.
– volume: 61
  start-page: 1545
  year: 2013
  end-page: 1557
  ident: bib5
  article-title: Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: microstructure and phase analysis
  publication-title: Acta Mater.
– reference: B.J. Lee, B. Sundman, TCFE2000: The Thermo-Calc Steels Database, KTH, Stockholm, 1999.
– volume: 116
  start-page: 332
  year: 2016
  end-page: 342
  ident: bib20
  article-title: Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases
  publication-title: Acta Mater.
– volume: 345
  start-page: 1153
  year: 2014
  end-page: 1158
  ident: bib13
  article-title: A fracture-resistant high-entropy alloy for cryogenic applications
  publication-title: Science
– volume: 102
  start-page: 187
  year: 2016
  end-page: 196
  ident: bib19
  article-title: A precipitation-hardened high-entropy alloy with outstanding tensile properties
  publication-title: Acta Mater.
– volume: 100
  start-page: 39
  year: 2015
  end-page: 52
  ident: bib61
  article-title: Effects of Mn and Al contents on cryogenic-temperature tensile and Charpy impact properties in four austenitic high-Mn steels
  publication-title: Acta Mater.
– volume: 112
  start-page: 40
  year: 2016
  end-page: 52
  ident: bib51
  article-title: Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures
  publication-title: Acta Mater.
– volume: 120
  start-page: 228
  year: 2016
  end-page: 239
  ident: bib22
  article-title: The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys
  publication-title: Acta Mater.
– volume: 7
  start-page: 10602
  year: 2016
  ident: 10.1016/j.msea.2018.03.115_bib31
  article-title: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10602
– volume: 22
  start-page: 551
  year: 2016
  ident: 10.1016/j.msea.2018.03.115_bib57
  article-title: Phase evolution, microstructure and mechanical properties of equi-atomic substituted TiZrHfNiCu and TiZrHfNiCuM (M = Co, Nb) high-entropy alloys
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-016-6034-5
– volume: 86
  start-page: 1127
  year: 2015
  ident: 10.1016/j.msea.2018.03.115_bib33
  article-title: From high-entropy alloys to high entropy steels
  publication-title: Steel Res. Int.
  doi: 10.1002/srin.201500133
– volume: 81
  start-page: 428
  year: 2014
  ident: 10.1016/j.msea.2018.03.115_bib36
  article-title: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.08.026
– volume: 102
  start-page: 187
  year: 2016
  ident: 10.1016/j.msea.2018.03.115_bib19
  article-title: A precipitation-hardened high-entropy alloy with outstanding tensile properties
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.08.076
– volume: 475
  start-page: 752
  year: 2009
  ident: 10.1016/j.msea.2018.03.115_bib25
  article-title: Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2008.07.124
– volume: 72–73
  start-page: 5
  year: 2014
  ident: 10.1016/j.msea.2018.03.115_bib17
  article-title: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2013.09.030
– volume: 8
  start-page: 15719
  year: 2017
  ident: 10.1016/j.msea.2018.03.115_bib34
  article-title: Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15719
– volume: 3
  start-page: 95
  year: 2015
  ident: 10.1016/j.msea.2018.03.115_bib8
  article-title: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2014.985855
– volume: 556
  start-page: 395
  year: 2012
  ident: 10.1016/j.msea.2018.03.115_bib16
  article-title: Effect of elemental interaction on microstructure and mechanical properties of FeCoNiCuAl alloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2012.07.003
– volume: 534
  start-page: 227
  year: 2016
  ident: 10.1016/j.msea.2018.03.115_bib30
  article-title: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off
  publication-title: Nature
  doi: 10.1038/nature17981
– volume: 9
  start-page: 153
  year: 1985
  ident: 10.1016/j.msea.2018.03.115_bib39
  article-title: The thermo-calc databank system
  publication-title: Calphad
  doi: 10.1016/0364-5916(85)90021-5
– volume: 19
  start-page: 698
  year: 2011
  ident: 10.1016/j.msea.2018.03.115_bib1
  article-title: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2011.01.004
– volume: 61
  start-page: 5743
  year: 2013
  ident: 10.1016/j.msea.2018.03.115_bib12
  article-title: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.06.018
– volume: 61
  start-page: 1545
  year: 2013
  ident: 10.1016/j.msea.2018.03.115_bib5
  article-title: Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: microstructure and phase analysis
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.11.032
– year: 1988
  ident: 10.1016/j.msea.2018.03.115_bib38
– volume: 230
  start-page: 55
  year: 2015
  ident: 10.1016/j.msea.2018.03.115_bib4
  article-title: Single-phase high-entropy alloys – an overview
  publication-title: Z. Krist.
– volume: 23
  start-page: 839
  year: 2017
  ident: 10.1016/j.msea.2018.03.115_bib42
  article-title: Design of new face-cantered cubic high entropy alloys by thermodynamic calculation
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-017-6701-1
– volume: 56
  start-page: 355
  year: 2006
  ident: 10.1016/j.msea.2018.03.115_bib48
  article-title: Effect of intermetallic precipitations on the properties of duplex stainless steel
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2005.11.003
– volume: 2012
  start-page: 1
  year: 2012
  ident: 10.1016/j.msea.2018.03.115_bib49
  article-title: Overview of intermetallic sigma (σ) phase precipitaion in stainless steels
  publication-title: ISEN Metall.
  doi: 10.1155/2012/154617
– volume: 2
  start-page: 107
  year: 2014
  ident: 10.1016/j.msea.2018.03.115_bib10
  article-title: High-entropy alloys: a critical review
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2014.912690
– volume: 18
  start-page: 1758
  year: 2010
  ident: 10.1016/j.msea.2018.03.115_bib15
  article-title: Refractory high-entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2010.05.014
– volume: 61
  start-page: 1
  year: 2014
  ident: 10.1016/j.msea.2018.03.115_bib9
  article-title: Microstructures and properties of high-entropy alloys
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2013.10.001
– volume: 10
  start-page: 534
  year: 2008
  ident: 10.1016/j.msea.2018.03.115_bib26
  article-title: Solid‐solution phase formation rules for multi‐component alloys
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200700240
– volume: 505
  start-page: 217
  year: 2010
  ident: 10.1016/j.msea.2018.03.115_bib41
  article-title: Thermodynamic calculation on the stability of (Fe, Mn)3 AlC carbide in high aluminum steels
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2010.06.032
– volume: 58
  start-page: 5129
  year: 2010
  ident: 10.1016/j.msea.2018.03.115_bib58
  article-title: Dependence of tensile deformation of TWIP steels on stacking fault energy, temperature and strain rate
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.05.049
– volume: 46
  start-page: 131
  year: 2014
  ident: 10.1016/j.msea.2018.03.115_bib3
  article-title: Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2013.10.024
– volume: 16
  start-page: 494
  year: 2014
  ident: 10.1016/j.msea.2018.03.115_bib45
  article-title: Exploration and development of high entropy alloys for structural applications
  publication-title: Entropy
  doi: 10.3390/e16010494
– volume: 112
  start-page: 40
  year: 2016
  ident: 10.1016/j.msea.2018.03.115_bib51
  article-title: Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.04.005
– volume: 591
  start-page: 11
  year: 2014
  ident: 10.1016/j.msea.2018.03.115_bib53
  article-title: Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2013.12.210
– volume: 123
  start-page: 285
  year: 2017
  ident: 10.1016/j.msea.2018.03.115_bib18
  article-title: High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.10.038
– volume: 648
  start-page: 183
  year: 2015
  ident: 10.1016/j.msea.2018.03.115_bib29
  article-title: Non-equiatomic high entropy alloys: approach towards rapid alloy screening and property-oriented design
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.09.010
– volume: 1
  start-page: 207
  year: 2013
  ident: 10.1016/j.msea.2018.03.115_bib55
  article-title: Criterion for sigma phase formation in Cr- and V-containing high entropy alloys
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2013.831382
– volume: 7
  start-page: 1564
  year: 1992
  ident: 10.1016/j.msea.2018.03.115_bib37
  article-title: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1992.1564
– volume: 41
  start-page: 2703
  year: 2010
  ident: 10.1016/j.msea.2018.03.115_bib24
  article-title: Formation and stability of equiatomic and nonequiatomic nanocrystalline CuNiCoZnAlTi high-entropy alloys by mechanical alloying
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-010-0344-x
– volume: 22
  start-page: 982
  year: 2016
  ident: 10.1016/j.msea.2018.03.115_bib52
  article-title: Compressive deformation behavior of CrMnFeCoNi high-entropy alloy
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-016-6304-2
– volume: 23
  start-page: 1012
  year: 2017
  ident: 10.1016/j.msea.2018.03.115_bib56
  article-title: Microstructure and thermal stability of a Ni-Cr-Co-Ti-V-Al high-entropy alloy coating by laser surface alloying
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-017-6583-2
– volume: 628
  start-page: 170
  year: 2015
  ident: 10.1016/j.msea.2018.03.115_bib54
  article-title: Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2014.12.157
– year: 2016
  ident: 10.1016/j.msea.2018.03.115_bib50
– volume: 6
  start-page: 299
  year: 2004
  ident: 10.1016/j.msea.2018.03.115_bib7
  article-title: Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200300567
– volume: 375
  start-page: 213
  year: 2004
  ident: 10.1016/j.msea.2018.03.115_bib11
  article-title: Microstructural development in equiatomic multicomponent alloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2003.10.257
– volume: 647
  start-page: 815
  year: 2015
  ident: 10.1016/j.msea.2018.03.115_bib21
  article-title: Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2015.05.224
– volume: 527
  start-page: 3651
  year: 2010
  ident: 10.1016/j.msea.2018.03.115_bib59
  article-title: Stacking fault energy and plastic deformation of fully austenitic high manganese steels: effect of Al addition
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2010.02.058
– volume: 508
  start-page: 214
  year: 2009
  ident: 10.1016/j.msea.2018.03.115_bib23
  article-title: Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2008.12.053
– volume: 121
  start-page: 229
  year: 2017
  ident: 10.1016/j.msea.2018.03.115_bib28
  article-title: A high-entropy V35Ti35Fe15Cr10Zr5 alloy with excellent high-temperature strength
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.02.029
– volume: 39
  start-page: 74
  year: 2013
  ident: 10.1016/j.msea.2018.03.115_bib35
  article-title: Tensile properties of high-and medium-entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2013.03.018
– volume: 36
  start-page: 191
  year: 2011
  ident: 10.1016/j.msea.2018.03.115_bib46
  article-title: Sigma-phase in Fe-Cr and Fe-V alloy systems and its physical properties
  publication-title: Crit. Rev. Sol. Stat. Mater. Sci.
  doi: 10.1080/10408436.2011.589232
– volume: 120
  start-page: 228
  year: 2016
  ident: 10.1016/j.msea.2018.03.115_bib22
  article-title: The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.08.072
– volume: 15
  start-page: 283
  year: 1991
  ident: 10.1016/j.msea.2018.03.115_bib47
  article-title: A thermodynamic study on the V-C and Fe-V systems
  publication-title: Calphad
  doi: 10.1016/0364-5916(91)90006-6
– ident: 10.1016/j.msea.2018.03.115_bib40
– volume: 116
  start-page: 332
  year: 2016
  ident: 10.1016/j.msea.2018.03.115_bib20
  article-title: Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.06.063
– volume: 268
  start-page: 653
  year: 2010
  ident: 10.1016/j.msea.2018.03.115_bib32
  article-title: Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys
  publication-title: Wear
  doi: 10.1016/j.wear.2009.10.013
– volume: 345
  start-page: 1153
  year: 2014
  ident: 10.1016/j.msea.2018.03.115_bib13
  article-title: A fracture-resistant high-entropy alloy for cryogenic applications
  publication-title: Science
  doi: 10.1126/science.1254581
– volume: 118
  start-page: 152
  year: 2016
  ident: 10.1016/j.msea.2018.03.115_bib14
  article-title: Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.07.038
– volume: 51
  start-page: 5775
  year: 2003
  ident: 10.1016/j.msea.2018.03.115_bib43
  article-title: Progress in structural materials for aerospace systems
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2003.08.023
– volume: 36
  start-page: 292
  year: 2012
  ident: 10.1016/j.msea.2018.03.115_bib6
  article-title: Microstructure and compressive properties of NbTiVTaAlx high entropy alloys
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2012.03.043
– volume: 98
  start-page: 288
  year: 2015
  ident: 10.1016/j.msea.2018.03.115_bib27
  article-title: Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.07.030
– volume: 667
  start-page: 261
  year: 2016
  ident: 10.1016/j.msea.2018.03.115_bib44
  article-title: Isolation and testing of new single crystal superalloys using alloys-by-design method
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2016.04.089
– volume: 48
  start-page: 1345
  year: 2000
  ident: 10.1016/j.msea.2018.03.115_bib60
  article-title: Deformation of single crystal hadfield steel by twinning and slip
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(99)00383-3
– volume: 100
  start-page: 251907
  year: 2012
  ident: 10.1016/j.msea.2018.03.115_bib2
  article-title: Absence of long-range chemical ordering in equimolar FeCoCrNi
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4730327
– volume: 100
  start-page: 39
  year: 2015
  ident: 10.1016/j.msea.2018.03.115_bib61
  article-title: Effects of Mn and Al contents on cryogenic-temperature tensile and Charpy impact properties in four austenitic high-Mn steels
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.08.027
SSID ssj0001405
Score 2.4973447
Snippet An equi-atomic single-fcc-phase CrMnFeCoNi high entropy alloy (HEA) shows much higher tensile properties at cryogenic temperature than at room temperature...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 403
SubjectTerms Alloys
Cryogenic
Cryogenic temperature
Ductility
Grain boundaries
Grain refinement
High entropy alloy
High entropy alloys
Iron
Mechanical property
Microstructure
Sigma phase
Tensile properties
Tensile strength
Thermodynamic calculation
Twinning
Title Role of brittle sigma phase in cryogenic-temperature-strength improvement of non-equi-atomic Fe-rich VCrMnFeCoNi high entropy alloys
URI https://dx.doi.org/10.1016/j.msea.2018.03.115
https://www.proquest.com/docview/2069503593
Volume 724
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcquLDDND4m2KDygRsyrWsnqY-oWlVA9ABj4hb5K9SIJl1bDr1w4g_fe6nDxjRx2DGJbUV-L-_D-b3fI-RYau5cgc1dnPVMur5mSoNAvOhqVUAI7XwNkB2no1t5cZfctcigqYVBWGW0_WubXlvreKcTd7MzC6Fz01XgriAhB6UENcyw4FfKDLX89Pk3zAMSiBrGCIMZjo6FM2uM1xTUCeFdfSQ65dga99_O6S8zXfue4SfyMQaN9Gz9Xtuk5csd8uEPKsFd8nJdPXpaFdRAtg_yp4twP9V0NgEvRUNJ7XxVga4Ey5CMKjIpM6wUKe-XExrqs4X6qBAXKauS-Z9PgUFKPg2WDj0DezmhPwbzq3LoB9U4UCQ6png2XM1WFH_frxZ75Hb47ftgxGKHBWYhcFgymSXaeyVcz1lIjKxTLk17heZJxjUy6_G-z4RGCGovVUa4wmnedcpyI1OrnPhMNuCN_D6hBkI9mXJjdAEZneF9A47PygJsghDWmgPCm63NbaQfxy4Yj3mDM3vIURw5iiPvCkhNkgNy8jpntibfeHd00kgsf6NCOXiHd-cdNuLN4we8gOepSpDeUHz5z2W_ki28qsGRvUOysZw_-SMIYJamXWtom2yenV-Oxr8AI47x9A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELZoeqA9VJSCShtaH3pDJnG8u1kfq4gobSGH8hA3y68lRmQ3TcIhl576wzuz8QJFiEOv64csz3ge3s_fEPIl0dy5Aou7OOtZ4nLNpAaBeNHVsoAQ2vkaIDvORufJ98v0coMMmrcwCKuMtn9t02trHb904m52ZiF0TrsS3BUk5KCUoIb9_AV5mcDxxTIGh7_vcR6QQdQ4RujNsHt8ObMGeU1BnxDflSPTKcfauE97p0d2unY-wy3yJkaN9Ot6YW_Jhi-3yesHXILvyJ-f1Y2nVUENpPugAHQRrqaazibgpmgoqZ2vKlCWYBmyUUUqZYZPRcqr5YSG-nKhvivEScqqZP7XbWCQk0-DpUPPwGBO6MVgflIO_aAaB4pMxxQvh6vZiuL_-9Vih5wPj84GIxZLLDALkcOSJf1Uey-F6zkLmZF10mVZr9A87XON1Ho8932hEYPay6QRrnCad5203CSZlU7skhasyL8n1ECsl2TcGF1ASmd4bsDz2aQAoyCEtWaP8GZrlY3841gG40Y1QLNrheJQKA7VFZCbpHvk4G7MbM2-8WzvtJGY-keHFLiHZ8e1G_GqeIIX0J7JFPkNxYf_nPYz2RydnRyr42_jHx_JK2ypkZK9Nmkt57d-H6KZpflUa-tfrQnzgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+brittle+sigma+phase+in+cryogenic-temperature-strength+improvement+of+non-equi-atomic+Fe-rich+VCrMnFeCoNi+high+entropy+alloys&rft.jtitle=Materials+science+%26+engineering.+A%2C+Structural+materials+%3A+properties%2C+microstructure+and+processing&rft.au=Jo%2C+Yong+Hee&rft.au=Choi%2C+Won-Mi&rft.au=Sohn%2C+Seok+Su&rft.au=Kim%2C+Hyoung+Seop&rft.date=2018-05-02&rft.pub=Elsevier+B.V&rft.issn=0921-5093&rft.eissn=1873-4936&rft.volume=724&rft.spage=403&rft.epage=410&rft_id=info:doi/10.1016%2Fj.msea.2018.03.115&rft.externalDocID=S0921509318304878
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5093&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5093&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5093&client=summon