Influence of a novel P/N-containing oligomer on flame retardancy and thermal degradation of intumescent flame-retardant epoxy resin
In this work, a novel P/N-containing oligomer poly(piperazine phenylphosphamide) (BPOPA) was synthesized via the polymerization reaction of phenylphosphonic dichloride with piperazine. Its structure was characterized by Fourier transformation infrared spectroscopy (FT-IR), nuclear magnetic resonance...
Saved in:
Published in | Polymer degradation and stability Vol. 162; pp. 129 - 137 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Elsevier Ltd
01.04.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, a novel P/N-containing oligomer poly(piperazine phenylphosphamide) (BPOPA) was synthesized via the polymerization reaction of phenylphosphonic dichloride with piperazine. Its structure was characterized by Fourier transformation infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), elemental analysis (EA) and gel permeation chromatography (GPC). It was used to enhance the flame retardancy of epoxy resin/ammonium polyphosphate (APP). As expected, improvement in flame retardancy of EP/APP was observed. In detail, EP containing 10 wt% APP alone possessed a LOI value of 30.2% but UL-94 no rating. When both 7.5 wt% APP and 2.5 wt% BPOPA were added into EP, EP/7.5APP/2.5BPOPA passed a UL-94 V-0 rating with a LOI value of 33.1%. Moreover, EP/7.5APP/2.5BPOPA presented much lower values of the peak of heat release rate (PHRR) and total smoke production (TSP) compared with EP/10APP. The flame-retardant mechanism was analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis/infrared spectrometry (TG-IR). Results illustrated that EP/7.5APP/2.5BPOPA mainly functioned in condensed phase which was associated with the formation of more compact char layer.
•A novel P/N-containing oligomer (BPOPA) was synthesized and characterized successfully.•Adding BPOPA significantly improved flame retardancy of EP/APP.•Incorporation of BPOPA improved compactness degree of char for EP/APP during combustion. |
---|---|
AbstractList | In this work, a novel P/N-containing oligomer poly(piperazine phenylphosphamide) (BPOPA) was synthesized via the polymerization reaction of phenylphosphonic dichloride with piperazine. Its structure was characterized by Fourier transformation infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), elemental analysis (EA) and gel permeation chromatography (GPC). It was used to enhance the flame retardancy of epoxy resin/ammonium polyphosphate (APP). As expected, improvement in flame retardancy of EP/APP was observed. In detail, EP containing 10 wt% APP alone possessed a LOI value of 30.2% but UL-94 no rating. When both 7.5 wt% APP and 2.5 wt% BPOPA were added into EP, EP/7.5APP/2.5BPOPA passed a UL-94 V-0 rating with a LOI value of 33.1%. Moreover, EP/7.5APP/2.5BPOPA presented much lower values of the peak of heat release rate (PHRR) and total smoke production (TSP) compared with EP/10APP. The flame-retardant mechanism was analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis/infrared spectrometry (TG-IR). Results illustrated that EP/7.5APP/2.5BPOPA mainly functioned in condensed phase which was associated with the formation of more compact char layer. In this work, a novel P/N-containing oligomer poly(piperazine phenylphosphamide) (BPOPA) was synthesized via the polymerization reaction of phenylphosphonic dichloride with piperazine. Its structure was characterized by Fourier transformation infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), elemental analysis (EA) and gel permeation chromatography (GPC). It was used to enhance the flame retardancy of epoxy resin/ammonium polyphosphate (APP). As expected, improvement in flame retardancy of EP/APP was observed. In detail, EP containing 10 wt% APP alone possessed a LOI value of 30.2% but UL-94 no rating. When both 7.5 wt% APP and 2.5 wt% BPOPA were added into EP, EP/7.5APP/2.5BPOPA passed a UL-94 V-0 rating with a LOI value of 33.1%. Moreover, EP/7.5APP/2.5BPOPA presented much lower values of the peak of heat release rate (PHRR) and total smoke production (TSP) compared with EP/10APP. The flame-retardant mechanism was analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis/infrared spectrometry (TG-IR). Results illustrated that EP/7.5APP/2.5BPOPA mainly functioned in condensed phase which was associated with the formation of more compact char layer. •A novel P/N-containing oligomer (BPOPA) was synthesized and characterized successfully.•Adding BPOPA significantly improved flame retardancy of EP/APP.•Incorporation of BPOPA improved compactness degree of char for EP/APP during combustion. |
Author | Zhu, Zong-Min Wang, Luo-Xin Dong, Liang-Ping |
Author_xml | – sequence: 1 givenname: Zong-Min surname: Zhu fullname: Zhu, Zong-Min email: zhuzmgiant@126.com organization: State Key Laboratory of New Textile Materials and Advanced Processing Technology, College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, Hubei, PR China – sequence: 2 givenname: Luo-Xin surname: Wang fullname: Wang, Luo-Xin organization: State Key Laboratory of New Textile Materials and Advanced Processing Technology, College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, Hubei, PR China – sequence: 3 givenname: Liang-Ping surname: Dong fullname: Dong, Liang-Ping email: dlpscu@163.com organization: Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang, 621000, Sichuan, PR China |
BookMark | eNqNkc1u1DAURi1UJKaFd7CEkNhk6p8kkyxYoBGUShWwaNfWtXMzeOTYg-1UzLovXg-BzaxqXcmb8x1d-7skFz54JOQDZ2vOeHu9Xx-CO04D7iIMKYNeC8b7NRNl-Cuy4t1GVkIKfkFWjNe8kj1nb8hlSntWTt3wFXm69aOb0RukYaRAfXhER39ef69M8Bmst35Hg7O7MGGkwdPRwYQ0YoY4gDdHCn6g-RfGCRxdVoFsC1h01ud5wmTQ5yVX_c9liofw51g8yfq35PUILuG7f_cVefj65X77rbr7cXO7_XxXmVryXNVc67aWQzdAh0bqZhCbrtdj1yDqtu9BjhJQaGZYUxsEXusOoRV6g7BhupdX5OPiPcTwe8aU1WTLcs6BxzAnJYTgTIi2kQV9f4buwxx92e5EiV4IJrpCbRfKxJBSxFEZm_--PkewTnGmTkWpvTorSp2KUkyU4cXy6cxyiHaCeHxx_mbJY_m7R4tRJWNPjQ42oslqCPaFpmdqHsAQ |
CitedBy_id | crossref_primary_10_3390_polym15061406 crossref_primary_10_1016_j_compositesb_2022_109999 crossref_primary_10_3390_ma14051181 crossref_primary_10_1016_j_chemosphere_2021_132704 crossref_primary_10_1016_j_polymdegradstab_2023_110605 crossref_primary_10_1016_j_polymertesting_2022_107766 crossref_primary_10_1016_j_jclepro_2024_141417 crossref_primary_10_1016_j_chemosphere_2021_129658 crossref_primary_10_1021_acsapm_4c00338 crossref_primary_10_1007_s10973_023_12363_2 crossref_primary_10_1016_j_polymdegradstab_2021_109698 crossref_primary_10_1002_app_54739 crossref_primary_10_1002_app_53926 crossref_primary_10_1002_pat_4689 crossref_primary_10_1016_j_polymdegradstab_2019_108981 crossref_primary_10_1177_09540083231187748 crossref_primary_10_1002_pen_26471 crossref_primary_10_1002_app_52431 crossref_primary_10_1016_j_polymdegradstab_2022_110178 crossref_primary_10_1680_jgrma_20_00063 crossref_primary_10_1002_marc_202100580 crossref_primary_10_1002_app_53645 crossref_primary_10_1016_j_reactfunctpolym_2024_105877 crossref_primary_10_1021_acsami_0c07405 crossref_primary_10_1002_app_49090 crossref_primary_10_1007_s42114_024_00874_x crossref_primary_10_1016_j_eurpolymj_2023_112610 crossref_primary_10_1002_app_50263 crossref_primary_10_1016_j_porgcoat_2023_107999 crossref_primary_10_1021_acs_langmuir_4c01012 crossref_primary_10_1016_j_polymdegradstab_2019_07_005 crossref_primary_10_1021_acsapm_0c01356 crossref_primary_10_1016_j_polymdegradstab_2019_07_007 crossref_primary_10_1016_j_polymdegradstab_2019_109023 crossref_primary_10_1002_vnl_21921 crossref_primary_10_1007_s10973_020_10368_9 crossref_primary_10_1007_s10965_022_03398_4 crossref_primary_10_1016_j_polymdegradstab_2023_110343 crossref_primary_10_1002_app_55318 crossref_primary_10_1016_j_jnlssr_2024_03_002 crossref_primary_10_1002_pat_4837 crossref_primary_10_1016_j_tca_2021_179031 crossref_primary_10_2139_ssrn_3995389 crossref_primary_10_1002_vnl_22073 crossref_primary_10_1002_app_55201 crossref_primary_10_1002_pen_25199 crossref_primary_10_1016_j_polymertesting_2022_107582 crossref_primary_10_1007_s10570_021_04346_z crossref_primary_10_1016_j_polymdegradstab_2021_109630 crossref_primary_10_1016_j_jcis_2019_06_015 crossref_primary_10_1002_app_50432 crossref_primary_10_1002_app_53708 crossref_primary_10_1002_app_54919 crossref_primary_10_1002_app_56415 crossref_primary_10_1002_app_53543 crossref_primary_10_1016_j_polymdegradstab_2024_110796 crossref_primary_10_1016_j_ijbiomac_2022_09_163 crossref_primary_10_1080_14658011_2020_1793081 crossref_primary_10_1088_2053_1591_ac2098 crossref_primary_10_1039_D0RA01230K crossref_primary_10_1016_j_ijbiomac_2023_125343 crossref_primary_10_1007_s10570_021_03723_y crossref_primary_10_1016_j_eurpolymj_2021_110970 crossref_primary_10_1016_j_porgcoat_2024_108483 crossref_primary_10_1016_j_colsurfa_2020_125917 crossref_primary_10_1021_acsapm_3c01574 crossref_primary_10_1007_s10853_021_05863_9 crossref_primary_10_1002_adem_202300011 crossref_primary_10_1002_app_52104 crossref_primary_10_1021_acsapm_2c00138 crossref_primary_10_1002_pat_5307 crossref_primary_10_1016_j_polymer_2021_124027 crossref_primary_10_1016_j_cej_2023_145588 crossref_primary_10_1007_s10853_020_04935_6 crossref_primary_10_1016_j_compositesa_2024_108622 crossref_primary_10_1007_s10965_022_03064_9 crossref_primary_10_1016_j_polymdegradstab_2019_06_011 crossref_primary_10_1016_j_cej_2021_131578 crossref_primary_10_1016_j_matchemphys_2021_124367 crossref_primary_10_1016_j_coco_2021_100965 crossref_primary_10_1016_j_polymdegradstab_2023_110492 crossref_primary_10_1177_09673911221079116 crossref_primary_10_1016_j_ssci_2024_106627 crossref_primary_10_1002_adem_202201815 crossref_primary_10_1002_pat_4929 crossref_primary_10_1016_j_reactfunctpolym_2023_105677 crossref_primary_10_1016_j_mtcomm_2024_109340 crossref_primary_10_3390_polym15061455 crossref_primary_10_1016_j_polymdegradstab_2025_111187 crossref_primary_10_1016_j_tca_2023_179609 crossref_primary_10_1021_acssuschemeng_0c08302 crossref_primary_10_1016_j_apsusc_2019_145175 crossref_primary_10_1016_j_eng_2024_03_017 crossref_primary_10_1016_j_polymdegradstab_2020_109426 crossref_primary_10_1016_j_cej_2021_131226 crossref_primary_10_1002_pat_5055 crossref_primary_10_1021_acsanm_2c04700 crossref_primary_10_1016_j_compositesb_2021_109043 crossref_primary_10_1039_D0RA00072H crossref_primary_10_1021_acs_iecr_0c01277 crossref_primary_10_1007_s11705_021_2042_1 crossref_primary_10_1016_j_cej_2022_138424 crossref_primary_10_1021_acssuschemeng_2c00848 crossref_primary_10_3390_ijms241814059 crossref_primary_10_1016_j_polymer_2020_122626 crossref_primary_10_1021_acsami_0c19093 crossref_primary_10_1016_j_compositesa_2019_105715 crossref_primary_10_1016_j_polymdegradstab_2021_109557 crossref_primary_10_1007_s10973_021_10592_x crossref_primary_10_1007_s10973_021_11188_1 crossref_primary_10_1016_j_polymer_2025_128093 crossref_primary_10_1038_s41598_021_96927_y crossref_primary_10_3390_en14217070 crossref_primary_10_1016_j_firesaf_2020_102994 crossref_primary_10_1016_j_polymer_2024_127951 crossref_primary_10_1002_pat_5085 crossref_primary_10_1016_j_carbpol_2020_116530 crossref_primary_10_1039_D1RA03164C crossref_primary_10_1021_acsapm_4c02226 crossref_primary_10_1002_pat_4782 crossref_primary_10_1016_j_tca_2021_178931 crossref_primary_10_1002_pat_4827 crossref_primary_10_1002_app_52896 crossref_primary_10_1002_app_53105 crossref_primary_10_1016_j_reactfunctpolym_2022_105335 crossref_primary_10_1002_pi_6744 crossref_primary_10_1016_j_eurpolymj_2022_111642 crossref_primary_10_3390_ma13092145 crossref_primary_10_1016_j_polymdegradstab_2019_06_020 crossref_primary_10_1016_j_compositesb_2019_107588 crossref_primary_10_1016_j_polymdegradstab_2020_109366 crossref_primary_10_1002_pen_26755 crossref_primary_10_1039_D2RA04682B crossref_primary_10_1002_app_48699 crossref_primary_10_1016_j_reactfunctpolym_2023_105762 crossref_primary_10_1016_j_ijbiomac_2023_127291 crossref_primary_10_1016_j_reactfunctpolym_2019_104412 crossref_primary_10_1016_j_apt_2025_104815 crossref_primary_10_1016_j_apt_2024_104639 crossref_primary_10_1016_j_cej_2024_153628 crossref_primary_10_1016_j_cej_2023_146241 crossref_primary_10_1002_app_51614 |
Cites_doi | 10.1016/j.polymdegradstab.2012.05.013 10.1016/j.cej.2018.03.013 10.1016/j.polymdegradstab.2010.08.022 10.1016/j.tca.2013.04.027 10.1016/j.polymdegradstab.2015.04.023 10.1002/pat.1788 10.1016/j.compositesa.2017.04.012 10.1016/j.cej.2018.04.097 10.1021/acs.iecr.6b03416 10.3390/ma3084300 10.1016/j.compositesa.2018.03.022 10.1039/c0jm03959d 10.1021/acssuschemeng.5b00871 10.1021/acs.iecr.5b03877 10.1016/j.compositesb.2017.11.001 10.1016/j.polymdegradstab.2016.11.023 10.1002/mame.201500250 10.1002/app.25660 10.1016/j.chemosphere.2011.06.104 10.1002/mame.200400007 10.1016/j.polymdegradstab.2016.07.003 10.1039/C4RA15971C 10.1021/acs.iecr.6b04292 10.1039/C6RA13168A 10.1021/acs.iecr.6b05065 10.1016/j.polymdegradstab.2016.12.002 10.1002/app.27522 10.1021/acs.iecr.6b00204 10.1002/fam.949 10.1016/j.polymdegradstab.2005.07.020 10.1002/app.21152 10.1002/fam.2199 10.1016/j.polymdegradstab.2018.05.014 10.1039/C6PY00434B 10.1016/j.polymdegradstab.2015.11.018 10.1016/j.polymdegradstab.2017.01.014 10.1039/C6RA00164E 10.1002/1097-0126(200010)49:10<1106::AID-PI539>3.0.CO;2-I 10.1016/j.polymdegradstab.2018.01.026 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Apr 2019 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Apr 2019 |
DBID | AAYXX CITATION 7SR 8FD JG9 7S9 L.6 |
DOI | 10.1016/j.polymdegradstab.2019.02.021 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-2321 |
EndPage | 137 |
ExternalDocumentID | 10_1016_j_polymdegradstab_2019_02_021 S0141391019300746 |
Genre | Feature |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SMS SPC SPCBC SSK SSM SSZ T5K WH7 WUQ XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 8FD EFKBS JG9 7S9 L.6 |
ID | FETCH-LOGICAL-c431t-41bb643d8da8ec3b5d2789bf85eeb699a3f3ae2b0c054cea14b8ea62b7ea70b93 |
IEDL.DBID | .~1 |
ISSN | 0141-3910 |
IngestDate | Mon Jul 21 11:46:36 EDT 2025 Fri Jul 25 03:23:20 EDT 2025 Tue Jul 01 02:29:49 EDT 2025 Thu Apr 24 22:55:15 EDT 2025 Fri Feb 23 02:32:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Epoxy resin Flame retardancy Flame-retardant mechanism P/N-containing oligomer |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c431t-41bb643d8da8ec3b5d2789bf85eeb699a3f3ae2b0c054cea14b8ea62b7ea70b93 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 2222922028 |
PQPubID | 2045418 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2221022653 proquest_journals_2222922028 crossref_citationtrail_10_1016_j_polymdegradstab_2019_02_021 crossref_primary_10_1016_j_polymdegradstab_2019_02_021 elsevier_sciencedirect_doi_10_1016_j_polymdegradstab_2019_02_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Polymer degradation and stability |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Yang, Ma, Zhao, Li (bib21) 2016; 55 Liang, Zhao, Zhao, Zhang, Liu (bib39) 2017; 135 Xu, Xu, Leng, Li (bib35) 2016; 123 Yuan, Hu, Chen, Shi, Niu, Zhang, He, Dai (bib9) 2017; 100 Wang, Wang, Liu, Ge, Wang (bib17) 2008; 108 Wang, Kalali, Wang (bib3) 2015; 3 Chen, Lin, Wang, Zhong, Li, Liu (bib16) 2015; 54 Tai, Hu, Yuen, Song, Lu (bib23) 2011; 21 Wang, Cai (bib32) 2017; 137 Yuan, Sun, Chen, Shi, Dai, He (bib10) 2018; 109 Xu, Chen, Rao, Qi, Guo, Liao, Wang (bib34) 2018; 347 Li, Deng, Deng, Dong, Di, Wang (bib36) 2015; 5 Dong, Deng, Li, Cao, Lin, Chen, Wang (bib37) 2016; 6 Zhao, Babu, Llorca, Wang (bib5) 2016; 6 Bourbigot, Le Bras, Duquesne, Rochery (bib13) 2004; 289 Mariappan, Wilkie (bib2) 2014; 38 Lu, Wilkie (bib7) 2010; 95 Li, Gonzalez, Heeralal, Wang (bib38) 2018; 138 Schartel, Balabanovich, Braun, Knoll, Artner, Ciesielski (bib1) 2007; 104 Schartel, Perret, Dittrich, Ciesielski, Krämer, Müller (bib11) 2016; 301 Grause, Karakita, Ishibashi, Kameda, Bhaskar, Yoshioka (bib6) 2011; 85 Wang, Hu, Song, Xing, Lu, Lv, Jie (bib20) 2011; 22 Wang, Xia, Jian, Ai, Zheng, Chen, Wang (bib27) 2018; 149 Wang, Xu, Li (bib22) 2016; 131 Yan, Chen, Jian, Kong, Wang (bib12) 2012; 97 Rakotomalala, Wagner, Döring (bib4) 2010; 3 Rao, Xu, Xu, Qi, Liao, Xu, Wang (bib33) 2018; 343 Jian, Wang, Duan, Wang, Zheng, Weng (bib26) 2016; 55 Horacek, Pieh (bib8) 2000; 49 Deng, Zhu, Shi (bib18) 2004; 94 Zhao, Liu, Peng, Liao, Wang (bib19) 2015; 118 Zhu, Xu, Liao, Xu, Wang (bib29) 2017; 56 Bai, Wang, Tang, Song, Hu, Yuen (bib24) 2013; 565 Tan, Shao, Yu, Long, Qi, Chen, Wang (bib15) 2016; 7 Liang, Zhao, Zhao, Zhang, Liu (bib28) 2017; 135 Dong, Deng, Wang (bib40) 2017; 135 Li, Li (bib14) 2006; 91 Schartel, Hull (bib30) 2007; 31 Zhang, Yu, Wang, Liew, Song, Wang, Hu (bib25) 2017; 56 Wei, Deng, Zhao, Wang (bib31) 2018; 154 Yuan (10.1016/j.polymdegradstab.2019.02.021_bib10) 2018; 109 Wang (10.1016/j.polymdegradstab.2019.02.021_bib32) 2017; 137 Liang (10.1016/j.polymdegradstab.2019.02.021_bib39) 2017; 135 Bai (10.1016/j.polymdegradstab.2019.02.021_bib24) 2013; 565 Yang (10.1016/j.polymdegradstab.2019.02.021_bib21) 2016; 55 Zhu (10.1016/j.polymdegradstab.2019.02.021_bib29) 2017; 56 Li (10.1016/j.polymdegradstab.2019.02.021_bib14) 2006; 91 Zhang (10.1016/j.polymdegradstab.2019.02.021_bib25) 2017; 56 Grause (10.1016/j.polymdegradstab.2019.02.021_bib6) 2011; 85 Zhao (10.1016/j.polymdegradstab.2019.02.021_bib19) 2015; 118 Mariappan (10.1016/j.polymdegradstab.2019.02.021_bib2) 2014; 38 Chen (10.1016/j.polymdegradstab.2019.02.021_bib16) 2015; 54 Tai (10.1016/j.polymdegradstab.2019.02.021_bib23) 2011; 21 Li (10.1016/j.polymdegradstab.2019.02.021_bib38) 2018; 138 Wei (10.1016/j.polymdegradstab.2019.02.021_bib31) 2018; 154 Wang (10.1016/j.polymdegradstab.2019.02.021_bib20) 2011; 22 Li (10.1016/j.polymdegradstab.2019.02.021_bib36) 2015; 5 Zhao (10.1016/j.polymdegradstab.2019.02.021_bib5) 2016; 6 Schartel (10.1016/j.polymdegradstab.2019.02.021_bib11) 2016; 301 Yuan (10.1016/j.polymdegradstab.2019.02.021_bib9) 2017; 100 Xu (10.1016/j.polymdegradstab.2019.02.021_bib35) 2016; 123 Wang (10.1016/j.polymdegradstab.2019.02.021_bib17) 2008; 108 Liang (10.1016/j.polymdegradstab.2019.02.021_bib28) 2017; 135 Rao (10.1016/j.polymdegradstab.2019.02.021_bib33) 2018; 343 Wang (10.1016/j.polymdegradstab.2019.02.021_bib3) 2015; 3 Wang (10.1016/j.polymdegradstab.2019.02.021_bib22) 2016; 131 Lu (10.1016/j.polymdegradstab.2019.02.021_bib7) 2010; 95 Schartel (10.1016/j.polymdegradstab.2019.02.021_bib1) 2007; 104 Yan (10.1016/j.polymdegradstab.2019.02.021_bib12) 2012; 97 Wang (10.1016/j.polymdegradstab.2019.02.021_bib27) 2018; 149 Deng (10.1016/j.polymdegradstab.2019.02.021_bib18) 2004; 94 Tan (10.1016/j.polymdegradstab.2019.02.021_bib15) 2016; 7 Xu (10.1016/j.polymdegradstab.2019.02.021_bib34) 2018; 347 Jian (10.1016/j.polymdegradstab.2019.02.021_bib26) 2016; 55 Dong (10.1016/j.polymdegradstab.2019.02.021_bib40) 2017; 135 Bourbigot (10.1016/j.polymdegradstab.2019.02.021_bib13) 2004; 289 Dong (10.1016/j.polymdegradstab.2019.02.021_bib37) 2016; 6 Rakotomalala (10.1016/j.polymdegradstab.2019.02.021_bib4) 2010; 3 Horacek (10.1016/j.polymdegradstab.2019.02.021_bib8) 2000; 49 Schartel (10.1016/j.polymdegradstab.2019.02.021_bib30) 2007; 31 |
References_xml | – volume: 123 start-page: 105 year: 2016 end-page: 114 ident: bib35 article-title: Synthesis of a novel flame retardant based on cyclotriphosphazene and DOPO groups and its application in epoxy resins publication-title: Polym. Degrad. Stabil. – volume: 97 start-page: 1423 year: 2012 end-page: 1431 ident: bib12 article-title: Intumescence: an effect way to flame retardance and smoke suppression for polystyrene publication-title: Polym. Degrad. Stabil. – volume: 95 start-page: 2388 year: 2010 end-page: 2395 ident: bib7 article-title: Study on intumescent flame retarded polystyrene composites with improved flame retardancy publication-title: Polym. Degrad. Stabil. – volume: 55 start-page: 11520 year: 2016 end-page: 11527 ident: bib26 article-title: Synthesis of a novel P/N/S-containing flame retardant and its application in epoxy resin: thermal property, flame retardance, and pyrolysis behavior publication-title: Ind. Eng. Chem. Res. – volume: 301 start-page: 9 year: 2016 end-page: 35 ident: bib11 article-title: Flame retardancy of polymers: the role of specific reactions in the condensed phase publication-title: Macromol. Mater. Eng. – volume: 5 start-page: 16328 year: 2015 end-page: 16339 ident: bib36 article-title: An efficient method to improve simultaneously the water resistance, flame retardancy and mechanical properties of POE intumescent flame-retardant systems publication-title: RSC Adv. – volume: 135 start-page: 140 year: 2017 end-page: 151 ident: bib39 article-title: Bisphenol-S bridged penta (anilino)cyclotriphosphazene and its application in epoxy resins: synthesis, thermal degradation, and flame retardancy publication-title: Polym. Degrad. Stabil. – volume: 56 start-page: 1245 year: 2017 end-page: 1255 ident: bib25 article-title: Highly effective P−P synergy of a novel DOPO-based flame retardant for epoxy resin publication-title: Ind. Eng. Chem. Res. – volume: 3 start-page: 3281 year: 2015 end-page: 3290 ident: bib3 article-title: Renewable cardanol-based surfactant modified layered double hydroxide as a flame retardant for epoxy resin publication-title: ACS Sustain. Chem. Eng. – volume: 131 start-page: 20 year: 2016 end-page: 29 ident: bib22 article-title: Synthesis of N-methyl triazine-ethylenediamine copolymer charring foaming agent and its enhancement on flame retardancy and water resistance for polypropylene composites publication-title: Polym. Degrad. Stabil. – volume: 31 start-page: 327 year: 2007 end-page: 354 ident: bib30 article-title: Development of fire-retarded materials—interpretation of cone calorimeter data publication-title: Fire Mater. – volume: 154 start-page: 177 year: 2018 end-page: 185 ident: bib31 article-title: A novel organic-inorganic hybrid SiO2@DPP for the fire retardance of polycarbonate publication-title: Polym. Degrad. Stabil. – volume: 6 start-page: 59226 year: 2016 end-page: 59236 ident: bib5 article-title: Impact of halogen-free flame retardant with varied phosphorus chemical surrounding on the properties of diglycidyl ether of bisphenol-A type epoxy resin: synthesis, fire behaviour, flame retardant mechanism and mechanical properties publication-title: RSC Adv. – volume: 22 start-page: 2480 year: 2011 end-page: 2487 ident: bib20 article-title: Effect of a triazine ring-containing charring agent on fire retardancy and thermal degradation of intumescent flame retardant epoxy resins publication-title: Polym. Adv. Technol. – volume: 94 start-page: 2065 year: 2004 end-page: 2070 ident: bib18 article-title: Effect of molecular chain structure of the cured epoxy resin containing hyperbranched (3-hydroxyphenyl) phosphate on expansion and flame retardance publication-title: J. Appl. Polym. Sci. – volume: 56 start-page: 4649 year: 2017 end-page: 4658 ident: bib29 article-title: Highly flame retardant expanded polystyrene foams from phosphorus-nitrogen-silicon synergistic adhesives publication-title: Ind. Eng. Chem. Res. – volume: 54 start-page: 12705 year: 2015 end-page: 12713 ident: bib16 article-title: Influence of cuprous oxide on enhancing the flame retardancy and smoke suppression of epoxy resins containing microencapsulated ammonium polyphosphate publication-title: Ind. Eng. Chem. Res. – volume: 137 start-page: 138 year: 2017 end-page: 150 ident: bib32 article-title: Highly efficient flame-retardant epoxy resin with a novel DOPO-based triazole compound: thermal stability, flame retardancy and mechanism publication-title: Polym. Degrad. Stabil. – volume: 100 start-page: 106 year: 2017 end-page: 117 ident: bib9 article-title: Dual modification of graphene by polymeric flame retardant and Ni (OH) publication-title: Compos. Part A-Appl. S. – volume: 21 start-page: 6621 year: 2011 end-page: 6627 ident: bib23 article-title: Synthesis, structure–property relationships of polyphosphoramides with high char residues publication-title: J. Mater. Chem. – volume: 343 start-page: 198 year: 2018 end-page: 206 ident: bib33 article-title: Persistently flame-retardant flexible polyurethane foams by a novel phosphorus-containing polyol publication-title: Chem. Eng. J. – volume: 118 start-page: 120 year: 2015 end-page: 129 ident: bib19 article-title: Synthesis of a novel PEPA-substituted polyphosphoramide with high char residues and its performance as an intumescent flame retardant for epoxy resins publication-title: Polym. Degrad. Stabil. – volume: 91 start-page: 1380 year: 2006 end-page: 1386 ident: bib14 article-title: Effect of a novel charring-foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene publication-title: Polym. Degrad. Stabil. – volume: 138 start-page: 101 year: 2018 end-page: 112 ident: bib38 article-title: Covalent assembly of MCM-41 nanospheres on graphene oxide for improving fire retardancy and mechanical property of epoxy resin publication-title: Compos. Part B-Eng. – volume: 135 start-page: 130 year: 2017 end-page: 139 ident: bib40 article-title: Influence of small difference in structure of polyamide charring agents on their flame-retardant efficiency in EVA publication-title: Polym. Degrad. Stabil. – volume: 85 start-page: 368 year: 2011 end-page: 373 ident: bib6 article-title: TG-MS investigation of brominated products from the degradation of brominated flame retardants in high-impact polystyrene publication-title: Chemosphere – volume: 347 start-page: 223 year: 2018 end-page: 232 ident: bib34 article-title: Latent curing epoxy system with excellent thermal stability, flame retardance and dielectric property publication-title: Chem. Eng. J. – volume: 565 start-page: 17 year: 2013 end-page: 26 ident: bib24 article-title: Structure–property relationships of synthetic organophosphorus flame retardant oligomers by thermal analysis publication-title: Thermochim. Acta – volume: 38 start-page: 588 year: 2014 end-page: 598 ident: bib2 article-title: Flame retardant epoxy resin for electrical and electronic applications publication-title: Fire Mater. – volume: 135 start-page: 140 year: 2017 end-page: 151 ident: bib28 article-title: Bisphenol-S bridged penta(anilino)cyclotriphosphazene and its application in epoxy resins: synthesis, thermal degradation, and flame retardancy publication-title: Polym. Degrad. Stabil. – volume: 109 start-page: 345 year: 2018 end-page: 354 ident: bib10 article-title: Poorly-/well-dispersed graphene: abnormal influence on flammability and fire behavior of intumescent flame retardant publication-title: Compos. Part A-Appl. S. – volume: 7 start-page: 3003 year: 2016 end-page: 3012 ident: bib15 article-title: Piperazine-modified ammonium polyphosphate as monocomponent flame-retardant hardener for epoxy resin: flame retardance, curing behavior and mechanical property publication-title: Polym. Chem. – volume: 55 start-page: 5298 year: 2016 end-page: 5305 ident: bib21 article-title: Preparation, thermal degradation, and fire behaviors of intumescent flame retardant polypropylene with a charring agent containing pentaerythritol and triazine publication-title: Ind. Eng. Chem. Res. – volume: 3 start-page: 4300 year: 2010 end-page: 4327 ident: bib4 article-title: Recent developments in halogen free flame retardants for epoxy resins for electrical and electronic applications publication-title: Materials – volume: 149 start-page: 69 year: 2018 end-page: 77 ident: bib27 article-title: Flame-retarding epoxy resin with an efficient P/N/S-containing flame retardant: preparation, thermal stability, and flame retardance publication-title: Polym. Degrad. Stabil. – volume: 289 start-page: 499 year: 2004 ident: bib13 article-title: Recent advances for intumescent polymers publication-title: Macromol. Mater. Eng. – volume: 6 start-page: 30436 year: 2016 end-page: 30444 ident: bib37 article-title: Poly(piperazinyl phosphamide): a novel highly-efficient charring agent for an EVA/APP intumescent flame retardant system publication-title: RSC Adv. – volume: 104 start-page: 2260 year: 2007 end-page: 2269 ident: bib1 article-title: Pyrolysis of epoxy resins and fire behavior of epoxy resin composites flame retarded with 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide additives publication-title: J. Appl. Polym. Sci. – volume: 49 start-page: 1106 year: 2000 end-page: 1114 ident: bib8 article-title: The importance of intumescent systems for fire protection of plastic materials publication-title: Polym. Int. – volume: 108 start-page: 2644 year: 2008 end-page: 2653 ident: bib17 article-title: Polyamide-enhanced flame retardancy of ammonium polyphosphate on epoxy resin publication-title: J. Appl. Polym. Sci. – volume: 97 start-page: 1423 year: 2012 ident: 10.1016/j.polymdegradstab.2019.02.021_bib12 article-title: Intumescence: an effect way to flame retardance and smoke suppression for polystyrene publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2012.05.013 – volume: 343 start-page: 198 year: 2018 ident: 10.1016/j.polymdegradstab.2019.02.021_bib33 article-title: Persistently flame-retardant flexible polyurethane foams by a novel phosphorus-containing polyol publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.03.013 – volume: 95 start-page: 2388 year: 2010 ident: 10.1016/j.polymdegradstab.2019.02.021_bib7 article-title: Study on intumescent flame retarded polystyrene composites with improved flame retardancy publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2010.08.022 – volume: 565 start-page: 17 year: 2013 ident: 10.1016/j.polymdegradstab.2019.02.021_bib24 article-title: Structure–property relationships of synthetic organophosphorus flame retardant oligomers by thermal analysis publication-title: Thermochim. Acta doi: 10.1016/j.tca.2013.04.027 – volume: 118 start-page: 120 year: 2015 ident: 10.1016/j.polymdegradstab.2019.02.021_bib19 article-title: Synthesis of a novel PEPA-substituted polyphosphoramide with high char residues and its performance as an intumescent flame retardant for epoxy resins publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2015.04.023 – volume: 22 start-page: 2480 year: 2011 ident: 10.1016/j.polymdegradstab.2019.02.021_bib20 article-title: Effect of a triazine ring-containing charring agent on fire retardancy and thermal degradation of intumescent flame retardant epoxy resins publication-title: Polym. Adv. Technol. doi: 10.1002/pat.1788 – volume: 100 start-page: 106 year: 2017 ident: 10.1016/j.polymdegradstab.2019.02.021_bib9 article-title: Dual modification of graphene by polymeric flame retardant and Ni (OH)2 nanosheets for improving flame retardancy of polypropylene publication-title: Compos. Part A-Appl. S. doi: 10.1016/j.compositesa.2017.04.012 – volume: 347 start-page: 223 year: 2018 ident: 10.1016/j.polymdegradstab.2019.02.021_bib34 article-title: Latent curing epoxy system with excellent thermal stability, flame retardance and dielectric property publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.097 – volume: 55 start-page: 11520 year: 2016 ident: 10.1016/j.polymdegradstab.2019.02.021_bib26 article-title: Synthesis of a novel P/N/S-containing flame retardant and its application in epoxy resin: thermal property, flame retardance, and pyrolysis behavior publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b03416 – volume: 3 start-page: 4300 year: 2010 ident: 10.1016/j.polymdegradstab.2019.02.021_bib4 article-title: Recent developments in halogen free flame retardants for epoxy resins for electrical and electronic applications publication-title: Materials doi: 10.3390/ma3084300 – volume: 109 start-page: 345 year: 2018 ident: 10.1016/j.polymdegradstab.2019.02.021_bib10 article-title: Poorly-/well-dispersed graphene: abnormal influence on flammability and fire behavior of intumescent flame retardant publication-title: Compos. Part A-Appl. S. doi: 10.1016/j.compositesa.2018.03.022 – volume: 21 start-page: 6621 year: 2011 ident: 10.1016/j.polymdegradstab.2019.02.021_bib23 article-title: Synthesis, structure–property relationships of polyphosphoramides with high char residues publication-title: J. Mater. Chem. doi: 10.1039/c0jm03959d – volume: 3 start-page: 3281 year: 2015 ident: 10.1016/j.polymdegradstab.2019.02.021_bib3 article-title: Renewable cardanol-based surfactant modified layered double hydroxide as a flame retardant for epoxy resin publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b00871 – volume: 54 start-page: 12705 year: 2015 ident: 10.1016/j.polymdegradstab.2019.02.021_bib16 article-title: Influence of cuprous oxide on enhancing the flame retardancy and smoke suppression of epoxy resins containing microencapsulated ammonium polyphosphate publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b03877 – volume: 138 start-page: 101 year: 2018 ident: 10.1016/j.polymdegradstab.2019.02.021_bib38 article-title: Covalent assembly of MCM-41 nanospheres on graphene oxide for improving fire retardancy and mechanical property of epoxy resin publication-title: Compos. Part B-Eng. doi: 10.1016/j.compositesb.2017.11.001 – volume: 135 start-page: 140 year: 2017 ident: 10.1016/j.polymdegradstab.2019.02.021_bib39 article-title: Bisphenol-S bridged penta (anilino)cyclotriphosphazene and its application in epoxy resins: synthesis, thermal degradation, and flame retardancy publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2016.11.023 – volume: 301 start-page: 9 year: 2016 ident: 10.1016/j.polymdegradstab.2019.02.021_bib11 article-title: Flame retardancy of polymers: the role of specific reactions in the condensed phase publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201500250 – volume: 104 start-page: 2260 year: 2007 ident: 10.1016/j.polymdegradstab.2019.02.021_bib1 article-title: Pyrolysis of epoxy resins and fire behavior of epoxy resin composites flame retarded with 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide additives publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.25660 – volume: 85 start-page: 368 year: 2011 ident: 10.1016/j.polymdegradstab.2019.02.021_bib6 article-title: TG-MS investigation of brominated products from the degradation of brominated flame retardants in high-impact polystyrene publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.06.104 – volume: 289 start-page: 499 year: 2004 ident: 10.1016/j.polymdegradstab.2019.02.021_bib13 article-title: Recent advances for intumescent polymers publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.200400007 – volume: 131 start-page: 20 year: 2016 ident: 10.1016/j.polymdegradstab.2019.02.021_bib22 article-title: Synthesis of N-methyl triazine-ethylenediamine copolymer charring foaming agent and its enhancement on flame retardancy and water resistance for polypropylene composites publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2016.07.003 – volume: 5 start-page: 16328 year: 2015 ident: 10.1016/j.polymdegradstab.2019.02.021_bib36 article-title: An efficient method to improve simultaneously the water resistance, flame retardancy and mechanical properties of POE intumescent flame-retardant systems publication-title: RSC Adv. doi: 10.1039/C4RA15971C – volume: 56 start-page: 1245 year: 2017 ident: 10.1016/j.polymdegradstab.2019.02.021_bib25 article-title: Highly effective P−P synergy of a novel DOPO-based flame retardant for epoxy resin publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b04292 – volume: 135 start-page: 140 year: 2017 ident: 10.1016/j.polymdegradstab.2019.02.021_bib28 article-title: Bisphenol-S bridged penta(anilino)cyclotriphosphazene and its application in epoxy resins: synthesis, thermal degradation, and flame retardancy publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2016.11.023 – volume: 6 start-page: 59226 year: 2016 ident: 10.1016/j.polymdegradstab.2019.02.021_bib5 article-title: Impact of halogen-free flame retardant with varied phosphorus chemical surrounding on the properties of diglycidyl ether of bisphenol-A type epoxy resin: synthesis, fire behaviour, flame retardant mechanism and mechanical properties publication-title: RSC Adv. doi: 10.1039/C6RA13168A – volume: 56 start-page: 4649 year: 2017 ident: 10.1016/j.polymdegradstab.2019.02.021_bib29 article-title: Highly flame retardant expanded polystyrene foams from phosphorus-nitrogen-silicon synergistic adhesives publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b05065 – volume: 135 start-page: 130 year: 2017 ident: 10.1016/j.polymdegradstab.2019.02.021_bib40 article-title: Influence of small difference in structure of polyamide charring agents on their flame-retardant efficiency in EVA publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2016.12.002 – volume: 108 start-page: 2644 year: 2008 ident: 10.1016/j.polymdegradstab.2019.02.021_bib17 article-title: Polyamide-enhanced flame retardancy of ammonium polyphosphate on epoxy resin publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.27522 – volume: 55 start-page: 5298 year: 2016 ident: 10.1016/j.polymdegradstab.2019.02.021_bib21 article-title: Preparation, thermal degradation, and fire behaviors of intumescent flame retardant polypropylene with a charring agent containing pentaerythritol and triazine publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b00204 – volume: 31 start-page: 327 year: 2007 ident: 10.1016/j.polymdegradstab.2019.02.021_bib30 article-title: Development of fire-retarded materials—interpretation of cone calorimeter data publication-title: Fire Mater. doi: 10.1002/fam.949 – volume: 91 start-page: 1380 year: 2006 ident: 10.1016/j.polymdegradstab.2019.02.021_bib14 article-title: Effect of a novel charring-foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2005.07.020 – volume: 94 start-page: 2065 year: 2004 ident: 10.1016/j.polymdegradstab.2019.02.021_bib18 article-title: Effect of molecular chain structure of the cured epoxy resin containing hyperbranched (3-hydroxyphenyl) phosphate on expansion and flame retardance publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.21152 – volume: 38 start-page: 588 year: 2014 ident: 10.1016/j.polymdegradstab.2019.02.021_bib2 article-title: Flame retardant epoxy resin for electrical and electronic applications publication-title: Fire Mater. doi: 10.1002/fam.2199 – volume: 154 start-page: 177 year: 2018 ident: 10.1016/j.polymdegradstab.2019.02.021_bib31 article-title: A novel organic-inorganic hybrid SiO2@DPP for the fire retardance of polycarbonate publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2018.05.014 – volume: 7 start-page: 3003 year: 2016 ident: 10.1016/j.polymdegradstab.2019.02.021_bib15 article-title: Piperazine-modified ammonium polyphosphate as monocomponent flame-retardant hardener for epoxy resin: flame retardance, curing behavior and mechanical property publication-title: Polym. Chem. doi: 10.1039/C6PY00434B – volume: 123 start-page: 105 year: 2016 ident: 10.1016/j.polymdegradstab.2019.02.021_bib35 article-title: Synthesis of a novel flame retardant based on cyclotriphosphazene and DOPO groups and its application in epoxy resins publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2015.11.018 – volume: 137 start-page: 138 year: 2017 ident: 10.1016/j.polymdegradstab.2019.02.021_bib32 article-title: Highly efficient flame-retardant epoxy resin with a novel DOPO-based triazole compound: thermal stability, flame retardancy and mechanism publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2017.01.014 – volume: 6 start-page: 30436 year: 2016 ident: 10.1016/j.polymdegradstab.2019.02.021_bib37 article-title: Poly(piperazinyl phosphamide): a novel highly-efficient charring agent for an EVA/APP intumescent flame retardant system publication-title: RSC Adv. doi: 10.1039/C6RA00164E – volume: 49 start-page: 1106 year: 2000 ident: 10.1016/j.polymdegradstab.2019.02.021_bib8 article-title: The importance of intumescent systems for fire protection of plastic materials publication-title: Polym. Int. doi: 10.1002/1097-0126(200010)49:10<1106::AID-PI539>3.0.CO;2-I – volume: 149 start-page: 69 year: 2018 ident: 10.1016/j.polymdegradstab.2019.02.021_bib27 article-title: Flame-retarding epoxy resin with an efficient P/N/S-containing flame retardant: preparation, thermal stability, and flame retardance publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2018.01.026 |
SSID | ssj0000451 |
Score | 2.5994887 |
Snippet | In this work, a novel P/N-containing oligomer poly(piperazine phenylphosphamide) (BPOPA) was synthesized via the polymerization reaction of phenylphosphonic... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 129 |
SubjectTerms | ammonium polyphosphates Chemical analysis Dichlorides epoxides Epoxy resin Epoxy resins Flame retardancy Flame retardants Flame-retardant mechanism Fourier transform infrared spectroscopy Fourier transforms gel chromatography heat Heat release rate Infrared analysis Infrared spectroscopy Liquid chromatography NMR Nuclear magnetic resonance nuclear magnetic resonance spectroscopy P/N-containing oligomer Photoelectrons piperazine polymerization Scanning electron microscopy Smoke Thermal degradation Thermogravimetric analysis thermogravimetry X ray photoelectron spectroscopy |
Title | Influence of a novel P/N-containing oligomer on flame retardancy and thermal degradation of intumescent flame-retardant epoxy resin |
URI | https://dx.doi.org/10.1016/j.polymdegradstab.2019.02.021 https://www.proquest.com/docview/2222922028 https://www.proquest.com/docview/2221022653 |
Volume | 162 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9KBT8eRKvi1VpW0Mf1Lt9Z8MFyWK6Khw8W-rbsbmYlcpccd1dpX3zxH3cmm7RaEApCXpLsbjY7szO_TX47A_AaFS17fJrJNCtogZIUTpYqq6T1ZYzKk3n0vFD8PM9np-nHs-xsB6bDXhimVfa2P9j0zlr3V8b9aI5XdT1mWhLBF1IplXRZM3gHe1qwlr_9eU3z4PgpgcYYSS59F95cc7xW7eJyWXFUhmrDOxTIG6ouhGcc_ctP3bDYnRs6fgQPe_wojkIXH8MONntwbzqkbduDB39EGHwCv06GJCSi9cKIpv2BC_FlPJfMUQ_ZIUS7qL-1S1yLthGeNAQFkxDXFRteYZpKMEhc0lPDO3Sy5OZq8lfLEA4q1JNDva0gXH9xSe1s6uYpnB5_-DqdyT7vgnQEJ7YyjawloFKVlSnRJTareLssSS9DtLlSJvGJwdhOHOE9hyZKbYkmj22BpphYlTyD3aZt8DmIsjBG8VcLpwiqoTJeofWImXOpc7YawbthlLXrg5JzboyFHthn3_UNIWkWkp7EdEQjyK-qr0J0jttWfD-IVP-lbpo8yW2bOBhUQffzfqNjTo8exwTaRvDq6jZpAP-GMQ22510ZXmbnWbL__714Aff5LHCJDmB3uz7HlwSTtvawmweHcOfo5NNs_hu0sRlo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_qFaw-iFbF06or6GO4y8cmWfDBcljubHv40ELflt3NrETukuPuKvbZf9yZfLRaEApCnpLMZrMzO_PbZHZ-AO9R0bLHJzJIZEYLlDhzQa5kEVifR6g8uUfPC8XTeTo9T75cyIsdmPR7YTitsvP9rU9vvHV3ZtSN5mhVliNOSyL4Qial4oY14x7scnUqOYDdw9nxdH7jkBPZ0hImYcAC9-HDTZrXql5cLQsuzFBseJMCBUTVVPGMwn-FqltOu4lER4_hUQchxWHbyyewg9U-7E165rZ9ePhHkcGn8GvW85CI2gsjqvoHLsTX0TzgNPWWIELUi_JbvcS1qCvhyUhQcB7iumDfK0xVCMaJS3pq-w6NOrm5kkLWsq0I1coFvdxWELT_eUXtbMrqGZwffT6bTIOOeiFwhCi2QRJaS1ilyAuTo4utLHjHLClQItpUKRP72GBkx44gn0MTJjZHk0Y2Q5ONrYqfw6CqK3wBIs-MUfzhwilCa6iMV2g9onQucc4WQ_jYj7J2XV1ypsdY6D4B7bu-pSTNStLjiI5wCOm1-Kot0HFXwU-9SvVfFqcpmNy1iYPeFHQ39Tc6Yob0KCLcNoR315fJAvhPjKmwvmzu4ZV2KuOX_9-Lt7A3PTs90Sez-fEreMBX2tSiAxhs15f4mlDT1r7pZsVvNSocGQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+a+novel+P%2FN-containing+oligomer+on+flame+retardancy+and+thermal+degradation+of+intumescent+flame-retardant+epoxy+resin&rft.jtitle=Polymer+degradation+and+stability&rft.au=Zhu%2C+Zong-Min&rft.au=Wang%2C+Luo-Xin&rft.au=Dong%2C+Liang-Ping&rft.date=2019-04-01&rft.pub=Elsevier+Ltd&rft.issn=0141-3910&rft.eissn=1873-2321&rft.volume=162&rft.spage=129&rft.epage=137&rft_id=info:doi/10.1016%2Fj.polymdegradstab.2019.02.021&rft.externalDocID=S0141391019300746 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-3910&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-3910&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-3910&client=summon |