A multifunctional nanoprobe for targeting tumors and mitochondria with singlet oxygen generation and monitoring mitochondrion pH changes in cancer cells by ratiometric fluorescence imaging

Mitochondria are the main sites of cell metabolism. Even minor pH changes may lead to mitochondrial dysfunction and promote cell apoptosis. Mitochondrion-targeting photosensitizers can produce singlet oxygen in the mitochondria. In tumor photodynamic therapy (PDT), tumor cells are killed through sin...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 11; no. 14; pp. 3636 - 3643
Main Authors Zhao, Jingjin, Zou, Mengbing, Huang, Mengjiao, Zhang, Liangliang, Yang, Keqin, Zhao, Shulin, Liu, Yi-Ming
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 14.04.2020
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mitochondria are the main sites of cell metabolism. Even minor pH changes may lead to mitochondrial dysfunction and promote cell apoptosis. Mitochondrion-targeting photosensitizers can produce singlet oxygen in the mitochondria. In tumor photodynamic therapy (PDT), tumor cells are killed through singlet oxygen generation by photosensitizers, and optimally the process of cell apoptosis can be real-time monitored by monitoring the changes of mitochondrial pH value. To this end, a multifunctional nanoprobe that is not only able to produce singlet oxygen in mitochondria but also able to detect the changes in mitochondrial pH value has been developed in this work. The probe is a single-excited dual-emission biomass quantum dot (BQD-FA) prepared from Osmanthus leaves with folic acid (FA) and polyoxyethylene diamine as modifiers. The BQD-FAs can target tumor cells and mitochondria, and produce singlet oxygen in the mitochondria under near-infrared laser irradiation ( λ em = 660 nm). On the other hand, in the pH range of 3-8, the fluorescence intensity ratio of BQD-FAs at wavelengths 490 nm and 650 nm showed a good linear relationship with the pH value of mitochondria. The ratiometric fluorescence imaging of mitochondria using the prepared BQD-FAs showed that when the cells were chemically stimulated with chlorphenizone, the mitochondrial pH dropped from 7.9 to 7.2 within 15 min. Based on these characteristics, we envision that the prepared multifunctional nanoprobe will be of high significance in the biomedical research of mitochondria and PDT of tumors. A multifunctional nanoprobe with singlet oxygen generation that can target tumors and mitochondria was developed for photodynamic therapy of tumors and monitoring mitochondrion pH changes in cancer cells by ratiometric fluorescence imaging.
AbstractList Mitochondria are the main sites of cell metabolism. Even minor pH changes may lead to mitochondrial dysfunction and promote cell apoptosis. Mitochondrion-targeting photosensitizers can produce singlet oxygen in the mitochondria. In tumor photodynamic therapy (PDT), tumor cells are killed through singlet oxygen generation by photosensitizers, and optimally the process of cell apoptosis can be real-time monitored by monitoring the changes of mitochondrial pH value. To this end, a multifunctional nanoprobe that is not only able to produce singlet oxygen in mitochondria but also able to detect the changes in mitochondrial pH value has been developed in this work. The probe is a single-excited dual-emission biomass quantum dot (BQD-FA) prepared from Osmanthus leaves with folic acid (FA) and polyoxyethylene diamine as modifiers. The BQD-FAs can target tumor cells and mitochondria, and produce singlet oxygen in the mitochondria under near-infrared laser irradiation ( λ em = 660 nm). On the other hand, in the pH range of 3-8, the fluorescence intensity ratio of BQD-FAs at wavelengths 490 nm and 650 nm showed a good linear relationship with the pH value of mitochondria. The ratiometric fluorescence imaging of mitochondria using the prepared BQD-FAs showed that when the cells were chemically stimulated with chlorphenizone, the mitochondrial pH dropped from 7.9 to 7.2 within 15 min. Based on these characteristics, we envision that the prepared multifunctional nanoprobe will be of high significance in the biomedical research of mitochondria and PDT of tumors. A multifunctional nanoprobe with singlet oxygen generation that can target tumors and mitochondria was developed for photodynamic therapy of tumors and monitoring mitochondrion pH changes in cancer cells by ratiometric fluorescence imaging.
Mitochondria are the main sites of cell metabolism. Even minor pH changes may lead to mitochondrial dysfunction and promote cell apoptosis. Mitochondrion-targeting photosensitizers can produce singlet oxygen in the mitochondria. In tumor photodynamic therapy (PDT), tumor cells are killed through singlet oxygen generation by photosensitizers, and optimally the process of cell apoptosis can be real-time monitored by monitoring the changes of mitochondrial pH value. To this end, a multifunctional nanoprobe that is not only able to produce singlet oxygen in mitochondria but also able to detect the changes in mitochondrial pH value has been developed in this work. The probe is a single-excited dual-emission biomass quantum dot (BQD-FA) prepared from Osmanthus leaves with folic acid (FA) and polyoxyethylene diamine as modifiers. The BQD-FAs can target tumor cells and mitochondria, and produce singlet oxygen in the mitochondria under near-infrared laser irradiation ( λ em = 660 nm). On the other hand, in the pH range of 3–8, the fluorescence intensity ratio of BQD-FAs at wavelengths 490 nm and 650 nm showed a good linear relationship with the pH value of mitochondria. The ratiometric fluorescence imaging of mitochondria using the prepared BQD-FAs showed that when the cells were chemically stimulated with chlorphenizone, the mitochondrial pH dropped from 7.9 to 7.2 within 15 min. Based on these characteristics, we envision that the prepared multifunctional nanoprobe will be of high significance in the biomedical research of mitochondria and PDT of tumors.
Mitochondria are the main sites of cell metabolism. Even minor pH changes may lead to mitochondrial dysfunction and promote cell apoptosis. Mitochondrion-targeting photosensitizers can produce singlet oxygen in the mitochondria. In tumor photodynamic therapy (PDT), tumor cells are killed through singlet oxygen generation by photosensitizers, and optimally the process of cell apoptosis can be real-time monitored by monitoring the changes of mitochondrial pH value. To this end, a multifunctional nanoprobe that is not only able to produce singlet oxygen in mitochondria but also able to detect the changes in mitochondrial pH value has been developed in this work. The probe is a single-excited dual-emission biomass quantum dot (BQD-FA) prepared from Osmanthus leaves with folic acid (FA) and polyoxyethylene diamine as modifiers. The BQD-FAs can target tumor cells and mitochondria, and produce singlet oxygen in the mitochondria under near-infrared laser irradiation (λ em = 660 nm). On the other hand, in the pH range of 3-8, the fluorescence intensity ratio of BQD-FAs at wavelengths 490 nm and 650 nm showed a good linear relationship with the pH value of mitochondria. The ratiometric fluorescence imaging of mitochondria using the prepared BQD-FAs showed that when the cells were chemically stimulated with chlorphenizone, the mitochondrial pH dropped from 7.9 to 7.2 within 15 min. Based on these characteristics, we envision that the prepared multifunctional nanoprobe will be of high significance in the biomedical research of mitochondria and PDT of tumors.Mitochondria are the main sites of cell metabolism. Even minor pH changes may lead to mitochondrial dysfunction and promote cell apoptosis. Mitochondrion-targeting photosensitizers can produce singlet oxygen in the mitochondria. In tumor photodynamic therapy (PDT), tumor cells are killed through singlet oxygen generation by photosensitizers, and optimally the process of cell apoptosis can be real-time monitored by monitoring the changes of mitochondrial pH value. To this end, a multifunctional nanoprobe that is not only able to produce singlet oxygen in mitochondria but also able to detect the changes in mitochondrial pH value has been developed in this work. The probe is a single-excited dual-emission biomass quantum dot (BQD-FA) prepared from Osmanthus leaves with folic acid (FA) and polyoxyethylene diamine as modifiers. The BQD-FAs can target tumor cells and mitochondria, and produce singlet oxygen in the mitochondria under near-infrared laser irradiation (λ em = 660 nm). On the other hand, in the pH range of 3-8, the fluorescence intensity ratio of BQD-FAs at wavelengths 490 nm and 650 nm showed a good linear relationship with the pH value of mitochondria. The ratiometric fluorescence imaging of mitochondria using the prepared BQD-FAs showed that when the cells were chemically stimulated with chlorphenizone, the mitochondrial pH dropped from 7.9 to 7.2 within 15 min. Based on these characteristics, we envision that the prepared multifunctional nanoprobe will be of high significance in the biomedical research of mitochondria and PDT of tumors.
Mitochondria are the main sites of cell metabolism. Even minor pH changes may lead to mitochondrial dysfunction and promote cell apoptosis. Mitochondrion-targeting photosensitizers can produce singlet oxygen in the mitochondria. In tumor photodynamic therapy (PDT), tumor cells are killed through singlet oxygen generation by photosensitizers, and optimally the process of cell apoptosis can be real-time monitored by monitoring the changes of mitochondrial pH value. To this end, a multifunctional nanoprobe that is not only able to produce singlet oxygen in mitochondria but also able to detect the changes in mitochondrial pH value has been developed in this work. The probe is a single-excited dual-emission biomass quantum dot (BQD-FA) prepared from Osmanthus leaves with folic acid (FA) and polyoxyethylene diamine as modifiers. The BQD-FAs can target tumor cells and mitochondria, and produce singlet oxygen in the mitochondria under near-infrared laser irradiation (λem = 660 nm). On the other hand, in the pH range of 3–8, the fluorescence intensity ratio of BQD-FAs at wavelengths 490 nm and 650 nm showed a good linear relationship with the pH value of mitochondria. The ratiometric fluorescence imaging of mitochondria using the prepared BQD-FAs showed that when the cells were chemically stimulated with chlorphenizone, the mitochondrial pH dropped from 7.9 to 7.2 within 15 min. Based on these characteristics, we envision that the prepared multifunctional nanoprobe will be of high significance in the biomedical research of mitochondria and PDT of tumors.
Author Yang, Keqin
Zhang, Liangliang
Zhao, Jingjin
Zhao, Shulin
Zou, Mengbing
Huang, Mengjiao
Liu, Yi-Ming
AuthorAffiliation Department of Chemistry and Biochemistry
State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
Jackson State University
Guangxi Normal University
AuthorAffiliation_xml – name: State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
– name: Jackson State University
– name: Guangxi Normal University
– name: Department of Chemistry and Biochemistry
Author_xml – sequence: 1
  givenname: Jingjin
  surname: Zhao
  fullname: Zhao, Jingjin
– sequence: 2
  givenname: Mengbing
  surname: Zou
  fullname: Zou, Mengbing
– sequence: 3
  givenname: Mengjiao
  surname: Huang
  fullname: Huang, Mengjiao
– sequence: 4
  givenname: Liangliang
  surname: Zhang
  fullname: Zhang, Liangliang
– sequence: 5
  givenname: Keqin
  surname: Yang
  fullname: Yang, Keqin
– sequence: 6
  givenname: Shulin
  surname: Zhao
  fullname: Zhao, Shulin
– sequence: 7
  givenname: Yi-Ming
  surname: Liu
  fullname: Liu, Yi-Ming
BookMark eNp9klGL1DAUhYOsuOu6L74LEV8WYfQmadL2RRhm1RUWfFCfQ5qmnSxtUpNUnf_mjzOdWUZdxEBI4Hz3cJJ7H6MT551B6CmBVwRY_bqFqAFKXqoH6IxCQVaCs_rkeKdwii5ivIW8GCOclo_QKSugLoDTM_Rzjcd5SLabnU7WOzVgp5yfgm8M7nzASYXeJOt6nObRh4iVa_Fok9db79pgFf5u0xbHTAwmYf9j1xuH8zZBLYYH3rtcERaXP0qzOF1jvVWuNxFbh7Vy2gSszTBE3Ozw3mE0KViNu2H2wURtMoLtqPps9gQ97NQQzcXdeY6-vHv7eXO9uvn4_sNmfbPSBSNpxRoqWkEU4wIIF7rWvO4KogUXpgJWtqQBJggpeNUKzhtSag5lVxWigq5oKTtHbw6-09yMps0ZUlCDnELOEXbSKyv_Vpzdyt5_k1X-74IsBpd3BsF_nU1McrRxeaZyxs9RUs4q4FBXJKMv7qG3fg65L5liVUkFJUxk6uWB0sHHGEx3DENALnMhr-DTZj8X6wzDPVjbtG9ODmuHf5c8O5SEqI_Wv0ct68__p8up7dgv7GfUvg
CitedBy_id crossref_primary_10_1016_j_optmat_2022_113415
crossref_primary_10_1016_j_foodchem_2022_134346
crossref_primary_10_1002_adfm_202104026
crossref_primary_10_1016_j_molstruc_2024_137903
crossref_primary_10_1039_D1RA08092J
crossref_primary_10_1002_asia_202200161
crossref_primary_10_1002_ppsc_202200017
crossref_primary_10_1166_jbn_2021_3167
crossref_primary_10_1021_acs_iecr_4c03757
crossref_primary_10_1016_j_optmat_2023_113630
crossref_primary_10_1016_j_cclet_2022_03_059
crossref_primary_10_1021_acsabm_3c00541
crossref_primary_10_1007_s43630_022_00250_y
crossref_primary_10_1016_j_cclet_2023_108423
crossref_primary_10_1016_j_ijbiomac_2020_12_019
crossref_primary_10_1002_pol_20210840
crossref_primary_10_1039_D1DT03042F
crossref_primary_10_1002_marc_202200317
crossref_primary_10_1016_j_theriogenology_2024_05_010
crossref_primary_10_1016_j_bioorg_2025_108214
crossref_primary_10_1016_j_bioadv_2022_212756
crossref_primary_10_1016_j_apmt_2023_102028
crossref_primary_10_1080_1536383X_2020_1852217
crossref_primary_10_1039_D0AN02006K
crossref_primary_10_1016_j_snb_2024_135523
crossref_primary_10_1016_j_saa_2023_123572
crossref_primary_10_1021_acssuschemeng_0c05352
crossref_primary_10_1016_j_biopha_2024_117520
crossref_primary_10_1016_j_talanta_2021_122475
crossref_primary_10_1007_s00604_022_05259_9
crossref_primary_10_1039_D1TB02738G
crossref_primary_10_1007_s12274_021_3579_5
crossref_primary_10_1002_asia_202401098
crossref_primary_10_1039_D3CS00227F
crossref_primary_10_1016_j_jphotochemrev_2023_100650
crossref_primary_10_1016_j_snb_2021_130666
crossref_primary_10_1039_D1TB02598H
crossref_primary_10_1016_j_dyepig_2021_109549
crossref_primary_10_1021_acsabm_1c00404
Cites_doi 10.1002/adfm.201600159
10.1021/jacs.8b08457
10.1074/jbc.M702841200
10.1002/anie.200906623
10.1039/B915149B
10.1021/ac3012126
10.1073/pnas.95.12.6803
10.1021/acs.analchem.7b03154
10.1002/anie.201510721
10.1074/jbc.274.41.29294
10.1021/jacs.6b10508
10.1039/c2cc33796g
10.1002/anie.201501193
10.1002/ange.201109089
10.1002/anie.201204381
10.1039/C7NR03658B
10.1002/anie.201708005
10.1039/C7NR06764J
10.1074/jbc.M306766200
10.1126/science.283.5407.1488
10.1038/35014006
10.1016/j.biomaterials.2012.01.052
10.1002/anie.201604130
10.1016/j.biomaterials.2015.02.113
10.1038/nature12985
10.1039/C4SC04021J
10.1002/anie.201408897
10.1038/srep03564
10.1021/ar700135m
10.1021/jacs.6b06398
10.1021/ja506301n
10.1039/C2TB00189F
10.1039/C8CC05385E
10.1021/jacs.6b10146
10.1021/ja904843x
10.1021/acs.analchem.7b01443
10.1021/acssuschemeng.7b00393
10.1021/ez400137j
10.1002/adtp.201900011
10.1038/nrc1071
10.1038/nature12327
10.1039/C5SC03708E
10.1038/74994
10.1016/j.ccr.2008.05.005
10.1021/nn2046373
10.1038/ncomms5596
10.1007/s11033-009-9645-9
10.1021/ac503975x
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
This journal is © The Royal Society of Chemistry.
This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
– notice: This journal is © The Royal Society of Chemistry.
– notice: This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/d0sc00757a
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 3643
ExternalDocumentID PMC8152412
10_1039_D0SC00757A
d0sc00757a
GrantInformation_xml – fundername: ;
  grantid: 201874030
– fundername: ;
  grantid: GM089557
– fundername: ;
  grantid: 2017GXNSFFA198014
GroupedDBID 0-7
0R
705
7~J
AAGNR
AAIWI
AAPBV
ABGFH
ACGFS
ACIWK
ADBBV
ADMRA
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CKLOX
D0L
EE0
EF-
F5P
GROUPED_DOAJ
HYE
HZ
H~N
JG
O-G
O9-
OK1
R7C
R7D
RCNCU
ROYLF
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
SMJ
0R~
53G
AAEMU
AAFWJ
AAJAE
AARTK
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGEGJ
AGRSR
AHGCF
AKBGW
ANUXI
APEMP
CITATION
H13
HZ~
PGMZT
RAOCF
RNS
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c431t-3b26d61a3560156c9c59f41c656e8037d1b03611458d655b17c507f84680f4d23
ISSN 2041-6520
IngestDate Thu Aug 21 18:36:35 EDT 2025
Fri Jul 11 08:08:17 EDT 2025
Fri Jul 25 02:50:03 EDT 2025
Tue Jul 01 03:46:36 EDT 2025
Thu Apr 24 22:54:21 EDT 2025
Sat Jan 08 03:36:53 EST 2022
Wed Nov 11 00:36:14 EST 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c431t-3b26d61a3560156c9c59f41c656e8037d1b03611458d655b17c507f84680f4d23
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/d0sc00757a
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0003-1194-7665
0000-0002-2560-042X
0000-0003-1108-8258
0000-0002-7760-9565
OpenAccessLink http://dx.doi.org/10.1039/d0sc00757a
PMID 34094052
PQID 2387262136
PQPubID 2047492
PageCount 8
ParticipantIDs proquest_journals_2387262136
crossref_primary_10_1039_D0SC00757A
rsc_primary_d0sc00757a
proquest_miscellaneous_2538050981
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8152412
crossref_citationtrail_10_1039_D0SC00757A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-14
PublicationDateYYYYMMDD 2020-04-14
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-14
  day: 14
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationYear 2020
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Yang (D0SC00757A-(cit9)/*[position()=1]) 2015; 87
Wang (D0SC00757A-(cit48)/*[position()=1]) 2012; 51
Hua (D0SC00757A-(cit35)/*[position()=1]) 2017; 9
Hutton (D0SC00757A-(cit42)/*[position()=1]) 2016; 138
Lv (D0SC00757A-(cit22)/*[position()=1]) 2016; 55
Wei (D0SC00757A-(cit30)/*[position()=1]) 2015; 4
Wang (D0SC00757A-(cit40)/*[position()=1]) 2012; 51
Baker (D0SC00757A-(cit49)/*[position()=1]) 2010; 49
Fang (D0SC00757A-(cit33)/*[position()=1]) 2012; 6
Xu (D0SC00757A-(cit44)/*[position()=1]) 2016; 55
Saraste (D0SC00757A-(cit1)/*[position()=1]) 1999; 283
Kroemer (D0SC00757A-(cit3)/*[position()=1]) 2000; 6
Llopis (D0SC00757A-(cit4)/*[position()=1]) 1998; 95
Jiang (D0SC00757A-(cit29)/*[position()=1]) 2015; 54
Gao (D0SC00757A-(cit34)/*[position()=1]) 2017; 9
Aon (D0SC00757A-(cit20)/*[position()=1]) 2007; 282
Jia (D0SC00757A-(cit26)/*[position()=1]) 2016; 138
Zhu (D0SC00757A-(cit31)/*[position()=1]) 2012; 124
Cheng (D0SC00757A-(cit24)/*[position()=1]) 2017; 139
Hu (D0SC00757A-(cit47)/*[position()=1]) 2013; 1
Ma (D0SC00757A-(cit15)/*[position()=1]) 2017; 56
Chen (D0SC00757A-(cit11)/*[position()=1]) 2015; 6
Sarkar (D0SC00757A-(cit12)/*[position()=1]) 2016; 7
Sahu (D0SC00757A-(cit37)/*[position()=1]) 2012; 48
Chen (D0SC00757A-(cit45)/*[position()=1]) 2013; 500
Sedgwick (D0SC00757A-(cit25)/*[position()=1]) 2018; 140
Liu (D0SC00757A-(cit46)/*[position()=1]) 2019; 2
Dolmans (D0SC00757A-(cit13)/*[position()=1]) 2003; 3
Kroemer (D0SC00757A-(cit17)/*[position()=1]) 2008; 13
Nomura (D0SC00757A-(cit19)/*[position()=1]) 1999; 274
Wang (D0SC00757A-(cit50)/*[position()=1]) 2010; 37
Liu (D0SC00757A-(cit36)/*[position()=1]) 2012; 33
Hu (D0SC00757A-(cit38)/*[position()=1]) 2017; 5
Zhao (D0SC00757A-(cit39)/*[position()=1]) 2017; 89
Sun (D0SC00757A-(cit10)/*[position()=1]) 2017; 89
Abad (D0SC00757A-(cit5)/*[position()=1]) 2004; 279
Wu (D0SC00757A-(cit8)/*[position()=1]) 2015; 53
Luo (D0SC00757A-(cit16)/*[position()=1]) 2016; 26
Baker (D0SC00757A-(cit28)/*[position()=1]) 2010; 49
Friedman (D0SC00757A-(cit2)/*[position()=1]) 2014; 505
Lee (D0SC00757A-(cit7)/*[position()=1]) 2014; 136
Ethirajan (D0SC00757A-(cit14)/*[position()=1]) 2011; 40
Ge (D0SC00757A-(cit41)/*[position()=1]) 2014; 5
Hu (D0SC00757A-(cit21)/*[position()=1]) 2014; 53
Yang (D0SC00757A-(cit27)/*[position()=1]) 2009; 131
Lin (D0SC00757A-(cit23)/*[position()=1]) 2018; 54
Hoye (D0SC00757A-(cit18)/*[position()=1]) 2008; 41
Dong (D0SC00757A-(cit32)/*[position()=1]) 2012; 84
Matsuyama (D0SC00757A-(cit6)/*[position()=1]) 2000; 2
Zhang (D0SC00757A-(cit43)/*[position()=1]) 2014; 1
References_xml – volume: 26
  start-page: 2826
  year: 2016
  ident: D0SC00757A-(cit16)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600159
– volume: 140
  start-page: 14267
  year: 2018
  ident: D0SC00757A-(cit25)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08457
– volume: 282
  start-page: 21889
  year: 2007
  ident: D0SC00757A-(cit20)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M702841200
– volume: 49
  start-page: 6726
  year: 2010
  ident: D0SC00757A-(cit28)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200906623
– volume: 40
  start-page: 340
  year: 2011
  ident: D0SC00757A-(cit14)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B915149B
– volume: 84
  start-page: 6220
  year: 2012
  ident: D0SC00757A-(cit32)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac3012126
– volume: 95
  start-page: 6803
  year: 1998
  ident: D0SC00757A-(cit4)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.95.12.6803
– volume: 89
  start-page: 11703
  issue: 21
  year: 2017
  ident: D0SC00757A-(cit10)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b03154
– volume: 55
  start-page: 13658
  year: 2016
  ident: D0SC00757A-(cit44)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201510721
– volume: 274
  start-page: 29294
  year: 1999
  ident: D0SC00757A-(cit19)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.41.29294
– volume: 139
  start-page: 285
  year: 2017
  ident: D0SC00757A-(cit24)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b10508
– volume: 48
  start-page: 8835
  year: 2012
  ident: D0SC00757A-(cit37)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc33796g
– volume: 54
  start-page: 5360
  year: 2015
  ident: D0SC00757A-(cit29)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201501193
– volume: 124
  start-page: 7297
  year: 2012
  ident: D0SC00757A-(cit31)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201109089
– volume: 51
  start-page: 9297
  year: 2012
  ident: D0SC00757A-(cit40)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201204381
– volume: 9
  start-page: 10948
  year: 2017
  ident: D0SC00757A-(cit35)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR03658B
– volume: 56
  start-page: 13752
  year: 2017
  ident: D0SC00757A-(cit15)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201708005
– volume: 9
  start-page: 18368
  year: 2017
  ident: D0SC00757A-(cit34)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR06764J
– volume: 279
  start-page: 11521
  year: 2004
  ident: D0SC00757A-(cit5)/*[position()=1]
  publication-title: Biol. Chem.
  doi: 10.1074/jbc.M306766200
– volume: 283
  start-page: 1488
  year: 1999
  ident: D0SC00757A-(cit1)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.283.5407.1488
– volume: 2
  start-page: 318
  year: 2000
  ident: D0SC00757A-(cit6)/*[position()=1]
  publication-title: Nat. Cell Biol.
  doi: 10.1038/35014006
– volume: 33
  start-page: 3604
  year: 2012
  ident: D0SC00757A-(cit36)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.01.052
– volume: 55
  start-page: 9947
  year: 2016
  ident: D0SC00757A-(cit22)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201604130
– volume: 53
  start-page: 669
  year: 2015
  ident: D0SC00757A-(cit8)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.02.113
– volume: 505
  start-page: 335
  year: 2014
  ident: D0SC00757A-(cit2)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature12985
– volume: 6
  start-page: 3187
  year: 2015
  ident: D0SC00757A-(cit11)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC04021J
– volume: 53
  start-page: 14225
  year: 2014
  ident: D0SC00757A-(cit21)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201408897
– volume: 4
  start-page: 3564
  year: 2015
  ident: D0SC00757A-(cit30)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep03564
– volume: 49
  start-page: 6726
  year: 2010
  ident: D0SC00757A-(cit49)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200906623
– volume: 41
  start-page: 87
  year: 2008
  ident: D0SC00757A-(cit18)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar700135m
– volume: 138
  start-page: 10778
  year: 2016
  ident: D0SC00757A-(cit26)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b06398
– volume: 136
  start-page: 14136
  year: 2014
  ident: D0SC00757A-(cit7)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja506301n
– volume: 1
  start-page: 39
  year: 2013
  ident: D0SC00757A-(cit47)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C2TB00189F
– volume: 54
  start-page: 9071
  year: 2018
  ident: D0SC00757A-(cit23)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC05385E
– volume: 138
  start-page: 16722
  year: 2016
  ident: D0SC00757A-(cit42)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b10146
– volume: 131
  start-page: 11308
  year: 2009
  ident: D0SC00757A-(cit27)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja904843x
– volume: 89
  start-page: 8044
  year: 2017
  ident: D0SC00757A-(cit39)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b01443
– volume: 5
  start-page: 4992
  year: 2017
  ident: D0SC00757A-(cit38)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00393
– volume: 1
  start-page: 87
  year: 2014
  ident: D0SC00757A-(cit43)/*[position()=1]
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/ez400137j
– volume: 2
  start-page: 1900011
  year: 2019
  ident: D0SC00757A-(cit46)/*[position()=1]
  publication-title: Adv. Ther.
  doi: 10.1002/adtp.201900011
– volume: 3
  start-page: 380
  year: 2003
  ident: D0SC00757A-(cit13)/*[position()=1]
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1071
– volume: 500
  start-page: 486
  year: 2013
  ident: D0SC00757A-(cit45)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature12327
– volume: 7
  start-page: 766
  year: 2016
  ident: D0SC00757A-(cit12)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC03708E
– volume: 6
  start-page: 513
  year: 2000
  ident: D0SC00757A-(cit3)/*[position()=1]
  publication-title: Nat. Med.
  doi: 10.1038/74994
– volume: 13
  start-page: 472
  year: 2008
  ident: D0SC00757A-(cit17)/*[position()=1]
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2008.05.005
– volume: 6
  start-page: 400
  year: 2012
  ident: D0SC00757A-(cit33)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn2046373
– volume: 51
  start-page: 9297
  year: 2012
  ident: D0SC00757A-(cit48)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201204381
– volume: 5
  start-page: 4596
  year: 2014
  ident: D0SC00757A-(cit41)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5596
– volume: 37
  start-page: 1971
  year: 2010
  ident: D0SC00757A-(cit50)/*[position()=1]
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/s11033-009-9645-9
– volume: 87
  start-page: 3678
  year: 2015
  ident: D0SC00757A-(cit9)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac503975x
SSID ssj0000331527
Score 2.4739325
Snippet Mitochondria are the main sites of cell metabolism. Even minor pH changes may lead to mitochondrial dysfunction and promote cell apoptosis....
SourceID pubmedcentral
proquest
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3636
SubjectTerms Apoptosis
Change detection
Chemistry
Diamines
Fluorescence
Folic acid
Infrared lasers
Mitochondria
Monitoring
Photodynamic therapy
Polyoxyethylene
Quantum dots
Singlet oxygen
Tumors
Title A multifunctional nanoprobe for targeting tumors and mitochondria with singlet oxygen generation and monitoring mitochondrion pH changes in cancer cells by ratiometric fluorescence imaging
URI https://www.proquest.com/docview/2387262136
https://www.proquest.com/docview/2538050981
https://pubmed.ncbi.nlm.nih.gov/PMC8152412
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l6QEuVXlUuJRqEVxQZLC969cxCqAIAQdoUOjF8mOdpmrsKIkl2t_Gf-AvMfvwetMGCbhElme8tjLf7s7MzgOhl06ZMRY7zE4ppWCgpHCVl5ntEdCNQwoUkcX_6XMwntAPU3_a6_0yopaaTfY6v9mZV_I_UoV7IFeeJfsPktWDwg24BvnCL0gYfv9KxkMZD8j3JuXSq9Kq5j1iZClvGeYtEqKaBe-qw73kC5jDsOZVBXygilAHDhDfoP5xDa_iTZWZwoXgF7NehOkZjwJxOVZpwyKkNufwWQ34QcCa67RihAXv15UPyqumXom6UbCKzBeiMZKpFeuqBW2SET9abpPJDF_F-UUqD4rg-cu5hvV53Qi_LqtmWTuyQKryhXPC5Tyt7zjJP8LcmHE_z8x0fng8EtWWSadyjfQc6tqB78mjHWbekzWS9CLvmmCmxpJNAhIY2z8JZNmoO1uLQ3hl1sJZ51zNCo0NVIc1dsQ9tO-B3eL10f6Xb5Ppd-32cwhRjYT1p7dFc0n8phtgW03qbJ_bkbt7q7ZRjVCIzg7RgbJk8FDC8gHqseohujdqGwg-Qj-H-BY8sYYnBnhiDU8s4YkBbtiEJ-bwxAqeWMITd_CU_BqeeAueeDnGCp54XmEJTyzgibNrbMATm_DECp6P0eT9u7PR2FbNQuwcdOCNTTIvKAI3JdzF4Ad5nPtxSd0c7BUWOSQs3AyUNbD-_agIfD9zwxxMoRLU78gpaeGRI9Sv6oo9QZjxdOvChWWK-DQlbhoTQqI0A2MoI2FELfSqlU2Sq0r6vKHLVSIiOkicvHW-joQchxZ6oXmXsn7MTq6TVsSJWl_WCSjToRd4Lgks9FyTQYb8r0orVjfAA_oKr-AUuRYKt6Ch38brx29TqvmFqCMfARKp61noCECk-TsMWuh4NyFZFuXxn556iu53M_UE9Terhj0DxX2TnQqH16maEr8BM3v8_A
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multifunctional+nanoprobe+for+targeting+tumors+and+mitochondria+with+singlet+oxygen+generation+and+monitoring+mitochondrion+pH+changes+in+cancer+cells+by+ratiometric+fluorescence+imaging&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Zhao%2C+Jingjin&rft.au=Zou%2C+Mengbing&rft.au=Huang%2C+Mengjiao&rft.au=Zhang%2C+Liangliang&rft.date=2020-04-14&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=11&rft.issue=14&rft.spage=3636&rft.epage=3643&rft_id=info:doi/10.1039%2Fd0sc00757a&rft.externalDocID=d0sc00757a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon