A multifunctional nanoprobe for targeting tumors and mitochondria with singlet oxygen generation and monitoring mitochondrion pH changes in cancer cells by ratiometric fluorescence imaging
Mitochondria are the main sites of cell metabolism. Even minor pH changes may lead to mitochondrial dysfunction and promote cell apoptosis. Mitochondrion-targeting photosensitizers can produce singlet oxygen in the mitochondria. In tumor photodynamic therapy (PDT), tumor cells are killed through sin...
Saved in:
Published in | Chemical science (Cambridge) Vol. 11; no. 14; pp. 3636 - 3643 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
14.04.2020
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mitochondria are the main sites of cell metabolism. Even minor pH changes may lead to mitochondrial dysfunction and promote cell apoptosis. Mitochondrion-targeting photosensitizers can produce singlet oxygen in the mitochondria. In tumor photodynamic therapy (PDT), tumor cells are killed through singlet oxygen generation by photosensitizers, and optimally the process of cell apoptosis can be real-time monitored by monitoring the changes of mitochondrial pH value. To this end, a multifunctional nanoprobe that is not only able to produce singlet oxygen in mitochondria but also able to detect the changes in mitochondrial pH value has been developed in this work. The probe is a single-excited dual-emission biomass quantum dot (BQD-FA) prepared from
Osmanthus
leaves with folic acid (FA) and polyoxyethylene diamine as modifiers. The BQD-FAs can target tumor cells and mitochondria, and produce singlet oxygen in the mitochondria under near-infrared laser irradiation (
λ
em
= 660 nm). On the other hand, in the pH range of 3-8, the fluorescence intensity ratio of BQD-FAs at wavelengths 490 nm and 650 nm showed a good linear relationship with the pH value of mitochondria. The ratiometric fluorescence imaging of mitochondria using the prepared BQD-FAs showed that when the cells were chemically stimulated with chlorphenizone, the mitochondrial pH dropped from 7.9 to 7.2 within 15 min. Based on these characteristics, we envision that the prepared multifunctional nanoprobe will be of high significance in the biomedical research of mitochondria and PDT of tumors.
A multifunctional nanoprobe with singlet oxygen generation that can target tumors and mitochondria was developed for photodynamic therapy of tumors and monitoring mitochondrion pH changes in cancer cells by ratiometric fluorescence imaging. |
---|---|
AbstractList | Mitochondria are the main sites of cell metabolism. Even minor pH changes may lead to mitochondrial dysfunction and promote cell apoptosis. Mitochondrion-targeting photosensitizers can produce singlet oxygen in the mitochondria. In tumor photodynamic therapy (PDT), tumor cells are killed through singlet oxygen generation by photosensitizers, and optimally the process of cell apoptosis can be real-time monitored by monitoring the changes of mitochondrial pH value. To this end, a multifunctional nanoprobe that is not only able to produce singlet oxygen in mitochondria but also able to detect the changes in mitochondrial pH value has been developed in this work. The probe is a single-excited dual-emission biomass quantum dot (BQD-FA) prepared from
Osmanthus
leaves with folic acid (FA) and polyoxyethylene diamine as modifiers. The BQD-FAs can target tumor cells and mitochondria, and produce singlet oxygen in the mitochondria under near-infrared laser irradiation (
λ
em
= 660 nm). On the other hand, in the pH range of 3-8, the fluorescence intensity ratio of BQD-FAs at wavelengths 490 nm and 650 nm showed a good linear relationship with the pH value of mitochondria. The ratiometric fluorescence imaging of mitochondria using the prepared BQD-FAs showed that when the cells were chemically stimulated with chlorphenizone, the mitochondrial pH dropped from 7.9 to 7.2 within 15 min. Based on these characteristics, we envision that the prepared multifunctional nanoprobe will be of high significance in the biomedical research of mitochondria and PDT of tumors.
A multifunctional nanoprobe with singlet oxygen generation that can target tumors and mitochondria was developed for photodynamic therapy of tumors and monitoring mitochondrion pH changes in cancer cells by ratiometric fluorescence imaging. Mitochondria are the main sites of cell metabolism. Even minor pH changes may lead to mitochondrial dysfunction and promote cell apoptosis. Mitochondrion-targeting photosensitizers can produce singlet oxygen in the mitochondria. In tumor photodynamic therapy (PDT), tumor cells are killed through singlet oxygen generation by photosensitizers, and optimally the process of cell apoptosis can be real-time monitored by monitoring the changes of mitochondrial pH value. To this end, a multifunctional nanoprobe that is not only able to produce singlet oxygen in mitochondria but also able to detect the changes in mitochondrial pH value has been developed in this work. The probe is a single-excited dual-emission biomass quantum dot (BQD-FA) prepared from Osmanthus leaves with folic acid (FA) and polyoxyethylene diamine as modifiers. The BQD-FAs can target tumor cells and mitochondria, and produce singlet oxygen in the mitochondria under near-infrared laser irradiation ( λ em = 660 nm). On the other hand, in the pH range of 3–8, the fluorescence intensity ratio of BQD-FAs at wavelengths 490 nm and 650 nm showed a good linear relationship with the pH value of mitochondria. The ratiometric fluorescence imaging of mitochondria using the prepared BQD-FAs showed that when the cells were chemically stimulated with chlorphenizone, the mitochondrial pH dropped from 7.9 to 7.2 within 15 min. Based on these characteristics, we envision that the prepared multifunctional nanoprobe will be of high significance in the biomedical research of mitochondria and PDT of tumors. Mitochondria are the main sites of cell metabolism. Even minor pH changes may lead to mitochondrial dysfunction and promote cell apoptosis. Mitochondrion-targeting photosensitizers can produce singlet oxygen in the mitochondria. In tumor photodynamic therapy (PDT), tumor cells are killed through singlet oxygen generation by photosensitizers, and optimally the process of cell apoptosis can be real-time monitored by monitoring the changes of mitochondrial pH value. To this end, a multifunctional nanoprobe that is not only able to produce singlet oxygen in mitochondria but also able to detect the changes in mitochondrial pH value has been developed in this work. The probe is a single-excited dual-emission biomass quantum dot (BQD-FA) prepared from Osmanthus leaves with folic acid (FA) and polyoxyethylene diamine as modifiers. The BQD-FAs can target tumor cells and mitochondria, and produce singlet oxygen in the mitochondria under near-infrared laser irradiation (λ em = 660 nm). On the other hand, in the pH range of 3-8, the fluorescence intensity ratio of BQD-FAs at wavelengths 490 nm and 650 nm showed a good linear relationship with the pH value of mitochondria. The ratiometric fluorescence imaging of mitochondria using the prepared BQD-FAs showed that when the cells were chemically stimulated with chlorphenizone, the mitochondrial pH dropped from 7.9 to 7.2 within 15 min. Based on these characteristics, we envision that the prepared multifunctional nanoprobe will be of high significance in the biomedical research of mitochondria and PDT of tumors.Mitochondria are the main sites of cell metabolism. Even minor pH changes may lead to mitochondrial dysfunction and promote cell apoptosis. Mitochondrion-targeting photosensitizers can produce singlet oxygen in the mitochondria. In tumor photodynamic therapy (PDT), tumor cells are killed through singlet oxygen generation by photosensitizers, and optimally the process of cell apoptosis can be real-time monitored by monitoring the changes of mitochondrial pH value. To this end, a multifunctional nanoprobe that is not only able to produce singlet oxygen in mitochondria but also able to detect the changes in mitochondrial pH value has been developed in this work. The probe is a single-excited dual-emission biomass quantum dot (BQD-FA) prepared from Osmanthus leaves with folic acid (FA) and polyoxyethylene diamine as modifiers. The BQD-FAs can target tumor cells and mitochondria, and produce singlet oxygen in the mitochondria under near-infrared laser irradiation (λ em = 660 nm). On the other hand, in the pH range of 3-8, the fluorescence intensity ratio of BQD-FAs at wavelengths 490 nm and 650 nm showed a good linear relationship with the pH value of mitochondria. The ratiometric fluorescence imaging of mitochondria using the prepared BQD-FAs showed that when the cells were chemically stimulated with chlorphenizone, the mitochondrial pH dropped from 7.9 to 7.2 within 15 min. Based on these characteristics, we envision that the prepared multifunctional nanoprobe will be of high significance in the biomedical research of mitochondria and PDT of tumors. Mitochondria are the main sites of cell metabolism. Even minor pH changes may lead to mitochondrial dysfunction and promote cell apoptosis. Mitochondrion-targeting photosensitizers can produce singlet oxygen in the mitochondria. In tumor photodynamic therapy (PDT), tumor cells are killed through singlet oxygen generation by photosensitizers, and optimally the process of cell apoptosis can be real-time monitored by monitoring the changes of mitochondrial pH value. To this end, a multifunctional nanoprobe that is not only able to produce singlet oxygen in mitochondria but also able to detect the changes in mitochondrial pH value has been developed in this work. The probe is a single-excited dual-emission biomass quantum dot (BQD-FA) prepared from Osmanthus leaves with folic acid (FA) and polyoxyethylene diamine as modifiers. The BQD-FAs can target tumor cells and mitochondria, and produce singlet oxygen in the mitochondria under near-infrared laser irradiation (λem = 660 nm). On the other hand, in the pH range of 3–8, the fluorescence intensity ratio of BQD-FAs at wavelengths 490 nm and 650 nm showed a good linear relationship with the pH value of mitochondria. The ratiometric fluorescence imaging of mitochondria using the prepared BQD-FAs showed that when the cells were chemically stimulated with chlorphenizone, the mitochondrial pH dropped from 7.9 to 7.2 within 15 min. Based on these characteristics, we envision that the prepared multifunctional nanoprobe will be of high significance in the biomedical research of mitochondria and PDT of tumors. |
Author | Yang, Keqin Zhang, Liangliang Zhao, Jingjin Zhao, Shulin Zou, Mengbing Huang, Mengjiao Liu, Yi-Ming |
AuthorAffiliation | Department of Chemistry and Biochemistry State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources Jackson State University Guangxi Normal University |
AuthorAffiliation_xml | – name: State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources – name: Jackson State University – name: Guangxi Normal University – name: Department of Chemistry and Biochemistry |
Author_xml | – sequence: 1 givenname: Jingjin surname: Zhao fullname: Zhao, Jingjin – sequence: 2 givenname: Mengbing surname: Zou fullname: Zou, Mengbing – sequence: 3 givenname: Mengjiao surname: Huang fullname: Huang, Mengjiao – sequence: 4 givenname: Liangliang surname: Zhang fullname: Zhang, Liangliang – sequence: 5 givenname: Keqin surname: Yang fullname: Yang, Keqin – sequence: 6 givenname: Shulin surname: Zhao fullname: Zhao, Shulin – sequence: 7 givenname: Yi-Ming surname: Liu fullname: Liu, Yi-Ming |
BookMark | eNp9klGL1DAUhYOsuOu6L74LEV8WYfQmadL2RRhm1RUWfFCfQ5qmnSxtUpNUnf_mjzOdWUZdxEBI4Hz3cJJ7H6MT551B6CmBVwRY_bqFqAFKXqoH6IxCQVaCs_rkeKdwii5ivIW8GCOclo_QKSugLoDTM_Rzjcd5SLabnU7WOzVgp5yfgm8M7nzASYXeJOt6nObRh4iVa_Fok9db79pgFf5u0xbHTAwmYf9j1xuH8zZBLYYH3rtcERaXP0qzOF1jvVWuNxFbh7Vy2gSszTBE3Ozw3mE0KViNu2H2wURtMoLtqPps9gQ97NQQzcXdeY6-vHv7eXO9uvn4_sNmfbPSBSNpxRoqWkEU4wIIF7rWvO4KogUXpgJWtqQBJggpeNUKzhtSag5lVxWigq5oKTtHbw6-09yMps0ZUlCDnELOEXbSKyv_Vpzdyt5_k1X-74IsBpd3BsF_nU1McrRxeaZyxs9RUs4q4FBXJKMv7qG3fg65L5liVUkFJUxk6uWB0sHHGEx3DENALnMhr-DTZj8X6wzDPVjbtG9ODmuHf5c8O5SEqI_Wv0ct68__p8up7dgv7GfUvg |
CitedBy_id | crossref_primary_10_1016_j_optmat_2022_113415 crossref_primary_10_1016_j_foodchem_2022_134346 crossref_primary_10_1002_adfm_202104026 crossref_primary_10_1016_j_molstruc_2024_137903 crossref_primary_10_1039_D1RA08092J crossref_primary_10_1002_asia_202200161 crossref_primary_10_1002_ppsc_202200017 crossref_primary_10_1166_jbn_2021_3167 crossref_primary_10_1021_acs_iecr_4c03757 crossref_primary_10_1016_j_optmat_2023_113630 crossref_primary_10_1016_j_cclet_2022_03_059 crossref_primary_10_1021_acsabm_3c00541 crossref_primary_10_1007_s43630_022_00250_y crossref_primary_10_1016_j_cclet_2023_108423 crossref_primary_10_1016_j_ijbiomac_2020_12_019 crossref_primary_10_1002_pol_20210840 crossref_primary_10_1039_D1DT03042F crossref_primary_10_1002_marc_202200317 crossref_primary_10_1016_j_theriogenology_2024_05_010 crossref_primary_10_1016_j_bioorg_2025_108214 crossref_primary_10_1016_j_bioadv_2022_212756 crossref_primary_10_1016_j_apmt_2023_102028 crossref_primary_10_1080_1536383X_2020_1852217 crossref_primary_10_1039_D0AN02006K crossref_primary_10_1016_j_snb_2024_135523 crossref_primary_10_1016_j_saa_2023_123572 crossref_primary_10_1021_acssuschemeng_0c05352 crossref_primary_10_1016_j_biopha_2024_117520 crossref_primary_10_1016_j_talanta_2021_122475 crossref_primary_10_1007_s00604_022_05259_9 crossref_primary_10_1039_D1TB02738G crossref_primary_10_1007_s12274_021_3579_5 crossref_primary_10_1002_asia_202401098 crossref_primary_10_1039_D3CS00227F crossref_primary_10_1016_j_jphotochemrev_2023_100650 crossref_primary_10_1016_j_snb_2021_130666 crossref_primary_10_1039_D1TB02598H crossref_primary_10_1016_j_dyepig_2021_109549 crossref_primary_10_1021_acsabm_1c00404 |
Cites_doi | 10.1002/adfm.201600159 10.1021/jacs.8b08457 10.1074/jbc.M702841200 10.1002/anie.200906623 10.1039/B915149B 10.1021/ac3012126 10.1073/pnas.95.12.6803 10.1021/acs.analchem.7b03154 10.1002/anie.201510721 10.1074/jbc.274.41.29294 10.1021/jacs.6b10508 10.1039/c2cc33796g 10.1002/anie.201501193 10.1002/ange.201109089 10.1002/anie.201204381 10.1039/C7NR03658B 10.1002/anie.201708005 10.1039/C7NR06764J 10.1074/jbc.M306766200 10.1126/science.283.5407.1488 10.1038/35014006 10.1016/j.biomaterials.2012.01.052 10.1002/anie.201604130 10.1016/j.biomaterials.2015.02.113 10.1038/nature12985 10.1039/C4SC04021J 10.1002/anie.201408897 10.1038/srep03564 10.1021/ar700135m 10.1021/jacs.6b06398 10.1021/ja506301n 10.1039/C2TB00189F 10.1039/C8CC05385E 10.1021/jacs.6b10146 10.1021/ja904843x 10.1021/acs.analchem.7b01443 10.1021/acssuschemeng.7b00393 10.1021/ez400137j 10.1002/adtp.201900011 10.1038/nrc1071 10.1038/nature12327 10.1039/C5SC03708E 10.1038/74994 10.1016/j.ccr.2008.05.005 10.1021/nn2046373 10.1038/ncomms5596 10.1007/s11033-009-9645-9 10.1021/ac503975x |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 This journal is © The Royal Society of Chemistry. This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 – notice: This journal is © The Royal Society of Chemistry. – notice: This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/d0sc00757a |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 3643 |
ExternalDocumentID | PMC8152412 10_1039_D0SC00757A d0sc00757a |
GrantInformation_xml | – fundername: ; grantid: 201874030 – fundername: ; grantid: GM089557 – fundername: ; grantid: 2017GXNSFFA198014 |
GroupedDBID | 0-7 0R 705 7~J AAGNR AAIWI AAPBV ABGFH ACGFS ACIWK ADBBV ADMRA AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS AOIJS AUDPV AZFZN BCNDV BLAPV BSQNT C6K CKLOX D0L EE0 EF- F5P GROUPED_DOAJ HYE HZ H~N JG O-G O9- OK1 R7C R7D RCNCU ROYLF RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ 0R~ 53G AAEMU AAFWJ AAJAE AARTK AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH AEFDR AESAV AFLYV AFPKN AGEGJ AGRSR AHGCF AKBGW ANUXI APEMP CITATION H13 HZ~ PGMZT RAOCF RNS 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c431t-3b26d61a3560156c9c59f41c656e8037d1b03611458d655b17c507f84680f4d23 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 18:36:35 EDT 2025 Fri Jul 11 08:08:17 EDT 2025 Fri Jul 25 02:50:03 EDT 2025 Tue Jul 01 03:46:36 EDT 2025 Thu Apr 24 22:54:21 EDT 2025 Sat Jan 08 03:36:53 EST 2022 Wed Nov 11 00:36:14 EST 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c431t-3b26d61a3560156c9c59f41c656e8037d1b03611458d655b17c507f84680f4d23 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/d0sc00757a ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0003-1194-7665 0000-0002-2560-042X 0000-0003-1108-8258 0000-0002-7760-9565 |
OpenAccessLink | http://dx.doi.org/10.1039/d0sc00757a |
PMID | 34094052 |
PQID | 2387262136 |
PQPubID | 2047492 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2387262136 crossref_primary_10_1039_D0SC00757A rsc_primary_d0sc00757a proquest_miscellaneous_2538050981 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8152412 crossref_citationtrail_10_1039_D0SC00757A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-14 |
PublicationDateYYYYMMDD | 2020-04-14 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Yang (D0SC00757A-(cit9)/*[position()=1]) 2015; 87 Wang (D0SC00757A-(cit48)/*[position()=1]) 2012; 51 Hua (D0SC00757A-(cit35)/*[position()=1]) 2017; 9 Hutton (D0SC00757A-(cit42)/*[position()=1]) 2016; 138 Lv (D0SC00757A-(cit22)/*[position()=1]) 2016; 55 Wei (D0SC00757A-(cit30)/*[position()=1]) 2015; 4 Wang (D0SC00757A-(cit40)/*[position()=1]) 2012; 51 Baker (D0SC00757A-(cit49)/*[position()=1]) 2010; 49 Fang (D0SC00757A-(cit33)/*[position()=1]) 2012; 6 Xu (D0SC00757A-(cit44)/*[position()=1]) 2016; 55 Saraste (D0SC00757A-(cit1)/*[position()=1]) 1999; 283 Kroemer (D0SC00757A-(cit3)/*[position()=1]) 2000; 6 Llopis (D0SC00757A-(cit4)/*[position()=1]) 1998; 95 Jiang (D0SC00757A-(cit29)/*[position()=1]) 2015; 54 Gao (D0SC00757A-(cit34)/*[position()=1]) 2017; 9 Aon (D0SC00757A-(cit20)/*[position()=1]) 2007; 282 Jia (D0SC00757A-(cit26)/*[position()=1]) 2016; 138 Zhu (D0SC00757A-(cit31)/*[position()=1]) 2012; 124 Cheng (D0SC00757A-(cit24)/*[position()=1]) 2017; 139 Hu (D0SC00757A-(cit47)/*[position()=1]) 2013; 1 Ma (D0SC00757A-(cit15)/*[position()=1]) 2017; 56 Chen (D0SC00757A-(cit11)/*[position()=1]) 2015; 6 Sarkar (D0SC00757A-(cit12)/*[position()=1]) 2016; 7 Sahu (D0SC00757A-(cit37)/*[position()=1]) 2012; 48 Chen (D0SC00757A-(cit45)/*[position()=1]) 2013; 500 Sedgwick (D0SC00757A-(cit25)/*[position()=1]) 2018; 140 Liu (D0SC00757A-(cit46)/*[position()=1]) 2019; 2 Dolmans (D0SC00757A-(cit13)/*[position()=1]) 2003; 3 Kroemer (D0SC00757A-(cit17)/*[position()=1]) 2008; 13 Nomura (D0SC00757A-(cit19)/*[position()=1]) 1999; 274 Wang (D0SC00757A-(cit50)/*[position()=1]) 2010; 37 Liu (D0SC00757A-(cit36)/*[position()=1]) 2012; 33 Hu (D0SC00757A-(cit38)/*[position()=1]) 2017; 5 Zhao (D0SC00757A-(cit39)/*[position()=1]) 2017; 89 Sun (D0SC00757A-(cit10)/*[position()=1]) 2017; 89 Abad (D0SC00757A-(cit5)/*[position()=1]) 2004; 279 Wu (D0SC00757A-(cit8)/*[position()=1]) 2015; 53 Luo (D0SC00757A-(cit16)/*[position()=1]) 2016; 26 Baker (D0SC00757A-(cit28)/*[position()=1]) 2010; 49 Friedman (D0SC00757A-(cit2)/*[position()=1]) 2014; 505 Lee (D0SC00757A-(cit7)/*[position()=1]) 2014; 136 Ethirajan (D0SC00757A-(cit14)/*[position()=1]) 2011; 40 Ge (D0SC00757A-(cit41)/*[position()=1]) 2014; 5 Hu (D0SC00757A-(cit21)/*[position()=1]) 2014; 53 Yang (D0SC00757A-(cit27)/*[position()=1]) 2009; 131 Lin (D0SC00757A-(cit23)/*[position()=1]) 2018; 54 Hoye (D0SC00757A-(cit18)/*[position()=1]) 2008; 41 Dong (D0SC00757A-(cit32)/*[position()=1]) 2012; 84 Matsuyama (D0SC00757A-(cit6)/*[position()=1]) 2000; 2 Zhang (D0SC00757A-(cit43)/*[position()=1]) 2014; 1 |
References_xml | – volume: 26 start-page: 2826 year: 2016 ident: D0SC00757A-(cit16)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600159 – volume: 140 start-page: 14267 year: 2018 ident: D0SC00757A-(cit25)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08457 – volume: 282 start-page: 21889 year: 2007 ident: D0SC00757A-(cit20)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1074/jbc.M702841200 – volume: 49 start-page: 6726 year: 2010 ident: D0SC00757A-(cit28)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200906623 – volume: 40 start-page: 340 year: 2011 ident: D0SC00757A-(cit14)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/B915149B – volume: 84 start-page: 6220 year: 2012 ident: D0SC00757A-(cit32)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac3012126 – volume: 95 start-page: 6803 year: 1998 ident: D0SC00757A-(cit4)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.95.12.6803 – volume: 89 start-page: 11703 issue: 21 year: 2017 ident: D0SC00757A-(cit10)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b03154 – volume: 55 start-page: 13658 year: 2016 ident: D0SC00757A-(cit44)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201510721 – volume: 274 start-page: 29294 year: 1999 ident: D0SC00757A-(cit19)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.41.29294 – volume: 139 start-page: 285 year: 2017 ident: D0SC00757A-(cit24)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b10508 – volume: 48 start-page: 8835 year: 2012 ident: D0SC00757A-(cit37)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c2cc33796g – volume: 54 start-page: 5360 year: 2015 ident: D0SC00757A-(cit29)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201501193 – volume: 124 start-page: 7297 year: 2012 ident: D0SC00757A-(cit31)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201109089 – volume: 51 start-page: 9297 year: 2012 ident: D0SC00757A-(cit40)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201204381 – volume: 9 start-page: 10948 year: 2017 ident: D0SC00757A-(cit35)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR03658B – volume: 56 start-page: 13752 year: 2017 ident: D0SC00757A-(cit15)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201708005 – volume: 9 start-page: 18368 year: 2017 ident: D0SC00757A-(cit34)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR06764J – volume: 279 start-page: 11521 year: 2004 ident: D0SC00757A-(cit5)/*[position()=1] publication-title: Biol. Chem. doi: 10.1074/jbc.M306766200 – volume: 283 start-page: 1488 year: 1999 ident: D0SC00757A-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.283.5407.1488 – volume: 2 start-page: 318 year: 2000 ident: D0SC00757A-(cit6)/*[position()=1] publication-title: Nat. Cell Biol. doi: 10.1038/35014006 – volume: 33 start-page: 3604 year: 2012 ident: D0SC00757A-(cit36)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.01.052 – volume: 55 start-page: 9947 year: 2016 ident: D0SC00757A-(cit22)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201604130 – volume: 53 start-page: 669 year: 2015 ident: D0SC00757A-(cit8)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.02.113 – volume: 505 start-page: 335 year: 2014 ident: D0SC00757A-(cit2)/*[position()=1] publication-title: Nature doi: 10.1038/nature12985 – volume: 6 start-page: 3187 year: 2015 ident: D0SC00757A-(cit11)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C4SC04021J – volume: 53 start-page: 14225 year: 2014 ident: D0SC00757A-(cit21)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201408897 – volume: 4 start-page: 3564 year: 2015 ident: D0SC00757A-(cit30)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep03564 – volume: 49 start-page: 6726 year: 2010 ident: D0SC00757A-(cit49)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200906623 – volume: 41 start-page: 87 year: 2008 ident: D0SC00757A-(cit18)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar700135m – volume: 138 start-page: 10778 year: 2016 ident: D0SC00757A-(cit26)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b06398 – volume: 136 start-page: 14136 year: 2014 ident: D0SC00757A-(cit7)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja506301n – volume: 1 start-page: 39 year: 2013 ident: D0SC00757A-(cit47)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C2TB00189F – volume: 54 start-page: 9071 year: 2018 ident: D0SC00757A-(cit23)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC05385E – volume: 138 start-page: 16722 year: 2016 ident: D0SC00757A-(cit42)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b10146 – volume: 131 start-page: 11308 year: 2009 ident: D0SC00757A-(cit27)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja904843x – volume: 89 start-page: 8044 year: 2017 ident: D0SC00757A-(cit39)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b01443 – volume: 5 start-page: 4992 year: 2017 ident: D0SC00757A-(cit38)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b00393 – volume: 1 start-page: 87 year: 2014 ident: D0SC00757A-(cit43)/*[position()=1] publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/ez400137j – volume: 2 start-page: 1900011 year: 2019 ident: D0SC00757A-(cit46)/*[position()=1] publication-title: Adv. Ther. doi: 10.1002/adtp.201900011 – volume: 3 start-page: 380 year: 2003 ident: D0SC00757A-(cit13)/*[position()=1] publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1071 – volume: 500 start-page: 486 year: 2013 ident: D0SC00757A-(cit45)/*[position()=1] publication-title: Nature doi: 10.1038/nature12327 – volume: 7 start-page: 766 year: 2016 ident: D0SC00757A-(cit12)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C5SC03708E – volume: 6 start-page: 513 year: 2000 ident: D0SC00757A-(cit3)/*[position()=1] publication-title: Nat. Med. doi: 10.1038/74994 – volume: 13 start-page: 472 year: 2008 ident: D0SC00757A-(cit17)/*[position()=1] publication-title: Cancer Cell doi: 10.1016/j.ccr.2008.05.005 – volume: 6 start-page: 400 year: 2012 ident: D0SC00757A-(cit33)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn2046373 – volume: 51 start-page: 9297 year: 2012 ident: D0SC00757A-(cit48)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201204381 – volume: 5 start-page: 4596 year: 2014 ident: D0SC00757A-(cit41)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms5596 – volume: 37 start-page: 1971 year: 2010 ident: D0SC00757A-(cit50)/*[position()=1] publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-009-9645-9 – volume: 87 start-page: 3678 year: 2015 ident: D0SC00757A-(cit9)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac503975x |
SSID | ssj0000331527 |
Score | 2.4739325 |
Snippet | Mitochondria are the main sites of cell metabolism. Even minor pH changes may lead to mitochondrial dysfunction and promote cell apoptosis.... |
SourceID | pubmedcentral proquest crossref rsc |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3636 |
SubjectTerms | Apoptosis Change detection Chemistry Diamines Fluorescence Folic acid Infrared lasers Mitochondria Monitoring Photodynamic therapy Polyoxyethylene Quantum dots Singlet oxygen Tumors |
Title | A multifunctional nanoprobe for targeting tumors and mitochondria with singlet oxygen generation and monitoring mitochondrion pH changes in cancer cells by ratiometric fluorescence imaging |
URI | https://www.proquest.com/docview/2387262136 https://www.proquest.com/docview/2538050981 https://pubmed.ncbi.nlm.nih.gov/PMC8152412 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l6QEuVXlUuJRqEVxQZLC969cxCqAIAQdoUOjF8mOdpmrsKIkl2t_Gf-AvMfvwetMGCbhElme8tjLf7s7MzgOhl06ZMRY7zE4ppWCgpHCVl5ntEdCNQwoUkcX_6XMwntAPU3_a6_0yopaaTfY6v9mZV_I_UoV7IFeeJfsPktWDwg24BvnCL0gYfv9KxkMZD8j3JuXSq9Kq5j1iZClvGeYtEqKaBe-qw73kC5jDsOZVBXygilAHDhDfoP5xDa_iTZWZwoXgF7NehOkZjwJxOVZpwyKkNufwWQ34QcCa67RihAXv15UPyqumXom6UbCKzBeiMZKpFeuqBW2SET9abpPJDF_F-UUqD4rg-cu5hvV53Qi_LqtmWTuyQKryhXPC5Tyt7zjJP8LcmHE_z8x0fng8EtWWSadyjfQc6tqB78mjHWbekzWS9CLvmmCmxpJNAhIY2z8JZNmoO1uLQ3hl1sJZ51zNCo0NVIc1dsQ9tO-B3eL10f6Xb5Ppd-32cwhRjYT1p7dFc0n8phtgW03qbJ_bkbt7q7ZRjVCIzg7RgbJk8FDC8gHqseohujdqGwg-Qj-H-BY8sYYnBnhiDU8s4YkBbtiEJ-bwxAqeWMITd_CU_BqeeAueeDnGCp54XmEJTyzgibNrbMATm_DECp6P0eT9u7PR2FbNQuwcdOCNTTIvKAI3JdzF4Ad5nPtxSd0c7BUWOSQs3AyUNbD-_agIfD9zwxxMoRLU78gpaeGRI9Sv6oo9QZjxdOvChWWK-DQlbhoTQqI0A2MoI2FELfSqlU2Sq0r6vKHLVSIiOkicvHW-joQchxZ6oXmXsn7MTq6TVsSJWl_WCSjToRd4Lgks9FyTQYb8r0orVjfAA_oKr-AUuRYKt6Ch38brx29TqvmFqCMfARKp61noCECk-TsMWuh4NyFZFuXxn556iu53M_UE9Terhj0DxX2TnQqH16maEr8BM3v8_A |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multifunctional+nanoprobe+for+targeting+tumors+and+mitochondria+with+singlet+oxygen+generation+and+monitoring+mitochondrion+pH+changes+in+cancer+cells+by+ratiometric+fluorescence+imaging&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Zhao%2C+Jingjin&rft.au=Zou%2C+Mengbing&rft.au=Huang%2C+Mengjiao&rft.au=Zhang%2C+Liangliang&rft.date=2020-04-14&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=11&rft.issue=14&rft.spage=3636&rft.epage=3643&rft_id=info:doi/10.1039%2Fd0sc00757a&rft.externalDocID=d0sc00757a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |