A Multi-Task Learning Framework for Emotion Recognition Using 2D Continuous Space

Dimensional models have been proposed in psychology studies to represent complex human emotional expressions. Activation and valence are two common dimensions in such models. They can be used to describe certain emotions. For example, anger is one type of emotion with a low valence and high activati...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on affective computing Vol. 8; no. 1; pp. 3 - 14
Main Authors Xia, Rui, Liu, Yang
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dimensional models have been proposed in psychology studies to represent complex human emotional expressions. Activation and valence are two common dimensions in such models. They can be used to describe certain emotions. For example, anger is one type of emotion with a low valence and high activation value; neutral has both a medium level valence and activation value. In this work, we propose to apply multi-task learning to leverage activation and valence information for acoustic emotion recognition based on the deep belief network (DBN) framework. We treat the categorical emotion recognition task as the major task. For the secondary task, we leverage activation and valence labels in two different ways, category level based classification and continuous level based regression. The combination of the loss functions from the major and secondary tasks is used as the objective function in the multi-task learning framework. After iterative optimization, the values from the last hidden layer in the DBN are used as new features and fed into a support vector machine classifier for emotion recognition. Our experimental results on the Interactive Emotional Dyadic Motion Capture and Sustained Emotionally Colored Machine-Human Interaction Using Nonverbal Expression databases show significant improvements on unweighted accuracy, illustrating the benefit of utilizing additional information in a multi-task learning setup for emotion recognition.
AbstractList Dimensional models have been proposed in psychology studies to represent complex human emotional expressions. Activation and valence are two common dimensions in such models. They can be used to describe certain emotions. For example, anger is one type of emotion with a low valence and high activation value; neutral has both a medium level valence and activation value. In this work, we propose to apply multi-task learning to leverage activation and valence information for acoustic emotion recognition based on the deep belief network (DBN) framework. We treat the categorical emotion recognition task as the major task. For the secondary task, we leverage activation and valence labels in two different ways, category level based classification and continuous level based regression. The combination of the loss functions from the major and secondary tasks is used as the objective function in the multi-task learning framework. After iterative optimization, the values from the last hidden layer in the DBN are used as new features and fed into a support vector machine classifier for emotion recognition. Our experimental results on the Interactive Emotional Dyadic Motion Capture and Sustained Emotionally Colored Machine-Human Interaction Using Nonverbal Expression databases show significant improvements on unweighted accuracy, illustrating the benefit of utilizing additional information in a multi-task learning setup for emotion recognition.
Author Yang Liu
Rui Xia
Author_xml – sequence: 1
  givenname: Rui
  surname: Xia
  fullname: Xia, Rui
– sequence: 2
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
BookMark eNpNkElPwzAQhS1UJErpH4CLJc4p3p0cq9IAUhEC2rOVJuMqXexiJ0L8e9JFiLnMO7w3y3eNes47QOiWkhGlJHuYj_N8MmKEyhGTlMksvUB9moks4UTI3j99hYYxrklXnHPFdB-9j_Fru23qZF7EDZ5BEVztVjgPxQ6-fdhg6wOe7nxTe4c_oPQrVx_1Ih587BFPvGtq1_o24s99UcINurTFNsLw3AdokU_nk-dk9vb0MhnPklJw2nTnsBKs5iUsKdW2zKQCBpZRKFLLmUiJrJjKRGqVErqilaiYXqZimXY7tCV8gO5Pc_fBf7UQG7P2bXDdSsOoFqL7j6nOxU6uMvgYA1izD_WuCD-GEnOgZ470zIGeOdPrQnenUA0AfwHNlZKS8l8RmWv5
CODEN ITACBQ
CitedBy_id crossref_primary_10_1016_j_arcontrol_2024_100951
crossref_primary_10_1109_TAFFC_2020_2983669
crossref_primary_10_1109_TAFFC_2022_3221749
crossref_primary_10_1016_j_apacoust_2022_109178
crossref_primary_10_1109_TMM_2022_3157485
crossref_primary_10_1109_TPAMI_2020_3012548
crossref_primary_10_3390_electronics11030417
crossref_primary_10_3390_sym14071428
crossref_primary_10_1109_TAFFC_2017_2784832
crossref_primary_10_1109_TNNLS_2020_2995428
crossref_primary_10_1016_j_eswa_2020_114177
crossref_primary_10_1016_j_apacoust_2020_107519
crossref_primary_10_1109_TAFFC_2019_2916040
crossref_primary_10_3390_app122412805
crossref_primary_10_1016_j_asoc_2023_110312
crossref_primary_10_1016_j_specom_2020_03_005
crossref_primary_10_1016_j_csl_2023_101556
crossref_primary_10_1109_TAFFC_2017_2730187
crossref_primary_10_1109_TNNLS_2023_3236320
crossref_primary_10_3390_electronics10101163
crossref_primary_10_1142_S0219622019300052
crossref_primary_10_1016_j_specom_2021_11_005
crossref_primary_10_1109_TCYB_2017_2787717
crossref_primary_10_3389_fnins_2019_00396
crossref_primary_10_1016_j_jvcir_2019_05_009
crossref_primary_10_52547_joc_15_2_139
crossref_primary_10_1080_0144929X_2020_1741684
crossref_primary_10_1109_ACCESS_2020_2967791
crossref_primary_10_1088_1742_6596_1314_1_012182
crossref_primary_10_1109_TAFFC_2019_2926724
crossref_primary_10_1109_TAFFC_2021_3114365
crossref_primary_10_3233_HIS_180259
crossref_primary_10_1016_j_apacoust_2020_107721
crossref_primary_10_1016_j_engappai_2023_106661
crossref_primary_10_1109_TMM_2018_2871949
crossref_primary_10_1007_s00779_019_01246_9
crossref_primary_10_1007_s00034_023_02367_6
crossref_primary_10_1016_j_dsp_2021_103293
crossref_primary_10_1016_j_knosys_2023_110756
crossref_primary_10_1007_s11277_020_07658_8
crossref_primary_10_7717_peerj_cs_766
crossref_primary_10_1007_s12652_019_01280_8
crossref_primary_10_1109_TAFFC_2023_3243463
crossref_primary_10_1145_3380744
crossref_primary_10_1016_j_engappai_2023_107286
crossref_primary_10_1109_TMM_2021_3087098
crossref_primary_10_1080_17445760_2019_1626854
crossref_primary_10_3390_s20216008
crossref_primary_10_1109_TAFFC_2019_2928297
crossref_primary_10_1109_TAFFC_2019_2961881
crossref_primary_10_1155_2022_5303847
crossref_primary_10_1016_j_knosys_2021_107598
crossref_primary_10_1016_j_neucom_2020_01_048
crossref_primary_10_1007_s11265_020_01538_x
crossref_primary_10_3390_electronics9101593
crossref_primary_10_1016_j_ifacol_2023_10_569
crossref_primary_10_1587_transfun_2022EAP1091
crossref_primary_10_1007_s12559_021_09973_z
crossref_primary_10_1007_s11045_022_00845_9
crossref_primary_10_1016_j_neucom_2023_126649
crossref_primary_10_1109_TAFFC_2021_3104512
crossref_primary_10_1109_TASLP_2020_3023632
crossref_primary_10_1109_TIFS_2020_2994740
crossref_primary_10_1121_10_0003433
crossref_primary_10_1016_j_dsp_2020_102951
crossref_primary_10_1016_j_inffus_2020_01_011
crossref_primary_10_1007_s00034_022_02068_6
crossref_primary_10_32604_csse_2023_025972
crossref_primary_10_1007_s10772_018_09572_8
crossref_primary_10_3390_s20174894
crossref_primary_10_1016_j_future_2020_08_002
crossref_primary_10_1007_s10586_023_04073_z
Cites_doi 10.1109/T-AFFC.2011.20
10.1109/ACII.2013.90
10.1109/ICASSP.2013.6638346
10.1561/2200000006
10.1109/TAFFC.2014.2352268
10.1145/2388676.2388776
10.1037/a0016562
10.1007/s10579-008-9076-6
10.1109/TASL.2010.2076804
10.1109/ICASSP.2014.6854517
10.1109/ASRU.2009.5372886
10.1109/ICASSP.2013.6639012
10.1145/2512530.2512533
10.1145/2388676.2388781
10.1162/089976602760128018
10.1109/ICASSP.2013.6639346
10.1145/2522848.2531745
10.1016/B978-1-55860-307-3.50012-5
10.1145/1390156.1390177
10.1145/1027933.1027968
10.1109/T-AFFC.2011.40
10.1109/ICASSP.2012.6289068
10.1109/T-AFFC.2013.11
10.1016/S0167-6393(02)00071-7
10.1109/ICASSP.2015.7178983
10.1109/CRV.2014.21
10.1109/T-AFFC.2011.17
10.1037/h0054570
10.1109/ICASSP.2014.6853745
10.1145/3065386
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TAFFC.2015.2512598
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Computer Science
EISSN 1949-3045
EndPage 14
ExternalDocumentID 10_1109_TAFFC_2015_2512598
7366551
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
AENEX
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIC
RIE
RIG
RNI
RZB
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c431t-302cef73ceb117fc956e2ef21ea8f324805d26948f6647d1d4d27b84b8ace7f03
IEDL.DBID RIE
ISSN 1949-3045
IngestDate Thu Oct 10 19:37:16 EDT 2024
Fri Dec 06 02:41:07 EST 2024
Mon Nov 04 12:04:30 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-302cef73ceb117fc956e2ef21ea8f324805d26948f6647d1d4d27b84b8ace7f03
PQID 2174436226
PQPubID 2040414
PageCount 12
ParticipantIDs proquest_journals_2174436226
ieee_primary_7366551
crossref_primary_10_1109_TAFFC_2015_2512598
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on affective computing
PublicationTitleAbbrev T-AFFC
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
wöllmer (ref34) 0
ref15
ref36
schuller (ref10) 0
ref14
ref31
ref33
ref32
boril (ref2) 0
ref17
ref16
ref19
ref18
burkhardt (ref1) 0
eyben (ref37) 0
bergstra (ref38) 0
deng (ref42) 0
ref24
ref23
schuller (ref11) 0
vogt (ref4) 0
ref25
ref20
ref41
ref22
ref44
ref43
ref28
rozgic (ref39) 0
ref27
ref29
schuller (ref8) 0
ref7
zhong (ref26) 0
ref9
li (ref21) 0
ref3
ref6
ref5
nair (ref30) 0
ref40
References_xml – ident: ref32
  doi: 10.1109/T-AFFC.2011.20
– start-page: 254
  year: 0
  ident: ref11
  article-title: The INTERSPEECH 2012 speaker trait challenge
  publication-title: Proc INTERSPEECH
  contributor:
    fullname: schuller
– start-page: 401
  year: 0
  ident: ref8
  article-title: Hidden Markov model-based speech emotion recognition
  publication-title: Proc Int Conf Multimedia Expo
  contributor:
    fullname: schuller
– ident: ref41
  doi: 10.1109/ACII.2013.90
– ident: ref19
  doi: 10.1109/ICASSP.2013.6638346
– ident: ref28
  doi: 10.1561/2200000006
– ident: ref44
  doi: 10.1109/TAFFC.2014.2352268
– ident: ref36
  doi: 10.1145/2388676.2388776
– start-page: 2794
  year: 0
  ident: ref10
  article-title: The INTERSPEECH 2010 paralinguistic challenge
  publication-title: Proc INTERSPEECH
  contributor:
    fullname: schuller
– ident: ref5
  doi: 10.1037/a0016562
– start-page: 2202
  year: 0
  ident: ref2
  article-title: Automatic excitement-level detection for sports highlights generation
  publication-title: Proc INTERSPEECH
  contributor:
    fullname: boril
– start-page: 1123
  year: 0
  ident: ref4
  article-title: Improving automatic emotion recognition from speech via gender differentiation
  publication-title: Proc Lang Resources Eval Conf
  contributor:
    fullname: vogt
– start-page: 1053
  year: 0
  ident: ref1
  article-title: Detecting anger in automated voice portal dialogs
  publication-title: Proc INTERSPEECH
  contributor:
    fullname: burkhardt
– ident: ref31
  doi: 10.1007/s10579-008-9076-6
– ident: ref43
  doi: 10.1109/TASL.2010.2076804
– ident: ref16
  doi: 10.1109/ICASSP.2014.6854517
– ident: ref9
  doi: 10.1109/ASRU.2009.5372886
– ident: ref24
  doi: 10.1109/ICASSP.2013.6639012
– ident: ref12
  doi: 10.1145/2512530.2512533
– start-page: 807
  year: 0
  ident: ref30
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proc 27th Int Conf Mach Learning
  contributor:
    fullname: nair
– ident: ref40
  doi: 10.1145/2388676.2388781
– ident: ref29
  doi: 10.1162/089976602760128018
– ident: ref13
  doi: 10.1109/ICASSP.2013.6639346
– ident: ref15
  doi: 10.1145/2522848.2531745
– ident: ref23
  doi: 10.1016/B978-1-55860-307-3.50012-5
– start-page: 1
  year: 0
  ident: ref39
  article-title: Speech language & multimedia technology
  publication-title: Proc Asia-Pacific Signal Inf Process Assoc Annu Summit Conf
  contributor:
    fullname: rozgic
– ident: ref22
  doi: 10.1145/1390156.1390177
– ident: ref6
  doi: 10.1145/1027933.1027968
– start-page: 1459
  year: 0
  ident: ref37
  article-title: openSMILE-The Munich versatile and fast open-source audio feature extractor
  publication-title: Proc 18th ACM Int Conf Multimedia
  contributor:
    fullname: eyben
– start-page: 701
  year: 0
  ident: ref21
  article-title: Multi-task learning for spoken language understanding with shared slots
  publication-title: Proc INTERSPEECH
  contributor:
    fullname: li
– ident: ref18
  doi: 10.1109/T-AFFC.2011.40
– ident: ref3
  doi: 10.1109/ICASSP.2012.6289068
– start-page: 2226
  year: 0
  ident: ref42
  article-title: Confidence measures in speech emotion recognition based on semi-supervised learning
  publication-title: Proc INTERSPEECH
  contributor:
    fullname: deng
– start-page: 2562
  year: 0
  ident: ref26
  article-title: Learning active facial patches for expression analysis
  publication-title: Proc IEEE Conf Comput Vision Pattern Recog
  contributor:
    fullname: zhong
– ident: ref35
  doi: 10.1109/T-AFFC.2013.11
– ident: ref33
  doi: 10.1016/S0167-6393(02)00071-7
– year: 0
  ident: ref38
  article-title: Theano: A CPU and GPU math expression compiler
  publication-title: Proc Python Sci Comput Conf
  contributor:
    fullname: bergstra
– start-page: 2362
  year: 0
  ident: ref34
  article-title: Context-sensitive multimodal emotion recognition from speech and facial expression using bidirectional LSTM modeling
  publication-title: Proc INTERSPEECH
  contributor:
    fullname: wöllmer
– ident: ref27
  doi: 10.1109/ICASSP.2015.7178983
– ident: ref25
  doi: 10.1109/CRV.2014.21
– ident: ref7
  doi: 10.1109/T-AFFC.2011.17
– ident: ref20
  doi: 10.1037/h0054570
– ident: ref17
  doi: 10.1109/ICASSP.2014.6853745
– ident: ref14
  doi: 10.1145/3065386
SSID ssj0000333627
Score 2.5311322
Snippet Dimensional models have been proposed in psychology studies to represent complex human emotional expressions. Activation and valence are two common dimensions...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 3
SubjectTerms Acoustics
Activation
Belief networks
Categorical emotion recognition
deep belief network
Emotion recognition
Emotions
Feature extraction
Human motion
Iterative methods
Learning
Linear programming
Motion capture
multi-task learning
Psychology
Speech
Support vector machines
Two dimensional models
valence
Title A Multi-Task Learning Framework for Emotion Recognition Using 2D Continuous Space
URI https://ieeexplore.ieee.org/document/7366551
https://www.proquest.com/docview/2174436226
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_MnXZxuilOp-TgTdt1aZu0xzFXhqCgbrBbadpEROjEtQf9631JP8CPg5cS6AchL3lf_f3eA7hkUnpUl0IUIlGWLoFuhYKmmo0WpiGXOvWk0Rb3bLn2bjf-pgPXLRdGSmnAZ9LWQ_MvP9umpU6VTbjLmK_50ns85BVXq82nOK6Lupg3vBgnnKxmUTTX4C3f1kbcD4Nvtsc0U_mlgY1Zifpw10yoQpO82mUh7PTzR63G_874APZr_5LMqg1xCB2ZD6Df9G4g9VEeQK_VfB9DeJgRQ8S1VsnuldQlV59J1AC3CHq2ZFE1_CGPDeQIxwZwQOgN0UWuXvJyW-7IE0bh8gjW0WI1X1p1rwUrRReisFyHplJxN0XdPeUqxbBJUqnoVCaBQqcrcPxMk14DxZjHs2nmZZSLwBMBfpMrxz2Gbr7N5QkQ9NdxtdFzFwHe91mCF4HHXGV-hrFvNoKrRgrxW1VSIzahiBPGRmaxlllcy2wEQ72s7ZP1io5g3Agurk_dLtbhlYe7gLLTv986gx7VZtmkUMbQLd5LeY5ORSEuzG76ApwIyN0
link.rule.ids 315,781,785,797,27929,27930,54763
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4QPchFFDSiqHvwpi1l-z4SpEEFErUk3Bq23TWGpBhpD_rrnd0-Eh8HL80mfWQzs_PsNzMAVw7nFpWtEBlbCU22QNd8RmNZjebHvstl6kmiLebOZGHdL-1lA27qWhjOuQKfcV0u1b_8ZBPnMlXWd03HsWW99K5toVwU1Vp1RsUwTdTGblUZY_j9cBgEIwnfsnVpxm3f-2Z91DiVXzpYGZagBbNqSwWeZK3nGdPjzx_dGv-75wPYLz1MMiyOxCE0eNqGVjW9gZTC3IZmrfs-OvA4JKoUVwtX2zUpm66-kKCCbhH0bcm4GPlDnirQEa4V5IDQWyLbXL2m-SbfkmeMw_kRLIJxOJpo5bQFLUYnItNMg8ZcuGaM2nvgihgDJ065oAO-8gS6XZ5hJ7Ls1ROOY7nJILES6jLPYh5-0xWGeQw76SblJ0DQY0dqo-_OPLxvOyu8MBR0kdgJRr9JF64rLkRvRVONSAUjhh8pnkWSZ1HJsy50JFnrJ0uKdqFXMS4q5W4byQDLwlNAndO_37qEvUk4m0bTu_nDGTSpNNIqodKDnew95-foYmTsQp2sL06szCs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi-Task+Learning+Framework+for+Emotion+Recognition+Using+2D+Continuous+Space&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Rui+Xia&rft.au=Yang+Liu&rft.date=2017-01-01&rft.pub=IEEE&rft.eissn=1949-3045&rft.volume=8&rft.issue=1&rft.spage=3&rft.epage=14&rft_id=info:doi/10.1109%2FTAFFC.2015.2512598&rft.externalDocID=7366551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon