A Multi-Task Learning Framework for Emotion Recognition Using 2D Continuous Space
Dimensional models have been proposed in psychology studies to represent complex human emotional expressions. Activation and valence are two common dimensions in such models. They can be used to describe certain emotions. For example, anger is one type of emotion with a low valence and high activati...
Saved in:
Published in | IEEE transactions on affective computing Vol. 8; no. 1; pp. 3 - 14 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dimensional models have been proposed in psychology studies to represent complex human emotional expressions. Activation and valence are two common dimensions in such models. They can be used to describe certain emotions. For example, anger is one type of emotion with a low valence and high activation value; neutral has both a medium level valence and activation value. In this work, we propose to apply multi-task learning to leverage activation and valence information for acoustic emotion recognition based on the deep belief network (DBN) framework. We treat the categorical emotion recognition task as the major task. For the secondary task, we leverage activation and valence labels in two different ways, category level based classification and continuous level based regression. The combination of the loss functions from the major and secondary tasks is used as the objective function in the multi-task learning framework. After iterative optimization, the values from the last hidden layer in the DBN are used as new features and fed into a support vector machine classifier for emotion recognition. Our experimental results on the Interactive Emotional Dyadic Motion Capture and Sustained Emotionally Colored Machine-Human Interaction Using Nonverbal Expression databases show significant improvements on unweighted accuracy, illustrating the benefit of utilizing additional information in a multi-task learning setup for emotion recognition. |
---|---|
AbstractList | Dimensional models have been proposed in psychology studies to represent complex human emotional expressions. Activation and valence are two common dimensions in such models. They can be used to describe certain emotions. For example, anger is one type of emotion with a low valence and high activation value; neutral has both a medium level valence and activation value. In this work, we propose to apply multi-task learning to leverage activation and valence information for acoustic emotion recognition based on the deep belief network (DBN) framework. We treat the categorical emotion recognition task as the major task. For the secondary task, we leverage activation and valence labels in two different ways, category level based classification and continuous level based regression. The combination of the loss functions from the major and secondary tasks is used as the objective function in the multi-task learning framework. After iterative optimization, the values from the last hidden layer in the DBN are used as new features and fed into a support vector machine classifier for emotion recognition. Our experimental results on the Interactive Emotional Dyadic Motion Capture and Sustained Emotionally Colored Machine-Human Interaction Using Nonverbal Expression databases show significant improvements on unweighted accuracy, illustrating the benefit of utilizing additional information in a multi-task learning setup for emotion recognition. |
Author | Yang Liu Rui Xia |
Author_xml | – sequence: 1 givenname: Rui surname: Xia fullname: Xia, Rui – sequence: 2 givenname: Yang surname: Liu fullname: Liu, Yang |
BookMark | eNpNkElPwzAQhS1UJErpH4CLJc4p3p0cq9IAUhEC2rOVJuMqXexiJ0L8e9JFiLnMO7w3y3eNes47QOiWkhGlJHuYj_N8MmKEyhGTlMksvUB9moks4UTI3j99hYYxrklXnHPFdB-9j_Fru23qZF7EDZ5BEVztVjgPxQ6-fdhg6wOe7nxTe4c_oPQrVx_1Ih587BFPvGtq1_o24s99UcINurTFNsLw3AdokU_nk-dk9vb0MhnPklJw2nTnsBKs5iUsKdW2zKQCBpZRKFLLmUiJrJjKRGqVErqilaiYXqZimXY7tCV8gO5Pc_fBf7UQG7P2bXDdSsOoFqL7j6nOxU6uMvgYA1izD_WuCD-GEnOgZ470zIGeOdPrQnenUA0AfwHNlZKS8l8RmWv5 |
CODEN | ITACBQ |
CitedBy_id | crossref_primary_10_1016_j_arcontrol_2024_100951 crossref_primary_10_1109_TAFFC_2020_2983669 crossref_primary_10_1109_TAFFC_2022_3221749 crossref_primary_10_1016_j_apacoust_2022_109178 crossref_primary_10_1109_TMM_2022_3157485 crossref_primary_10_1109_TPAMI_2020_3012548 crossref_primary_10_3390_electronics11030417 crossref_primary_10_3390_sym14071428 crossref_primary_10_1109_TAFFC_2017_2784832 crossref_primary_10_1109_TNNLS_2020_2995428 crossref_primary_10_1016_j_eswa_2020_114177 crossref_primary_10_1016_j_apacoust_2020_107519 crossref_primary_10_1109_TAFFC_2019_2916040 crossref_primary_10_3390_app122412805 crossref_primary_10_1016_j_asoc_2023_110312 crossref_primary_10_1016_j_specom_2020_03_005 crossref_primary_10_1016_j_csl_2023_101556 crossref_primary_10_1109_TAFFC_2017_2730187 crossref_primary_10_1109_TNNLS_2023_3236320 crossref_primary_10_3390_electronics10101163 crossref_primary_10_1142_S0219622019300052 crossref_primary_10_1016_j_specom_2021_11_005 crossref_primary_10_1109_TCYB_2017_2787717 crossref_primary_10_3389_fnins_2019_00396 crossref_primary_10_1016_j_jvcir_2019_05_009 crossref_primary_10_52547_joc_15_2_139 crossref_primary_10_1080_0144929X_2020_1741684 crossref_primary_10_1109_ACCESS_2020_2967791 crossref_primary_10_1088_1742_6596_1314_1_012182 crossref_primary_10_1109_TAFFC_2019_2926724 crossref_primary_10_1109_TAFFC_2021_3114365 crossref_primary_10_3233_HIS_180259 crossref_primary_10_1016_j_apacoust_2020_107721 crossref_primary_10_1016_j_engappai_2023_106661 crossref_primary_10_1109_TMM_2018_2871949 crossref_primary_10_1007_s00779_019_01246_9 crossref_primary_10_1007_s00034_023_02367_6 crossref_primary_10_1016_j_dsp_2021_103293 crossref_primary_10_1016_j_knosys_2023_110756 crossref_primary_10_1007_s11277_020_07658_8 crossref_primary_10_7717_peerj_cs_766 crossref_primary_10_1007_s12652_019_01280_8 crossref_primary_10_1109_TAFFC_2023_3243463 crossref_primary_10_1145_3380744 crossref_primary_10_1016_j_engappai_2023_107286 crossref_primary_10_1109_TMM_2021_3087098 crossref_primary_10_1080_17445760_2019_1626854 crossref_primary_10_3390_s20216008 crossref_primary_10_1109_TAFFC_2019_2928297 crossref_primary_10_1109_TAFFC_2019_2961881 crossref_primary_10_1155_2022_5303847 crossref_primary_10_1016_j_knosys_2021_107598 crossref_primary_10_1016_j_neucom_2020_01_048 crossref_primary_10_1007_s11265_020_01538_x crossref_primary_10_3390_electronics9101593 crossref_primary_10_1016_j_ifacol_2023_10_569 crossref_primary_10_1587_transfun_2022EAP1091 crossref_primary_10_1007_s12559_021_09973_z crossref_primary_10_1007_s11045_022_00845_9 crossref_primary_10_1016_j_neucom_2023_126649 crossref_primary_10_1109_TAFFC_2021_3104512 crossref_primary_10_1109_TASLP_2020_3023632 crossref_primary_10_1109_TIFS_2020_2994740 crossref_primary_10_1121_10_0003433 crossref_primary_10_1016_j_dsp_2020_102951 crossref_primary_10_1016_j_inffus_2020_01_011 crossref_primary_10_1007_s00034_022_02068_6 crossref_primary_10_32604_csse_2023_025972 crossref_primary_10_1007_s10772_018_09572_8 crossref_primary_10_3390_s20174894 crossref_primary_10_1016_j_future_2020_08_002 crossref_primary_10_1007_s10586_023_04073_z |
Cites_doi | 10.1109/T-AFFC.2011.20 10.1109/ACII.2013.90 10.1109/ICASSP.2013.6638346 10.1561/2200000006 10.1109/TAFFC.2014.2352268 10.1145/2388676.2388776 10.1037/a0016562 10.1007/s10579-008-9076-6 10.1109/TASL.2010.2076804 10.1109/ICASSP.2014.6854517 10.1109/ASRU.2009.5372886 10.1109/ICASSP.2013.6639012 10.1145/2512530.2512533 10.1145/2388676.2388781 10.1162/089976602760128018 10.1109/ICASSP.2013.6639346 10.1145/2522848.2531745 10.1016/B978-1-55860-307-3.50012-5 10.1145/1390156.1390177 10.1145/1027933.1027968 10.1109/T-AFFC.2011.40 10.1109/ICASSP.2012.6289068 10.1109/T-AFFC.2013.11 10.1016/S0167-6393(02)00071-7 10.1109/ICASSP.2015.7178983 10.1109/CRV.2014.21 10.1109/T-AFFC.2011.17 10.1037/h0054570 10.1109/ICASSP.2014.6853745 10.1145/3065386 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TAFFC.2015.2512598 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Psychology Computer Science |
EISSN | 1949-3045 |
EndPage | 14 |
ExternalDocumentID | 10_1109_TAFFC_2015_2512598 7366551 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AASAJ ABQJQ AENEX AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIC RIE RIG RNI RZB AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c431t-302cef73ceb117fc956e2ef21ea8f324805d26948f6647d1d4d27b84b8ace7f03 |
IEDL.DBID | RIE |
ISSN | 1949-3045 |
IngestDate | Thu Oct 10 19:37:16 EDT 2024 Fri Dec 06 02:41:07 EST 2024 Mon Nov 04 12:04:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c431t-302cef73ceb117fc956e2ef21ea8f324805d26948f6647d1d4d27b84b8ace7f03 |
PQID | 2174436226 |
PQPubID | 2040414 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2174436226 ieee_primary_7366551 crossref_primary_10_1109_TAFFC_2015_2512598 |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on affective computing |
PublicationTitleAbbrev | T-AFFC |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref12 wöllmer (ref34) 0 ref15 ref36 schuller (ref10) 0 ref14 ref31 ref33 ref32 boril (ref2) 0 ref17 ref16 ref19 ref18 burkhardt (ref1) 0 eyben (ref37) 0 bergstra (ref38) 0 deng (ref42) 0 ref24 ref23 schuller (ref11) 0 vogt (ref4) 0 ref25 ref20 ref41 ref22 ref44 ref43 ref28 rozgic (ref39) 0 ref27 ref29 schuller (ref8) 0 ref7 zhong (ref26) 0 ref9 li (ref21) 0 ref3 ref6 ref5 nair (ref30) 0 ref40 |
References_xml | – ident: ref32 doi: 10.1109/T-AFFC.2011.20 – start-page: 254 year: 0 ident: ref11 article-title: The INTERSPEECH 2012 speaker trait challenge publication-title: Proc INTERSPEECH contributor: fullname: schuller – start-page: 401 year: 0 ident: ref8 article-title: Hidden Markov model-based speech emotion recognition publication-title: Proc Int Conf Multimedia Expo contributor: fullname: schuller – ident: ref41 doi: 10.1109/ACII.2013.90 – ident: ref19 doi: 10.1109/ICASSP.2013.6638346 – ident: ref28 doi: 10.1561/2200000006 – ident: ref44 doi: 10.1109/TAFFC.2014.2352268 – ident: ref36 doi: 10.1145/2388676.2388776 – start-page: 2794 year: 0 ident: ref10 article-title: The INTERSPEECH 2010 paralinguistic challenge publication-title: Proc INTERSPEECH contributor: fullname: schuller – ident: ref5 doi: 10.1037/a0016562 – start-page: 2202 year: 0 ident: ref2 article-title: Automatic excitement-level detection for sports highlights generation publication-title: Proc INTERSPEECH contributor: fullname: boril – start-page: 1123 year: 0 ident: ref4 article-title: Improving automatic emotion recognition from speech via gender differentiation publication-title: Proc Lang Resources Eval Conf contributor: fullname: vogt – start-page: 1053 year: 0 ident: ref1 article-title: Detecting anger in automated voice portal dialogs publication-title: Proc INTERSPEECH contributor: fullname: burkhardt – ident: ref31 doi: 10.1007/s10579-008-9076-6 – ident: ref43 doi: 10.1109/TASL.2010.2076804 – ident: ref16 doi: 10.1109/ICASSP.2014.6854517 – ident: ref9 doi: 10.1109/ASRU.2009.5372886 – ident: ref24 doi: 10.1109/ICASSP.2013.6639012 – ident: ref12 doi: 10.1145/2512530.2512533 – start-page: 807 year: 0 ident: ref30 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: Proc 27th Int Conf Mach Learning contributor: fullname: nair – ident: ref40 doi: 10.1145/2388676.2388781 – ident: ref29 doi: 10.1162/089976602760128018 – ident: ref13 doi: 10.1109/ICASSP.2013.6639346 – ident: ref15 doi: 10.1145/2522848.2531745 – ident: ref23 doi: 10.1016/B978-1-55860-307-3.50012-5 – start-page: 1 year: 0 ident: ref39 article-title: Speech language & multimedia technology publication-title: Proc Asia-Pacific Signal Inf Process Assoc Annu Summit Conf contributor: fullname: rozgic – ident: ref22 doi: 10.1145/1390156.1390177 – ident: ref6 doi: 10.1145/1027933.1027968 – start-page: 1459 year: 0 ident: ref37 article-title: openSMILE-The Munich versatile and fast open-source audio feature extractor publication-title: Proc 18th ACM Int Conf Multimedia contributor: fullname: eyben – start-page: 701 year: 0 ident: ref21 article-title: Multi-task learning for spoken language understanding with shared slots publication-title: Proc INTERSPEECH contributor: fullname: li – ident: ref18 doi: 10.1109/T-AFFC.2011.40 – ident: ref3 doi: 10.1109/ICASSP.2012.6289068 – start-page: 2226 year: 0 ident: ref42 article-title: Confidence measures in speech emotion recognition based on semi-supervised learning publication-title: Proc INTERSPEECH contributor: fullname: deng – start-page: 2562 year: 0 ident: ref26 article-title: Learning active facial patches for expression analysis publication-title: Proc IEEE Conf Comput Vision Pattern Recog contributor: fullname: zhong – ident: ref35 doi: 10.1109/T-AFFC.2013.11 – ident: ref33 doi: 10.1016/S0167-6393(02)00071-7 – year: 0 ident: ref38 article-title: Theano: A CPU and GPU math expression compiler publication-title: Proc Python Sci Comput Conf contributor: fullname: bergstra – start-page: 2362 year: 0 ident: ref34 article-title: Context-sensitive multimodal emotion recognition from speech and facial expression using bidirectional LSTM modeling publication-title: Proc INTERSPEECH contributor: fullname: wöllmer – ident: ref27 doi: 10.1109/ICASSP.2015.7178983 – ident: ref25 doi: 10.1109/CRV.2014.21 – ident: ref7 doi: 10.1109/T-AFFC.2011.17 – ident: ref20 doi: 10.1037/h0054570 – ident: ref17 doi: 10.1109/ICASSP.2014.6853745 – ident: ref14 doi: 10.1145/3065386 |
SSID | ssj0000333627 |
Score | 2.5311322 |
Snippet | Dimensional models have been proposed in psychology studies to represent complex human emotional expressions. Activation and valence are two common dimensions... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 3 |
SubjectTerms | Acoustics Activation Belief networks Categorical emotion recognition deep belief network Emotion recognition Emotions Feature extraction Human motion Iterative methods Learning Linear programming Motion capture multi-task learning Psychology Speech Support vector machines Two dimensional models valence |
Title | A Multi-Task Learning Framework for Emotion Recognition Using 2D Continuous Space |
URI | https://ieeexplore.ieee.org/document/7366551 https://www.proquest.com/docview/2174436226 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_MnXZxuilOp-TgTdt1aZu0xzFXhqCgbrBbadpEROjEtQf9631JP8CPg5cS6AchL3lf_f3eA7hkUnpUl0IUIlGWLoFuhYKmmo0WpiGXOvWk0Rb3bLn2bjf-pgPXLRdGSmnAZ9LWQ_MvP9umpU6VTbjLmK_50ns85BVXq82nOK6Lupg3vBgnnKxmUTTX4C3f1kbcD4Nvtsc0U_mlgY1Zifpw10yoQpO82mUh7PTzR63G_874APZr_5LMqg1xCB2ZD6Df9G4g9VEeQK_VfB9DeJgRQ8S1VsnuldQlV59J1AC3CHq2ZFE1_CGPDeQIxwZwQOgN0UWuXvJyW-7IE0bh8gjW0WI1X1p1rwUrRReisFyHplJxN0XdPeUqxbBJUqnoVCaBQqcrcPxMk14DxZjHs2nmZZSLwBMBfpMrxz2Gbr7N5QkQ9NdxtdFzFwHe91mCF4HHXGV-hrFvNoKrRgrxW1VSIzahiBPGRmaxlllcy2wEQ72s7ZP1io5g3Agurk_dLtbhlYe7gLLTv986gx7VZtmkUMbQLd5LeY5ORSEuzG76ApwIyN0 |
link.rule.ids | 315,781,785,797,27929,27930,54763 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4QPchFFDSiqHvwpi1l-z4SpEEFErUk3Bq23TWGpBhpD_rrnd0-Eh8HL80mfWQzs_PsNzMAVw7nFpWtEBlbCU22QNd8RmNZjebHvstl6kmiLebOZGHdL-1lA27qWhjOuQKfcV0u1b_8ZBPnMlXWd03HsWW99K5toVwU1Vp1RsUwTdTGblUZY_j9cBgEIwnfsnVpxm3f-2Z91DiVXzpYGZagBbNqSwWeZK3nGdPjzx_dGv-75wPYLz1MMiyOxCE0eNqGVjW9gZTC3IZmrfs-OvA4JKoUVwtX2zUpm66-kKCCbhH0bcm4GPlDnirQEa4V5IDQWyLbXL2m-SbfkmeMw_kRLIJxOJpo5bQFLUYnItNMg8ZcuGaM2nvgihgDJ065oAO-8gS6XZ5hJ7Ls1ROOY7nJILES6jLPYh5-0xWGeQw76SblJ0DQY0dqo-_OPLxvOyu8MBR0kdgJRr9JF64rLkRvRVONSAUjhh8pnkWSZ1HJsy50JFnrJ0uKdqFXMS4q5W4byQDLwlNAndO_37qEvUk4m0bTu_nDGTSpNNIqodKDnew95-foYmTsQp2sL06szCs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi-Task+Learning+Framework+for+Emotion+Recognition+Using+2D+Continuous+Space&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Rui+Xia&rft.au=Yang+Liu&rft.date=2017-01-01&rft.pub=IEEE&rft.eissn=1949-3045&rft.volume=8&rft.issue=1&rft.spage=3&rft.epage=14&rft_id=info:doi/10.1109%2FTAFFC.2015.2512598&rft.externalDocID=7366551 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon |