Deep Representation of EEG Signals Using Spatio-Spectral Feature Images
Modern deep neural networks (DNNs) have shown promising results in brain studies involving multi-channel electroencephalogram (EEG) signals. The representations produced by the layers of a DNN trained on EEG signals remain, however, poorly understood. In this paper, we propose an approach to interpr...
Saved in:
Published in | Applied sciences Vol. 13; no. 17; p. 9825 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Modern deep neural networks (DNNs) have shown promising results in brain studies involving multi-channel electroencephalogram (EEG) signals. The representations produced by the layers of a DNN trained on EEG signals remain, however, poorly understood. In this paper, we propose an approach to interpret deep representations of EEG signals. Our approach produces spatio-spectral feature images (SSFIs) that encode the EEG input patterns that activate the neurons in each layer of a DNN. We evaluate our approach using the PhyAAt dataset of multi-channel EEG signals for auditory attention. First, we train the same convolutional neural network (CNN) architecture on 25 separate sets of EEG signals from 25 subjects and conduct individual model analysis and inter-subject dependency analysis. Then we generate the SSFI input patterns that activate the layers of each trained CNN. The generated SSFI patterns can identify the main brain regions involved in a given auditory task. Our results show that low-level CNN features focus on larger regions and high-level features focus on smaller regions. In addition, our approach allows us to discern patterns in different frequency bands. Further SSFI saliency analysis reveals common brain regions associated with a specific activity for each subject. Our approach to investigate deep representations using SSFI can be used to enhance our understanding of the brain activity and effectively realize transfer learning. |
---|---|
AbstractList | Modern deep neural networks (DNNs) have shown promising results in brain studies involving multi-channel electroencephalogram (EEG) signals. The representations produced by the layers of a DNN trained on EEG signals remain, however, poorly understood. In this paper, we propose an approach to interpret deep representations of EEG signals. Our approach produces spatio-spectral feature images (SSFIs) that encode the EEG input patterns that activate the neurons in each layer of a DNN. We evaluate our approach using the PhyAAt dataset of multi-channel EEG signals for auditory attention. First, we train the same convolutional neural network (CNN) architecture on 25 separate sets of EEG signals from 25 subjects and conduct individual model analysis and inter-subject dependency analysis. Then we generate the SSFI input patterns that activate the layers of each trained CNN. The generated SSFI patterns can identify the main brain regions involved in a given auditory task. Our results show that low-level CNN features focus on larger regions and high-level features focus on smaller regions. In addition, our approach allows us to discern patterns in different frequency bands. Further SSFI saliency analysis reveals common brain regions associated with a specific activity for each subject. Our approach to investigate deep representations using SSFI can be used to enhance our understanding of the brain activity and effectively realize transfer learning. |
Audience | Academic |
Author | Bajaj, Nikesh Requena Carrión, Jesús |
Author_xml | – sequence: 1 givenname: Nikesh orcidid: 0000-0002-3361-0118 surname: Bajaj fullname: Bajaj, Nikesh – sequence: 2 givenname: Jesús surname: Requena Carrión fullname: Requena Carrión, Jesús |
BookMark | eNptkU9vEzEQxS1UJErpiS-wEke0xeO_62NV0hCpEhKhZ8vrHa8cJevF3hz49jgNiIJqHzwa_96TZt5bcjGlCQl5D_SGc0M_uXkGDtp0TL4il4xq1XIB-uJZ_YZcl7Kj9RjgHdBLsv6MODffcM5YcFrcEtPUpNCsVutmG8fJ7UvzWOI0Ntv59NluZ_RLdvvmHt1yzNhsDm7E8o68DpXF69_vFXm8X32_-9I-fF1v7m4fWi84LC0LnkrnQ0-F8Mp1ygdtJOeKoRpCb0AExlnoHJUSnDSKDpUTShkpVC-QX5HN2XdIbmfnHA8u_7TJRfvUSHm0Li_R79FKDZqaAbgUQQxa9UoC51Ix3Suksq9eH85ec04_jlgWu0vHfBrZsk4xMACa_6VGV03jFFId3x9i8fZWK8GUEIJW6uYFqt4BD9HXoEKs_X8EcBb4nErJGKyP5_VXYdxboPaUqn2WatV8_E_zZwEv0b8A4uqf5A |
CitedBy_id | crossref_primary_10_1016_j_dsm_2024_12_004 crossref_primary_10_3389_fnbot_2024_1529880 |
Cites_doi | 10.1109/IWW-BCI.2018.8311491 10.1088/1741-2552/ab0ab5 10.1109/CoG52621.2021.9619043 10.1145/2903150.2903159 10.1088/1741-2552/ab260c 10.1007/978-3-319-10590-1_53 10.1016/j.bspc.2020.102172 10.1016/j.bspc.2019.101624 10.1007/s00521-021-06352-5 10.3389/fneur.2019.00806 10.1109/BCI53720.2022.9734886 10.1109/TNNLS.2020.3010780 10.1016/S1388-2457(02)00057-3 10.1016/j.neucom.2011.10.024 10.1109/TBME.2005.851521 10.1155/2013/136864 10.1016/j.clinph.2018.06.024 10.1371/journal.pone.0131328 10.1109/IJCNN.2014.6889525 10.1109/LSP.2009.2022557 10.1088/1741-2560/12/4/046006 10.1016/j.neucom.2020.09.017 10.1016/j.bspc.2017.12.001 10.3390/app12031749 10.1155/2011/217987 10.1109/TBME.2013.2253608 10.1006/nimg.2002.1107 10.1007/978-3-319-26561-2_8 10.1109/TNSRE.2018.2813138 10.1109/ICASSP.2010.5495183 10.1109/ICTAI.2014.100 10.1109/ICASSP.2018.8462115 10.1016/j.neuroimage.2013.10.027 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app13179825 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_571709d1354f4d76b651335627b6e05b A764264440 10_3390_app13179825 |
GeographicLocations | New Jersey |
GeographicLocations_xml | – name: New Jersey |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c431t-2fc05acfb044c6a86cf7953362e6dfb914f232f8a0551a5960d4c64669546b4e3 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:30:11 EDT 2025 Mon Jun 30 06:09:27 EDT 2025 Tue Jun 17 22:21:18 EDT 2025 Tue Jun 10 21:21:03 EDT 2025 Tue Jul 01 04:34:14 EDT 2025 Thu Apr 24 22:54:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c431t-2fc05acfb044c6a86cf7953362e6dfb914f232f8a0551a5960d4c64669546b4e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3361-0118 |
OpenAccessLink | https://doaj.org/article/571709d1354f4d76b651335627b6e05b |
PQID | 2862191173 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_571709d1354f4d76b651335627b6e05b proquest_journals_2862191173 gale_infotracmisc_A764264440 gale_infotracacademiconefile_A764264440 crossref_citationtrail_10_3390_app13179825 crossref_primary_10_3390_app13179825 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230801 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 20230801 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Bajaj (ref_38) 2020; 55 Craik (ref_21) 2019; 16 Wan (ref_15) 2021; 421 ref_14 ref_36 ref_13 ref_35 ref_34 ref_11 ref_33 ref_30 Tu (ref_5) 2012; 82 Lazar (ref_4) 2002; 16 ref_39 ref_16 Lemm (ref_17) 2005; 52 Altaheri (ref_19) 2023; 35 Yuan (ref_12) 2015; 12 Sors (ref_28) 2018; 42 ref_25 Roy (ref_18) 2019; 16 ref_24 Devlaminck (ref_9) 2011; 2011 ref_23 ref_22 Wolpaw (ref_1) 2002; 113 (ref_29) 2018; 129 ref_42 Gramfort (ref_37) 2014; 86 ref_41 ref_40 Kang (ref_8) 2009; 16 ref_3 Samek (ref_10) 2013; 60 ref_26 Bellotti (ref_2) 2013; 2013 Zhao (ref_32) 2020; 32 Chambon (ref_27) 2018; 26 Sau (ref_43) 2023; 109 ref_7 Ruffini (ref_31) 2019; 10 ref_6 Dawwd (ref_20) 2021; 63 |
References_xml | – ident: ref_30 – ident: ref_26 – ident: ref_34 – ident: ref_13 doi: 10.1109/IWW-BCI.2018.8311491 – volume: 16 start-page: 031001 year: 2019 ident: ref_21 article-title: Deep learning for electroencephalogram (EEG) classification tasks: A review publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab0ab5 – ident: ref_3 doi: 10.1109/CoG52621.2021.9619043 – ident: ref_24 doi: 10.1145/2903150.2903159 – volume: 16 start-page: 051001 year: 2019 ident: ref_18 article-title: Deep learning-based electroencephalography analysis: A systematic review publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab260c – ident: ref_40 doi: 10.1007/978-3-319-10590-1_53 – ident: ref_16 – volume: 63 start-page: 102172 year: 2021 ident: ref_20 article-title: Deep learning for motor imagery EEG-based classification: A review publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2020.102172 – volume: 55 start-page: 101624 year: 2020 ident: ref_38 article-title: Automatic and tunable algorithm for EEG artifact removal using wavelet decomposition with applications in predictive modeling during auditory tasks publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2019.101624 – ident: ref_39 – volume: 35 start-page: 14681 year: 2023 ident: ref_19 article-title: Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: A review publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06352-5 – volume: 10 start-page: 806 year: 2019 ident: ref_31 article-title: Deep learning with EEG spectrograms in rapid eye movement behavior disorder publication-title: Front. Neurol. doi: 10.3389/fneur.2019.00806 – ident: ref_36 doi: 10.1109/BCI53720.2022.9734886 – volume: 32 start-page: 535 year: 2020 ident: ref_32 article-title: Deep representation-based domain adaptation for nonstationary EEG classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3010780 – ident: ref_42 – volume: 113 start-page: 767 year: 2002 ident: ref_1 article-title: Brain–Computer interfaces for communication and control publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(02)00057-3 – volume: 82 start-page: 109 year: 2012 ident: ref_5 article-title: A subject transfer framework for EEG classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.10.024 – volume: 109 start-page: A96 year: 2023 ident: ref_43 article-title: 88 Exploring the prognostic significance and important phenotypic and genotypic associations of neural network-derived electrocardiographic features publication-title: Heart – volume: 52 start-page: 1541 year: 2005 ident: ref_17 article-title: Spatio-spectral filters for improving the classification of single trial EEG publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2005.851521 – volume: 2013 start-page: 136864 year: 2013 ident: ref_2 article-title: Assessment in and of serious games: An overview publication-title: Adv. Hum. Comput. Interact. doi: 10.1155/2013/136864 – volume: 129 start-page: 2191 year: 2018 ident: ref_29 article-title: Deep learning for detection of focal epileptiform discharges from scalp EEG recordings publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2018.06.024 – ident: ref_25 – ident: ref_23 doi: 10.1371/journal.pone.0131328 – ident: ref_6 doi: 10.1109/IJCNN.2014.6889525 – volume: 16 start-page: 683 year: 2009 ident: ref_8 article-title: Composite common spatial pattern for subject-to-subject transfer publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2009.2022557 – volume: 12 start-page: 046006 year: 2015 ident: ref_12 article-title: Enhancing performances of SSVEP-based brain–computer interfaces via exploiting inter-subject information publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/4/046006 – volume: 421 start-page: 1 year: 2021 ident: ref_15 article-title: A review on transfer learning in EEG signal analysis publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.09.017 – volume: 42 start-page: 107 year: 2018 ident: ref_28 article-title: A convolutional neural network for sleep stage scoring from raw single-channel EEG publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2017.12.001 – ident: ref_41 – ident: ref_35 doi: 10.3390/app12031749 – volume: 2011 start-page: 8 year: 2011 ident: ref_9 article-title: Multisubject learning for common spatial patterns in motor-imagery BCI publication-title: Comput. Intell. Neurosci. doi: 10.1155/2011/217987 – volume: 60 start-page: 2289 year: 2013 ident: ref_10 article-title: Transferring subspaces between subjects in brain–computer interfacing publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2253608 – volume: 16 start-page: 538 year: 2002 ident: ref_4 article-title: Combining brains: A survey of methods for statistical pooling of information publication-title: Neuroimage doi: 10.1006/nimg.2002.1107 – ident: ref_7 doi: 10.1007/978-3-319-26561-2_8 – volume: 26 start-page: 758 year: 2018 ident: ref_27 article-title: A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2813138 – ident: ref_22 – ident: ref_11 doi: 10.1109/ICASSP.2010.5495183 – ident: ref_14 doi: 10.1109/ICTAI.2014.100 – ident: ref_33 doi: 10.1109/ICASSP.2018.8462115 – volume: 86 start-page: 446 year: 2014 ident: ref_37 article-title: MNE software for processing MEG and EEG data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.10.027 |
SSID | ssj0000913810 |
Score | 2.2702224 |
Snippet | Modern deep neural networks (DNNs) have shown promising results in brain studies involving multi-channel electroencephalogram (EEG) signals. The... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 9825 |
SubjectTerms | brain–computer interface Calibration convolutional neural network Datasets deep neural network deep representation EEG Electrodes Electroencephalography Listening Neural networks Neurons spatio-spectral feature image Topography |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgXOCAeIrxUg5IPKSKdk3S9oQGjJcEQoNJu0VNmkxIsI1t_H_sLhubBFx6aK2qdWLnc2J_BjhCBK-pMiXAqwm4QJvLeGICV-M5FwXGHDEVCj8-ybsWf2iLtt9wG_q0yolPLB110TO0R35eQ-iNsUWUxBf9z4C6RtHpqm-hsQhL6IJTDL6WLhtPz83pLguxXqZROC7MizG-p3PhKCaWLmqOPbMUlYz9f_nlcrG5WYNVjxJZfTys67BguxuwMsMduAHr3iqH7MRTR59uwu21tX3WLLNbfVFRl_UcazRu2ctbh7iSWZkkwF7KTOqA2s_TXgcjKPg1sOz-Ax3McAtaN43Xq7vAt0oIDCKAUVBzJhS5cTrk3Mg8lcYllDgqa1YWTmcRdwidXJqHiJBygWFLgXJcykxwqbmNt6HS7XXtDjCrU4FhMTf4Jly5XC50iAOdINLL0igvqnA20Zoynkec2lm8K4wnSMVqRsVVOJoK98f0Gb-LXZL6pyLEeV3e6A06ypuQEhh5hlkRxYI7XiRSS-pNg_gt0dKGQlfhmAZPkWXiB5ncFxjgbxHHlaonsoR_PKzC_pwkWpSZfzwZfuUteqh-5t_u_4_3YJla0o-TBPehMhp82QMELiN96GfnN2-z6S4 priority: 102 providerName: ProQuest |
Title | Deep Representation of EEG Signals Using Spatio-Spectral Feature Images |
URI | https://www.proquest.com/docview/2862191173 https://doaj.org/article/571709d1354f4d76b651335627b6e05b |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58XPQgPnF1XXIQfECh3SZpe3R1d1VQxAd4C02aiKCr7OP_O5NGqaB48bKH7lDSyUxmvnbmG4B9zOA1daZE-GsiLtDnCp6ZyHV5yUWFmCOlRuGra3n-wC8fxWNj1BfVhNX0wLXiELAnWVxUSSq441UmtaSJJBi1My1tLDSdvhjzGmDKn8FFQtRVdUNeirievgcnKbFz0VDsRgjyTP2_ncc-yAxWYSVkh-ykXtUazNnROiw3OAPXYS1444QdBsroow0Ynln7zm59VWtoJhqxN8f6_SG7e34ijmTmiwPYna-gjmjsPL3jYJQCzsaWXbziwTLZhIdB__70PAojEiKDkX8adZ2JRWmcjjk3ssylcRkVjMqulZXTRcIdpkwuL2PMjEqBcKVCOS5lIbjU3KZbsDB6G9ltYFbnAuEwN3gnjFiuFDrGDc4wwyvypKxacPypNWUCfziNsXhRiCNIxaqh4hbsfwm_17QZP4v1SP1fIsR17S-gBahgAeovC2jBAW2eIo_EBZkyNBbgYxG3lTrJpE_7eNyC9jdJ9CTz_e_P7VfBkyeqi5APMW2SpTv_sdhdWKKB9XUJYRsWpuOZ3cO0Zqo7MJ8Phh1Y7PWvb2473p4_AHtb8Qs |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiBYQWwr4UMRDinAS20kOCBW6L_o40FbqzY0du0Jqd7e7W1X9U_xGZpxk2UrArZcc4lGUjOfxjTMPgC1E8IYqUyK82khI1LlCZDbyiSiFrDDmSKlQeP9ADY7F9xN5sgK_2loYSqtsbWIw1NXY0hn5pwShN8YWcZZ-mVxGNDWK_q62IzRqsdh1N9cYss0-D3dwf98mSa979G0QNVMFIovOch4l3nJZWm-4EFaVubI-oxxLlThVeVPEwiPK8HnJEUyUEhF-hXRCqUIKZYRL8bn34L5I04I0Ku_1F2c61GMzj3ldBojrnP5Cxyn1BKNR3EuOL8wH-JcXCK6t9wQeN5iUbddCtAYrbrQOj5Y6Fa7DWmMDZux906j6w1Po7zg3YT9CLm1TwjRiY8-63T47_HlGnZlZSElghyFvO6Jh93Sywgh4Xk0dG16gOZs9g-M7YeFzWB2NR-4FMGdyiUG4sPgk9JO-lIajWGWIK4s8LqsOfGy5pm3TtZyGZ5xrjF6IxXqJxR3YWhBP6mYdfyf7SuxfkFCH7XBjPD3TjcJqiXEuL6o4lcKLKlNG0SQcRIuZUY5L04F3tHma7AC-kC2bcgb8LOqopbczFcCm4B3YvEWJ-mtvL7fbrxv7MdN_pH3j_8tv4MHgaH9P7w0Pdl_CwwQhWJ2euAmr8-mVe4WQaW5eBzllcHrXivEbseAjyw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLSACBTYQxEPyera3l3bB4RakrShEFUNlXpbvOvdCgmSkKRC_DV-HTP2OqQScOvFB3ts2bPz-GY9D4BdRPCGKlMiPNpISNS5QmQ28okohaww5kipUPjjSB2diffn8nwDfrW1MJRW2drE2lBXU0t75HsJQm-MLeIs3fMhLeKkN3g7-x7RBCn609qO02hE5Nj9_IHh2-LNsIdr_TxJBv1P746iMGEgsug4l1HiLZel9YYLYVWZK-szyrdUiVOVN0UsPCIOn5ccgUUpEe1XSCeUKqRQRrgUn3sDNjOMingHNg_6o5PT1Q4PddzMY94UBaZpwemfdJxShzAazL3mButpAf_yCbWjG9yFOwGhsv1GpLZgw0224fZa38Jt2AoWYcFehrbVr-7BYc-5GTutM2tDQdOETT3r9w_Z-MsF9WlmdYICG9dZ3NGYijzxXkYw9HLu2PAbGrfFfTi7FiY-gM5kOnEPgTmTSwzJhcUnodf0pTQchSxDlFnkcVl14XXLNW1DD3MapfFVYyxDLNZrLO7C7op41rTu-DvZAbF_RUL9tusT0_mFDuqrJUa9vKjiVAovqkwZRXNxEDtmRjkuTRde0OJpsgr4QrYMxQ34WdRfS-9nqoaegndh5wolarO9erldfh2syUL_kf1H_7_8DG6iUugPw9HxY7iVIB5rchV3oLOcX7oniJ-W5mkQVAafr1s3fgNQ9Cld |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Representation+of+EEG+Signals+Using+Spatio-Spectral+Feature+Images&rft.jtitle=Applied+sciences&rft.au=Nikesh+Bajaj&rft.au=Jes%C3%BAs+Requena+Carri%C3%B3n&rft.date=2023-08-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=17&rft.spage=9825&rft_id=info:doi/10.3390%2Fapp13179825&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_571709d1354f4d76b651335627b6e05b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |