Deep Representation of EEG Signals Using Spatio-Spectral Feature Images

Modern deep neural networks (DNNs) have shown promising results in brain studies involving multi-channel electroencephalogram (EEG) signals. The representations produced by the layers of a DNN trained on EEG signals remain, however, poorly understood. In this paper, we propose an approach to interpr...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 13; no. 17; p. 9825
Main Authors Bajaj, Nikesh, Requena Carrión, Jesús
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Modern deep neural networks (DNNs) have shown promising results in brain studies involving multi-channel electroencephalogram (EEG) signals. The representations produced by the layers of a DNN trained on EEG signals remain, however, poorly understood. In this paper, we propose an approach to interpret deep representations of EEG signals. Our approach produces spatio-spectral feature images (SSFIs) that encode the EEG input patterns that activate the neurons in each layer of a DNN. We evaluate our approach using the PhyAAt dataset of multi-channel EEG signals for auditory attention. First, we train the same convolutional neural network (CNN) architecture on 25 separate sets of EEG signals from 25 subjects and conduct individual model analysis and inter-subject dependency analysis. Then we generate the SSFI input patterns that activate the layers of each trained CNN. The generated SSFI patterns can identify the main brain regions involved in a given auditory task. Our results show that low-level CNN features focus on larger regions and high-level features focus on smaller regions. In addition, our approach allows us to discern patterns in different frequency bands. Further SSFI saliency analysis reveals common brain regions associated with a specific activity for each subject. Our approach to investigate deep representations using SSFI can be used to enhance our understanding of the brain activity and effectively realize transfer learning.
AbstractList Modern deep neural networks (DNNs) have shown promising results in brain studies involving multi-channel electroencephalogram (EEG) signals. The representations produced by the layers of a DNN trained on EEG signals remain, however, poorly understood. In this paper, we propose an approach to interpret deep representations of EEG signals. Our approach produces spatio-spectral feature images (SSFIs) that encode the EEG input patterns that activate the neurons in each layer of a DNN. We evaluate our approach using the PhyAAt dataset of multi-channel EEG signals for auditory attention. First, we train the same convolutional neural network (CNN) architecture on 25 separate sets of EEG signals from 25 subjects and conduct individual model analysis and inter-subject dependency analysis. Then we generate the SSFI input patterns that activate the layers of each trained CNN. The generated SSFI patterns can identify the main brain regions involved in a given auditory task. Our results show that low-level CNN features focus on larger regions and high-level features focus on smaller regions. In addition, our approach allows us to discern patterns in different frequency bands. Further SSFI saliency analysis reveals common brain regions associated with a specific activity for each subject. Our approach to investigate deep representations using SSFI can be used to enhance our understanding of the brain activity and effectively realize transfer learning.
Audience Academic
Author Bajaj, Nikesh
Requena Carrión, Jesús
Author_xml – sequence: 1
  givenname: Nikesh
  orcidid: 0000-0002-3361-0118
  surname: Bajaj
  fullname: Bajaj, Nikesh
– sequence: 2
  givenname: Jesús
  surname: Requena Carrión
  fullname: Requena Carrión, Jesús
BookMark eNptkU9vEzEQxS1UJErpiS-wEke0xeO_62NV0hCpEhKhZ8vrHa8cJevF3hz49jgNiIJqHzwa_96TZt5bcjGlCQl5D_SGc0M_uXkGDtp0TL4il4xq1XIB-uJZ_YZcl7Kj9RjgHdBLsv6MODffcM5YcFrcEtPUpNCsVutmG8fJ7UvzWOI0Ntv59NluZ_RLdvvmHt1yzNhsDm7E8o68DpXF69_vFXm8X32_-9I-fF1v7m4fWi84LC0LnkrnQ0-F8Mp1ygdtJOeKoRpCb0AExlnoHJUSnDSKDpUTShkpVC-QX5HN2XdIbmfnHA8u_7TJRfvUSHm0Li_R79FKDZqaAbgUQQxa9UoC51Ix3Suksq9eH85ec04_jlgWu0vHfBrZsk4xMACa_6VGV03jFFId3x9i8fZWK8GUEIJW6uYFqt4BD9HXoEKs_X8EcBb4nErJGKyP5_VXYdxboPaUqn2WatV8_E_zZwEv0b8A4uqf5A
CitedBy_id crossref_primary_10_1016_j_dsm_2024_12_004
crossref_primary_10_3389_fnbot_2024_1529880
Cites_doi 10.1109/IWW-BCI.2018.8311491
10.1088/1741-2552/ab0ab5
10.1109/CoG52621.2021.9619043
10.1145/2903150.2903159
10.1088/1741-2552/ab260c
10.1007/978-3-319-10590-1_53
10.1016/j.bspc.2020.102172
10.1016/j.bspc.2019.101624
10.1007/s00521-021-06352-5
10.3389/fneur.2019.00806
10.1109/BCI53720.2022.9734886
10.1109/TNNLS.2020.3010780
10.1016/S1388-2457(02)00057-3
10.1016/j.neucom.2011.10.024
10.1109/TBME.2005.851521
10.1155/2013/136864
10.1016/j.clinph.2018.06.024
10.1371/journal.pone.0131328
10.1109/IJCNN.2014.6889525
10.1109/LSP.2009.2022557
10.1088/1741-2560/12/4/046006
10.1016/j.neucom.2020.09.017
10.1016/j.bspc.2017.12.001
10.3390/app12031749
10.1155/2011/217987
10.1109/TBME.2013.2253608
10.1006/nimg.2002.1107
10.1007/978-3-319-26561-2_8
10.1109/TNSRE.2018.2813138
10.1109/ICASSP.2010.5495183
10.1109/ICTAI.2014.100
10.1109/ICASSP.2018.8462115
10.1016/j.neuroimage.2013.10.027
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app13179825
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_571709d1354f4d76b651335627b6e05b
A764264440
10_3390_app13179825
GeographicLocations New Jersey
GeographicLocations_xml – name: New Jersey
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c431t-2fc05acfb044c6a86cf7953362e6dfb914f232f8a0551a5960d4c64669546b4e3
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:30:11 EDT 2025
Mon Jun 30 06:09:27 EDT 2025
Tue Jun 17 22:21:18 EDT 2025
Tue Jun 10 21:21:03 EDT 2025
Tue Jul 01 04:34:14 EDT 2025
Thu Apr 24 22:54:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-2fc05acfb044c6a86cf7953362e6dfb914f232f8a0551a5960d4c64669546b4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3361-0118
OpenAccessLink https://doaj.org/article/571709d1354f4d76b651335627b6e05b
PQID 2862191173
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_571709d1354f4d76b651335627b6e05b
proquest_journals_2862191173
gale_infotracmisc_A764264440
gale_infotracacademiconefile_A764264440
crossref_citationtrail_10_3390_app13179825
crossref_primary_10_3390_app13179825
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 20230801
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Bajaj (ref_38) 2020; 55
Craik (ref_21) 2019; 16
Wan (ref_15) 2021; 421
ref_14
ref_36
ref_13
ref_35
ref_34
ref_11
ref_33
ref_30
Tu (ref_5) 2012; 82
Lazar (ref_4) 2002; 16
ref_39
ref_16
Lemm (ref_17) 2005; 52
Altaheri (ref_19) 2023; 35
Yuan (ref_12) 2015; 12
Sors (ref_28) 2018; 42
ref_25
Roy (ref_18) 2019; 16
ref_24
Devlaminck (ref_9) 2011; 2011
ref_23
ref_22
Wolpaw (ref_1) 2002; 113
(ref_29) 2018; 129
ref_42
Gramfort (ref_37) 2014; 86
ref_41
ref_40
Kang (ref_8) 2009; 16
ref_3
Samek (ref_10) 2013; 60
ref_26
Bellotti (ref_2) 2013; 2013
Zhao (ref_32) 2020; 32
Chambon (ref_27) 2018; 26
Sau (ref_43) 2023; 109
ref_7
Ruffini (ref_31) 2019; 10
ref_6
Dawwd (ref_20) 2021; 63
References_xml – ident: ref_30
– ident: ref_26
– ident: ref_34
– ident: ref_13
  doi: 10.1109/IWW-BCI.2018.8311491
– volume: 16
  start-page: 031001
  year: 2019
  ident: ref_21
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: A review
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab0ab5
– ident: ref_3
  doi: 10.1109/CoG52621.2021.9619043
– ident: ref_24
  doi: 10.1145/2903150.2903159
– volume: 16
  start-page: 051001
  year: 2019
  ident: ref_18
  article-title: Deep learning-based electroencephalography analysis: A systematic review
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab260c
– ident: ref_40
  doi: 10.1007/978-3-319-10590-1_53
– ident: ref_16
– volume: 63
  start-page: 102172
  year: 2021
  ident: ref_20
  article-title: Deep learning for motor imagery EEG-based classification: A review
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2020.102172
– volume: 55
  start-page: 101624
  year: 2020
  ident: ref_38
  article-title: Automatic and tunable algorithm for EEG artifact removal using wavelet decomposition with applications in predictive modeling during auditory tasks
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2019.101624
– ident: ref_39
– volume: 35
  start-page: 14681
  year: 2023
  ident: ref_19
  article-title: Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: A review
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06352-5
– volume: 10
  start-page: 806
  year: 2019
  ident: ref_31
  article-title: Deep learning with EEG spectrograms in rapid eye movement behavior disorder
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2019.00806
– ident: ref_36
  doi: 10.1109/BCI53720.2022.9734886
– volume: 32
  start-page: 535
  year: 2020
  ident: ref_32
  article-title: Deep representation-based domain adaptation for nonstationary EEG classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3010780
– ident: ref_42
– volume: 113
  start-page: 767
  year: 2002
  ident: ref_1
  article-title: Brain–Computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 82
  start-page: 109
  year: 2012
  ident: ref_5
  article-title: A subject transfer framework for EEG classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.10.024
– volume: 109
  start-page: A96
  year: 2023
  ident: ref_43
  article-title: 88 Exploring the prognostic significance and important phenotypic and genotypic associations of neural network-derived electrocardiographic features
  publication-title: Heart
– volume: 52
  start-page: 1541
  year: 2005
  ident: ref_17
  article-title: Spatio-spectral filters for improving the classification of single trial EEG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2005.851521
– volume: 2013
  start-page: 136864
  year: 2013
  ident: ref_2
  article-title: Assessment in and of serious games: An overview
  publication-title: Adv. Hum. Comput. Interact.
  doi: 10.1155/2013/136864
– volume: 129
  start-page: 2191
  year: 2018
  ident: ref_29
  article-title: Deep learning for detection of focal epileptiform discharges from scalp EEG recordings
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2018.06.024
– ident: ref_25
– ident: ref_23
  doi: 10.1371/journal.pone.0131328
– ident: ref_6
  doi: 10.1109/IJCNN.2014.6889525
– volume: 16
  start-page: 683
  year: 2009
  ident: ref_8
  article-title: Composite common spatial pattern for subject-to-subject transfer
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2009.2022557
– volume: 12
  start-page: 046006
  year: 2015
  ident: ref_12
  article-title: Enhancing performances of SSVEP-based brain–computer interfaces via exploiting inter-subject information
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/4/046006
– volume: 421
  start-page: 1
  year: 2021
  ident: ref_15
  article-title: A review on transfer learning in EEG signal analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.09.017
– volume: 42
  start-page: 107
  year: 2018
  ident: ref_28
  article-title: A convolutional neural network for sleep stage scoring from raw single-channel EEG
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2017.12.001
– ident: ref_41
– ident: ref_35
  doi: 10.3390/app12031749
– volume: 2011
  start-page: 8
  year: 2011
  ident: ref_9
  article-title: Multisubject learning for common spatial patterns in motor-imagery BCI
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/217987
– volume: 60
  start-page: 2289
  year: 2013
  ident: ref_10
  article-title: Transferring subspaces between subjects in brain–computer interfacing
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2253608
– volume: 16
  start-page: 538
  year: 2002
  ident: ref_4
  article-title: Combining brains: A survey of methods for statistical pooling of information
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1107
– ident: ref_7
  doi: 10.1007/978-3-319-26561-2_8
– volume: 26
  start-page: 758
  year: 2018
  ident: ref_27
  article-title: A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2813138
– ident: ref_22
– ident: ref_11
  doi: 10.1109/ICASSP.2010.5495183
– ident: ref_14
  doi: 10.1109/ICTAI.2014.100
– ident: ref_33
  doi: 10.1109/ICASSP.2018.8462115
– volume: 86
  start-page: 446
  year: 2014
  ident: ref_37
  article-title: MNE software for processing MEG and EEG data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.10.027
SSID ssj0000913810
Score 2.2702224
Snippet Modern deep neural networks (DNNs) have shown promising results in brain studies involving multi-channel electroencephalogram (EEG) signals. The...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 9825
SubjectTerms brain–computer interface
Calibration
convolutional neural network
Datasets
deep neural network
deep representation
EEG
Electrodes
Electroencephalography
Listening
Neural networks
Neurons
spatio-spectral feature image
Topography
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgXOCAeIrxUg5IPKSKdk3S9oQGjJcEQoNJu0VNmkxIsI1t_H_sLhubBFx6aK2qdWLnc2J_BjhCBK-pMiXAqwm4QJvLeGICV-M5FwXGHDEVCj8-ybsWf2iLtt9wG_q0yolPLB110TO0R35eQ-iNsUWUxBf9z4C6RtHpqm-hsQhL6IJTDL6WLhtPz83pLguxXqZROC7MizG-p3PhKCaWLmqOPbMUlYz9f_nlcrG5WYNVjxJZfTys67BguxuwMsMduAHr3iqH7MRTR59uwu21tX3WLLNbfVFRl_UcazRu2ctbh7iSWZkkwF7KTOqA2s_TXgcjKPg1sOz-Ax3McAtaN43Xq7vAt0oIDCKAUVBzJhS5cTrk3Mg8lcYllDgqa1YWTmcRdwidXJqHiJBygWFLgXJcykxwqbmNt6HS7XXtDjCrU4FhMTf4Jly5XC50iAOdINLL0igvqnA20Zoynkec2lm8K4wnSMVqRsVVOJoK98f0Gb-LXZL6pyLEeV3e6A06ypuQEhh5hlkRxYI7XiRSS-pNg_gt0dKGQlfhmAZPkWXiB5ncFxjgbxHHlaonsoR_PKzC_pwkWpSZfzwZfuUteqh-5t_u_4_3YJla0o-TBPehMhp82QMELiN96GfnN2-z6S4
  priority: 102
  providerName: ProQuest
Title Deep Representation of EEG Signals Using Spatio-Spectral Feature Images
URI https://www.proquest.com/docview/2862191173
https://doaj.org/article/571709d1354f4d76b651335627b6e05b
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58XPQgPnF1XXIQfECh3SZpe3R1d1VQxAd4C02aiKCr7OP_O5NGqaB48bKH7lDSyUxmvnbmG4B9zOA1daZE-GsiLtDnCp6ZyHV5yUWFmCOlRuGra3n-wC8fxWNj1BfVhNX0wLXiELAnWVxUSSq441UmtaSJJBi1My1tLDSdvhjzGmDKn8FFQtRVdUNeirievgcnKbFz0VDsRgjyTP2_ncc-yAxWYSVkh-ykXtUazNnROiw3OAPXYS1444QdBsroow0Ynln7zm59VWtoJhqxN8f6_SG7e34ijmTmiwPYna-gjmjsPL3jYJQCzsaWXbziwTLZhIdB__70PAojEiKDkX8adZ2JRWmcjjk3ssylcRkVjMqulZXTRcIdpkwuL2PMjEqBcKVCOS5lIbjU3KZbsDB6G9ltYFbnAuEwN3gnjFiuFDrGDc4wwyvypKxacPypNWUCfziNsXhRiCNIxaqh4hbsfwm_17QZP4v1SP1fIsR17S-gBahgAeovC2jBAW2eIo_EBZkyNBbgYxG3lTrJpE_7eNyC9jdJ9CTz_e_P7VfBkyeqi5APMW2SpTv_sdhdWKKB9XUJYRsWpuOZ3cO0Zqo7MJ8Phh1Y7PWvb2473p4_AHtb8Qs
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiBYQWwr4UMRDinAS20kOCBW6L_o40FbqzY0du0Jqd7e7W1X9U_xGZpxk2UrArZcc4lGUjOfxjTMPgC1E8IYqUyK82khI1LlCZDbyiSiFrDDmSKlQeP9ADY7F9xN5sgK_2loYSqtsbWIw1NXY0hn5pwShN8YWcZZ-mVxGNDWK_q62IzRqsdh1N9cYss0-D3dwf98mSa979G0QNVMFIovOch4l3nJZWm-4EFaVubI-oxxLlThVeVPEwiPK8HnJEUyUEhF-hXRCqUIKZYRL8bn34L5I04I0Ku_1F2c61GMzj3ldBojrnP5Cxyn1BKNR3EuOL8wH-JcXCK6t9wQeN5iUbddCtAYrbrQOj5Y6Fa7DWmMDZux906j6w1Po7zg3YT9CLm1TwjRiY8-63T47_HlGnZlZSElghyFvO6Jh93Sywgh4Xk0dG16gOZs9g-M7YeFzWB2NR-4FMGdyiUG4sPgk9JO-lIajWGWIK4s8LqsOfGy5pm3TtZyGZ5xrjF6IxXqJxR3YWhBP6mYdfyf7SuxfkFCH7XBjPD3TjcJqiXEuL6o4lcKLKlNG0SQcRIuZUY5L04F3tHma7AC-kC2bcgb8LOqopbczFcCm4B3YvEWJ-mtvL7fbrxv7MdN_pH3j_8tv4MHgaH9P7w0Pdl_CwwQhWJ2euAmr8-mVe4WQaW5eBzllcHrXivEbseAjyw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLSACBTYQxEPyera3l3bB4RakrShEFUNlXpbvOvdCgmSkKRC_DV-HTP2OqQScOvFB3ts2bPz-GY9D4BdRPCGKlMiPNpISNS5QmQ28okohaww5kipUPjjSB2diffn8nwDfrW1MJRW2drE2lBXU0t75HsJQm-MLeIs3fMhLeKkN3g7-x7RBCn609qO02hE5Nj9_IHh2-LNsIdr_TxJBv1P746iMGEgsug4l1HiLZel9YYLYVWZK-szyrdUiVOVN0UsPCIOn5ccgUUpEe1XSCeUKqRQRrgUn3sDNjOMingHNg_6o5PT1Q4PddzMY94UBaZpwemfdJxShzAazL3mButpAf_yCbWjG9yFOwGhsv1GpLZgw0224fZa38Jt2AoWYcFehrbVr-7BYc-5GTutM2tDQdOETT3r9w_Z-MsF9WlmdYICG9dZ3NGYijzxXkYw9HLu2PAbGrfFfTi7FiY-gM5kOnEPgTmTSwzJhcUnodf0pTQchSxDlFnkcVl14XXLNW1DD3MapfFVYyxDLNZrLO7C7op41rTu-DvZAbF_RUL9tusT0_mFDuqrJUa9vKjiVAovqkwZRXNxEDtmRjkuTRde0OJpsgr4QrYMxQ34WdRfS-9nqoaegndh5wolarO9erldfh2syUL_kf1H_7_8DG6iUugPw9HxY7iVIB5rchV3oLOcX7oniJ-W5mkQVAafr1s3fgNQ9Cld
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Representation+of+EEG+Signals+Using+Spatio-Spectral+Feature+Images&rft.jtitle=Applied+sciences&rft.au=Nikesh+Bajaj&rft.au=Jes%C3%BAs+Requena+Carri%C3%B3n&rft.date=2023-08-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=17&rft.spage=9825&rft_id=info:doi/10.3390%2Fapp13179825&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_571709d1354f4d76b651335627b6e05b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon