A Dataset of Scalp EEG Recordings of Alzheimer’s Disease, Frontotemporal Dementia and Healthy Subjects from Routine EEG
Recently, there has been a growing research interest in utilizing the electroencephalogram (EEG) as a non-invasive diagnostic tool for neurodegenerative diseases. This article provides a detailed description of a resting-state EEG dataset of individuals with Alzheimer’s disease and frontotemporal de...
Saved in:
Published in | Data (Basel) Vol. 8; no. 6; p. 95 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, there has been a growing research interest in utilizing the electroencephalogram (EEG) as a non-invasive diagnostic tool for neurodegenerative diseases. This article provides a detailed description of a resting-state EEG dataset of individuals with Alzheimer’s disease and frontotemporal dementia, and healthy controls. The dataset was collected using a clinical EEG system with 19 scalp electrodes while participants were in a resting state with their eyes closed. The data collection process included rigorous quality control measures to ensure data accuracy and consistency. The dataset contains recordings of 36 Alzheimer’s patients, 23 frontotemporal dementia patients, and 29 healthy age-matched subjects. For each subject, the Mini-Mental State Examination score is reported. A monopolar montage was used to collect the signals. A raw and preprocessed EEG is included in the standard BIDS format. For the preprocessed signals, established methods such as artifact subspace reconstruction and an independent component analysis have been employed for denoising. The dataset has significant reuse potential since Alzheimer’s EEG Machine Learning studies are increasing in popularity and there is a lack of publicly available EEG datasets. The resting-state EEG data can be used to explore alterations in brain activity and connectivity in these conditions, and to develop new diagnostic and treatment approaches. Additionally, the dataset can be used to compare EEG characteristics between different types of dementia, which could provide insights into the underlying mechanisms of these conditions. |
---|---|
AbstractList | Recently, there has been a growing research interest in utilizing the electroencephalogram (EEG) as a non-invasive diagnostic tool for neurodegenerative diseases. This article provides a detailed description of a resting-state EEG dataset of individuals with Alzheimer’s disease and frontotemporal dementia, and healthy controls. The dataset was collected using a clinical EEG system with 19 scalp electrodes while participants were in a resting state with their eyes closed. The data collection process included rigorous quality control measures to ensure data accuracy and consistency. The dataset contains recordings of 36 Alzheimer’s patients, 23 frontotemporal dementia patients, and 29 healthy age-matched subjects. For each subject, the Mini-Mental State Examination score is reported. A monopolar montage was used to collect the signals. A raw and preprocessed EEG is included in the standard BIDS format. For the preprocessed signals, established methods such as artifact subspace reconstruction and an independent component analysis have been employed for denoising. The dataset has significant reuse potential since Alzheimer’s EEG Machine Learning studies are increasing in popularity and there is a lack of publicly available EEG datasets. The resting-state EEG data can be used to explore alterations in brain activity and connectivity in these conditions, and to develop new diagnostic and treatment approaches. Additionally, the dataset can be used to compare EEG characteristics between different types of dementia, which could provide insights into the underlying mechanisms of these conditions.Dataset: 10.18112/openneuro.ds004504.v1.0.2.Dataset License: CC0 Recently, there has been a growing research interest in utilizing the electroencephalogram (EEG) as a non-invasive diagnostic tool for neurodegenerative diseases. This article provides a detailed description of a resting-state EEG dataset of individuals with Alzheimer's disease and frontotemporal dementia, and healthy controls. The dataset was collected using a clinical EEG system with 19 scalp electrodes while participants were in a resting state with their eyes closed. The data collection process included rigorous quality control measures to ensure data accuracy and consistency. The dataset contains recordings of 36 Alzheimer's patients, 23 frontotemporal dementia patients, and 29 healthy age-matched subjects. For each subject, the Mini-Mental State Examination score is reported. A monopolar montage was used to collect the signals. A raw and preprocessed EEG is included in the standard BIDS format. For the preprocessed signals, established methods such as artifact subspace reconstruction and an independent component analysis have been employed for denoising. The dataset has significant reuse potential since Alzheimer's EEG Machine Learning studies are increasing in popularity and there is a lack of publicly available EEG datasets. The resting-state EEG data can be used to explore alterations in brain activity and connectivity in these conditions, and to develop new diagnostic and treatment approaches. Additionally, the dataset can be used to compare EEG characteristics between different types of dementia, which could provide insights into the underlying mechanisms of these conditions. |
Audience | Academic |
Author | Tsipouras, Markos G. Glavas, Euripidis Miltiadous, Andreas Tzallas, Alexandros T. Tzimourta, Katerina D. Angelidis, Pantelis Ioannidis, Panagiotis Afrantou, Theodora Giannakeas, Nikolaos Tsalikakis, Dimitrios G. Grigoriadis, Nikolaos |
Author_xml | – sequence: 1 givenname: Andreas orcidid: 0000-0003-0675-9088 surname: Miltiadous fullname: Miltiadous, Andreas – sequence: 2 givenname: Katerina D. orcidid: 0000-0001-9640-7005 surname: Tzimourta fullname: Tzimourta, Katerina D. – sequence: 3 givenname: Theodora orcidid: 0000-0003-2009-4166 surname: Afrantou fullname: Afrantou, Theodora – sequence: 4 givenname: Panagiotis orcidid: 0000-0003-0254-6624 surname: Ioannidis fullname: Ioannidis, Panagiotis – sequence: 5 givenname: Nikolaos orcidid: 0000-0002-4278-3301 surname: Grigoriadis fullname: Grigoriadis, Nikolaos – sequence: 6 givenname: Dimitrios G. surname: Tsalikakis fullname: Tsalikakis, Dimitrios G. – sequence: 7 givenname: Pantelis orcidid: 0000-0003-1503-8952 surname: Angelidis fullname: Angelidis, Pantelis – sequence: 8 givenname: Markos G. orcidid: 0000-0002-6757-1698 surname: Tsipouras fullname: Tsipouras, Markos G. – sequence: 9 givenname: Euripidis orcidid: 0000-0002-5604-3507 surname: Glavas fullname: Glavas, Euripidis – sequence: 10 givenname: Nikolaos orcidid: 0000-0002-0615-783X surname: Giannakeas fullname: Giannakeas, Nikolaos – sequence: 11 givenname: Alexandros T. orcidid: 0000-0001-9043-1290 surname: Tzallas fullname: Tzallas, Alexandros T. |
BookMark | eNptks1uEzEUhUeoSJTSFS9giSWk-N-eZdSkP1IlpBbWlse-kzqaGQfbWaQrXoPX40lwGooKqrzw1dH5zrV879vmaIoTNM17gs8Ya_Fnb4vVWGLcilfNMWVYzoSi7dGz-k1zmvMaY0wpF5Lq42Y3R4vKZSgo9ujO2WGDlstLdAsuJh-mVd7r8-HhHsII6dePnxktQoZKfEIXKU4lFhg3MdkBLWCEqQSL7OTRFdih3O_Q3bZbgysZ9SmO6DZuS5hg3-Jd87q3Q4bTP_dJ8-1i-fX8anbz5fL6fH4zc5yRMqNeEEWZ6rTHXjIlsOi065iwQkKviAbpwWEqmQQrOkpqqRVnmntQymp20lwfcn20a7NJYbRpZ6IN5lGIaWVsKsENYLinREqsrSScO81a1rle4lbTmsn5PuvDIWuT4vct5GLWcZum-nxDNW1Vy1WF_rpWtoaGqY8lWTeG7MxcCV2dhMnqOnvBVY-HMbg62j5U_R-AHACXYs4JeuNCsSXUGSQbBkOw2e-BebYHlfn4H_P0AS-5fwOUcrKC |
CitedBy_id | crossref_primary_10_3390_jpm15010027 crossref_primary_10_3390_sym17020172 crossref_primary_10_1016_j_neuroimage_2025_121123 crossref_primary_10_1109_ACCESS_2023_3294618 crossref_primary_10_1088_2632_2153_ad829d crossref_primary_10_3390_diagnostics14192189 crossref_primary_10_1007_s10548_025_01106_1 crossref_primary_10_1016_j_bspc_2025_107842 crossref_primary_10_3390_medicina59122155 crossref_primary_10_1038_s41598_024_54416_y crossref_primary_10_1016_j_jneumeth_2025_110377 crossref_primary_10_1371_journal_pone_0305082 crossref_primary_10_3390_brainsci14060565 crossref_primary_10_1007_s11357_023_01041_8 crossref_primary_10_1016_j_neuroimage_2024_120945 crossref_primary_10_1007_s11571_025_10232_2 crossref_primary_10_3389_fnagi_2023_1288295 crossref_primary_10_1016_j_brainresbull_2025_111281 crossref_primary_10_3390_signals5020018 crossref_primary_10_1016_j_clinph_2024_12_008 crossref_primary_10_1007_s40846_024_00917_0 crossref_primary_10_1109_ACCESS_2023_3341419 crossref_primary_10_1109_ACCESS_2025_3532515 crossref_primary_10_1177_13872877251327754 crossref_primary_10_1016_j_dajour_2023_100336 crossref_primary_10_3390_s24206721 crossref_primary_10_1016_j_compbiomed_2024_108993 crossref_primary_10_1007_s11571_024_10152_7 crossref_primary_10_1007_s11571_024_10153_6 crossref_primary_10_1007_s11571_024_10198_7 crossref_primary_10_1080_1206212X_2025_2450247 crossref_primary_10_1007_s13246_024_01425_w crossref_primary_10_1016_j_cmpb_2025_108652 crossref_primary_10_1016_j_bspc_2024_106244 crossref_primary_10_3389_fnins_2023_1272834 crossref_primary_10_3390_robotics12040099 crossref_primary_10_3390_brainsci14050487 crossref_primary_10_3390_bios14040183 crossref_primary_10_1016_j_knosys_2024_112510 crossref_primary_10_1016_j_jagp_2024_06_009 crossref_primary_10_1186_s13195_024_01582_w |
Cites_doi | 10.1155/2021/5425569 10.1212/WNL.34.7.939 10.1016/j.compeleceng.2019.03.018 10.3390/diagnostics11081437 10.1001/jama.1994.03520100096046 10.1148/radiol.2282020915 10.1016/j.jneumeth.2003.10.009 10.2174/1567205014666170203125942 10.1016/j.clinph.2011.02.011 10.1016/j.neuroimage.2006.11.004 10.1088/1749-4699/8/1/014008 10.1109/ACCESS.2022.3232563 10.3390/s22155792 10.1016/j.dcn.2021.101036 10.3390/s22239233 10.2172/5688766 10.1016/j.bspc.2022.103646 10.1212/WNL.54.12.2277 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/data8060095 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2306-5729 |
ExternalDocumentID | oai_doaj_org_article_4d216608a6144c8393bcf60982268448 A758282136 10_3390_data8060095 |
GeographicLocations | Greece |
GeographicLocations_xml | – name: Greece |
GroupedDBID | 8FE 8FG AADQD AAYXX ADBBV ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ICD ITC MODMG M~E P62 PHGZM PHGZT PIMPY PROAC PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c431t-2d517237b8d0d637505b8cb35a56ef718e6dec02636ea5b21026874384de77a83 |
IEDL.DBID | BENPR |
ISSN | 2306-5729 |
IngestDate | Wed Aug 27 01:32:27 EDT 2025 Mon Jul 14 10:31:34 EDT 2025 Tue Jun 17 21:37:44 EDT 2025 Tue Jun 10 21:22:09 EDT 2025 Tue Jul 01 02:31:13 EDT 2025 Thu Apr 24 23:01:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c431t-2d517237b8d0d637505b8cb35a56ef718e6dec02636ea5b21026874384de77a83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0675-9088 0000-0002-6757-1698 0000-0002-5604-3507 0000-0003-2009-4166 0000-0003-0254-6624 0000-0001-9043-1290 0000-0003-1503-8952 0000-0002-0615-783X 0000-0001-9640-7005 0000-0002-4278-3301 |
OpenAccessLink | https://www.proquest.com/docview/2829794739?pq-origsite=%requestingapplication% |
PQID | 2829794739 |
PQPubID | 2055419 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4d216608a6144c8393bcf60982268448 proquest_journals_2829794739 gale_infotracmisc_A758282136 gale_infotracacademiconefile_A758282136 crossref_citationtrail_10_3390_data8060095 crossref_primary_10_3390_data8060095 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230501 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 20230501 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Data (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Perry (ref_3) 2000; 12 McMahon (ref_5) 2003; 228 Mantzavinos (ref_7) 2017; 14 ref_12 Frosch (ref_1) 2011; 1 Ouchani (ref_8) 2021; 2021 ref_11 ref_20 Nishida (ref_4) 2011; 122 Kurlowicz (ref_15) 1999; 25 Bell (ref_16) 1994; 272 ref_2 Delorme (ref_18) 2004; 134 Delorme (ref_19) 2007; 34 Miltiadous (ref_9) 2023; 11 Bergstra (ref_21) 2015; 8 Christodoulides (ref_10) 2022; 76 McKhann (ref_17) 1984; 34 Meyer (ref_13) 2021; 52 ref_6 Tzimourta (ref_14) 2019; 76 |
References_xml | – volume: 2021 start-page: 5425569 year: 2021 ident: ref_8 article-title: A Review of Methods of Diagnosis and Complexity Analysis of Alzheimer’s Disease Using EEG Signals publication-title: BioMed Res. Int. doi: 10.1155/2021/5425569 – volume: 34 start-page: 939 year: 1984 ident: ref_17 article-title: Clinical Diagnosis of Alzheimer’s Disease: Report of the NINCDS-ADRDA Work Group under the Auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease publication-title: Neurology doi: 10.1212/WNL.34.7.939 – ident: ref_6 – volume: 76 start-page: 198 year: 2019 ident: ref_14 article-title: Analysis of Electroencephalographic Signals Complexity Regarding Alzheimer’s Disease publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2019.03.018 – ident: ref_2 doi: 10.3390/diagnostics11081437 – volume: 272 start-page: 828 year: 1994 ident: ref_16 article-title: DSM-IV: Diagnostic and Statistical Manual of Mental Disorders publication-title: JAMA: The Journal of the American Medical Association doi: 10.1001/jama.1994.03520100096046 – volume: 228 start-page: 515 year: 2003 ident: ref_5 article-title: Cost-Effectiveness of PET in the Diagnosis of Alzheimer Disease publication-title: Radiology doi: 10.1148/radiol.2282020915 – volume: 134 start-page: 9 year: 2004 ident: ref_18 article-title: EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 14 start-page: 1149 year: 2017 ident: ref_7 article-title: Biomarkers for Alzheimer’s Disease Diagnosis publication-title: Curr. Alzheimer Res. doi: 10.2174/1567205014666170203125942 – volume: 25 start-page: 8 year: 1999 ident: ref_15 article-title: The Mini-Mental State Examination (MMSE) publication-title: J. Gerontol. Nurs. – volume: 122 start-page: 1718 year: 2011 ident: ref_4 article-title: Differences in Quantitative EEG between Frontotemporal Dementia and Alzheimer’s Disease as Revealed by LORETA publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2011.02.011 – volume: 34 start-page: 1443 year: 2007 ident: ref_19 article-title: Enhanced Detection of Artifacts in EEG Data Using Higher-Order Statistics and Independent Component Analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.11.004 – volume: 8 start-page: 014008 year: 2015 ident: ref_21 article-title: Hyperopt: A Python Library for Model Selection and Hyperparameter Optimization publication-title: Comput. Sci. Discov. doi: 10.1088/1749-4699/8/1/014008 – volume: 11 start-page: 564 year: 2023 ident: ref_9 article-title: Machine Learning Algorithms for Epilepsy Detection Based on Published EEG Databases: A Systematic Review publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3232563 – ident: ref_11 doi: 10.3390/s22155792 – volume: 52 start-page: 101036 year: 2021 ident: ref_13 article-title: Enhancing Reproducibility in Developmental EEG Research: BIDS, Cluster-Based Permutation Tests, and Effect Sizes publication-title: Dev. Cogn. Neurosci. doi: 10.1016/j.dcn.2021.101036 – ident: ref_12 doi: 10.3390/s22239233 – ident: ref_20 doi: 10.2172/5688766 – volume: 1 start-page: a006189 year: 2011 ident: ref_1 article-title: Neuropathological Alterations in Alzheimer Disease publication-title: Cold Spring Harb. Perspect. Med. – volume: 76 start-page: 103646 year: 2022 ident: ref_10 article-title: Classification of EEG Signals from Young Adults with Dyslexia Combining a Brain Computer Interface Device and an Interactive Linguistic Software Tool publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.103646 – volume: 12 start-page: 2277 year: 2000 ident: ref_3 article-title: Differentiating Frontal and Temporal Variant Frontotemporal Dementia from Alzheimer’s Disease publication-title: Neurology doi: 10.1212/WNL.54.12.2277 |
SSID | ssj0002245628 |
Score | 2.49448 |
Snippet | Recently, there has been a growing research interest in utilizing the electroencephalogram (EEG) as a non-invasive diagnostic tool for neurodegenerative... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 95 |
SubjectTerms | Alzheimer's disease Brain research Data collection Datasets Dementia Electroencephalography frontotemporal dementia Illnesses Independent component analysis Machine learning Magnetic resonance imaging Medical imaging Metadata Neuroimaging Neuropsychology Open source software Physiological aspects Quality control resting state routine EEG |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iyYv4xGqVHAo-cGltmmx6rLZVBL2o0FvIa1Gpq3TroZ78G_49f4kzm1RaULxIb9vQTTMzme_L4xtCaszBx7R5YrFWKqQAn2ju28BStPZYHcmVC25X1-LirnU54IOZUl94JizIA4eBq7dc80SIhtTIXCykc2ZsJhooOyckcAucfSHnzZCpx1LUBZG9DBfyGPD6Oh64lA2BkGIuBZVK_b_Nx2WS6a-Q5YgOaSf0apUs-HyNrMb4K-hBFIk-XCeTDu3Cuwo_ps8ZvYGRfqG93jkNdBKXv_F5Z_h27x-e_Ojz_aOg3bAZc0z7pWpBVKUa0m65RPigqc4dDfeSJhRmFFyiKSheQKF4cAjwKL5ig9z1e7dnF0kso5BYQAfjpOk4oBSWGukaTjCACNxIaxjXXPgMcpMXzoOpBBNec4McUEgAFrLlfJpqyTbJYv6c-y1Cs9SBDWAYMw9MxxnDrchkBr8DQAWiu0KOpiOrbNQYx1IXQwVcA82gZsxQIbXvxi9BWuPnZqdoou8mqIddPgAvUdFL1F9eUiH7aGCFUQsdsjpePoC_hfpXqpPi9mHzhIkKqc61hGiz819PXUTFaC8U7kbDvJay9vZ_dHaHLGFR-3CsskoWx6NXvwvQZ2z2Si__Aggm_No priority: 102 providerName: Directory of Open Access Journals |
Title | A Dataset of Scalp EEG Recordings of Alzheimer’s Disease, Frontotemporal Dementia and Healthy Subjects from Routine EEG |
URI | https://www.proquest.com/docview/2829794739 https://doaj.org/article/4d216608a6144c8393bcf60982268448 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxEB3xceGCoBSRQiMfkEoRK8I69jonFEgCqgSqCkjcLH8tIKVJyIYDPfVv9O_xS5jZdVIi0Sq3XSub7HjG783YbwB2ucePbYnEUa9UXAJCYkRoIUsxJlB3JF8m3C4u5flN89utuI0JtyJuq5zGxDJQ-6GjHPkhVfxw7mS8dTx6TKhrFFVXYwuNRVjGEKyQfC2fdC-__5hlWVKq66WqOpjHkd8f0sZL1ZAELeaWolKx_19xuVxsemuwGlEia1dmXYeFMPgA69EPC7YXxaK_bsBzm3XwWUWYsGHOrvCNj1i3e8YqWklpcLre7v-6Dw8_w_jl95-CdaqizAHrleoFUZ2qzzplqvDBMDPwrDqf9MwwslCqpmB0EIXRBiLEpfSIj3DT616fniexnULiECVMktQLRCs8s8o3vOQIFYRVznJhhAw5rlFB-oAmk1wGIyxxQakQYKimD1lmFN-EpcFwELaA5ZlvOvR8mQdkPN5a4WSucvweBCzo5TXYn75Z7aLWOLW86GvkHGQG_cYMNdidDR5VEhvvDzshE82GkC52eWE4vtPRzXTTp0dSNpQhnusQ_HHrctkgkUKpkInW4AsZWJP34g9yJh5CwL9FOli6nVEZMT3isgY7cyPR69z87ekU0dHrC_13jn76_-1tWKG29dXGyR1YmoyfwmcENxNbh0XVO6vHeVwvUwSvRR_50A |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbhMxcFTKAS4V5SFSWvChiIdYdbtee50DQoEkTenjQiv1ZvxaWilNQjaoCid-g5_go_gSZvYRiATcqr3ZlnfX857xzABsc4-PbYvIUa9UFAEhMiK00UoxJlB3JF863I6O5eA0fX8mzlbgR5MLQ9cqG55YMmo_duQj36GIH-JOxttvJp8j6hpF0dWmhUaFFgdhfoUmW_F6v4vwfZok_d7Ju0FUdxWIHArLWZR4gUKbZ1b52EuOElNY5SwXRsiQI6sO0gf8csllMMKSSSQVylmV-pBlRnHc9wbcTDlvE0Wp_t7Cp5NQFDFRVRogzsc7dM1TxZIUmSXBV_YH-JcUKEVb_w6s1Top61RItA4rYXQX1muqL9jzujT1i3sw77AuvqsIMzbO2QeE74T1enusMmLJ6U7jneHX83BxGaY_v30vWLcKAb1i_bJWQl0La8i6pWPywjAz8qzKhpoz5GPkGCoYpb0wuq6EWjC94j6cXssxP4DV0XgUHgLLM5865DMyD2hfeWuFk7nKcR9Uj5CntOBlc7La1ZXNqcHGUKOFQ2DQf4ChBduLxZOqoMffl70lEC2WUBXucmA8_aRrotapT3aljJUhq9qhqsmty2VMJRGlQru3Bc8IwJp4BX6QM3XKA_4WVd3SnYyClskuly3YXFqJNO6WpxsU0TWPKfRvitj4__QTuDU4OTrUh_vHB4_gdoJqWnVlcxNWZ9MvYQvVqpl9XOIyg4_XTTy_AEmbMc4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw9Gh0EuIFMS6iMMAPQ1xE1CyuHfcBoY60bAyqCZi0N8-xHZhU2tIUofLEb_ArfA5fwjmJU6gEvE15cyzncu53gB3u8Mp7IrI0KxVFgI-M8D20UozxNB3JVQ631yO5f9x9eSJONuBHUwtDaZUNT6wYtZta8pF3KOKHuJPyXqcIaRFH2fDZ7FNEE6Qo0tqM06hR5NAvv6D5Vj49yBDW95NkOHj3fD8KEwYii4JzESVOoADnaa5c7CRH6SlyZXMujJC-QLbtpfP4FZJLb0RO5pFUKHNV1_k0NYrjuRdgM0WrKG7B5t5gdPRm5eFJKKaYqLookPNe3KGkTxVLUmvWxGA1LeBfMqESdMMrcDloqKxfo9QWbPjJVdgKPKBkD0Oj6kfXYNlnGT6r9As2LdhbhPaMDQYvWG3Skgue1vvjrx_82Uc___nte8myOiD0hA2rzgmhM9aYZZWb8swwM3Gsro1aMuRq5CYqGRXBMEpeQp2YHnEdjs_lR9-A1mQ68TeBFanrWuQ6svBobbk8F1YWqsBzUFlCDtOGx82f1Tb0OadxG2ON9g6BQf8BhjbsrDbP6vYef9-2RyBabaGe3NXCdP5eBxLXXZfsShkrQza2RcWT57aQMTVIlAqt4DY8IABr4hz4QtaEAgj8LOrBpfsphTCTXS7bsL22Eynert9uUEQHjlPq3_Rx6_-378FFJBz96mB0eBsuJaiz1fmb29BazD_7O6hjLfK7AZkZnJ43_fwCu203YA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dataset+of+Scalp+EEG+Recordings+of+Alzheimer%E2%80%99s+Disease%2C+Frontotemporal+Dementia+and+Healthy+Subjects+from+Routine+EEG&rft.jtitle=Data+%28Basel%29&rft.au=Miltiadous%2C+Andreas&rft.au=Tzimourta%2C+Katerina+D&rft.au=Afrantou%2C+Theodora&rft.au=Ioannidis%2C+Panagiotis&rft.date=2023-05-01&rft.pub=MDPI+AG&rft.issn=2306-5729&rft.eissn=2306-5729&rft.volume=8&rft.issue=6&rft_id=info:doi/10.3390%2Fdata8060095&rft.externalDocID=A758282136 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5729&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5729&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5729&client=summon |