A Dataset of Scalp EEG Recordings of Alzheimer’s Disease, Frontotemporal Dementia and Healthy Subjects from Routine EEG

Recently, there has been a growing research interest in utilizing the electroencephalogram (EEG) as a non-invasive diagnostic tool for neurodegenerative diseases. This article provides a detailed description of a resting-state EEG dataset of individuals with Alzheimer’s disease and frontotemporal de...

Full description

Saved in:
Bibliographic Details
Published inData (Basel) Vol. 8; no. 6; p. 95
Main Authors Miltiadous, Andreas, Tzimourta, Katerina D., Afrantou, Theodora, Ioannidis, Panagiotis, Grigoriadis, Nikolaos, Tsalikakis, Dimitrios G., Angelidis, Pantelis, Tsipouras, Markos G., Glavas, Euripidis, Giannakeas, Nikolaos, Tzallas, Alexandros T.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, there has been a growing research interest in utilizing the electroencephalogram (EEG) as a non-invasive diagnostic tool for neurodegenerative diseases. This article provides a detailed description of a resting-state EEG dataset of individuals with Alzheimer’s disease and frontotemporal dementia, and healthy controls. The dataset was collected using a clinical EEG system with 19 scalp electrodes while participants were in a resting state with their eyes closed. The data collection process included rigorous quality control measures to ensure data accuracy and consistency. The dataset contains recordings of 36 Alzheimer’s patients, 23 frontotemporal dementia patients, and 29 healthy age-matched subjects. For each subject, the Mini-Mental State Examination score is reported. A monopolar montage was used to collect the signals. A raw and preprocessed EEG is included in the standard BIDS format. For the preprocessed signals, established methods such as artifact subspace reconstruction and an independent component analysis have been employed for denoising. The dataset has significant reuse potential since Alzheimer’s EEG Machine Learning studies are increasing in popularity and there is a lack of publicly available EEG datasets. The resting-state EEG data can be used to explore alterations in brain activity and connectivity in these conditions, and to develop new diagnostic and treatment approaches. Additionally, the dataset can be used to compare EEG characteristics between different types of dementia, which could provide insights into the underlying mechanisms of these conditions.
AbstractList Recently, there has been a growing research interest in utilizing the electroencephalogram (EEG) as a non-invasive diagnostic tool for neurodegenerative diseases. This article provides a detailed description of a resting-state EEG dataset of individuals with Alzheimer’s disease and frontotemporal dementia, and healthy controls. The dataset was collected using a clinical EEG system with 19 scalp electrodes while participants were in a resting state with their eyes closed. The data collection process included rigorous quality control measures to ensure data accuracy and consistency. The dataset contains recordings of 36 Alzheimer’s patients, 23 frontotemporal dementia patients, and 29 healthy age-matched subjects. For each subject, the Mini-Mental State Examination score is reported. A monopolar montage was used to collect the signals. A raw and preprocessed EEG is included in the standard BIDS format. For the preprocessed signals, established methods such as artifact subspace reconstruction and an independent component analysis have been employed for denoising. The dataset has significant reuse potential since Alzheimer’s EEG Machine Learning studies are increasing in popularity and there is a lack of publicly available EEG datasets. The resting-state EEG data can be used to explore alterations in brain activity and connectivity in these conditions, and to develop new diagnostic and treatment approaches. Additionally, the dataset can be used to compare EEG characteristics between different types of dementia, which could provide insights into the underlying mechanisms of these conditions.Dataset: 10.18112/openneuro.ds004504.v1.0.2.Dataset License: CC0
Recently, there has been a growing research interest in utilizing the electroencephalogram (EEG) as a non-invasive diagnostic tool for neurodegenerative diseases. This article provides a detailed description of a resting-state EEG dataset of individuals with Alzheimer's disease and frontotemporal dementia, and healthy controls. The dataset was collected using a clinical EEG system with 19 scalp electrodes while participants were in a resting state with their eyes closed. The data collection process included rigorous quality control measures to ensure data accuracy and consistency. The dataset contains recordings of 36 Alzheimer's patients, 23 frontotemporal dementia patients, and 29 healthy age-matched subjects. For each subject, the Mini-Mental State Examination score is reported. A monopolar montage was used to collect the signals. A raw and preprocessed EEG is included in the standard BIDS format. For the preprocessed signals, established methods such as artifact subspace reconstruction and an independent component analysis have been employed for denoising. The dataset has significant reuse potential since Alzheimer's EEG Machine Learning studies are increasing in popularity and there is a lack of publicly available EEG datasets. The resting-state EEG data can be used to explore alterations in brain activity and connectivity in these conditions, and to develop new diagnostic and treatment approaches. Additionally, the dataset can be used to compare EEG characteristics between different types of dementia, which could provide insights into the underlying mechanisms of these conditions.
Audience Academic
Author Tsipouras, Markos G.
Glavas, Euripidis
Miltiadous, Andreas
Tzallas, Alexandros T.
Tzimourta, Katerina D.
Angelidis, Pantelis
Ioannidis, Panagiotis
Afrantou, Theodora
Giannakeas, Nikolaos
Tsalikakis, Dimitrios G.
Grigoriadis, Nikolaos
Author_xml – sequence: 1
  givenname: Andreas
  orcidid: 0000-0003-0675-9088
  surname: Miltiadous
  fullname: Miltiadous, Andreas
– sequence: 2
  givenname: Katerina D.
  orcidid: 0000-0001-9640-7005
  surname: Tzimourta
  fullname: Tzimourta, Katerina D.
– sequence: 3
  givenname: Theodora
  orcidid: 0000-0003-2009-4166
  surname: Afrantou
  fullname: Afrantou, Theodora
– sequence: 4
  givenname: Panagiotis
  orcidid: 0000-0003-0254-6624
  surname: Ioannidis
  fullname: Ioannidis, Panagiotis
– sequence: 5
  givenname: Nikolaos
  orcidid: 0000-0002-4278-3301
  surname: Grigoriadis
  fullname: Grigoriadis, Nikolaos
– sequence: 6
  givenname: Dimitrios G.
  surname: Tsalikakis
  fullname: Tsalikakis, Dimitrios G.
– sequence: 7
  givenname: Pantelis
  orcidid: 0000-0003-1503-8952
  surname: Angelidis
  fullname: Angelidis, Pantelis
– sequence: 8
  givenname: Markos G.
  orcidid: 0000-0002-6757-1698
  surname: Tsipouras
  fullname: Tsipouras, Markos G.
– sequence: 9
  givenname: Euripidis
  orcidid: 0000-0002-5604-3507
  surname: Glavas
  fullname: Glavas, Euripidis
– sequence: 10
  givenname: Nikolaos
  orcidid: 0000-0002-0615-783X
  surname: Giannakeas
  fullname: Giannakeas, Nikolaos
– sequence: 11
  givenname: Alexandros T.
  orcidid: 0000-0001-9043-1290
  surname: Tzallas
  fullname: Tzallas, Alexandros T.
BookMark eNptks1uEzEUhUeoSJTSFS9giSWk-N-eZdSkP1IlpBbWlse-kzqaGQfbWaQrXoPX40lwGooKqrzw1dH5zrV879vmaIoTNM17gs8Ya_Fnb4vVWGLcilfNMWVYzoSi7dGz-k1zmvMaY0wpF5Lq42Y3R4vKZSgo9ujO2WGDlstLdAsuJh-mVd7r8-HhHsII6dePnxktQoZKfEIXKU4lFhg3MdkBLWCEqQSL7OTRFdih3O_Q3bZbgysZ9SmO6DZuS5hg3-Jd87q3Q4bTP_dJ8-1i-fX8anbz5fL6fH4zc5yRMqNeEEWZ6rTHXjIlsOi065iwQkKviAbpwWEqmQQrOkpqqRVnmntQymp20lwfcn20a7NJYbRpZ6IN5lGIaWVsKsENYLinREqsrSScO81a1rle4lbTmsn5PuvDIWuT4vct5GLWcZum-nxDNW1Vy1WF_rpWtoaGqY8lWTeG7MxcCV2dhMnqOnvBVY-HMbg62j5U_R-AHACXYs4JeuNCsSXUGSQbBkOw2e-BebYHlfn4H_P0AS-5fwOUcrKC
CitedBy_id crossref_primary_10_3390_jpm15010027
crossref_primary_10_3390_sym17020172
crossref_primary_10_1016_j_neuroimage_2025_121123
crossref_primary_10_1109_ACCESS_2023_3294618
crossref_primary_10_1088_2632_2153_ad829d
crossref_primary_10_3390_diagnostics14192189
crossref_primary_10_1007_s10548_025_01106_1
crossref_primary_10_1016_j_bspc_2025_107842
crossref_primary_10_3390_medicina59122155
crossref_primary_10_1038_s41598_024_54416_y
crossref_primary_10_1016_j_jneumeth_2025_110377
crossref_primary_10_1371_journal_pone_0305082
crossref_primary_10_3390_brainsci14060565
crossref_primary_10_1007_s11357_023_01041_8
crossref_primary_10_1016_j_neuroimage_2024_120945
crossref_primary_10_1007_s11571_025_10232_2
crossref_primary_10_3389_fnagi_2023_1288295
crossref_primary_10_1016_j_brainresbull_2025_111281
crossref_primary_10_3390_signals5020018
crossref_primary_10_1016_j_clinph_2024_12_008
crossref_primary_10_1007_s40846_024_00917_0
crossref_primary_10_1109_ACCESS_2023_3341419
crossref_primary_10_1109_ACCESS_2025_3532515
crossref_primary_10_1177_13872877251327754
crossref_primary_10_1016_j_dajour_2023_100336
crossref_primary_10_3390_s24206721
crossref_primary_10_1016_j_compbiomed_2024_108993
crossref_primary_10_1007_s11571_024_10152_7
crossref_primary_10_1007_s11571_024_10153_6
crossref_primary_10_1007_s11571_024_10198_7
crossref_primary_10_1080_1206212X_2025_2450247
crossref_primary_10_1007_s13246_024_01425_w
crossref_primary_10_1016_j_cmpb_2025_108652
crossref_primary_10_1016_j_bspc_2024_106244
crossref_primary_10_3389_fnins_2023_1272834
crossref_primary_10_3390_robotics12040099
crossref_primary_10_3390_brainsci14050487
crossref_primary_10_3390_bios14040183
crossref_primary_10_1016_j_knosys_2024_112510
crossref_primary_10_1016_j_jagp_2024_06_009
crossref_primary_10_1186_s13195_024_01582_w
Cites_doi 10.1155/2021/5425569
10.1212/WNL.34.7.939
10.1016/j.compeleceng.2019.03.018
10.3390/diagnostics11081437
10.1001/jama.1994.03520100096046
10.1148/radiol.2282020915
10.1016/j.jneumeth.2003.10.009
10.2174/1567205014666170203125942
10.1016/j.clinph.2011.02.011
10.1016/j.neuroimage.2006.11.004
10.1088/1749-4699/8/1/014008
10.1109/ACCESS.2022.3232563
10.3390/s22155792
10.1016/j.dcn.2021.101036
10.3390/s22239233
10.2172/5688766
10.1016/j.bspc.2022.103646
10.1212/WNL.54.12.2277
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/data8060095
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database



CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2306-5729
ExternalDocumentID oai_doaj_org_article_4d216608a6144c8393bcf60982268448
A758282136
10_3390_data8060095
GeographicLocations Greece
GeographicLocations_xml – name: Greece
GroupedDBID 8FE
8FG
AADQD
AAYXX
ADBBV
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
MODMG
M~E
P62
PHGZM
PHGZT
PIMPY
PROAC
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c431t-2d517237b8d0d637505b8cb35a56ef718e6dec02636ea5b21026874384de77a83
IEDL.DBID BENPR
ISSN 2306-5729
IngestDate Wed Aug 27 01:32:27 EDT 2025
Mon Jul 14 10:31:34 EDT 2025
Tue Jun 17 21:37:44 EDT 2025
Tue Jun 10 21:22:09 EDT 2025
Tue Jul 01 02:31:13 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-2d517237b8d0d637505b8cb35a56ef718e6dec02636ea5b21026874384de77a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0675-9088
0000-0002-6757-1698
0000-0002-5604-3507
0000-0003-2009-4166
0000-0003-0254-6624
0000-0001-9043-1290
0000-0003-1503-8952
0000-0002-0615-783X
0000-0001-9640-7005
0000-0002-4278-3301
OpenAccessLink https://www.proquest.com/docview/2829794739?pq-origsite=%requestingapplication%
PQID 2829794739
PQPubID 2055419
ParticipantIDs doaj_primary_oai_doaj_org_article_4d216608a6144c8393bcf60982268448
proquest_journals_2829794739
gale_infotracmisc_A758282136
gale_infotracacademiconefile_A758282136
crossref_citationtrail_10_3390_data8060095
crossref_primary_10_3390_data8060095
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 20230501
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Data (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Perry (ref_3) 2000; 12
McMahon (ref_5) 2003; 228
Mantzavinos (ref_7) 2017; 14
ref_12
Frosch (ref_1) 2011; 1
Ouchani (ref_8) 2021; 2021
ref_11
ref_20
Nishida (ref_4) 2011; 122
Kurlowicz (ref_15) 1999; 25
Bell (ref_16) 1994; 272
ref_2
Delorme (ref_18) 2004; 134
Delorme (ref_19) 2007; 34
Miltiadous (ref_9) 2023; 11
Bergstra (ref_21) 2015; 8
Christodoulides (ref_10) 2022; 76
McKhann (ref_17) 1984; 34
Meyer (ref_13) 2021; 52
ref_6
Tzimourta (ref_14) 2019; 76
References_xml – volume: 2021
  start-page: 5425569
  year: 2021
  ident: ref_8
  article-title: A Review of Methods of Diagnosis and Complexity Analysis of Alzheimer’s Disease Using EEG Signals
  publication-title: BioMed Res. Int.
  doi: 10.1155/2021/5425569
– volume: 34
  start-page: 939
  year: 1984
  ident: ref_17
  article-title: Clinical Diagnosis of Alzheimer’s Disease: Report of the NINCDS-ADRDA Work Group under the Auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease
  publication-title: Neurology
  doi: 10.1212/WNL.34.7.939
– ident: ref_6
– volume: 76
  start-page: 198
  year: 2019
  ident: ref_14
  article-title: Analysis of Electroencephalographic Signals Complexity Regarding Alzheimer’s Disease
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2019.03.018
– ident: ref_2
  doi: 10.3390/diagnostics11081437
– volume: 272
  start-page: 828
  year: 1994
  ident: ref_16
  article-title: DSM-IV: Diagnostic and Statistical Manual of Mental Disorders
  publication-title: JAMA: The Journal of the American Medical Association
  doi: 10.1001/jama.1994.03520100096046
– volume: 228
  start-page: 515
  year: 2003
  ident: ref_5
  article-title: Cost-Effectiveness of PET in the Diagnosis of Alzheimer Disease
  publication-title: Radiology
  doi: 10.1148/radiol.2282020915
– volume: 134
  start-page: 9
  year: 2004
  ident: ref_18
  article-title: EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 14
  start-page: 1149
  year: 2017
  ident: ref_7
  article-title: Biomarkers for Alzheimer’s Disease Diagnosis
  publication-title: Curr. Alzheimer Res.
  doi: 10.2174/1567205014666170203125942
– volume: 25
  start-page: 8
  year: 1999
  ident: ref_15
  article-title: The Mini-Mental State Examination (MMSE)
  publication-title: J. Gerontol. Nurs.
– volume: 122
  start-page: 1718
  year: 2011
  ident: ref_4
  article-title: Differences in Quantitative EEG between Frontotemporal Dementia and Alzheimer’s Disease as Revealed by LORETA
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2011.02.011
– volume: 34
  start-page: 1443
  year: 2007
  ident: ref_19
  article-title: Enhanced Detection of Artifacts in EEG Data Using Higher-Order Statistics and Independent Component Analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.11.004
– volume: 8
  start-page: 014008
  year: 2015
  ident: ref_21
  article-title: Hyperopt: A Python Library for Model Selection and Hyperparameter Optimization
  publication-title: Comput. Sci. Discov.
  doi: 10.1088/1749-4699/8/1/014008
– volume: 11
  start-page: 564
  year: 2023
  ident: ref_9
  article-title: Machine Learning Algorithms for Epilepsy Detection Based on Published EEG Databases: A Systematic Review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3232563
– ident: ref_11
  doi: 10.3390/s22155792
– volume: 52
  start-page: 101036
  year: 2021
  ident: ref_13
  article-title: Enhancing Reproducibility in Developmental EEG Research: BIDS, Cluster-Based Permutation Tests, and Effect Sizes
  publication-title: Dev. Cogn. Neurosci.
  doi: 10.1016/j.dcn.2021.101036
– ident: ref_12
  doi: 10.3390/s22239233
– ident: ref_20
  doi: 10.2172/5688766
– volume: 1
  start-page: a006189
  year: 2011
  ident: ref_1
  article-title: Neuropathological Alterations in Alzheimer Disease
  publication-title: Cold Spring Harb. Perspect. Med.
– volume: 76
  start-page: 103646
  year: 2022
  ident: ref_10
  article-title: Classification of EEG Signals from Young Adults with Dyslexia Combining a Brain Computer Interface Device and an Interactive Linguistic Software Tool
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.103646
– volume: 12
  start-page: 2277
  year: 2000
  ident: ref_3
  article-title: Differentiating Frontal and Temporal Variant Frontotemporal Dementia from Alzheimer’s Disease
  publication-title: Neurology
  doi: 10.1212/WNL.54.12.2277
SSID ssj0002245628
Score 2.49448
Snippet Recently, there has been a growing research interest in utilizing the electroencephalogram (EEG) as a non-invasive diagnostic tool for neurodegenerative...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 95
SubjectTerms Alzheimer's disease
Brain research
Data collection
Datasets
Dementia
Electroencephalography
frontotemporal dementia
Illnesses
Independent component analysis
Machine learning
Magnetic resonance imaging
Medical imaging
Metadata
Neuroimaging
Neuropsychology
Open source software
Physiological aspects
Quality control
resting state
routine EEG
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iyYv4xGqVHAo-cGltmmx6rLZVBL2o0FvIa1Gpq3TroZ78G_49f4kzm1RaULxIb9vQTTMzme_L4xtCaszBx7R5YrFWKqQAn2ju28BStPZYHcmVC25X1-LirnU54IOZUl94JizIA4eBq7dc80SIhtTIXCykc2ZsJhooOyckcAucfSHnzZCpx1LUBZG9DBfyGPD6Oh64lA2BkGIuBZVK_b_Nx2WS6a-Q5YgOaSf0apUs-HyNrMb4K-hBFIk-XCeTDu3Cuwo_ps8ZvYGRfqG93jkNdBKXv_F5Z_h27x-e_Ojz_aOg3bAZc0z7pWpBVKUa0m65RPigqc4dDfeSJhRmFFyiKSheQKF4cAjwKL5ig9z1e7dnF0kso5BYQAfjpOk4oBSWGukaTjCACNxIaxjXXPgMcpMXzoOpBBNec4McUEgAFrLlfJpqyTbJYv6c-y1Cs9SBDWAYMw9MxxnDrchkBr8DQAWiu0KOpiOrbNQYx1IXQwVcA82gZsxQIbXvxi9BWuPnZqdoou8mqIddPgAvUdFL1F9eUiH7aGCFUQsdsjpePoC_hfpXqpPi9mHzhIkKqc61hGiz819PXUTFaC8U7kbDvJay9vZ_dHaHLGFR-3CsskoWx6NXvwvQZ2z2Si__Aggm_No
  priority: 102
  providerName: Directory of Open Access Journals
Title A Dataset of Scalp EEG Recordings of Alzheimer’s Disease, Frontotemporal Dementia and Healthy Subjects from Routine EEG
URI https://www.proquest.com/docview/2829794739
https://doaj.org/article/4d216608a6144c8393bcf60982268448
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxEB3xceGCoBSRQiMfkEoRK8I69jonFEgCqgSqCkjcLH8tIKVJyIYDPfVv9O_xS5jZdVIi0Sq3XSub7HjG783YbwB2ucePbYnEUa9UXAJCYkRoIUsxJlB3JF8m3C4u5flN89utuI0JtyJuq5zGxDJQ-6GjHPkhVfxw7mS8dTx6TKhrFFVXYwuNRVjGEKyQfC2fdC-__5hlWVKq66WqOpjHkd8f0sZL1ZAELeaWolKx_19xuVxsemuwGlEia1dmXYeFMPgA69EPC7YXxaK_bsBzm3XwWUWYsGHOrvCNj1i3e8YqWklpcLre7v-6Dw8_w_jl95-CdaqizAHrleoFUZ2qzzplqvDBMDPwrDqf9MwwslCqpmB0EIXRBiLEpfSIj3DT616fniexnULiECVMktQLRCs8s8o3vOQIFYRVznJhhAw5rlFB-oAmk1wGIyxxQakQYKimD1lmFN-EpcFwELaA5ZlvOvR8mQdkPN5a4WSucvweBCzo5TXYn75Z7aLWOLW86GvkHGQG_cYMNdidDR5VEhvvDzshE82GkC52eWE4vtPRzXTTp0dSNpQhnusQ_HHrctkgkUKpkInW4AsZWJP34g9yJh5CwL9FOli6nVEZMT3isgY7cyPR69z87ekU0dHrC_13jn76_-1tWKG29dXGyR1YmoyfwmcENxNbh0XVO6vHeVwvUwSvRR_50A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbhMxcFTKAS4V5SFSWvChiIdYdbtee50DQoEkTenjQiv1ZvxaWilNQjaoCid-g5_go_gSZvYRiATcqr3ZlnfX857xzABsc4-PbYvIUa9UFAEhMiK00UoxJlB3JF863I6O5eA0fX8mzlbgR5MLQ9cqG55YMmo_duQj36GIH-JOxttvJp8j6hpF0dWmhUaFFgdhfoUmW_F6v4vwfZok_d7Ju0FUdxWIHArLWZR4gUKbZ1b52EuOElNY5SwXRsiQI6sO0gf8csllMMKSSSQVylmV-pBlRnHc9wbcTDlvE0Wp_t7Cp5NQFDFRVRogzsc7dM1TxZIUmSXBV_YH-JcUKEVb_w6s1Top61RItA4rYXQX1muqL9jzujT1i3sw77AuvqsIMzbO2QeE74T1enusMmLJ6U7jneHX83BxGaY_v30vWLcKAb1i_bJWQl0La8i6pWPywjAz8qzKhpoz5GPkGCoYpb0wuq6EWjC94j6cXssxP4DV0XgUHgLLM5865DMyD2hfeWuFk7nKcR9Uj5CntOBlc7La1ZXNqcHGUKOFQ2DQf4ChBduLxZOqoMffl70lEC2WUBXucmA8_aRrotapT3aljJUhq9qhqsmty2VMJRGlQru3Bc8IwJp4BX6QM3XKA_4WVd3SnYyClskuly3YXFqJNO6WpxsU0TWPKfRvitj4__QTuDU4OTrUh_vHB4_gdoJqWnVlcxNWZ9MvYQvVqpl9XOIyg4_XTTy_AEmbMc4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw9Gh0EuIFMS6iMMAPQ1xE1CyuHfcBoY60bAyqCZi0N8-xHZhU2tIUofLEb_ArfA5fwjmJU6gEvE15cyzncu53gB3u8Mp7IrI0KxVFgI-M8D20UozxNB3JVQ631yO5f9x9eSJONuBHUwtDaZUNT6wYtZta8pF3KOKHuJPyXqcIaRFH2fDZ7FNEE6Qo0tqM06hR5NAvv6D5Vj49yBDW95NkOHj3fD8KEwYii4JzESVOoADnaa5c7CRH6SlyZXMujJC-QLbtpfP4FZJLb0RO5pFUKHNV1_k0NYrjuRdgM0WrKG7B5t5gdPRm5eFJKKaYqLookPNe3KGkTxVLUmvWxGA1LeBfMqESdMMrcDloqKxfo9QWbPjJVdgKPKBkD0Oj6kfXYNlnGT6r9As2LdhbhPaMDQYvWG3Skgue1vvjrx_82Uc___nte8myOiD0hA2rzgmhM9aYZZWb8swwM3Gsro1aMuRq5CYqGRXBMEpeQp2YHnEdjs_lR9-A1mQ68TeBFanrWuQ6svBobbk8F1YWqsBzUFlCDtOGx82f1Tb0OadxG2ON9g6BQf8BhjbsrDbP6vYef9-2RyBabaGe3NXCdP5eBxLXXZfsShkrQza2RcWT57aQMTVIlAqt4DY8IABr4hz4QtaEAgj8LOrBpfsphTCTXS7bsL22Eynert9uUEQHjlPq3_Rx6_-378FFJBz96mB0eBsuJaiz1fmb29BazD_7O6hjLfK7AZkZnJ43_fwCu203YA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dataset+of+Scalp+EEG+Recordings+of+Alzheimer%E2%80%99s+Disease%2C+Frontotemporal+Dementia+and+Healthy+Subjects+from+Routine+EEG&rft.jtitle=Data+%28Basel%29&rft.au=Miltiadous%2C+Andreas&rft.au=Tzimourta%2C+Katerina+D&rft.au=Afrantou%2C+Theodora&rft.au=Ioannidis%2C+Panagiotis&rft.date=2023-05-01&rft.pub=MDPI+AG&rft.issn=2306-5729&rft.eissn=2306-5729&rft.volume=8&rft.issue=6&rft_id=info:doi/10.3390%2Fdata8060095&rft.externalDocID=A758282136
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5729&client=summon