Using optical tweezing to control phase separation and nucleation near a liquid–liquid critical point

About 20 years ago, it was shown that lasers can nucleate crystals in super-saturated solutions and might even be able to select the polymorph that crystallises. However, no theoretical model was found explaining the results and progress was slowed down. Here we show that laser-induced nucleation ma...

Full description

Saved in:
Bibliographic Details
Published inSoft matter Vol. 15; no. 41; pp. 8279 - 8289
Main Authors Walton, Finlay, Wynne, Klaas
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract About 20 years ago, it was shown that lasers can nucleate crystals in super-saturated solutions and might even be able to select the polymorph that crystallises. However, no theoretical model was found explaining the results and progress was slowed down. Here we show that laser-induced nucleation may be understood in terms of the harnessing of concentration fluctuations near a liquid–liquid critical point using optical tweezing in a process called laser-induced phase separation (LIPS) and LIPS and nucleation (LIPSaN). A theoretical model is presented based on the regular solution model with an added term representing optical tweezing while the dynamics are modelled using a Kramers diffusion equation, and the roles of heat diffusion and thermophoresis are evaluated. LIPS and LIPSaN experiments were carried out on a range of liquid mixtures and the results compared to theory.
AbstractList About 20 years ago, it was shown that lasers can nucleate crystals in super-saturated solutions and might even be able to select the polymorph that crystallises. However, no theoretical model was found explaining the results and progress was slowed down. Here we show that laser-induced nucleation may be understood in terms of the harnessing of concentration fluctuations near a liquid-liquid critical point using optical tweezing in a process called laser-induced phase separation (LIPS) and LIPS and nucleation (LIPSaN). A theoretical model is presented based on the regular solution model with an added term representing optical tweezing while the dynamics are modelled using a Kramers diffusion equation, and the roles of heat diffusion and thermophoresis are evaluated. LIPS and LIPSaN experiments were carried out on a range of liquid mixtures and the results compared to theory.About 20 years ago, it was shown that lasers can nucleate crystals in super-saturated solutions and might even be able to select the polymorph that crystallises. However, no theoretical model was found explaining the results and progress was slowed down. Here we show that laser-induced nucleation may be understood in terms of the harnessing of concentration fluctuations near a liquid-liquid critical point using optical tweezing in a process called laser-induced phase separation (LIPS) and LIPS and nucleation (LIPSaN). A theoretical model is presented based on the regular solution model with an added term representing optical tweezing while the dynamics are modelled using a Kramers diffusion equation, and the roles of heat diffusion and thermophoresis are evaluated. LIPS and LIPSaN experiments were carried out on a range of liquid mixtures and the results compared to theory.
About 20 years ago, it was shown that lasers can nucleate crystals in super-saturated solutions and might even be able to select the polymorph that crystallises. However, no theoretical model was found explaining the results and progress was slowed down. Here we show that laser-induced nucleation may be understood in terms of the harnessing of concentration fluctuations near a liquid–liquid critical point using optical tweezing in a process called laser-induced phase separation (LIPS) and LIPS and nucleation (LIPSaN). A theoretical model is presented based on the regular solution model with an added term representing optical tweezing while the dynamics are modelled using a Kramers diffusion equation, and the roles of heat diffusion and thermophoresis are evaluated. LIPS and LIPSaN experiments were carried out on a range of liquid mixtures and the results compared to theory.
Author Wynne, Klaas
Walton, Finlay
Author_xml – sequence: 1
  givenname: Finlay
  orcidid: 0000-0002-4739-1649
  surname: Walton
  fullname: Walton, Finlay
  organization: School of Chemistry, University of Glasgow, UK
– sequence: 2
  givenname: Klaas
  orcidid: 0000-0002-5305-5940
  surname: Wynne
  fullname: Wynne, Klaas
  organization: School of Chemistry, University of Glasgow, UK
BookMark eNptkM1KxDAUhYMoOI5ufIKAGxFGk9xkmi5l_IURFzrgrqRpOkZqUpMU0ZXv4Bv6JHasKIire-7lu4fD2ULrzjuD0C4lh5RAfjTLb64IZXl2soZGNON8MpVcrv9ouNtEWzE-EAKS0-kILRfRuiX2bbJaNTg9G_O6OiSPtXcp-Aa39yoaHE2rgkrWO6xchV2nGzOszqiAFW7sU2erj7f3QWAd7ODZeuvSNtqoVRPNzvcco8XZ6e3sYjK_Pr-cHc8nmgNNE8ZZPZ0CSJqRXLKM1YQJzkpeg6hESWSlM6hoqTSrQQspy9oYEKBzyLTIJYzR_uDbBv_UmZiKRxu1aRrljO9iwYAIAhQg79G9P-iD74Lr062oLOMCpOipg4HSwccYTF20wT6q8FJQUqw6L34772HyB9Y2fbWUgrLNfy-fTXCGrQ
CitedBy_id crossref_primary_10_1021_acs_cgd_2c01526
crossref_primary_10_1002_anie_202117227
crossref_primary_10_1021_acs_iecr_3c02796
crossref_primary_10_1021_acs_jpcc_1c05796
crossref_primary_10_1016_j_memsci_2021_119507
crossref_primary_10_1002_admi_202001200
crossref_primary_10_1002_ange_202117227
crossref_primary_10_1073_pnas_2207173119
crossref_primary_10_1038_s41467_022_30933_0
crossref_primary_10_1016_j_tibs_2024_12_013
crossref_primary_10_1039_D0TC05004K
crossref_primary_10_1103_PhysRevLett_128_166001
crossref_primary_10_1073_pnas_2402162121
crossref_primary_10_1038_s42004_025_01438_w
crossref_primary_10_1039_D2CC02699F
crossref_primary_10_1002_smll_202107735
crossref_primary_10_1098_rsta_2022_0249
crossref_primary_10_1016_j_jphotochemrev_2022_100530
Cites_doi 10.26434/chemrxiv.9891491.v1
10.1364/OME.2.001588
10.1021/jacs.9b03083
10.1063/1.3582897
10.1021/acs.cgd.8b01361
10.1021/cg050460+
10.1126/science.277.5334.1975
10.1021/jacs.8b13231
10.1021/jz5022763
10.1038/nature11122
10.1039/c3cc90391e
10.1039/b212062c
10.1038/nmat2900
10.1038/srep42439
10.1103/PhysRevE.78.060801
10.1021/acs.cgd.5b01526
10.1039/C7CP03146G
10.1021/cg300750c
10.1063/1.5079328
10.1021/acsphotonics.6b00023
10.1021/acs.cgd.7b01116
10.1021/acs.langmuir.7b01693
10.1038/srep11260
10.1038/nature25971
10.1021/j150515a015
10.1002/anie.201806079
10.1103/PhysRevLett.87.054503
10.1103/PhysRevE.79.011201
10.1016/j.jcrysgro.2010.10.068
10.1021/ja905232m
10.1002/anie.201204824
10.1063/1.3268704
10.1039/C3CS60451A
10.1103/PhysRevLett.109.095702
10.1016/S0378-4371(98)00361-6
10.1088/0034-4885/76/2/026401
10.1126/science.1230915
10.1039/C4CP04008B
10.1021/la9606308
10.1002/anie.201702352
10.1126/sciadv.aav7399
10.1021/cg5011874
10.1103/PhysRevLett.89.175501
10.1038/s41557-018-0009-8
10.1021/jz401122v
10.1103/PhysRevLett.98.133601
10.1126/science.aao7049
10.1016/j.nantod.2011.10.005
10.1007/978-3-642-29323-8
10.1063/1.4922543
10.1103/PhysRevLett.77.3475
10.1126/science.1164271
10.1063/1.1613795
10.1073/pnas.1822016116
10.1039/C6CP07997K
10.1039/C7CP06990A
10.1021/jp200721f
10.1038/s41557-019-0210-4
10.1021/cg401065h
10.1021/acs.cgd.8b00688
10.1021/cg300065x
10.1093/oso/9780198505907.001.0001
10.1021/acs.cgd.5b01505
10.1039/C6CE01464J
10.1021/ar300161g
10.1021/acs.cgd.8b00796
10.1063/1.3574010
10.1021/jp9715078
10.1063/1.4917022
10.1039/C1CP22774B
10.1146/annurev-cellbio-100913-013325
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1039/C9SM01297D
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1744-6848
EndPage 8289
ExternalDocumentID 10_1039_C9SM01297D
GroupedDBID 0-7
0R~
123
4.4
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AZFZN
BLAPV
BSQNT
C6K
CITATION
CS3
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
J3I
KZ1
L-8
N9A
O9-
P2P
R7B
RAOCF
RCNCU
RNS
RPMJG
RSCEA
SKA
SLH
VH6
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c431t-242f6633817098272f02542b4f35d5b08dc73d1bac2f3c588bfee353c937c5983
ISSN 1744-683X
1744-6848
IngestDate Fri Jul 11 07:34:17 EDT 2025
Mon Jun 30 11:57:23 EDT 2025
Tue Jul 01 03:13:20 EDT 2025
Thu Apr 24 22:58:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c431t-242f6633817098272f02542b4f35d5b08dc73d1bac2f3c588bfee353c937c5983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5305-5940
0000-0002-4739-1649
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2019/sm/c9sm01297d
PQID 2307745385
PQPubID 2047495
PageCount 11
ParticipantIDs proquest_miscellaneous_2305031339
proquest_journals_2307745385
crossref_primary_10_1039_C9SM01297D
crossref_citationtrail_10_1039_C9SM01297D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-00-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Soft matter
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Garetz (C9SM01297D-(cit1)/*[position()=1]) 1996; 77
Niinomi (C9SM01297D-(cit72)/*[position()=1]) 2016; 18
Liu (C9SM01297D-(cit14)/*[position()=1]) 2017; 19
Takasuga (C9SM01297D-(cit33)/*[position()=1]) 2014; 14
Gebauer (C9SM01297D-(cit22)/*[position()=1]) 2011; 6
Wedekind (C9SM01297D-(cit30)/*[position()=1]) 2015; 5
Iefuji (C9SM01297D-(cit5)/*[position()=1]) 2011; 318
Yuyama (C9SM01297D-(cit73)/*[position()=1]) 2018; 20
Yuyama (C9SM01297D-(cit17)/*[position()=1]) 2013; 4
Kobayashi (C9SM01297D-(cit80)/*[position()=1]) 2016; 7
Woerdemann (C9SM01297D-(cit60)/*[position()=1]) 2012
Gebauer (C9SM01297D-(cit68)/*[position()=1]) 2019; 141
Yuyama (C9SM01297D-(cit71)/*[position()=1]) 2016; 16
Walton (C9SM01297D-(cit40)/*[position()=1]) 2018; 10
Lutsko (C9SM01297D-(cit67)/*[position()=1]) 2019; 5
Ward (C9SM01297D-(cit52)/*[position()=1]) 2012; 12
Garetz (C9SM01297D-(cit2)/*[position()=1]) 2002; 89
Usman (C9SM01297D-(cit9)/*[position()=1]) 2011; 115
Davey (C9SM01297D-(cit23)/*[position()=1]) 2013; 52
Tasnim (C9SM01297D-(cit75)/*[position()=1]) 2018; 18
Ward (C9SM01297D-(cit77)/*[position()=1]) 2015; 142
Kurita (C9SM01297D-(cit83)/*[position()=1]) 2005; 17
Duffus (C9SM01297D-(cit7)/*[position()=1]) 2009; 131
Crauste-thibierge (C9SM01297D-(cit54)/*[position()=1]) 2015; 92
Tu (C9SM01297D-(cit70)/*[position()=1]) 2014; 14
Jiang (C9SM01297D-(cit63)/*[position()=1]) 2019; 150
Osborne (C9SM01297D-(cit57)/*[position()=1]) 1998; 102
Niinomi (C9SM01297D-(cit19)/*[position()=1]) 2018; 18
Woutersen (C9SM01297D-(cit85)/*[position()=1]) 2018; 359
Liu (C9SM01297D-(cit6)/*[position()=1]) 2017; 19
Gebauer (C9SM01297D-(cit24)/*[position()=1]) 2008; 322
ten Wolde (C9SM01297D-(cit29)/*[position()=1]) 1997; 277
Katsir (C9SM01297D-(cit39)/*[position()=1]) 2017; 29
Ianiro (C9SM01297D-(cit69)/*[position()=1]) 2019; 11
Syme (C9SM01297D-(cit82)/*[position()=1]) 2017; 7
De With (C9SM01297D-(cit25)/*[position()=1]) 2009; 587
Alexander (C9SM01297D-(cit76)/*[position()=1]) 2019; 150
Dey (C9SM01297D-(cit26)/*[position()=1]) 2010; 9
Yuyama (C9SM01297D-(cit15)/*[position()=1]) 2012; 12
Knott (C9SM01297D-(cit11)/*[position()=1]) 2011; 134
Delville (C9SM01297D-(cit44)/*[position()=1]) 1999; 262
Le Ferrand (C9SM01297D-(cit66)/*[position()=1]) 2019; 141
Hofkens (C9SM01297D-(cit55)/*[position()=1]) 2002; 13
Niinomi (C9SM01297D-(cit74)/*[position()=1]) 2019; 19
Mosses (C9SM01297D-(cit34)/*[position()=1]) 2014; 50
Sun (C9SM01297D-(cit3)/*[position()=1]) 2006; 6
Walton (C9SM01297D-(cit81)/*[position()=1])
Bowman (C9SM01297D-(cit20)/*[position()=1]) 2013; 76
Bunkin (C9SM01297D-(cit56)/*[position()=1]) 1996; 23
Murata (C9SM01297D-(cit79)/*[position()=1]) 2019; 116
Casner (C9SM01297D-(cit37)/*[position()=1]) 2001; 87
Jones (C9SM01297D-(cit42)/*[position()=1]) 2002
Toyama (C9SM01297D-(cit43)/*[position()=1]) 2008; 78
Yuyama (C9SM01297D-(cit62)/*[position()=1]) 2018; 57
Knott (C9SM01297D-(cit13)/*[position()=1]) 2011; 134
Wiegand (C9SM01297D-(cit58)/*[position()=1]) 2004; 16
Li (C9SM01297D-(cit8)/*[position()=1]) 2016; 16
Kosa (C9SM01297D-(cit10)/*[position()=1]) 2012; 485
Benitez (C9SM01297D-(cit47)/*[position()=1]) 2018; 48
Eslamian (C9SM01297D-(cit48)/*[position()=1]) 2009; 80
Ward (C9SM01297D-(cit4)/*[position()=1]) 2012; 14
Xu (C9SM01297D-(cit31)/*[position()=1]) 2012; 109
Mukai (C9SM01297D-(cit53)/*[position()=1]) 2003; 83
Smeets (C9SM01297D-(cit27)/*[position()=1]) 2017
Cordero (C9SM01297D-(cit46)/*[position()=1]) 2009; 79
Wu (C9SM01297D-(cit61)/*[position()=1]) 2018; 18
Wang (C9SM01297D-(cit64)/*[position()=1]) 2017; 33
Kedenburg (C9SM01297D-(cit49)/*[position()=1]) 2012; 2
Wallace (C9SM01297D-(cit36)/*[position()=1]) 2013; 692
Zhu (C9SM01297D-(cit84)/*[position()=1]) 2015; 142
Van Driessche (C9SM01297D-(cit28)/*[position()=1]) 2018; 556
Bartkiewicz (C9SM01297D-(cit21)/*[position()=1]) 2015; 17
Yuyama (C9SM01297D-(cit18)/*[position()=1]) 2017; 56
Camin (C9SM01297D-(cit50)/*[position()=1]) 1954; 58
Knott (C9SM01297D-(cit12)/*[position()=1]) 2009; 131
Walton (C9SM01297D-(cit41)/*[position()=1]) 2018; 10723
Spesyvtseva (C9SM01297D-(cit59)/*[position()=1]) 2016; 3
Hyman (C9SM01297D-(cit65)/*[position()=1]) 2014; 30
Mosses (C9SM01297D-(cit78)/*[position()=1]) 2014; 6
Gebauer (C9SM01297D-(cit35)/*[position()=1]) 2014; 43
Schroll (C9SM01297D-(cit38)/*[position()=1]) 2007; 98
Sugiyama (C9SM01297D-(cit16)/*[position()=1]) 2012; 45
Barbara (C9SM01297D-(cit45)/*[position()=1]) 2005; 96
Bonnett (C9SM01297D-(cit32)/*[position()=1]) 2003
References_xml – ident: C9SM01297D-(cit81)/*[position()=1]
  doi: 10.26434/chemrxiv.9891491.v1
– volume: 2
  start-page: 1588
  year: 2012
  ident: C9SM01297D-(cit49)/*[position()=1]
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.2.001588
– volume: 141
  start-page: 7202
  year: 2019
  ident: C9SM01297D-(cit66)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03083
– volume: 134
  start-page: 171102
  year: 2011
  ident: C9SM01297D-(cit11)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3582897
– volume: 19
  start-page: 529
  year: 2019
  ident: C9SM01297D-(cit74)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.8b01361
– volume: 6
  start-page: 684
  year: 2006
  ident: C9SM01297D-(cit3)/*[position()=1]
  publication-title: Growth
  doi: 10.1021/cg050460+
– volume: 277
  start-page: 1975
  year: 1997
  ident: C9SM01297D-(cit29)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.277.5334.1975
– volume: 141
  start-page: 4490
  year: 2019
  ident: C9SM01297D-(cit68)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13231
– volume: 6
  start-page: 38
  year: 2014
  ident: C9SM01297D-(cit78)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz5022763
– volume: 485
  start-page: 347
  year: 2012
  ident: C9SM01297D-(cit10)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature11122
– volume: 50
  start-page: 1
  year: 2014
  ident: C9SM01297D-(cit34)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc90391e
– volume: 48
  start-page: 1
  year: 2018
  ident: C9SM01297D-(cit47)/*[position()=1]
  publication-title: Opt. Eng.
– start-page: 698
  year: 2003
  ident: C9SM01297D-(cit32)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b212062c
– volume: 16
  start-page: R357
  year: 2004
  ident: C9SM01297D-(cit58)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 9
  start-page: 1010
  year: 2010
  ident: C9SM01297D-(cit26)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2900
– volume: 587
  start-page: 2007
  year: 2009
  ident: C9SM01297D-(cit25)/*[position()=1]
  publication-title: Science
– volume: 7
  start-page: 42439
  year: 2017
  ident: C9SM01297D-(cit82)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep42439
– volume: 78
  start-page: 1
  year: 2008
  ident: C9SM01297D-(cit43)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.78.060801
– volume: 16
  start-page: 2514
  year: 2016
  ident: C9SM01297D-(cit8)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.5b01526
– volume: 23
  start-page: 62
  year: 1996
  ident: C9SM01297D-(cit56)/*[position()=1]
  publication-title: Kvantovaya Elektron.
– volume: 19
  start-page: 19386
  year: 2017
  ident: C9SM01297D-(cit6)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP03146G
– volume: 12
  start-page: 4554
  year: 2012
  ident: C9SM01297D-(cit52)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg300750c
– volume: 150
  start-page: 040901
  year: 2019
  ident: C9SM01297D-(cit76)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5079328
– volume: 3
  start-page: 719
  year: 2016
  ident: C9SM01297D-(cit59)/*[position()=1]
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.6b00023
– volume: 18
  start-page: 734
  year: 2018
  ident: C9SM01297D-(cit19)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.7b01116
– volume: 33
  start-page: 7715
  year: 2017
  ident: C9SM01297D-(cit64)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b01693
– volume: 5
  start-page: 1
  year: 2015
  ident: C9SM01297D-(cit30)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep11260
– volume: 556
  start-page: 89
  year: 2018
  ident: C9SM01297D-(cit28)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature25971
– volume: 58
  start-page: 440
  year: 1954
  ident: C9SM01297D-(cit50)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j150515a015
– volume: 57
  start-page: 13424
  year: 2018
  ident: C9SM01297D-(cit62)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201806079
– volume: 87
  start-page: 054503
  year: 2001
  ident: C9SM01297D-(cit37)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.054503
– volume: 79
  start-page: 011201
  year: 2009
  ident: C9SM01297D-(cit46)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.79.011201
– volume: 318
  start-page: 741
  year: 2011
  ident: C9SM01297D-(cit5)/*[position()=1]
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2010.10.068
– volume: 131
  start-page: 11676
  year: 2009
  ident: C9SM01297D-(cit7)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja905232m
– volume: 52
  start-page: 2166
  year: 2013
  ident: C9SM01297D-(cit23)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201204824
– start-page: 201700342
  year: 2017
  ident: C9SM01297D-(cit27)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 131
  start-page: 224112
  year: 2009
  ident: C9SM01297D-(cit12)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3268704
– volume: 43
  start-page: 2348
  year: 2014
  ident: C9SM01297D-(cit35)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60451A
– volume: 109
  start-page: 095702
  year: 2012
  ident: C9SM01297D-(cit31)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.095702
– volume: 262
  start-page: 40
  year: 1999
  ident: C9SM01297D-(cit44)/*[position()=1]
  publication-title: Phys. A
  doi: 10.1016/S0378-4371(98)00361-6
– volume: 76
  start-page: 26401
  year: 2013
  ident: C9SM01297D-(cit20)/*[position()=1]
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/76/2/026401
– volume: 150
  start-page: 1
  year: 2019
  ident: C9SM01297D-(cit63)/*[position()=1]
  publication-title: J. Chem. Phys.
– volume: 692
  start-page: 885
  year: 2013
  ident: C9SM01297D-(cit36)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1230915
– volume: 17
  start-page: 1077
  year: 2015
  ident: C9SM01297D-(cit21)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP04008B
– volume: 13
  start-page: 414
  year: 2002
  ident: C9SM01297D-(cit55)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la9606308
– volume: 56
  start-page: 6739
  year: 2017
  ident: C9SM01297D-(cit18)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201702352
– volume: 5
  start-page: eaav7399
  year: 2019
  ident: C9SM01297D-(cit67)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav7399
– volume: 14
  start-page: 6006
  year: 2014
  ident: C9SM01297D-(cit33)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg5011874
– volume: 10723
  start-page: 107230O
  year: 2018
  ident: C9SM01297D-(cit41)/*[position()=1]
  publication-title: Proc. SPIE
– volume: 89
  start-page: 175501
  year: 2002
  ident: C9SM01297D-(cit2)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.175501
– volume: 10
  start-page: 506
  year: 2018
  ident: C9SM01297D-(cit40)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0009-8
– volume: 4
  start-page: 2436
  year: 2013
  ident: C9SM01297D-(cit17)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz401122v
– volume: 98
  start-page: 1
  year: 2007
  ident: C9SM01297D-(cit38)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.133601
– volume: 359
  start-page: 1127
  year: 2018
  ident: C9SM01297D-(cit85)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aao7049
– volume: 6
  start-page: 564
  year: 2011
  ident: C9SM01297D-(cit22)/*[position()=1]
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2011.10.005
– volume-title: Structured Light Fields
  year: 2012
  ident: C9SM01297D-(cit60)/*[position()=1]
  doi: 10.1007/978-3-642-29323-8
– volume: 142
  start-page: 244504
  year: 2015
  ident: C9SM01297D-(cit84)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4922543
– volume: 77
  start-page: 3475
  year: 1996
  ident: C9SM01297D-(cit1)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3475
– volume: 322
  start-page: 1819
  year: 2008
  ident: C9SM01297D-(cit24)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1164271
– volume: 83
  start-page: 2557
  year: 2003
  ident: C9SM01297D-(cit53)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1613795
– volume: 116
  start-page: 7176
  year: 2019
  ident: C9SM01297D-(cit79)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1822016116
– volume: 19
  start-page: 3464
  year: 2017
  ident: C9SM01297D-(cit14)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP07997K
– volume: 20
  start-page: 6034
  year: 2018
  ident: C9SM01297D-(cit73)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP06990A
– volume: 17
  start-page: L293
  year: 2005
  ident: C9SM01297D-(cit83)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 115
  start-page: 11906
  year: 2011
  ident: C9SM01297D-(cit9)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp200721f
– volume: 11
  start-page: 320
  year: 2019
  ident: C9SM01297D-(cit69)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-019-0210-4
– volume: 14
  start-page: 15
  year: 2014
  ident: C9SM01297D-(cit70)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg401065h
– volume: 18
  start-page: 5927
  year: 2018
  ident: C9SM01297D-(cit75)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.8b00688
– volume: 92
  start-page: 052312
  year: 2015
  ident: C9SM01297D-(cit54)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
– volume: 12
  start-page: 2427
  year: 2012
  ident: C9SM01297D-(cit15)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg300065x
– volume-title: Soft Condensed Matter
  year: 2002
  ident: C9SM01297D-(cit42)/*[position()=1]
  doi: 10.1093/oso/9780198505907.001.0001
– volume: 80
  start-page: 1
  year: 2009
  ident: C9SM01297D-(cit48)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
– volume: 96
  start-page: 3728
  year: 2005
  ident: C9SM01297D-(cit45)/*[position()=1]
  publication-title: J. Phys. Chem.
– volume: 16
  start-page: 953
  year: 2016
  ident: C9SM01297D-(cit71)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.5b01505
– volume: 18
  start-page: 7441
  year: 2016
  ident: C9SM01297D-(cit72)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C6CE01464J
– volume: 7
  start-page: 1
  year: 2016
  ident: C9SM01297D-(cit80)/*[position()=1]
  publication-title: Nat. Commun.
– volume: 45
  start-page: 1946
  year: 2012
  ident: C9SM01297D-(cit16)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300161g
– volume: 18
  start-page: 5417
  year: 2018
  ident: C9SM01297D-(cit61)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.8b00796
– volume: 134
  start-page: 154501
  year: 2011
  ident: C9SM01297D-(cit13)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3574010
– volume: 102
  start-page: 3160
  year: 1998
  ident: C9SM01297D-(cit57)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp9715078
– volume: 142
  start-page: 144501
  year: 2015
  ident: C9SM01297D-(cit77)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4917022
– volume: 14
  start-page: 90
  year: 2012
  ident: C9SM01297D-(cit4)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C1CP22774B
– volume: 29
  start-page: 63002
  year: 2017
  ident: C9SM01297D-(cit39)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 30
  start-page: 39
  year: 2014
  ident: C9SM01297D-(cit65)/*[position()=1]
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-100913-013325
SSID ssj0038416
Score 2.3698316
Snippet About 20 years ago, it was shown that lasers can nucleate crystals in super-saturated solutions and might even be able to select the polymorph that...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 8279
SubjectTerms Critical point
Crystals
Lasers
Nucleation
Phase separation
Thermophoresis
Variation
Title Using optical tweezing to control phase separation and nucleation near a liquid–liquid critical point
URI https://www.proquest.com/docview/2307745385
https://www.proquest.com/docview/2305031339
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegExIviE9RNpARvKAqY7PjJH6cRqsB3XhYKvoWOY6jVeqcQtOH7a_n_NUsog-Dl6R1T1bln3N3Od_9DqGP8FalRMxoBOYkiWLQf1FZChYRkE4EEZJbAtPzi-RsFn-bs3nXYNFWl7TlobzdWVfyP6jCGOBqqmT_AdntpDAAnwFfuALCcL0Xxu68v1m5eLRJuLq11U_NNgN9dQVWarRWjuHbZx5rw2HsvmrD4yNGy8WvzaKK3G0kQ_uDVbPQvdj9JSjt0bVo7-b0itCXerLQyy4l5-eNdsHS70shesEFr7ycJkzjOEoyR4N5qHaMBfXJ7mwTR2LllWFGXJ-Yv7T0ETUkp5Kvr00YLK06WxTO3y9-FJPZdFrk43n-EO0ReAcgA7R3Ms6_ToOhpebE1NW7un8V2Gcp_9zN3fc3-ubW-hD5U_TEO__4xCH5DD1Q-jl6ZJNw5foFUhZP7PHEAU_cNtjjiS2euMMTA564wxMbPLHAPTxxwBNbPF-i2WScn55Fvg1GJMG7a82hfQ1-oaVS5LCmpDYMBqSMa8oqVh5llUxpdVwKSWoqWZaVtVKUUQmep2Q8o6_QQDdavUY4I0wILpLjRJaxSmoBawezxRX4MqmiZIg-hcUqpOeIN61KloXNVaC8OOWX53ZhvwzRh63syjGj7JQ6CGte-CdnXZjigxQURMaG6P32Z9Br5rBKaNVsrAwzvKKUv7mHzD56bLavi40doEH7e6PegrfYlu_8rvkDJMVvJw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+optical+tweezing+to+control+phase+separation+and+nucleation+near+a+liquid-liquid+critical+point&rft.jtitle=Soft+matter&rft.au=Walton%2C+Finlay&rft.au=Wynne%2C+Klaas&rft.date=2019&rft.issn=1744-6848&rft.eissn=1744-6848&rft.volume=15&rft.issue=41&rft.spage=8279&rft_id=info:doi/10.1039%2Fc9sm01297d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-683X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-683X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-683X&client=summon