Using optical tweezing to control phase separation and nucleation near a liquid–liquid critical point
About 20 years ago, it was shown that lasers can nucleate crystals in super-saturated solutions and might even be able to select the polymorph that crystallises. However, no theoretical model was found explaining the results and progress was slowed down. Here we show that laser-induced nucleation ma...
Saved in:
Published in | Soft matter Vol. 15; no. 41; pp. 8279 - 8289 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | About 20 years ago, it was shown that lasers can nucleate crystals in super-saturated solutions and might even be able to select the polymorph that crystallises. However, no theoretical model was found explaining the results and progress was slowed down. Here we show that laser-induced nucleation may be understood in terms of the harnessing of concentration fluctuations near a liquid–liquid critical point using optical tweezing in a process called laser-induced phase separation (LIPS) and LIPS and nucleation (LIPSaN). A theoretical model is presented based on the regular solution model with an added term representing optical tweezing while the dynamics are modelled using a Kramers diffusion equation, and the roles of heat diffusion and thermophoresis are evaluated. LIPS and LIPSaN experiments were carried out on a range of liquid mixtures and the results compared to theory. |
---|---|
AbstractList | About 20 years ago, it was shown that lasers can nucleate crystals in super-saturated solutions and might even be able to select the polymorph that crystallises. However, no theoretical model was found explaining the results and progress was slowed down. Here we show that laser-induced nucleation may be understood in terms of the harnessing of concentration fluctuations near a liquid-liquid critical point using optical tweezing in a process called laser-induced phase separation (LIPS) and LIPS and nucleation (LIPSaN). A theoretical model is presented based on the regular solution model with an added term representing optical tweezing while the dynamics are modelled using a Kramers diffusion equation, and the roles of heat diffusion and thermophoresis are evaluated. LIPS and LIPSaN experiments were carried out on a range of liquid mixtures and the results compared to theory.About 20 years ago, it was shown that lasers can nucleate crystals in super-saturated solutions and might even be able to select the polymorph that crystallises. However, no theoretical model was found explaining the results and progress was slowed down. Here we show that laser-induced nucleation may be understood in terms of the harnessing of concentration fluctuations near a liquid-liquid critical point using optical tweezing in a process called laser-induced phase separation (LIPS) and LIPS and nucleation (LIPSaN). A theoretical model is presented based on the regular solution model with an added term representing optical tweezing while the dynamics are modelled using a Kramers diffusion equation, and the roles of heat diffusion and thermophoresis are evaluated. LIPS and LIPSaN experiments were carried out on a range of liquid mixtures and the results compared to theory. About 20 years ago, it was shown that lasers can nucleate crystals in super-saturated solutions and might even be able to select the polymorph that crystallises. However, no theoretical model was found explaining the results and progress was slowed down. Here we show that laser-induced nucleation may be understood in terms of the harnessing of concentration fluctuations near a liquid–liquid critical point using optical tweezing in a process called laser-induced phase separation (LIPS) and LIPS and nucleation (LIPSaN). A theoretical model is presented based on the regular solution model with an added term representing optical tweezing while the dynamics are modelled using a Kramers diffusion equation, and the roles of heat diffusion and thermophoresis are evaluated. LIPS and LIPSaN experiments were carried out on a range of liquid mixtures and the results compared to theory. |
Author | Wynne, Klaas Walton, Finlay |
Author_xml | – sequence: 1 givenname: Finlay orcidid: 0000-0002-4739-1649 surname: Walton fullname: Walton, Finlay organization: School of Chemistry, University of Glasgow, UK – sequence: 2 givenname: Klaas orcidid: 0000-0002-5305-5940 surname: Wynne fullname: Wynne, Klaas organization: School of Chemistry, University of Glasgow, UK |
BookMark | eNptkM1KxDAUhYMoOI5ufIKAGxFGk9xkmi5l_IURFzrgrqRpOkZqUpMU0ZXv4Bv6JHasKIire-7lu4fD2ULrzjuD0C4lh5RAfjTLb64IZXl2soZGNON8MpVcrv9ouNtEWzE-EAKS0-kILRfRuiX2bbJaNTg9G_O6OiSPtXcp-Aa39yoaHE2rgkrWO6xchV2nGzOszqiAFW7sU2erj7f3QWAd7ODZeuvSNtqoVRPNzvcco8XZ6e3sYjK_Pr-cHc8nmgNNE8ZZPZ0CSJqRXLKM1YQJzkpeg6hESWSlM6hoqTSrQQspy9oYEKBzyLTIJYzR_uDbBv_UmZiKRxu1aRrljO9iwYAIAhQg79G9P-iD74Lr062oLOMCpOipg4HSwccYTF20wT6q8FJQUqw6L34772HyB9Y2fbWUgrLNfy-fTXCGrQ |
CitedBy_id | crossref_primary_10_1021_acs_cgd_2c01526 crossref_primary_10_1002_anie_202117227 crossref_primary_10_1021_acs_iecr_3c02796 crossref_primary_10_1021_acs_jpcc_1c05796 crossref_primary_10_1016_j_memsci_2021_119507 crossref_primary_10_1002_admi_202001200 crossref_primary_10_1002_ange_202117227 crossref_primary_10_1073_pnas_2207173119 crossref_primary_10_1038_s41467_022_30933_0 crossref_primary_10_1016_j_tibs_2024_12_013 crossref_primary_10_1039_D0TC05004K crossref_primary_10_1103_PhysRevLett_128_166001 crossref_primary_10_1073_pnas_2402162121 crossref_primary_10_1038_s42004_025_01438_w crossref_primary_10_1039_D2CC02699F crossref_primary_10_1002_smll_202107735 crossref_primary_10_1098_rsta_2022_0249 crossref_primary_10_1016_j_jphotochemrev_2022_100530 |
Cites_doi | 10.26434/chemrxiv.9891491.v1 10.1364/OME.2.001588 10.1021/jacs.9b03083 10.1063/1.3582897 10.1021/acs.cgd.8b01361 10.1021/cg050460+ 10.1126/science.277.5334.1975 10.1021/jacs.8b13231 10.1021/jz5022763 10.1038/nature11122 10.1039/c3cc90391e 10.1039/b212062c 10.1038/nmat2900 10.1038/srep42439 10.1103/PhysRevE.78.060801 10.1021/acs.cgd.5b01526 10.1039/C7CP03146G 10.1021/cg300750c 10.1063/1.5079328 10.1021/acsphotonics.6b00023 10.1021/acs.cgd.7b01116 10.1021/acs.langmuir.7b01693 10.1038/srep11260 10.1038/nature25971 10.1021/j150515a015 10.1002/anie.201806079 10.1103/PhysRevLett.87.054503 10.1103/PhysRevE.79.011201 10.1016/j.jcrysgro.2010.10.068 10.1021/ja905232m 10.1002/anie.201204824 10.1063/1.3268704 10.1039/C3CS60451A 10.1103/PhysRevLett.109.095702 10.1016/S0378-4371(98)00361-6 10.1088/0034-4885/76/2/026401 10.1126/science.1230915 10.1039/C4CP04008B 10.1021/la9606308 10.1002/anie.201702352 10.1126/sciadv.aav7399 10.1021/cg5011874 10.1103/PhysRevLett.89.175501 10.1038/s41557-018-0009-8 10.1021/jz401122v 10.1103/PhysRevLett.98.133601 10.1126/science.aao7049 10.1016/j.nantod.2011.10.005 10.1007/978-3-642-29323-8 10.1063/1.4922543 10.1103/PhysRevLett.77.3475 10.1126/science.1164271 10.1063/1.1613795 10.1073/pnas.1822016116 10.1039/C6CP07997K 10.1039/C7CP06990A 10.1021/jp200721f 10.1038/s41557-019-0210-4 10.1021/cg401065h 10.1021/acs.cgd.8b00688 10.1021/cg300065x 10.1093/oso/9780198505907.001.0001 10.1021/acs.cgd.5b01505 10.1039/C6CE01464J 10.1021/ar300161g 10.1021/acs.cgd.8b00796 10.1063/1.3574010 10.1021/jp9715078 10.1063/1.4917022 10.1039/C1CP22774B 10.1146/annurev-cellbio-100913-013325 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1039/C9SM01297D |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1744-6848 |
EndPage | 8289 |
ExternalDocumentID | 10_1039_C9SM01297D |
GroupedDBID | 0-7 0R~ 123 4.4 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACPRK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AZFZN BLAPV BSQNT C6K CITATION CS3 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N J3I KZ1 L-8 N9A O9- P2P R7B RAOCF RCNCU RNS RPMJG RSCEA SKA SLH VH6 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c431t-242f6633817098272f02542b4f35d5b08dc73d1bac2f3c588bfee353c937c5983 |
ISSN | 1744-683X 1744-6848 |
IngestDate | Fri Jul 11 07:34:17 EDT 2025 Mon Jun 30 11:57:23 EDT 2025 Tue Jul 01 03:13:20 EDT 2025 Thu Apr 24 22:58:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c431t-242f6633817098272f02542b4f35d5b08dc73d1bac2f3c588bfee353c937c5983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5305-5940 0000-0002-4739-1649 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2019/sm/c9sm01297d |
PQID | 2307745385 |
PQPubID | 2047495 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2305031339 proquest_journals_2307745385 crossref_primary_10_1039_C9SM01297D crossref_citationtrail_10_1039_C9SM01297D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-00-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Soft matter |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Garetz (C9SM01297D-(cit1)/*[position()=1]) 1996; 77 Niinomi (C9SM01297D-(cit72)/*[position()=1]) 2016; 18 Liu (C9SM01297D-(cit14)/*[position()=1]) 2017; 19 Takasuga (C9SM01297D-(cit33)/*[position()=1]) 2014; 14 Gebauer (C9SM01297D-(cit22)/*[position()=1]) 2011; 6 Wedekind (C9SM01297D-(cit30)/*[position()=1]) 2015; 5 Iefuji (C9SM01297D-(cit5)/*[position()=1]) 2011; 318 Yuyama (C9SM01297D-(cit73)/*[position()=1]) 2018; 20 Yuyama (C9SM01297D-(cit17)/*[position()=1]) 2013; 4 Kobayashi (C9SM01297D-(cit80)/*[position()=1]) 2016; 7 Woerdemann (C9SM01297D-(cit60)/*[position()=1]) 2012 Gebauer (C9SM01297D-(cit68)/*[position()=1]) 2019; 141 Yuyama (C9SM01297D-(cit71)/*[position()=1]) 2016; 16 Walton (C9SM01297D-(cit40)/*[position()=1]) 2018; 10 Lutsko (C9SM01297D-(cit67)/*[position()=1]) 2019; 5 Ward (C9SM01297D-(cit52)/*[position()=1]) 2012; 12 Garetz (C9SM01297D-(cit2)/*[position()=1]) 2002; 89 Usman (C9SM01297D-(cit9)/*[position()=1]) 2011; 115 Davey (C9SM01297D-(cit23)/*[position()=1]) 2013; 52 Tasnim (C9SM01297D-(cit75)/*[position()=1]) 2018; 18 Ward (C9SM01297D-(cit77)/*[position()=1]) 2015; 142 Kurita (C9SM01297D-(cit83)/*[position()=1]) 2005; 17 Duffus (C9SM01297D-(cit7)/*[position()=1]) 2009; 131 Crauste-thibierge (C9SM01297D-(cit54)/*[position()=1]) 2015; 92 Tu (C9SM01297D-(cit70)/*[position()=1]) 2014; 14 Jiang (C9SM01297D-(cit63)/*[position()=1]) 2019; 150 Osborne (C9SM01297D-(cit57)/*[position()=1]) 1998; 102 Niinomi (C9SM01297D-(cit19)/*[position()=1]) 2018; 18 Woutersen (C9SM01297D-(cit85)/*[position()=1]) 2018; 359 Liu (C9SM01297D-(cit6)/*[position()=1]) 2017; 19 Gebauer (C9SM01297D-(cit24)/*[position()=1]) 2008; 322 ten Wolde (C9SM01297D-(cit29)/*[position()=1]) 1997; 277 Katsir (C9SM01297D-(cit39)/*[position()=1]) 2017; 29 Ianiro (C9SM01297D-(cit69)/*[position()=1]) 2019; 11 Syme (C9SM01297D-(cit82)/*[position()=1]) 2017; 7 De With (C9SM01297D-(cit25)/*[position()=1]) 2009; 587 Alexander (C9SM01297D-(cit76)/*[position()=1]) 2019; 150 Dey (C9SM01297D-(cit26)/*[position()=1]) 2010; 9 Yuyama (C9SM01297D-(cit15)/*[position()=1]) 2012; 12 Knott (C9SM01297D-(cit11)/*[position()=1]) 2011; 134 Delville (C9SM01297D-(cit44)/*[position()=1]) 1999; 262 Le Ferrand (C9SM01297D-(cit66)/*[position()=1]) 2019; 141 Hofkens (C9SM01297D-(cit55)/*[position()=1]) 2002; 13 Niinomi (C9SM01297D-(cit74)/*[position()=1]) 2019; 19 Mosses (C9SM01297D-(cit34)/*[position()=1]) 2014; 50 Sun (C9SM01297D-(cit3)/*[position()=1]) 2006; 6 Walton (C9SM01297D-(cit81)/*[position()=1]) Bowman (C9SM01297D-(cit20)/*[position()=1]) 2013; 76 Bunkin (C9SM01297D-(cit56)/*[position()=1]) 1996; 23 Murata (C9SM01297D-(cit79)/*[position()=1]) 2019; 116 Casner (C9SM01297D-(cit37)/*[position()=1]) 2001; 87 Jones (C9SM01297D-(cit42)/*[position()=1]) 2002 Toyama (C9SM01297D-(cit43)/*[position()=1]) 2008; 78 Yuyama (C9SM01297D-(cit62)/*[position()=1]) 2018; 57 Knott (C9SM01297D-(cit13)/*[position()=1]) 2011; 134 Wiegand (C9SM01297D-(cit58)/*[position()=1]) 2004; 16 Li (C9SM01297D-(cit8)/*[position()=1]) 2016; 16 Kosa (C9SM01297D-(cit10)/*[position()=1]) 2012; 485 Benitez (C9SM01297D-(cit47)/*[position()=1]) 2018; 48 Eslamian (C9SM01297D-(cit48)/*[position()=1]) 2009; 80 Ward (C9SM01297D-(cit4)/*[position()=1]) 2012; 14 Xu (C9SM01297D-(cit31)/*[position()=1]) 2012; 109 Mukai (C9SM01297D-(cit53)/*[position()=1]) 2003; 83 Smeets (C9SM01297D-(cit27)/*[position()=1]) 2017 Cordero (C9SM01297D-(cit46)/*[position()=1]) 2009; 79 Wu (C9SM01297D-(cit61)/*[position()=1]) 2018; 18 Wang (C9SM01297D-(cit64)/*[position()=1]) 2017; 33 Kedenburg (C9SM01297D-(cit49)/*[position()=1]) 2012; 2 Wallace (C9SM01297D-(cit36)/*[position()=1]) 2013; 692 Zhu (C9SM01297D-(cit84)/*[position()=1]) 2015; 142 Van Driessche (C9SM01297D-(cit28)/*[position()=1]) 2018; 556 Bartkiewicz (C9SM01297D-(cit21)/*[position()=1]) 2015; 17 Yuyama (C9SM01297D-(cit18)/*[position()=1]) 2017; 56 Camin (C9SM01297D-(cit50)/*[position()=1]) 1954; 58 Knott (C9SM01297D-(cit12)/*[position()=1]) 2009; 131 Walton (C9SM01297D-(cit41)/*[position()=1]) 2018; 10723 Spesyvtseva (C9SM01297D-(cit59)/*[position()=1]) 2016; 3 Hyman (C9SM01297D-(cit65)/*[position()=1]) 2014; 30 Mosses (C9SM01297D-(cit78)/*[position()=1]) 2014; 6 Gebauer (C9SM01297D-(cit35)/*[position()=1]) 2014; 43 Schroll (C9SM01297D-(cit38)/*[position()=1]) 2007; 98 Sugiyama (C9SM01297D-(cit16)/*[position()=1]) 2012; 45 Barbara (C9SM01297D-(cit45)/*[position()=1]) 2005; 96 Bonnett (C9SM01297D-(cit32)/*[position()=1]) 2003 |
References_xml | – ident: C9SM01297D-(cit81)/*[position()=1] doi: 10.26434/chemrxiv.9891491.v1 – volume: 2 start-page: 1588 year: 2012 ident: C9SM01297D-(cit49)/*[position()=1] publication-title: Opt. Mater. Express doi: 10.1364/OME.2.001588 – volume: 141 start-page: 7202 year: 2019 ident: C9SM01297D-(cit66)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03083 – volume: 134 start-page: 171102 year: 2011 ident: C9SM01297D-(cit11)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3582897 – volume: 19 start-page: 529 year: 2019 ident: C9SM01297D-(cit74)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.8b01361 – volume: 6 start-page: 684 year: 2006 ident: C9SM01297D-(cit3)/*[position()=1] publication-title: Growth doi: 10.1021/cg050460+ – volume: 277 start-page: 1975 year: 1997 ident: C9SM01297D-(cit29)/*[position()=1] publication-title: Science doi: 10.1126/science.277.5334.1975 – volume: 141 start-page: 4490 year: 2019 ident: C9SM01297D-(cit68)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13231 – volume: 6 start-page: 38 year: 2014 ident: C9SM01297D-(cit78)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz5022763 – volume: 485 start-page: 347 year: 2012 ident: C9SM01297D-(cit10)/*[position()=1] publication-title: Nature doi: 10.1038/nature11122 – volume: 50 start-page: 1 year: 2014 ident: C9SM01297D-(cit34)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c3cc90391e – volume: 48 start-page: 1 year: 2018 ident: C9SM01297D-(cit47)/*[position()=1] publication-title: Opt. Eng. – start-page: 698 year: 2003 ident: C9SM01297D-(cit32)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b212062c – volume: 16 start-page: R357 year: 2004 ident: C9SM01297D-(cit58)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 9 start-page: 1010 year: 2010 ident: C9SM01297D-(cit26)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2900 – volume: 587 start-page: 2007 year: 2009 ident: C9SM01297D-(cit25)/*[position()=1] publication-title: Science – volume: 7 start-page: 42439 year: 2017 ident: C9SM01297D-(cit82)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep42439 – volume: 78 start-page: 1 year: 2008 ident: C9SM01297D-(cit43)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.78.060801 – volume: 16 start-page: 2514 year: 2016 ident: C9SM01297D-(cit8)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.5b01526 – volume: 23 start-page: 62 year: 1996 ident: C9SM01297D-(cit56)/*[position()=1] publication-title: Kvantovaya Elektron. – volume: 19 start-page: 19386 year: 2017 ident: C9SM01297D-(cit6)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP03146G – volume: 12 start-page: 4554 year: 2012 ident: C9SM01297D-(cit52)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/cg300750c – volume: 150 start-page: 040901 year: 2019 ident: C9SM01297D-(cit76)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.5079328 – volume: 3 start-page: 719 year: 2016 ident: C9SM01297D-(cit59)/*[position()=1] publication-title: ACS Photonics doi: 10.1021/acsphotonics.6b00023 – volume: 18 start-page: 734 year: 2018 ident: C9SM01297D-(cit19)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.7b01116 – volume: 33 start-page: 7715 year: 2017 ident: C9SM01297D-(cit64)/*[position()=1] publication-title: Langmuir doi: 10.1021/acs.langmuir.7b01693 – volume: 5 start-page: 1 year: 2015 ident: C9SM01297D-(cit30)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep11260 – volume: 556 start-page: 89 year: 2018 ident: C9SM01297D-(cit28)/*[position()=1] publication-title: Nature doi: 10.1038/nature25971 – volume: 58 start-page: 440 year: 1954 ident: C9SM01297D-(cit50)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j150515a015 – volume: 57 start-page: 13424 year: 2018 ident: C9SM01297D-(cit62)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201806079 – volume: 87 start-page: 054503 year: 2001 ident: C9SM01297D-(cit37)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.054503 – volume: 79 start-page: 011201 year: 2009 ident: C9SM01297D-(cit46)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.79.011201 – volume: 318 start-page: 741 year: 2011 ident: C9SM01297D-(cit5)/*[position()=1] publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2010.10.068 – volume: 131 start-page: 11676 year: 2009 ident: C9SM01297D-(cit7)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja905232m – volume: 52 start-page: 2166 year: 2013 ident: C9SM01297D-(cit23)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201204824 – start-page: 201700342 year: 2017 ident: C9SM01297D-(cit27)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 131 start-page: 224112 year: 2009 ident: C9SM01297D-(cit12)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3268704 – volume: 43 start-page: 2348 year: 2014 ident: C9SM01297D-(cit35)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60451A – volume: 109 start-page: 095702 year: 2012 ident: C9SM01297D-(cit31)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.095702 – volume: 262 start-page: 40 year: 1999 ident: C9SM01297D-(cit44)/*[position()=1] publication-title: Phys. A doi: 10.1016/S0378-4371(98)00361-6 – volume: 76 start-page: 26401 year: 2013 ident: C9SM01297D-(cit20)/*[position()=1] publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/76/2/026401 – volume: 150 start-page: 1 year: 2019 ident: C9SM01297D-(cit63)/*[position()=1] publication-title: J. Chem. Phys. – volume: 692 start-page: 885 year: 2013 ident: C9SM01297D-(cit36)/*[position()=1] publication-title: Science doi: 10.1126/science.1230915 – volume: 17 start-page: 1077 year: 2015 ident: C9SM01297D-(cit21)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP04008B – volume: 13 start-page: 414 year: 2002 ident: C9SM01297D-(cit55)/*[position()=1] publication-title: Langmuir doi: 10.1021/la9606308 – volume: 56 start-page: 6739 year: 2017 ident: C9SM01297D-(cit18)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201702352 – volume: 5 start-page: eaav7399 year: 2019 ident: C9SM01297D-(cit67)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.aav7399 – volume: 14 start-page: 6006 year: 2014 ident: C9SM01297D-(cit33)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/cg5011874 – volume: 10723 start-page: 107230O year: 2018 ident: C9SM01297D-(cit41)/*[position()=1] publication-title: Proc. SPIE – volume: 89 start-page: 175501 year: 2002 ident: C9SM01297D-(cit2)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.175501 – volume: 10 start-page: 506 year: 2018 ident: C9SM01297D-(cit40)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/s41557-018-0009-8 – volume: 4 start-page: 2436 year: 2013 ident: C9SM01297D-(cit17)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz401122v – volume: 98 start-page: 1 year: 2007 ident: C9SM01297D-(cit38)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.133601 – volume: 359 start-page: 1127 year: 2018 ident: C9SM01297D-(cit85)/*[position()=1] publication-title: Science doi: 10.1126/science.aao7049 – volume: 6 start-page: 564 year: 2011 ident: C9SM01297D-(cit22)/*[position()=1] publication-title: Nano Today doi: 10.1016/j.nantod.2011.10.005 – volume-title: Structured Light Fields year: 2012 ident: C9SM01297D-(cit60)/*[position()=1] doi: 10.1007/978-3-642-29323-8 – volume: 142 start-page: 244504 year: 2015 ident: C9SM01297D-(cit84)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4922543 – volume: 77 start-page: 3475 year: 1996 ident: C9SM01297D-(cit1)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3475 – volume: 322 start-page: 1819 year: 2008 ident: C9SM01297D-(cit24)/*[position()=1] publication-title: Science doi: 10.1126/science.1164271 – volume: 83 start-page: 2557 year: 2003 ident: C9SM01297D-(cit53)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.1613795 – volume: 116 start-page: 7176 year: 2019 ident: C9SM01297D-(cit79)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1822016116 – volume: 19 start-page: 3464 year: 2017 ident: C9SM01297D-(cit14)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP07997K – volume: 20 start-page: 6034 year: 2018 ident: C9SM01297D-(cit73)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP06990A – volume: 17 start-page: L293 year: 2005 ident: C9SM01297D-(cit83)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 115 start-page: 11906 year: 2011 ident: C9SM01297D-(cit9)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp200721f – volume: 11 start-page: 320 year: 2019 ident: C9SM01297D-(cit69)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/s41557-019-0210-4 – volume: 14 start-page: 15 year: 2014 ident: C9SM01297D-(cit70)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/cg401065h – volume: 18 start-page: 5927 year: 2018 ident: C9SM01297D-(cit75)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.8b00688 – volume: 92 start-page: 052312 year: 2015 ident: C9SM01297D-(cit54)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. – volume: 12 start-page: 2427 year: 2012 ident: C9SM01297D-(cit15)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/cg300065x – volume-title: Soft Condensed Matter year: 2002 ident: C9SM01297D-(cit42)/*[position()=1] doi: 10.1093/oso/9780198505907.001.0001 – volume: 80 start-page: 1 year: 2009 ident: C9SM01297D-(cit48)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. – volume: 96 start-page: 3728 year: 2005 ident: C9SM01297D-(cit45)/*[position()=1] publication-title: J. Phys. Chem. – volume: 16 start-page: 953 year: 2016 ident: C9SM01297D-(cit71)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.5b01505 – volume: 18 start-page: 7441 year: 2016 ident: C9SM01297D-(cit72)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C6CE01464J – volume: 7 start-page: 1 year: 2016 ident: C9SM01297D-(cit80)/*[position()=1] publication-title: Nat. Commun. – volume: 45 start-page: 1946 year: 2012 ident: C9SM01297D-(cit16)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar300161g – volume: 18 start-page: 5417 year: 2018 ident: C9SM01297D-(cit61)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.8b00796 – volume: 134 start-page: 154501 year: 2011 ident: C9SM01297D-(cit13)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3574010 – volume: 102 start-page: 3160 year: 1998 ident: C9SM01297D-(cit57)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp9715078 – volume: 142 start-page: 144501 year: 2015 ident: C9SM01297D-(cit77)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4917022 – volume: 14 start-page: 90 year: 2012 ident: C9SM01297D-(cit4)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C1CP22774B – volume: 29 start-page: 63002 year: 2017 ident: C9SM01297D-(cit39)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 30 start-page: 39 year: 2014 ident: C9SM01297D-(cit65)/*[position()=1] publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-100913-013325 |
SSID | ssj0038416 |
Score | 2.3698316 |
Snippet | About 20 years ago, it was shown that lasers can nucleate crystals in super-saturated solutions and might even be able to select the polymorph that... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 8279 |
SubjectTerms | Critical point Crystals Lasers Nucleation Phase separation Thermophoresis Variation |
Title | Using optical tweezing to control phase separation and nucleation near a liquid–liquid critical point |
URI | https://www.proquest.com/docview/2307745385 https://www.proquest.com/docview/2305031339 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegExIviE9RNpARvKAqY7PjJH6cRqsB3XhYKvoWOY6jVeqcQtOH7a_n_NUsog-Dl6R1T1bln3N3Od_9DqGP8FalRMxoBOYkiWLQf1FZChYRkE4EEZJbAtPzi-RsFn-bs3nXYNFWl7TlobzdWVfyP6jCGOBqqmT_AdntpDAAnwFfuALCcL0Xxu68v1m5eLRJuLq11U_NNgN9dQVWarRWjuHbZx5rw2HsvmrD4yNGy8WvzaKK3G0kQ_uDVbPQvdj9JSjt0bVo7-b0itCXerLQyy4l5-eNdsHS70shesEFr7ycJkzjOEoyR4N5qHaMBfXJ7mwTR2LllWFGXJ-Yv7T0ETUkp5Kvr00YLK06WxTO3y9-FJPZdFrk43n-EO0ReAcgA7R3Ms6_ToOhpebE1NW7un8V2Gcp_9zN3fc3-ubW-hD5U_TEO__4xCH5DD1Q-jl6ZJNw5foFUhZP7PHEAU_cNtjjiS2euMMTA564wxMbPLHAPTxxwBNbPF-i2WScn55Fvg1GJMG7a82hfQ1-oaVS5LCmpDYMBqSMa8oqVh5llUxpdVwKSWoqWZaVtVKUUQmep2Q8o6_QQDdavUY4I0wILpLjRJaxSmoBawezxRX4MqmiZIg-hcUqpOeIN61KloXNVaC8OOWX53ZhvwzRh63syjGj7JQ6CGte-CdnXZjigxQURMaG6P32Z9Br5rBKaNVsrAwzvKKUv7mHzD56bLavi40doEH7e6PegrfYlu_8rvkDJMVvJw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+optical+tweezing+to+control+phase+separation+and+nucleation+near+a+liquid-liquid+critical+point&rft.jtitle=Soft+matter&rft.au=Walton%2C+Finlay&rft.au=Wynne%2C+Klaas&rft.date=2019&rft.issn=1744-6848&rft.eissn=1744-6848&rft.volume=15&rft.issue=41&rft.spage=8279&rft_id=info:doi/10.1039%2Fc9sm01297d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-683X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-683X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-683X&client=summon |