Stochastic Recognition of Physical Activity and Healthcare Using Tri-Axial Inertial Wearable Sensors

The classification of human activity is becoming one of the most important areas of human health monitoring and physical fitness. With the use of physical activity recognition applications, people suffering from various diseases can be efficiently monitored and medical treatment can be administered...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 10; no. 20; p. 7122
Main Authors Jalal, Ahmad, Batool, Mouazma, Kim, Kibum
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 15.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The classification of human activity is becoming one of the most important areas of human health monitoring and physical fitness. With the use of physical activity recognition applications, people suffering from various diseases can be efficiently monitored and medical treatment can be administered in a timely fashion. These applications could improve remote services for health care monitoring and delivery. However, the fixed health monitoring devices provided in hospitals limits the subjects’ movement. In particular, our work reports on wearable sensors that provide remote monitoring that periodically checks human health through different postures and activities to give people timely and effective treatment. In this paper, we propose a novel human activity recognition (HAR) system with multiple combined features to monitor human physical movements from continuous sequences via tri-axial inertial sensors. The proposed HAR system filters 1D signals using a notch filter that examines the lower/upper cutoff frequencies to calculate the optimal wearable sensor data. Then, it calculates multiple combined features, i.e., statistical features, Mel Frequency Cepstral Coefficients, and Gaussian Mixture Model features. For the classification and recognition engine, a Decision Tree classifier optimized by the Binary Grey Wolf Optimization algorithm is proposed. The proposed system is applied and tested on three challenging benchmark datasets to assess the feasibility of the model. The experimental results show that our proposed system attained an exceptional level of performance compared to conventional solutions. We achieved accuracy rates of 88.25%, 93.95%, and 96.83% over MOTIONSENSE, MHEALTH, and the proposed self-annotated IM-AccGyro human-machine dataset, respectively.
AbstractList The classification of human activity is becoming one of the most important areas of human health monitoring and physical fitness. With the use of physical activity recognition applications, people suffering from various diseases can be efficiently monitored and medical treatment can be administered in a timely fashion. These applications could improve remote services for health care monitoring and delivery. However, the fixed health monitoring devices provided in hospitals limits the subjects’ movement. In particular, our work reports on wearable sensors that provide remote monitoring that periodically checks human health through different postures and activities to give people timely and effective treatment. In this paper, we propose a novel human activity recognition (HAR) system with multiple combined features to monitor human physical movements from continuous sequences via tri-axial inertial sensors. The proposed HAR system filters 1D signals using a notch filter that examines the lower/upper cutoff frequencies to calculate the optimal wearable sensor data. Then, it calculates multiple combined features, i.e., statistical features, Mel Frequency Cepstral Coefficients, and Gaussian Mixture Model features. For the classification and recognition engine, a Decision Tree classifier optimized by the Binary Grey Wolf Optimization algorithm is proposed. The proposed system is applied and tested on three challenging benchmark datasets to assess the feasibility of the model. The experimental results show that our proposed system attained an exceptional level of performance compared to conventional solutions. We achieved accuracy rates of 88.25%, 93.95%, and 96.83% over MOTIONSENSE, MHEALTH, and the proposed self-annotated IM-AccGyro human-machine dataset, respectively.
The classification of human activity is becoming one of the most important areas of human health monitoring and physical fitness. With the use of physical activity recognition applications, people suffering from various diseases can be efficiently monitored and medical treatment can be administered in a timely fashion. These applications could improve remote services for health care monitoring and delivery. However, the fixed health monitoring devices provided in hospitals limits the subjects' movement. In particular, our work reports on wearable sensors that provide remote monitoring that periodically checks human health through different postures and activities to give people timely and effective treatment. In this paper, we propose a novel human activity recognition (HAR) system with multiple combined features to monitor human physical movements from continuous sequences via tri-axial inertial sensors. The proposed HAR system filters 1D signals using a notch filter that examines the lower/upper cutoff frequencies to calculate the optimal wearable sensor data. Then, it calculates multiple combined features, i.e., statistical features, Mel Frequency Cepstral Coefficients, and Gaussian Mixture Model features. For the classification and recognition engine, a Decision Tree classifier optimized by the Binary Grey Wolf Optimization algorithm is proposed. The proposed system is applied and tested on three challenging benchmark datasets to assess the feasibility of the model. The experimental results show that our proposed system attained an exceptional level of performance compared to conventional solutions. We achieved accuracy rates of 88.25%, 93.95%, and 96.83% over MOTIONSENSE, MHEALTH, and the proposed self-annotated IM-AccGyro human-machine dataset, respectively. Keywords: binary grey wolf optimization; decision tree; electrocardiogram; Gaussian mixture model; Mel frequency cepstral coefficients
Featured ApplicationThe proposed technique is an application of physical activity detection, analyzing three challenging benchmark datasets. It can be applied in sports assistance systems that help physical trainers to conduct exercises, track functional movements, and to maximize the performance of people. Furthermore, it can be applied in surveillance system for abnormal events and action detection.AbstractThe classification of human activity is becoming one of the most important areas of human health monitoring and physical fitness. With the use of physical activity recognition applications, people suffering from various diseases can be efficiently monitored and medical treatment can be administered in a timely fashion. These applications could improve remote services for health care monitoring and delivery. However, the fixed health monitoring devices provided in hospitals limits the subjects’ movement. In particular, our work reports on wearable sensors that provide remote monitoring that periodically checks human health through different postures and activities to give people timely and effective treatment. In this paper, we propose a novel human activity recognition (HAR) system with multiple combined features to monitor human physical movements from continuous sequences via tri-axial inertial sensors. The proposed HAR system filters 1D signals using a notch filter that examines the lower/upper cutoff frequencies to calculate the optimal wearable sensor data. Then, it calculates multiple combined features, i.e., statistical features, Mel Frequency Cepstral Coefficients, and Gaussian Mixture Model features. For the classification and recognition engine, a Decision Tree classifier optimized by the Binary Grey Wolf Optimization algorithm is proposed. The proposed system is applied and tested on three challenging benchmark datasets to assess the feasibility of the model. The experimental results show that our proposed system attained an exceptional level of performance compared to conventional solutions. We achieved accuracy rates of 88.25%, 93.95%, and 96.83% over MOTIONSENSE, MHEALTH, and the proposed self-annotated IM-AccGyro human-machine dataset, respectively.
Audience Academic
Author Kim, Kibum
Jalal, Ahmad
Batool, Mouazma
Author_xml – sequence: 1
  givenname: Ahmad
  surname: Jalal
  fullname: Jalal, Ahmad
– sequence: 2
  givenname: Mouazma
  surname: Batool
  fullname: Batool, Mouazma
– sequence: 3
  givenname: Kibum
  orcidid: 0000-0003-2590-9600
  surname: Kim
  fullname: Kim, Kibum
BookMark eNptUU1vEzEQXaEiUUpP_AFLHNEWf-yH9xhVQCNVKqKtOFqz49nE0cYOtovIv8chiBZU--Dn0Xtvxn6vqxMfPFXVW8EvlBr4B9jtBJe8F1K-qE4L6GrViP7kCX5Vnae04WUNQmnBTyt7mwOuIWWH7CthWHmXXfAsTOzLep8cwswWmN0Pl_cMvGVXBHNeI0Ri98n5FbuLrl78dIW39BTzAXwjiDDOxG7JpxDTm-rlBHOi8z_nWXX_6ePd5VV9ffN5ebm4rrFRItdCU8d73gk5ChybXkwkUVoiPZDSoGkCnJqp6wdubaNsP_aq5f3YdoMe23I5q5ZHXxtgY3bRbSHuTQBnfhdCXBkoE-JMBqzVaFs5WDk0cmhHiaUdoBItl1ph8Xp39NrF8P2BUjab8BB9Gd_IVjWcK6XVI2sFxdT5KeQIuHUJzaIrH94KoXlhXTzDKtvS1mFJcXKl_o_g_VGAMaQUafr7GMHNIWzzJOzCFv-x0WU4xFjauPlZzS-PGKyo
CitedBy_id crossref_primary_10_1080_03772063_2024_2402881
crossref_primary_10_3390_s21124181
crossref_primary_10_3390_s22093401
crossref_primary_10_3390_s22176632
crossref_primary_10_3390_s23104716
crossref_primary_10_1016_j_eswa_2021_114736
crossref_primary_10_1109_JIOT_2023_3277829
crossref_primary_10_1109_ACCESS_2022_3204739
crossref_primary_10_3390_robotics10020056
crossref_primary_10_1038_s41598_024_57912_3
crossref_primary_10_1155_2021_9923748
crossref_primary_10_1007_s11042_023_17400_8
crossref_primary_10_1038_s41598_025_94689_5
crossref_primary_10_32604_cmc_2022_023841
crossref_primary_10_3390_su13052961
crossref_primary_10_1038_s41598_024_53069_1
crossref_primary_10_1145_3596600
crossref_primary_10_3390_bios14070337
crossref_primary_10_3390_e23050628
crossref_primary_10_1007_s11042_022_13717_y
crossref_primary_10_3390_app12052550
crossref_primary_10_3390_su13020970
crossref_primary_10_32604_cmc_2022_028618
crossref_primary_10_1007_s11042_021_11885_x
crossref_primary_10_1109_LSENS_2024_3423340
crossref_primary_10_1007_s12221_024_00734_x
crossref_primary_10_3390_chemosensors12110225
crossref_primary_10_1109_JSEN_2022_3174280
crossref_primary_10_3390_nano13050852
crossref_primary_10_1109_ACCESS_2024_3473828
crossref_primary_10_1155_2022_5874248
crossref_primary_10_1016_j_pmcj_2022_101620
crossref_primary_10_1109_ACCESS_2024_3524431
crossref_primary_10_3390_app11125740
crossref_primary_10_1111_exsy_12988
crossref_primary_10_32604_iasc_2022_025421
crossref_primary_10_3390_sym12111928
crossref_primary_10_3390_electronics10040465
crossref_primary_10_1109_ACCESS_2023_3314341
crossref_primary_10_1007_s40747_021_00584_7
crossref_primary_10_32604_cmc_2023_028712
crossref_primary_10_3390_su13041699
crossref_primary_10_3390_s25030632
crossref_primary_10_32604_iasc_2022_025013
crossref_primary_10_2196_46282
crossref_primary_10_1016_j_eswa_2021_114587
crossref_primary_10_2174_2210327913666230911113149
crossref_primary_10_3389_fphys_2024_1344887
crossref_primary_10_3390_su13105367
crossref_primary_10_1016_j_eswa_2021_115311
crossref_primary_10_3390_app12136481
crossref_primary_10_3390_s23177363
crossref_primary_10_1088_1361_665X_ad223c
crossref_primary_10_3390_s24103032
crossref_primary_10_1007_s11042_024_18547_8
crossref_primary_10_1109_ACCESS_2021_3130613
crossref_primary_10_32604_iasc_2023_026051
Cites_doi 10.1109/ICAEM.2019.8853770
10.1016/j.patcog.2016.08.003
10.1109/ICCWAMTIP.2013.6716604
10.23919/ICACT.2019.8702018
10.1016/j.advengsoft.2013.12.007
10.1109/ICSIMA.2017.8312024
10.1016/j.neucom.2015.06.083
10.1504/IJHM.2019.098949
10.1109/THMS.2018.2884717
10.1145/3302505.3310068
10.1007/s11042-019-08527-8
10.1007/s11042-018-6662-5
10.1016/j.eswa.2016.04.032
10.1186/s13673-017-0097-2
10.1109/19.930458
10.1109/ACCESS.2019.2906757
10.3390/app7010110
10.1109/TKDE.2006.131
10.1016/j.knosys.2015.09.024
10.1145/3410531.3414306
10.1049/trit.2019.0036
10.3390/e22050579
10.1049/trit.2019.0017
10.1007/978-3-319-13105-4_14
10.3390/s19092039
10.3390/e22080817
10.1007/s11042-019-08465-5
10.1504/IJHM.2019.104386
10.20944/preprints202001.0375.v1
10.1109/ICAwST.2017.8256516
10.3390/info10100290
10.1109/TCE.2012.6311329
10.3390/app10155293
10.3390/app7080798
10.1504/IJHM.2019.098951
10.1109/CVPR.2008.4587727
10.1049/trit.2019.0002
ContentType Journal Article
Copyright COPYRIGHT 2020 MDPI AG
2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2020 MDPI AG
– notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app10207122
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef



Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_add8cd529d294295b2c1feac3150283c
A641751180
10_3390_app10207122
GeographicLocations Pakistan
GeographicLocations_xml – name: Pakistan
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c431t-18e6070612b1cb471fe2c2dee89e38a8efacf4f6790dd43d7b73507b5698b5b73
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:17:28 EDT 2025
Mon Jun 30 07:30:10 EDT 2025
Tue Jun 17 21:00:30 EDT 2025
Tue Jun 10 20:28:18 EDT 2025
Tue Jul 01 03:14:39 EDT 2025
Thu Apr 24 23:08:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-18e6070612b1cb471fe2c2dee89e38a8efacf4f6790dd43d7b73507b5698b5b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2590-9600
OpenAccessLink https://doaj.org/article/add8cd529d294295b2c1feac3150283c
PQID 2534003383
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_add8cd529d294295b2c1feac3150283c
proquest_journals_2534003383
gale_infotracmisc_A641751180
gale_infotracacademiconefile_A641751180
crossref_primary_10_3390_app10207122
crossref_citationtrail_10_3390_app10207122
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201015
PublicationDateYYYYMMDD 2020-10-15
PublicationDate_xml – month: 10
  year: 2020
  text: 20201015
  day: 15
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Jalal (ref_17) 2012; 58
Biel (ref_31) 2001; 50
Jansi (ref_19) 2018; 78
Nizami (ref_7) 2020; 79
ref_14
ref_36
ref_13
Mirjalili (ref_34) 2014; 69
ref_11
ref_33
Osterland (ref_6) 2019; 2
Jalal (ref_10) 2017; 61
ref_39
ref_16
ref_38
Emary (ref_35) 2016; 172
ref_25
ref_24
ref_23
ref_22
Zhu (ref_26) 2019; 4
ref_21
ref_20
ref_42
Ronao (ref_1) 2016; 59
ref_40
ref_3
Susan (ref_9) 2019; 4
ref_29
ref_28
Tingting (ref_12) 2019; 4
ref_27
Guo (ref_41) 2018; 49
Wiens (ref_15) 2019; 1
Shokri (ref_5) 2019; 4
ref_8
Ling (ref_37) 2006; 18
Mahmood (ref_2) 2020; 79
Zhu (ref_30) 2017; 7
ref_4
Liu (ref_18) 2015; 90
Tashi (ref_32) 2019; 7
References_xml – ident: ref_24
  doi: 10.1109/ICAEM.2019.8853770
– volume: 61
  start-page: 295
  year: 2017
  ident: ref_10
  article-title: Robust human activity recognition from depth video using spatiotemporal multi-fused features
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.08.003
– ident: ref_25
  doi: 10.1109/ICCWAMTIP.2013.6716604
– ident: ref_33
  doi: 10.23919/ICACT.2019.8702018
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_34
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: ref_16
  doi: 10.1109/ICSIMA.2017.8312024
– volume: 172
  start-page: 371
  year: 2016
  ident: ref_35
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– ident: ref_11
– volume: 1
  start-page: 16
  year: 2019
  ident: ref_15
  article-title: Engine speed reduction for hydraulic machinery using predictive algorithms
  publication-title: Int. J. Hydromechatron.
  doi: 10.1504/IJHM.2019.098949
– volume: 49
  start-page: 105
  year: 2018
  ident: ref_41
  article-title: A multisensor multiclassifier hierarchical fusion model based on entropy weight for human activity recognition using wearable inertial sensors
  publication-title: IEEE Trans. Hum. Mach. Syst.
  doi: 10.1109/THMS.2018.2884717
– ident: ref_38
  doi: 10.1145/3302505.3310068
– ident: ref_40
– volume: 79
  start-page: 6919
  year: 2020
  ident: ref_2
  article-title: WHITE STAG Model: Wise Human Interaction Tracking and Estimation (WHITE) using Spatio-temporal and Angular-geometric (STAG) Descriptors
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-019-08527-8
– volume: 78
  start-page: 11027
  year: 2018
  ident: ref_19
  article-title: Sparse representation based classification scheme for human activity recognition using smartphones
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-6662-5
– volume: 59
  start-page: 235
  year: 2016
  ident: ref_1
  article-title: Human activity recognition with smartphone sensors using deep learning neural networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.04.032
– ident: ref_23
– volume: 7
  start-page: 219
  year: 2017
  ident: ref_30
  article-title: Feature extraction for robust physical activity recognition
  publication-title: Hum. Cent. Comput. Inf. Sci.
  doi: 10.1186/s13673-017-0097-2
– volume: 50
  start-page: 808
  year: 2001
  ident: ref_31
  article-title: ECG analysis: A new approach in human identification
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/19.930458
– volume: 7
  start-page: 39496
  year: 2019
  ident: ref_32
  article-title: Binary Optimization Using Hybrid Grey Wolf Optimization for Feature Selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906757
– ident: ref_14
  doi: 10.3390/app7010110
– volume: 18
  start-page: 8
  year: 2006
  ident: ref_37
  article-title: Test Strategies for Cost Sensitive Decision Trees
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2006.131
– volume: 90
  start-page: 138
  year: 2015
  ident: ref_18
  article-title: Sensor-based human activity recognition system with a multilayered model using time series shapelets
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2015.09.024
– ident: ref_22
  doi: 10.1145/3410531.3414306
– volume: 4
  start-page: 255
  year: 2019
  ident: ref_26
  article-title: Influence of kernel clustering on an RBFN
  publication-title: CAAI Trans. Intell. Technol.
  doi: 10.1049/trit.2019.0036
– ident: ref_21
  doi: 10.3390/e22050579
– ident: ref_4
– volume: 4
  start-page: 122
  year: 2019
  ident: ref_12
  article-title: Three-stage network for age estimation
  publication-title: CAAI Trans. Intell. Technol.
  doi: 10.1049/trit.2019.0017
– ident: ref_39
  doi: 10.1007/978-3-319-13105-4_14
– ident: ref_20
  doi: 10.3390/s19092039
– ident: ref_8
  doi: 10.3390/e22080817
– volume: 79
  start-page: 7811
  year: 2020
  ident: ref_7
  article-title: No-reference image quality assessment using bag-of-features with feature selection
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-019-08465-5
– volume: 4
  start-page: 178
  year: 2019
  ident: ref_5
  article-title: A review on the artificial neural network approach to analysis and prediction of seismic damage in infrastructure
  publication-title: Int. J. Hydromechatron.
  doi: 10.1504/IJHM.2019.104386
– ident: ref_3
  doi: 10.20944/preprints202001.0375.v1
– ident: ref_27
  doi: 10.1109/ICAwST.2017.8256516
– ident: ref_36
– ident: ref_42
  doi: 10.3390/info10100290
– volume: 58
  start-page: 3
  year: 2012
  ident: ref_17
  article-title: Depth Video-based Human Activity Recognition System Using Translation and Scaling Invariant Features for Life Logging at Smart Home
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2012.6311329
– ident: ref_28
  doi: 10.3390/app10155293
– ident: ref_13
  doi: 10.3390/app7080798
– volume: 2
  start-page: 32
  year: 2019
  ident: ref_6
  article-title: Analytical analysis of single-stage pressure relief valves
  publication-title: Int. J. Hydromechatron.
  doi: 10.1504/IJHM.2019.098951
– ident: ref_29
  doi: 10.1109/CVPR.2008.4587727
– volume: 4
  start-page: 101
  year: 2019
  ident: ref_9
  article-title: New shape descriptor in the context of edge continuity
  publication-title: CAAI Trans. Intell. Technol.
  doi: 10.1049/trit.2019.0002
SSID ssj0000913810
Score 2.4365468
Snippet The classification of human activity is becoming one of the most important areas of human health monitoring and physical fitness. With the use of physical...
Featured ApplicationThe proposed technique is an application of physical activity detection, analyzing three challenging benchmark datasets. It can be applied...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 7122
SubjectTerms Accelerometers
Accuracy
Algorithms
binary grey wolf optimization
Cameras
Classification
Datasets
decision tree
electrocardiogram
Electrocardiography
Exercise
Gaussian mixture model
Mathematical optimization
Mel frequency cepstral coefficients
Methods
Optimization
Patient monitoring
Physical fitness
Principal components analysis
Sensors
Support vector machines
Technology application
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB_s3Yt9KH6VnlXZB6EqhF422WTzJHeiXIWK-EF9W_ZTBUns3RX8853J7Z0etH0J-VhCsrMz85vd2d8A7GvriowLnxQuaAxQypCYgIcydRylbL1ztBv550Uxus3P78RdnHCbxLTKuU1sDbVrLM2Rf-ciy6nwmMyOn38nVDWKVldjCY0P0EUTLGUHusPTi8urxSwLsV7KtD_bmJdhfE_rwuhT0bFyvuSKWsb-f9nl1tmcrcGniBLZYCbWdVjx9QZ8fMcduAHrUSsn7CBSRx9ugrueNvZBE_cyu5qnBjU1awK7jAJhAzsrGMF07dhokf7F2uQBdjN-TAYvOCjZj5pSrvHkFyoDbbBi1xjyNuPJFtyend6cjJJYRyGxCA-mSSp9gZqNWMak1qA3Cp5b7ryXlc-klj5oG_JQlFXfuTxzpSkzhIlGFJU0Ai8-Q6duav8FWF-XGBA6gzgD3ZrwlZFViaAppPhK7WQPjuZdqmwkGadaF08Kgw3qf_Wu_3uwv2j8POPW-HuzIclm0YQIsdsbzfheRf1SaKaldYJXjlfoYoXhFn9T2wwBLyIo24NvJFlFaosfZHXcfYC_RQRYalDkCKSID68HO0stUd3s8uP52FBR3SfqbXBu___xV1jlFLBTSozYgc50_MfvIqqZmr04dF8BR-H3Wg
  priority: 102
  providerName: ProQuest
Title Stochastic Recognition of Physical Activity and Healthcare Using Tri-Axial Inertial Wearable Sensors
URI https://www.proquest.com/docview/2534003383
https://doaj.org/article/add8cd529d294295b2c1feac3150283c
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB7a9JIeQp0HcZqaPQTaBATRSiutjnaJ4xQaQh4kt2WfpFCkYDuQn58ZaW1saMklF6HHIla78_gGzXwDcKStKzIufFK4oDFAKUNiAh7K1HHcZeudo2rk35fF5C7_9SAeVlp9UU5YRw_cLRyl1UjrBK8cr9B2CsNtGtBaZIhk0DVasr7o81aCqdYGVylRV3UFeRnG9fQ_GH0pOlTO11xQy9T_P3vcOpnxF9iK6JANu1n14IOvt-HzCmfgNvSiNs7Yj0gZfbwD7mbe2EdNnMvsepES1NSsCewqbgQb2q5RBNO1Y5Nl2hdrkwbY7fRPMnxBYWQXNaVa48k9KgEVVrEbDHWb6WwX7sZntz8nSeyfkFiEBfMklb5AjUYMY1Jr0AsFzy133svKZ1JLH7QNeSjK6tS5PHOlKTOEh0YUlTQCL_Zgo25qvw_sVJcYCDqD-ALdmfCVkVWJYCmk-ErtZB9OFkuqbCQXpx4XfxUGGbT-amX9-3C0HPzUcWr8e9iI9mY5hIiw2xsoHiqKh3pLPPrwnXZWkbrihKyOVQf4WUR8pYZFjgCKePD6cLg2EtXMrj9eyIaKaj5TXGQ5dcOT2cF7TPYrbHIK5ylhRhzCxnz67L8h5pmbAXyU4_MBfBqdXV5dD1phfwUZ7AGD
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4q5QAcEC0gAgXmUMQiWcRjjz0-VCgsIaGLEE3V3oZZWyRklyRVy5_iN_Kel9BIwK2XKMmMLPtt33vjtwBsauuyhAsfZS5oDFDyEJmAH3nsOHLZeueoGnl3LxsdpJ-OxNEK_OpqYSitsrOJtaF2laUz8tdcJCkNHpPJm9MfEU2Norer3QiNRiy2_c9zDNlmW-P3yN9nnA8_TN6NonaqQGQRLOdRLH2Gco7IbmJr0DYHzy133svCJ1JLH7QNacjyou9cmrjc5Ak6TUZkhTQCf-B1r8H1NEEkp8r04cfFmQ712JRxvykDxPU-vYVGBEcY53wJ-Or5AP9CgRrahnfgduuTskEjRGuw4st1uHWpU-E6rLU2YMZetI2qX94Ftz-v7ImmTs_sS5eIVJWsCuxzy342sM14CqZLx0aLZDNWpyqwyfRbNLhAFWDjkhK88csh0pjKudg-BtjVdHYPDq6EvvdhtaxK_wBYX-cYfjqDXg2CqPCFkUWOLlqI8ZLayR686kiqbNvSnCZrfFcY2hD91SX692Bzsfm06eTx921viTeLLdR-u_6jmh6rVpsVgoK0TvDC8QIBXRhu8TG1TdC9Rn_N9uA5cVaRkcAbsrqtdcDHonZbapCl6LZR970ebCztROW2y8udbKjWuMzUH1V4-P_lp3BjNNndUTvjve1HcJPTUQEl44gNWJ1Pz_xj9Kfm5kktxAy-XrXW_AbNbzMr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLSACBTYQxEPyWq8fq0PCKW0UUIhivoQvW332SIhuyRBwF_j1zHjrEMjAbderDgeWfbszHwz63kAbCtj84RnLsqtVxigFD7SHg9FbDmusnHWUjXyx3E-PEnfn2ana_CrrYWhtMrWJjaG2taG9sh3eJakNHhMJDs-pEVM9gZvL79GNEGKvrS24zQWInLgfn7H8G32ZrSHa_2c88H-8bthFCYMRAaBcx7FwuUo84jyOjYa7bR33HDrnChdIpRwXhmf-rwoe9amiS10kaADpbO8FDrDE7zvDVgvKCrqwPru_nhyuNzhoY6bIu4tigKTpOzRN2nEc6TlfAUGm2kB_8KEBugGd-FO8FBZfyFSG7Dmqk24faVv4SZsBIswYy9D2-pX98AezWtzoajvMzts05LqitWeTYIwsL5ZDKtgqrJsuEw9Y03iAjuefo76P1Ah2KiidG_88Qm5TMVd7AjD7Xo6uw8n18LhB9Cp6so9BNZTyOfSavRxEFIzV2pRFuiw-RhvqazowuuWpdKEBuc0Z-OLxECH-C-v8L8L20viy0Vfj7-T7dLaLEmoGXfzRz09l0G3JUKEMDbjpeUlwnumucHXVCZBZxu9N9OFF7SykkwGPpBRofIBX4uab8l-nqITR734urC1QomqblYvt7Ihg6mZyT-K8ej_l5_BTdQY-WE0PngMtzjtG1BmTrYFnfn0m3uCztVcPw1SzODsuhXnNy2XOL0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+Recognition+of+Physical+Activity+and+Healthcare+Using+Tri-Axial+Inertial+Wearable+Sensors&rft.jtitle=Applied+sciences&rft.au=Ahmad+Jalal&rft.au=Mouazma+Batool&rft.au=Kibum+Kim&rft.date=2020-10-15&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=10&rft.issue=20&rft.spage=7122&rft_id=info:doi/10.3390%2Fapp10207122&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_add8cd529d294295b2c1feac3150283c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon