Stochastic Recognition of Physical Activity and Healthcare Using Tri-Axial Inertial Wearable Sensors
The classification of human activity is becoming one of the most important areas of human health monitoring and physical fitness. With the use of physical activity recognition applications, people suffering from various diseases can be efficiently monitored and medical treatment can be administered...
Saved in:
Published in | Applied sciences Vol. 10; no. 20; p. 7122 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
15.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The classification of human activity is becoming one of the most important areas of human health monitoring and physical fitness. With the use of physical activity recognition applications, people suffering from various diseases can be efficiently monitored and medical treatment can be administered in a timely fashion. These applications could improve remote services for health care monitoring and delivery. However, the fixed health monitoring devices provided in hospitals limits the subjects’ movement. In particular, our work reports on wearable sensors that provide remote monitoring that periodically checks human health through different postures and activities to give people timely and effective treatment. In this paper, we propose a novel human activity recognition (HAR) system with multiple combined features to monitor human physical movements from continuous sequences via tri-axial inertial sensors. The proposed HAR system filters 1D signals using a notch filter that examines the lower/upper cutoff frequencies to calculate the optimal wearable sensor data. Then, it calculates multiple combined features, i.e., statistical features, Mel Frequency Cepstral Coefficients, and Gaussian Mixture Model features. For the classification and recognition engine, a Decision Tree classifier optimized by the Binary Grey Wolf Optimization algorithm is proposed. The proposed system is applied and tested on three challenging benchmark datasets to assess the feasibility of the model. The experimental results show that our proposed system attained an exceptional level of performance compared to conventional solutions. We achieved accuracy rates of 88.25%, 93.95%, and 96.83% over MOTIONSENSE, MHEALTH, and the proposed self-annotated IM-AccGyro human-machine dataset, respectively. |
---|---|
AbstractList | The classification of human activity is becoming one of the most important areas of human health monitoring and physical fitness. With the use of physical activity recognition applications, people suffering from various diseases can be efficiently monitored and medical treatment can be administered in a timely fashion. These applications could improve remote services for health care monitoring and delivery. However, the fixed health monitoring devices provided in hospitals limits the subjects’ movement. In particular, our work reports on wearable sensors that provide remote monitoring that periodically checks human health through different postures and activities to give people timely and effective treatment. In this paper, we propose a novel human activity recognition (HAR) system with multiple combined features to monitor human physical movements from continuous sequences via tri-axial inertial sensors. The proposed HAR system filters 1D signals using a notch filter that examines the lower/upper cutoff frequencies to calculate the optimal wearable sensor data. Then, it calculates multiple combined features, i.e., statistical features, Mel Frequency Cepstral Coefficients, and Gaussian Mixture Model features. For the classification and recognition engine, a Decision Tree classifier optimized by the Binary Grey Wolf Optimization algorithm is proposed. The proposed system is applied and tested on three challenging benchmark datasets to assess the feasibility of the model. The experimental results show that our proposed system attained an exceptional level of performance compared to conventional solutions. We achieved accuracy rates of 88.25%, 93.95%, and 96.83% over MOTIONSENSE, MHEALTH, and the proposed self-annotated IM-AccGyro human-machine dataset, respectively. The classification of human activity is becoming one of the most important areas of human health monitoring and physical fitness. With the use of physical activity recognition applications, people suffering from various diseases can be efficiently monitored and medical treatment can be administered in a timely fashion. These applications could improve remote services for health care monitoring and delivery. However, the fixed health monitoring devices provided in hospitals limits the subjects' movement. In particular, our work reports on wearable sensors that provide remote monitoring that periodically checks human health through different postures and activities to give people timely and effective treatment. In this paper, we propose a novel human activity recognition (HAR) system with multiple combined features to monitor human physical movements from continuous sequences via tri-axial inertial sensors. The proposed HAR system filters 1D signals using a notch filter that examines the lower/upper cutoff frequencies to calculate the optimal wearable sensor data. Then, it calculates multiple combined features, i.e., statistical features, Mel Frequency Cepstral Coefficients, and Gaussian Mixture Model features. For the classification and recognition engine, a Decision Tree classifier optimized by the Binary Grey Wolf Optimization algorithm is proposed. The proposed system is applied and tested on three challenging benchmark datasets to assess the feasibility of the model. The experimental results show that our proposed system attained an exceptional level of performance compared to conventional solutions. We achieved accuracy rates of 88.25%, 93.95%, and 96.83% over MOTIONSENSE, MHEALTH, and the proposed self-annotated IM-AccGyro human-machine dataset, respectively. Keywords: binary grey wolf optimization; decision tree; electrocardiogram; Gaussian mixture model; Mel frequency cepstral coefficients Featured ApplicationThe proposed technique is an application of physical activity detection, analyzing three challenging benchmark datasets. It can be applied in sports assistance systems that help physical trainers to conduct exercises, track functional movements, and to maximize the performance of people. Furthermore, it can be applied in surveillance system for abnormal events and action detection.AbstractThe classification of human activity is becoming one of the most important areas of human health monitoring and physical fitness. With the use of physical activity recognition applications, people suffering from various diseases can be efficiently monitored and medical treatment can be administered in a timely fashion. These applications could improve remote services for health care monitoring and delivery. However, the fixed health monitoring devices provided in hospitals limits the subjects’ movement. In particular, our work reports on wearable sensors that provide remote monitoring that periodically checks human health through different postures and activities to give people timely and effective treatment. In this paper, we propose a novel human activity recognition (HAR) system with multiple combined features to monitor human physical movements from continuous sequences via tri-axial inertial sensors. The proposed HAR system filters 1D signals using a notch filter that examines the lower/upper cutoff frequencies to calculate the optimal wearable sensor data. Then, it calculates multiple combined features, i.e., statistical features, Mel Frequency Cepstral Coefficients, and Gaussian Mixture Model features. For the classification and recognition engine, a Decision Tree classifier optimized by the Binary Grey Wolf Optimization algorithm is proposed. The proposed system is applied and tested on three challenging benchmark datasets to assess the feasibility of the model. The experimental results show that our proposed system attained an exceptional level of performance compared to conventional solutions. We achieved accuracy rates of 88.25%, 93.95%, and 96.83% over MOTIONSENSE, MHEALTH, and the proposed self-annotated IM-AccGyro human-machine dataset, respectively. |
Audience | Academic |
Author | Kim, Kibum Jalal, Ahmad Batool, Mouazma |
Author_xml | – sequence: 1 givenname: Ahmad surname: Jalal fullname: Jalal, Ahmad – sequence: 2 givenname: Mouazma surname: Batool fullname: Batool, Mouazma – sequence: 3 givenname: Kibum orcidid: 0000-0003-2590-9600 surname: Kim fullname: Kim, Kibum |
BookMark | eNptUU1vEzEQXaEiUUpP_AFLHNEWf-yH9xhVQCNVKqKtOFqz49nE0cYOtovIv8chiBZU--Dn0Xtvxn6vqxMfPFXVW8EvlBr4B9jtBJe8F1K-qE4L6GrViP7kCX5Vnae04WUNQmnBTyt7mwOuIWWH7CthWHmXXfAsTOzLep8cwswWmN0Pl_cMvGVXBHNeI0Ri98n5FbuLrl78dIW39BTzAXwjiDDOxG7JpxDTm-rlBHOi8z_nWXX_6ePd5VV9ffN5ebm4rrFRItdCU8d73gk5ChybXkwkUVoiPZDSoGkCnJqp6wdubaNsP_aq5f3YdoMe23I5q5ZHXxtgY3bRbSHuTQBnfhdCXBkoE-JMBqzVaFs5WDk0cmhHiaUdoBItl1ph8Xp39NrF8P2BUjab8BB9Gd_IVjWcK6XVI2sFxdT5KeQIuHUJzaIrH94KoXlhXTzDKtvS1mFJcXKl_o_g_VGAMaQUafr7GMHNIWzzJOzCFv-x0WU4xFjauPlZzS-PGKyo |
CitedBy_id | crossref_primary_10_1080_03772063_2024_2402881 crossref_primary_10_3390_s21124181 crossref_primary_10_3390_s22093401 crossref_primary_10_3390_s22176632 crossref_primary_10_3390_s23104716 crossref_primary_10_1016_j_eswa_2021_114736 crossref_primary_10_1109_JIOT_2023_3277829 crossref_primary_10_1109_ACCESS_2022_3204739 crossref_primary_10_3390_robotics10020056 crossref_primary_10_1038_s41598_024_57912_3 crossref_primary_10_1155_2021_9923748 crossref_primary_10_1007_s11042_023_17400_8 crossref_primary_10_1038_s41598_025_94689_5 crossref_primary_10_32604_cmc_2022_023841 crossref_primary_10_3390_su13052961 crossref_primary_10_1038_s41598_024_53069_1 crossref_primary_10_1145_3596600 crossref_primary_10_3390_bios14070337 crossref_primary_10_3390_e23050628 crossref_primary_10_1007_s11042_022_13717_y crossref_primary_10_3390_app12052550 crossref_primary_10_3390_su13020970 crossref_primary_10_32604_cmc_2022_028618 crossref_primary_10_1007_s11042_021_11885_x crossref_primary_10_1109_LSENS_2024_3423340 crossref_primary_10_1007_s12221_024_00734_x crossref_primary_10_3390_chemosensors12110225 crossref_primary_10_1109_JSEN_2022_3174280 crossref_primary_10_3390_nano13050852 crossref_primary_10_1109_ACCESS_2024_3473828 crossref_primary_10_1155_2022_5874248 crossref_primary_10_1016_j_pmcj_2022_101620 crossref_primary_10_1109_ACCESS_2024_3524431 crossref_primary_10_3390_app11125740 crossref_primary_10_1111_exsy_12988 crossref_primary_10_32604_iasc_2022_025421 crossref_primary_10_3390_sym12111928 crossref_primary_10_3390_electronics10040465 crossref_primary_10_1109_ACCESS_2023_3314341 crossref_primary_10_1007_s40747_021_00584_7 crossref_primary_10_32604_cmc_2023_028712 crossref_primary_10_3390_su13041699 crossref_primary_10_3390_s25030632 crossref_primary_10_32604_iasc_2022_025013 crossref_primary_10_2196_46282 crossref_primary_10_1016_j_eswa_2021_114587 crossref_primary_10_2174_2210327913666230911113149 crossref_primary_10_3389_fphys_2024_1344887 crossref_primary_10_3390_su13105367 crossref_primary_10_1016_j_eswa_2021_115311 crossref_primary_10_3390_app12136481 crossref_primary_10_3390_s23177363 crossref_primary_10_1088_1361_665X_ad223c crossref_primary_10_3390_s24103032 crossref_primary_10_1007_s11042_024_18547_8 crossref_primary_10_1109_ACCESS_2021_3130613 crossref_primary_10_32604_iasc_2023_026051 |
Cites_doi | 10.1109/ICAEM.2019.8853770 10.1016/j.patcog.2016.08.003 10.1109/ICCWAMTIP.2013.6716604 10.23919/ICACT.2019.8702018 10.1016/j.advengsoft.2013.12.007 10.1109/ICSIMA.2017.8312024 10.1016/j.neucom.2015.06.083 10.1504/IJHM.2019.098949 10.1109/THMS.2018.2884717 10.1145/3302505.3310068 10.1007/s11042-019-08527-8 10.1007/s11042-018-6662-5 10.1016/j.eswa.2016.04.032 10.1186/s13673-017-0097-2 10.1109/19.930458 10.1109/ACCESS.2019.2906757 10.3390/app7010110 10.1109/TKDE.2006.131 10.1016/j.knosys.2015.09.024 10.1145/3410531.3414306 10.1049/trit.2019.0036 10.3390/e22050579 10.1049/trit.2019.0017 10.1007/978-3-319-13105-4_14 10.3390/s19092039 10.3390/e22080817 10.1007/s11042-019-08465-5 10.1504/IJHM.2019.104386 10.20944/preprints202001.0375.v1 10.1109/ICAwST.2017.8256516 10.3390/info10100290 10.1109/TCE.2012.6311329 10.3390/app10155293 10.3390/app7080798 10.1504/IJHM.2019.098951 10.1109/CVPR.2008.4587727 10.1049/trit.2019.0002 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 MDPI AG 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2020 MDPI AG – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app10207122 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_add8cd529d294295b2c1feac3150283c A641751180 10_3390_app10207122 |
GeographicLocations | Pakistan |
GeographicLocations_xml | – name: Pakistan |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c431t-18e6070612b1cb471fe2c2dee89e38a8efacf4f6790dd43d7b73507b5698b5b73 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:17:28 EDT 2025 Mon Jun 30 07:30:10 EDT 2025 Tue Jun 17 21:00:30 EDT 2025 Tue Jun 10 20:28:18 EDT 2025 Tue Jul 01 03:14:39 EDT 2025 Thu Apr 24 23:08:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c431t-18e6070612b1cb471fe2c2dee89e38a8efacf4f6790dd43d7b73507b5698b5b73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2590-9600 |
OpenAccessLink | https://doaj.org/article/add8cd529d294295b2c1feac3150283c |
PQID | 2534003383 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_add8cd529d294295b2c1feac3150283c proquest_journals_2534003383 gale_infotracmisc_A641751180 gale_infotracacademiconefile_A641751180 crossref_primary_10_3390_app10207122 crossref_citationtrail_10_3390_app10207122 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201015 |
PublicationDateYYYYMMDD | 2020-10-15 |
PublicationDate_xml | – month: 10 year: 2020 text: 20201015 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Jalal (ref_17) 2012; 58 Biel (ref_31) 2001; 50 Jansi (ref_19) 2018; 78 Nizami (ref_7) 2020; 79 ref_14 ref_36 ref_13 Mirjalili (ref_34) 2014; 69 ref_11 ref_33 Osterland (ref_6) 2019; 2 Jalal (ref_10) 2017; 61 ref_39 ref_16 ref_38 Emary (ref_35) 2016; 172 ref_25 ref_24 ref_23 ref_22 Zhu (ref_26) 2019; 4 ref_21 ref_20 ref_42 Ronao (ref_1) 2016; 59 ref_40 ref_3 Susan (ref_9) 2019; 4 ref_29 ref_28 Tingting (ref_12) 2019; 4 ref_27 Guo (ref_41) 2018; 49 Wiens (ref_15) 2019; 1 Shokri (ref_5) 2019; 4 ref_8 Ling (ref_37) 2006; 18 Mahmood (ref_2) 2020; 79 Zhu (ref_30) 2017; 7 ref_4 Liu (ref_18) 2015; 90 Tashi (ref_32) 2019; 7 |
References_xml | – ident: ref_24 doi: 10.1109/ICAEM.2019.8853770 – volume: 61 start-page: 295 year: 2017 ident: ref_10 article-title: Robust human activity recognition from depth video using spatiotemporal multi-fused features publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.08.003 – ident: ref_25 doi: 10.1109/ICCWAMTIP.2013.6716604 – ident: ref_33 doi: 10.23919/ICACT.2019.8702018 – volume: 69 start-page: 46 year: 2014 ident: ref_34 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – ident: ref_16 doi: 10.1109/ICSIMA.2017.8312024 – volume: 172 start-page: 371 year: 2016 ident: ref_35 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 – ident: ref_11 – volume: 1 start-page: 16 year: 2019 ident: ref_15 article-title: Engine speed reduction for hydraulic machinery using predictive algorithms publication-title: Int. J. Hydromechatron. doi: 10.1504/IJHM.2019.098949 – volume: 49 start-page: 105 year: 2018 ident: ref_41 article-title: A multisensor multiclassifier hierarchical fusion model based on entropy weight for human activity recognition using wearable inertial sensors publication-title: IEEE Trans. Hum. Mach. Syst. doi: 10.1109/THMS.2018.2884717 – ident: ref_38 doi: 10.1145/3302505.3310068 – ident: ref_40 – volume: 79 start-page: 6919 year: 2020 ident: ref_2 article-title: WHITE STAG Model: Wise Human Interaction Tracking and Estimation (WHITE) using Spatio-temporal and Angular-geometric (STAG) Descriptors publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-019-08527-8 – volume: 78 start-page: 11027 year: 2018 ident: ref_19 article-title: Sparse representation based classification scheme for human activity recognition using smartphones publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-018-6662-5 – volume: 59 start-page: 235 year: 2016 ident: ref_1 article-title: Human activity recognition with smartphone sensors using deep learning neural networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.04.032 – ident: ref_23 – volume: 7 start-page: 219 year: 2017 ident: ref_30 article-title: Feature extraction for robust physical activity recognition publication-title: Hum. Cent. Comput. Inf. Sci. doi: 10.1186/s13673-017-0097-2 – volume: 50 start-page: 808 year: 2001 ident: ref_31 article-title: ECG analysis: A new approach in human identification publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/19.930458 – volume: 7 start-page: 39496 year: 2019 ident: ref_32 article-title: Binary Optimization Using Hybrid Grey Wolf Optimization for Feature Selection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2906757 – ident: ref_14 doi: 10.3390/app7010110 – volume: 18 start-page: 8 year: 2006 ident: ref_37 article-title: Test Strategies for Cost Sensitive Decision Trees publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2006.131 – volume: 90 start-page: 138 year: 2015 ident: ref_18 article-title: Sensor-based human activity recognition system with a multilayered model using time series shapelets publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2015.09.024 – ident: ref_22 doi: 10.1145/3410531.3414306 – volume: 4 start-page: 255 year: 2019 ident: ref_26 article-title: Influence of kernel clustering on an RBFN publication-title: CAAI Trans. Intell. Technol. doi: 10.1049/trit.2019.0036 – ident: ref_21 doi: 10.3390/e22050579 – ident: ref_4 – volume: 4 start-page: 122 year: 2019 ident: ref_12 article-title: Three-stage network for age estimation publication-title: CAAI Trans. Intell. Technol. doi: 10.1049/trit.2019.0017 – ident: ref_39 doi: 10.1007/978-3-319-13105-4_14 – ident: ref_20 doi: 10.3390/s19092039 – ident: ref_8 doi: 10.3390/e22080817 – volume: 79 start-page: 7811 year: 2020 ident: ref_7 article-title: No-reference image quality assessment using bag-of-features with feature selection publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-019-08465-5 – volume: 4 start-page: 178 year: 2019 ident: ref_5 article-title: A review on the artificial neural network approach to analysis and prediction of seismic damage in infrastructure publication-title: Int. J. Hydromechatron. doi: 10.1504/IJHM.2019.104386 – ident: ref_3 doi: 10.20944/preprints202001.0375.v1 – ident: ref_27 doi: 10.1109/ICAwST.2017.8256516 – ident: ref_36 – ident: ref_42 doi: 10.3390/info10100290 – volume: 58 start-page: 3 year: 2012 ident: ref_17 article-title: Depth Video-based Human Activity Recognition System Using Translation and Scaling Invariant Features for Life Logging at Smart Home publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2012.6311329 – ident: ref_28 doi: 10.3390/app10155293 – ident: ref_13 doi: 10.3390/app7080798 – volume: 2 start-page: 32 year: 2019 ident: ref_6 article-title: Analytical analysis of single-stage pressure relief valves publication-title: Int. J. Hydromechatron. doi: 10.1504/IJHM.2019.098951 – ident: ref_29 doi: 10.1109/CVPR.2008.4587727 – volume: 4 start-page: 101 year: 2019 ident: ref_9 article-title: New shape descriptor in the context of edge continuity publication-title: CAAI Trans. Intell. Technol. doi: 10.1049/trit.2019.0002 |
SSID | ssj0000913810 |
Score | 2.4365468 |
Snippet | The classification of human activity is becoming one of the most important areas of human health monitoring and physical fitness. With the use of physical... Featured ApplicationThe proposed technique is an application of physical activity detection, analyzing three challenging benchmark datasets. It can be applied... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 7122 |
SubjectTerms | Accelerometers Accuracy Algorithms binary grey wolf optimization Cameras Classification Datasets decision tree electrocardiogram Electrocardiography Exercise Gaussian mixture model Mathematical optimization Mel frequency cepstral coefficients Methods Optimization Patient monitoring Physical fitness Principal components analysis Sensors Support vector machines Technology application |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB_s3Yt9KH6VnlXZB6EqhF422WTzJHeiXIWK-EF9W_ZTBUns3RX8853J7Z0etH0J-VhCsrMz85vd2d8A7GvriowLnxQuaAxQypCYgIcydRylbL1ztBv550Uxus3P78RdnHCbxLTKuU1sDbVrLM2Rf-ciy6nwmMyOn38nVDWKVldjCY0P0EUTLGUHusPTi8urxSwLsV7KtD_bmJdhfE_rwuhT0bFyvuSKWsb-f9nl1tmcrcGniBLZYCbWdVjx9QZ8fMcduAHrUSsn7CBSRx9ugrueNvZBE_cyu5qnBjU1awK7jAJhAzsrGMF07dhokf7F2uQBdjN-TAYvOCjZj5pSrvHkFyoDbbBi1xjyNuPJFtyend6cjJJYRyGxCA-mSSp9gZqNWMak1qA3Cp5b7ryXlc-klj5oG_JQlFXfuTxzpSkzhIlGFJU0Ai8-Q6duav8FWF-XGBA6gzgD3ZrwlZFViaAppPhK7WQPjuZdqmwkGadaF08Kgw3qf_Wu_3uwv2j8POPW-HuzIclm0YQIsdsbzfheRf1SaKaldYJXjlfoYoXhFn9T2wwBLyIo24NvJFlFaosfZHXcfYC_RQRYalDkCKSID68HO0stUd3s8uP52FBR3SfqbXBu___xV1jlFLBTSozYgc50_MfvIqqZmr04dF8BR-H3Wg priority: 102 providerName: ProQuest |
Title | Stochastic Recognition of Physical Activity and Healthcare Using Tri-Axial Inertial Wearable Sensors |
URI | https://www.proquest.com/docview/2534003383 https://doaj.org/article/add8cd529d294295b2c1feac3150283c |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB7a9JIeQp0HcZqaPQTaBATRSiutjnaJ4xQaQh4kt2WfpFCkYDuQn58ZaW1saMklF6HHIla78_gGzXwDcKStKzIufFK4oDFAKUNiAh7K1HHcZeudo2rk35fF5C7_9SAeVlp9UU5YRw_cLRyl1UjrBK8cr9B2CsNtGtBaZIhk0DVasr7o81aCqdYGVylRV3UFeRnG9fQ_GH0pOlTO11xQy9T_P3vcOpnxF9iK6JANu1n14IOvt-HzCmfgNvSiNs7Yj0gZfbwD7mbe2EdNnMvsepES1NSsCewqbgQb2q5RBNO1Y5Nl2hdrkwbY7fRPMnxBYWQXNaVa48k9KgEVVrEbDHWb6WwX7sZntz8nSeyfkFiEBfMklb5AjUYMY1Jr0AsFzy133svKZ1JLH7QNeSjK6tS5PHOlKTOEh0YUlTQCL_Zgo25qvw_sVJcYCDqD-ALdmfCVkVWJYCmk-ErtZB9OFkuqbCQXpx4XfxUGGbT-amX9-3C0HPzUcWr8e9iI9mY5hIiw2xsoHiqKh3pLPPrwnXZWkbrihKyOVQf4WUR8pYZFjgCKePD6cLg2EtXMrj9eyIaKaj5TXGQ5dcOT2cF7TPYrbHIK5ylhRhzCxnz67L8h5pmbAXyU4_MBfBqdXV5dD1phfwUZ7AGD |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4q5QAcEC0gAgXmUMQiWcRjjz0-VCgsIaGLEE3V3oZZWyRklyRVy5_iN_Kel9BIwK2XKMmMLPtt33vjtwBsauuyhAsfZS5oDFDyEJmAH3nsOHLZeueoGnl3LxsdpJ-OxNEK_OpqYSitsrOJtaF2laUz8tdcJCkNHpPJm9MfEU2Norer3QiNRiy2_c9zDNlmW-P3yN9nnA8_TN6NonaqQGQRLOdRLH2Gco7IbmJr0DYHzy133svCJ1JLH7QNacjyou9cmrjc5Ak6TUZkhTQCf-B1r8H1NEEkp8r04cfFmQ712JRxvykDxPU-vYVGBEcY53wJ-Or5AP9CgRrahnfgduuTskEjRGuw4st1uHWpU-E6rLU2YMZetI2qX94Ftz-v7ImmTs_sS5eIVJWsCuxzy342sM14CqZLx0aLZDNWpyqwyfRbNLhAFWDjkhK88csh0pjKudg-BtjVdHYPDq6EvvdhtaxK_wBYX-cYfjqDXg2CqPCFkUWOLlqI8ZLayR686kiqbNvSnCZrfFcY2hD91SX692Bzsfm06eTx921viTeLLdR-u_6jmh6rVpsVgoK0TvDC8QIBXRhu8TG1TdC9Rn_N9uA5cVaRkcAbsrqtdcDHonZbapCl6LZR970ebCztROW2y8udbKjWuMzUH1V4-P_lp3BjNNndUTvjve1HcJPTUQEl44gNWJ1Pz_xj9Kfm5kktxAy-XrXW_AbNbzMr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLSACBTYQxEPyWq8fq0PCKW0UUIhivoQvW332SIhuyRBwF_j1zHjrEMjAbderDgeWfbszHwz63kAbCtj84RnLsqtVxigFD7SHg9FbDmusnHWUjXyx3E-PEnfn2ana_CrrYWhtMrWJjaG2taG9sh3eJakNHhMJDs-pEVM9gZvL79GNEGKvrS24zQWInLgfn7H8G32ZrSHa_2c88H-8bthFCYMRAaBcx7FwuUo84jyOjYa7bR33HDrnChdIpRwXhmf-rwoe9amiS10kaADpbO8FDrDE7zvDVgvKCrqwPru_nhyuNzhoY6bIu4tigKTpOzRN2nEc6TlfAUGm2kB_8KEBugGd-FO8FBZfyFSG7Dmqk24faVv4SZsBIswYy9D2-pX98AezWtzoajvMzts05LqitWeTYIwsL5ZDKtgqrJsuEw9Y03iAjuefo76P1Ah2KiidG_88Qm5TMVd7AjD7Xo6uw8n18LhB9Cp6so9BNZTyOfSavRxEFIzV2pRFuiw-RhvqazowuuWpdKEBuc0Z-OLxECH-C-v8L8L20viy0Vfj7-T7dLaLEmoGXfzRz09l0G3JUKEMDbjpeUlwnumucHXVCZBZxu9N9OFF7SykkwGPpBRofIBX4uab8l-nqITR734urC1QomqblYvt7Ihg6mZyT-K8ej_l5_BTdQY-WE0PngMtzjtG1BmTrYFnfn0m3uCztVcPw1SzODsuhXnNy2XOL0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+Recognition+of+Physical+Activity+and+Healthcare+Using+Tri-Axial+Inertial+Wearable+Sensors&rft.jtitle=Applied+sciences&rft.au=Ahmad+Jalal&rft.au=Mouazma+Batool&rft.au=Kibum+Kim&rft.date=2020-10-15&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=10&rft.issue=20&rft.spage=7122&rft_id=info:doi/10.3390%2Fapp10207122&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_add8cd529d294295b2c1feac3150283c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |