Automatic Quantitative Coronary Analysis Based on Deep Learning
As a core technique to quantitatively assess the stenosis severity of coronary arteries, quantitative coronary analysis (QCA) is urgently supposed to become more automated and intelligent, especially for regions lacking expertise and technology. The existing QCA methods highly depend on manual opera...
Saved in:
Published in | Applied sciences Vol. 13; no. 5; p. 2975 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As a core technique to quantitatively assess the stenosis severity of coronary arteries, quantitative coronary analysis (QCA) is urgently supposed to become more automated and intelligent, especially for regions lacking expertise and technology. The existing QCA methods highly depend on manual operation, which is time-consuming and subject to personal experience. This study innovatively proposes a fully automatic QCA workflow based on artificial intelligence (AI-QCA), which can quickly and accurately make a quantitative assessment of stenosis severity. The whole AI-QCA workflow mainly consists of three parts: the boundary-aware segmentation on the coronary angiogram (CAG) images, the AI-enabled coronary artery tree construction, and the diameter fitting and stenosis detection. Experiments show that the precision, recall, and F1 score of the segmentation, evaluated on 1322 CAGs, are 0.866, 0.897, and 0.879, respectively. Furthermore, the RMSE between diameter stenosis assessed by AI-QCA and manual QCA served by senior experts, evaluated on 249 CAGs, is 0.064, and the Pearson coefficient is 0.765. Meanwhile, the operation time can be reduced from tens of minutes to several seconds by AI-QCA. As a conclusion, the proposed AI-QCA is able to quickly quantify stenosis parameters as accurately as senior experts, which is significant for the intelligent diagnosis and treatment of coronary artery disease. |
---|---|
AbstractList | As a core technique to quantitatively assess the stenosis severity of coronary arteries, quantitative coronary analysis (QCA) is urgently supposed to become more automated and intelligent, especially for regions lacking expertise and technology. The existing QCA methods highly depend on manual operation, which is time-consuming and subject to personal experience. This study innovatively proposes a fully automatic QCA workflow based on artificial intelligence (AI-QCA), which can quickly and accurately make a quantitative assessment of stenosis severity. The whole AI-QCA workflow mainly consists of three parts: the boundary-aware segmentation on the coronary angiogram (CAG) images, the AI-enabled coronary artery tree construction, and the diameter fitting and stenosis detection. Experiments show that the precision, recall, and F1 score of the segmentation, evaluated on 1322 CAGs, are 0.866, 0.897, and 0.879, respectively. Furthermore, the RMSE between diameter stenosis assessed by AI-QCA and manual QCA served by senior experts, evaluated on 249 CAGs, is 0.064, and the Pearson coefficient is 0.765. Meanwhile, the operation time can be reduced from tens of minutes to several seconds by AI-QCA. As a conclusion, the proposed AI-QCA is able to quickly quantify stenosis parameters as accurately as senior experts, which is significant for the intelligent diagnosis and treatment of coronary artery disease. |
Audience | Academic |
Author | Zhang, Honggang Wang, Xiaofei Liu, Xuqing Chen, Donghao |
Author_xml | – sequence: 1 givenname: Xuqing orcidid: 0000-0002-7351-8981 surname: Liu fullname: Liu, Xuqing – sequence: 2 givenname: Xiaofei surname: Wang fullname: Wang, Xiaofei – sequence: 3 givenname: Donghao surname: Chen fullname: Chen, Donghao – sequence: 4 givenname: Honggang surname: Zhang fullname: Zhang, Honggang |
BookMark | eNptUV1rWzEMNaODdW2f9gcu7HGkk_wR208jS7euECiD7tkovr7BIbHv7JtB_329phvdqPQgIc45SDpv2UnKKTD2DuFSCAsfaRxRgOJWq1fslIOez4REffKsf8Muat1CC4vCIJyyT4vDlPc0Rd99P1Ca4tT6X6Fb5pITlftukWh3X2PtPlMNfZdTdxXC2K0ClRTT5py9HmhXw8VTPWM_vn65W36brW6vb5aL1cxLgdMMFWohaAjeagnWcvCotJ3PrSbfK2OkR8CeiNSaTKAA6NfGeOyBSy7X4ozdHHX7TFs3lrhvy7lM0T0Octk4Ku2KXXAcLVigNfLBSml7giB7UMRlGJRF1bTeH7XGkn8eQp3cNh9Ku7M6ro1Cw3lb9i9qQ000piFPhfw-Vu8WWqE1RoFtqMsXUC37sI--GTTENv-HgEeCL7nWEgbnH3-eUyPGnUNwv910z9xsnA__cf484CX0A68PnkM |
CitedBy_id | crossref_primary_10_1016_j_jacadv_2024_101093 crossref_primary_10_3390_diagnostics13132274 crossref_primary_10_1007_s10554_025_03342_9 crossref_primary_10_1002_hsr2_70286 crossref_primary_10_3390_diagnostics13183011 crossref_primary_10_1016_j_ijcard_2024_132598 |
Cites_doi | 10.1109/TMI.2006.879967 10.1016/j.compbiomed.2021.104667 10.1109/CVPR.2019.00766 10.1038/s41598-019-53254-7 10.1007/BFb0056195 10.1056/NEJM199408253310801 10.1016/j.eswa.2021.116112 10.1161/01.CIR.55.2.329 10.1002/ccd.1810280301 10.1007/s12928-020-00653-7 10.1007/978-3-319-24574-4_28 10.1016/j.patcog.2020.107404 10.4244/EIJ-D-20-00570 10.1109/ICCVW54120.2021.00378 10.1002/(SICI)1097-0304(199601)37:1<24::AID-CCD7>3.0.CO;2-6 10.1109/CVPR.2017.632 10.1109/CVPR.2017.660 10.1016/j.knosys.2013.01.026 10.3390/jcm11133918 10.1007/978-3-031-12053-4_63 10.1016/j.media.2020.101634 10.1016/j.crad.2019.10.012 10.1161/hc4201.098056 10.1186/s12880-022-00734-4 10.1109/CVPRW.2010.5543594 10.1145/357994.358023 10.1137/0111030 10.1016/0735-1097(94)90566-5 10.1007/s11548-019-02022-z 10.1007/s10479-005-5724-z 10.51130/graphicon-2020-2-3-75 10.1002/nav.3800020408 10.1111/j.1540-8183.2009.00491.x 10.1016/0002-9149(84)90235-2 10.1109/BIBM47256.2019.8983033 10.1109/EMBC.2016.7590784 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app13052975 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_219090ab12f9449da0e4d05a24ef5915 A751988509 10_3390_app13052975 |
GeographicLocations | Netherlands |
GeographicLocations_xml | – name: Netherlands |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c431t-151733afec97409920c15796697acd5884c101daaa5ba8eae01cb88c1d02424b3 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:25:35 EDT 2025 Mon Jun 30 07:32:47 EDT 2025 Tue Jun 17 21:04:28 EDT 2025 Tue Jun 10 20:25:48 EDT 2025 Tue Jul 01 04:32:56 EDT 2025 Thu Apr 24 23:01:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c431t-151733afec97409920c15796697acd5884c101daaa5ba8eae01cb88c1d02424b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7351-8981 |
OpenAccessLink | https://doaj.org/article/219090ab12f9449da0e4d05a24ef5915 |
PQID | 2785182273 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_219090ab12f9449da0e4d05a24ef5915 proquest_journals_2785182273 gale_infotracmisc_A751988509 gale_infotracacademiconefile_A751988509 crossref_citationtrail_10_3390_app13052975 crossref_primary_10_3390_app13052975 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230201 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 20230201 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Du (ref_39) 2021; 17 Garrone (ref_9) 2009; 22 ref_14 ref_13 ref_35 Soares (ref_12) 2006; 25 Qin (ref_42) 2020; 106 Suzuki (ref_8) 2020; 35 ref_11 Wang (ref_19) 2020; 75 Xian (ref_27) 2020; 10 ref_10 ref_32 ref_31 ref_30 Zhao (ref_29) 2021; 136 Ma (ref_17) 2020; 61 ref_18 Sousa (ref_4) 2001; 104 ref_38 ref_37 Kroese (ref_36) 2005; 134 Brown (ref_1) 1977; 55 Reiber (ref_6) 1994; 24 Serruys (ref_2) 1984; 54 Sianos (ref_45) 2005; 1 Yang (ref_21) 2019; 9 Bustince (ref_34) 2013; 44 Zhang (ref_33) 1984; 27 ref_25 ref_22 Andrushia (ref_24) 2015; 7 ref_43 ref_20 Baskaran (ref_23) 2020; 13 ref_41 (ref_15) 2022; 189 Serruys (ref_3) 1994; 331 ref_28 Tmenova (ref_16) 2019; 14 ref_26 Reiber (ref_5) 1993; 28 Karlin (ref_44) 1955; 2 Beauman (ref_7) 1996; 37 Marquardt (ref_40) 1963; 11 |
References_xml | – volume: 25 start-page: 1214 year: 2006 ident: ref_12 article-title: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2006.879967 – volume: 136 start-page: 104667 year: 2021 ident: ref_29 article-title: Automatic extraction and stenosis evaluation of coronary arteries in invasive coronary angiograms publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104667 – ident: ref_30 – ident: ref_31 doi: 10.1109/CVPR.2019.00766 – volume: 9 start-page: 16897 year: 2019 ident: ref_21 article-title: Deep learning segmentation of major vessels in X-ray coronary angiography publication-title: Sci. Rep. doi: 10.1038/s41598-019-53254-7 – volume: 7 start-page: 172 year: 2015 ident: ref_24 article-title: Visual attention-based leukocyte image segmentation using extreme learning machine publication-title: Int. J. Adv. Intell. Paradig. – ident: ref_10 doi: 10.1007/BFb0056195 – volume: 331 start-page: 489 year: 1994 ident: ref_3 article-title: A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199408253310801 – volume: 189 start-page: 116112 year: 2022 ident: ref_15 article-title: Hybrid classical-quantum Convolutional Neural Network for stenosis detection in X-ray coronary angiography publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116112 – volume: 55 start-page: 329 year: 1977 ident: ref_1 article-title: Quantitative coronary arteriography: Estimation of dimensions, hemodynamic resistance, and atheroma mass of coronary artery lesions using the arteriogram and digital computation publication-title: Circulation doi: 10.1161/01.CIR.55.2.329 – volume: 1 start-page: 219 year: 2005 ident: ref_45 article-title: The SYNTAX Score: An angiographic tool grading the complexity of coronary artery disease publication-title: EuroIntervention – volume: 28 start-page: 187 year: 1993 ident: ref_5 article-title: Accuracy and precision of quantitative digital coronary arteriography: Observer-, short-, and medium-term variabilities publication-title: Cathet. Cardiovasc. Diagn. doi: 10.1002/ccd.1810280301 – volume: 35 start-page: 105 year: 2020 ident: ref_8 article-title: Clinical expert consensus document on quantitative coronary angiography from the Japanese Association of Cardiovascular Intervention and Therapeutics publication-title: Cardiovasc. Interv. Ther. doi: 10.1007/s12928-020-00653-7 – ident: ref_35 doi: 10.1007/978-3-319-24574-4_28 – volume: 106 start-page: 107404 year: 2020 ident: ref_42 article-title: U2-Net: Going deeper with nested U-structure for salient object detection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107404 – volume: 17 start-page: 32 year: 2021 ident: ref_39 article-title: Training and validation of a deep learning architecture for the automatic analysis of coronary angiography publication-title: EuroIntervention doi: 10.4244/EIJ-D-20-00570 – ident: ref_26 doi: 10.1109/ICCVW54120.2021.00378 – ident: ref_37 – volume: 37 start-page: 24 year: 1996 ident: ref_7 article-title: Comparisons of angiographic core laboratory analyses of phantom and clinical images: Interlaboratory variability publication-title: Cathet. Cardiovasc. Diagn. doi: 10.1002/(SICI)1097-0304(199601)37:1<24::AID-CCD7>3.0.CO;2-6 – volume: 10 start-page: 8858344 year: 2020 ident: ref_27 article-title: Main coronary vessel segmentation using deep learning in smart medical publication-title: Math. Probl. Eng. – ident: ref_43 doi: 10.1109/CVPR.2017.632 – ident: ref_32 doi: 10.1109/CVPR.2017.660 – volume: 44 start-page: 101 year: 2013 ident: ref_34 article-title: Multiscale edge detection based on Gaussian smoothing and edge tracking publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2013.01.026 – ident: ref_18 doi: 10.3390/jcm11133918 – ident: ref_28 doi: 10.1007/978-3-031-12053-4_63 – volume: 61 start-page: 101634 year: 2020 ident: ref_17 article-title: Dynamic coronary roadmapping via catheter tip tracking in x-ray fluoroscopy with deep learning based Bayesian filtering publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101634 – volume: 13 start-page: 1163 year: 2020 ident: ref_23 article-title: Identification and quantification of cardiovascular structures from CCTA: An end-to-end, rapid, pixel-wise, deep-learning method publication-title: Cardiovasc. Imaging – volume: 75 start-page: 237.e11 year: 2020 ident: ref_19 article-title: Coronary artery calcium score quantification using a deep-learning algorithm publication-title: Clin. Radiol. doi: 10.1016/j.crad.2019.10.012 – volume: 104 start-page: 2007 year: 2001 ident: ref_4 article-title: Sustained suppression of neointimal proliferation by sirolimus-eluting stents: 1-year angiographic and intravascular ultrasound follow-up publication-title: Circulation doi: 10.1161/hc4201.098056 – ident: ref_25 doi: 10.1186/s12880-022-00734-4 – ident: ref_11 doi: 10.1109/CVPRW.2010.5543594 – volume: 27 start-page: 236 year: 1984 ident: ref_33 article-title: A fast parallel algorithm for thinning digital patterns publication-title: Commun. ACM doi: 10.1145/357994.358023 – volume: 11 start-page: 431 year: 1963 ident: ref_40 article-title: An algorithm for least-squares estimation of nonlinear parameters publication-title: J. Soc. Ind. Appl. Math. doi: 10.1137/0111030 – volume: 24 start-page: 216 year: 1994 ident: ref_6 article-title: A new approach for the quantification of complex lesion morphology: The gradient field transform; basic principles and validation results publication-title: J. Am. Coll Cardiol. doi: 10.1016/0735-1097(94)90566-5 – ident: ref_41 – volume: 14 start-page: 1785 year: 2019 ident: ref_16 article-title: CycleGAN for style transfer in X-ray angiography publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-019-02022-z – volume: 134 start-page: 19 year: 2005 ident: ref_36 article-title: A tutorial on the cross-entropy method publication-title: Ann. OR doi: 10.1007/s10479-005-5724-z – ident: ref_14 doi: 10.51130/graphicon-2020-2-3-75 – ident: ref_38 – volume: 2 start-page: 285 year: 1955 ident: ref_44 article-title: The structure of dynamic programing models publication-title: Nav. Res. Logist. Q. doi: 10.1002/nav.3800020408 – volume: 22 start-page: 527 year: 2009 ident: ref_9 article-title: Quantitative coronary angiography in the current era: Principles and applications publication-title: J. Interv. Cardiol. doi: 10.1111/j.1540-8183.2009.00491.x – ident: ref_22 – volume: 54 start-page: 482 year: 1984 ident: ref_2 article-title: Assessment of percutaneous transluminal coronary angioplasty by quantitative coronary angiography: Diameter versus densitometric area measurements publication-title: Am. J. Cardiol. doi: 10.1016/0002-9149(84)90235-2 – ident: ref_13 doi: 10.1109/BIBM47256.2019.8983033 – ident: ref_20 doi: 10.1109/EMBC.2016.7590784 |
SSID | ssj0000913810 |
Score | 2.314081 |
Snippet | As a core technique to quantitatively assess the stenosis severity of coronary arteries, quantitative coronary analysis (QCA) is urgently supposed to become... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2975 |
SubjectTerms | Accuracy Algorithms Angioplasty Artificial intelligence Automation Cardiology Cardiovascular disease coronary angiogram Coronary heart disease Coronary vessels Deep learning Medical imaging Methods Mortality qantitative coronary analysis Stents Tomography Vein & artery diseases vessel segmentation vessel tree |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60XvQgWhXriz0IPiCYNJtkc5LWByIoKgreln2lF0lqHwf_vTPptragXrNDSOY9uzvfAByHFoOGUyrIdawDLrQlP2gDrJwLVACTmLoX5uExvXvj9-_Ju99wG_prlVOfWDtqWxnaI79o0xR5jGZZfNn_DGhqFJ2u-hEay7CCLliIBqx0bx6fXma7LIR6KaJw0pgXY31P58LothNqKF0IRTVi_19-uQ42txuw7rNE1pmIdROWXNmEtTnswCZseqscslMPHX22BZed8aiqQVjZ81iVdQMZujN2RTgFavDFphgkrIvRy7KqZNfO9ZlHWe1tw9vtzevVXeBHJAQGI_8owHidxbEqnMG6AJO9dmgi6i5N80wZS02oBm3OKqUSrYRTLoyMFsJElmIz1_EONMqqdLvAUm4szwWaJMopdpHWdOJXuIynokgz14LzKbek8fjhNMbiQ2IdQayVc6xtwfGMuD-BzfidrEtsn5EQ1nX9oBr0pDcdiT41zEOlo3aRc55bFTpuw0ShjhVJHuFLTkhokiwSP8go31iAv0XYVrKTYZYqBGZGLThYoERLMovLU7FLb8lD-aN3e_8v78MqjaKf3Og-gMZoMHaHmLCM9JHXym9O1ufK priority: 102 providerName: ProQuest |
Title | Automatic Quantitative Coronary Analysis Based on Deep Learning |
URI | https://www.proquest.com/docview/2785182273 https://doaj.org/article/219090ab12f9449da0e4d05a24ef5915 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB58XPQgPrE-yh4EHxBMmk2yOUmrVhEUFQVvy77iRdKi7cF_78xmKy0oXrwmA9nM7LzY_b4BOIgtJg2nVFTqVEdcaEtx0EbYOVe4AUxmPBbm9i6_fuY3L9nL1KgvuhPW0AM3ijtFj4rLWOmkU5Wcl1bFjts4U_iFKis9vLyDOW-qmfIxuEyIuqoB5KXY19N5MIbrjICkMynIM_X_Fo99kumvwkqoDlm3WdUazLl6HZanOAPXYS144wc7CpTRxxtw1h2PBp58lT2MVe2BYxjG2DnxE6j3TzbhHmE9zFqWDWp24dyQBXbV10147l8-nV9HYTRCZDDjjyLM00WaqsoZ7AewyOvEJiFUaV4WylgCnxr0NauUyrQSTrk4MVoIk1jKyVynW7BQD2q3DSznxvJSoCuifVKXaE0nfZUreC6qvHAtOJloS5rAG07jK94k9g-kWjml2hYcfAsPG7qMn8V6pPZvEeK49g_Q8jJYXv5l-RYcktEkeSIuyKgAKMDfIk4r2S2wOhUCK6IW7M1IogeZ2dcTs8vgwR-yU2AtitVTke78x2J3YYkG1Tf3vfdgYfQ-dvtYzox0G-ZF_6oNi73Lu_vHtt_HX8uc8KI |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiBYQWwr4UMRDinASJ3EOqNq2LFv6kJBaqTfXr_SCku0-hPqn-I3MJM7SlYBbr7FlJePxfOPY3zcAO9whaHito9KkJhLSOIqDLsKdc4UOYDPbcmFOTvPxufh2kV2swa-eC0PXKvuY2AZq11j6R_4poSryiGZFuju5jqhqFJ2u9iU0Orc48jc_ccs2-3x4gPP7NklGX872x1GoKhBZBMt5hBBXpKmuvMVUGvOjhNuYCJl5WWjriLdp0U2d1jozWnrteWyNlDZ2BGfCpDjuPbgvUkRyYqaPvi7_6ZDGpox5RwPEdk6n0AgSGdFXV4CvrQ_wLxRooW30BB6HnJQNOyfagDVfb8KjW0qFm7ARYsCMvQ9C1R-ewu5wMW9ayVf2faHrlq6GwZPtkyqCnt6wXvGE7SFWOtbU7MD7CQuarlfP4PxOTPcc1uum9i-A5cI6UUoMAOgVqY-NofPFyhcil1Ve-AF87K2lbFArp6IZPxTuWsi06pZpB7Cz7DzpRDr-3m2PzL7sQsra7YNmeqXCQlUYwXnJtYmTqhSidJp74Xim0aOrrIxxkHc0aYrWP76Q1YHGgJ9FSlpqWGBOLCXmYQPYXumJ69auNvfTrkLcmKk_Xr71_-Y38GB8dnKsjg9Pj17CwwRTr-4u-Tasz6cL_wpTpbl53fong8u7XhC_AVXbIpU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggGgBsbSAD0U8pKhO4rwOqNrtdtVSWBVEpd5cv9ILSrb7EOpf49cxkzhLVwJuvcaWlYzH3zeOPd8A7HGLpOGUCgod60Dk2hIO2gB3ziU6gElMkwvzZZIen4tPF8nFBvzqcmHoWmWHiQ1Q29rQP_L9iKrII5tl8X7pr0WcjcYH0-uAKkjRSWtXTqN1kVN38xO3b_OPJyOc6zdRND76fngc-AoDgUHiXARId1kcq9IZDKsxVoq4CSk5My0yZSzlcBp0WauUSrTKnXI8NDrPTWiJ2oSOcdx7sJnRrqgHm8Ojydm31R8eUtzMQ94mBcZxwelMGikjoWTWNRpsqgX8ixMaohs_hkc-QmWD1qW2YMNV2_Dwlm7hNmx5RJizd162-v0TOBgsF3UjAMu-LlXVJK8hlLJD0khQsxvW6Z-wITKnZXXFRs5NmVd4vXoK53divGfQq-rKPQeWCmNFkSMcoI_ELtSaThtLl4k0L9PM9eFDZy1pvHY5ldD4IXEPQ6aVt0zbh71V52kr2fH3bkMy-6oL6Ww3D-rZlfTLViKe84IrHUZlIURhFXfC8kShf5dJEeIgb2nSJKEBvpBRPqkBP4t0teQgwwg5zzEq68PuWk9cxWa9uZt26VFkLv_4_Iv_N7-G-7gY5OeTyekOPIgwDmsvlu9CbzFbupcYNy30K--gDC7vek38BtPTKCc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Quantitative+Coronary+Analysis+Based+on+Deep+Learning&rft.jtitle=Applied+sciences&rft.au=Liu%2C+Xuqing&rft.au=Wang%2C+Xiaofei&rft.au=Chen%2C+Donghao&rft.au=Zhang%2C+Honggang&rft.date=2023-02-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=5&rft_id=info:doi/10.3390%2Fapp13052975&rft.externalDocID=A751988509 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |