Automatic Quantitative Coronary Analysis Based on Deep Learning

As a core technique to quantitatively assess the stenosis severity of coronary arteries, quantitative coronary analysis (QCA) is urgently supposed to become more automated and intelligent, especially for regions lacking expertise and technology. The existing QCA methods highly depend on manual opera...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 13; no. 5; p. 2975
Main Authors Liu, Xuqing, Wang, Xiaofei, Chen, Donghao, Zhang, Honggang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As a core technique to quantitatively assess the stenosis severity of coronary arteries, quantitative coronary analysis (QCA) is urgently supposed to become more automated and intelligent, especially for regions lacking expertise and technology. The existing QCA methods highly depend on manual operation, which is time-consuming and subject to personal experience. This study innovatively proposes a fully automatic QCA workflow based on artificial intelligence (AI-QCA), which can quickly and accurately make a quantitative assessment of stenosis severity. The whole AI-QCA workflow mainly consists of three parts: the boundary-aware segmentation on the coronary angiogram (CAG) images, the AI-enabled coronary artery tree construction, and the diameter fitting and stenosis detection. Experiments show that the precision, recall, and F1 score of the segmentation, evaluated on 1322 CAGs, are 0.866, 0.897, and 0.879, respectively. Furthermore, the RMSE between diameter stenosis assessed by AI-QCA and manual QCA served by senior experts, evaluated on 249 CAGs, is 0.064, and the Pearson coefficient is 0.765. Meanwhile, the operation time can be reduced from tens of minutes to several seconds by AI-QCA. As a conclusion, the proposed AI-QCA is able to quickly quantify stenosis parameters as accurately as senior experts, which is significant for the intelligent diagnosis and treatment of coronary artery disease.
AbstractList As a core technique to quantitatively assess the stenosis severity of coronary arteries, quantitative coronary analysis (QCA) is urgently supposed to become more automated and intelligent, especially for regions lacking expertise and technology. The existing QCA methods highly depend on manual operation, which is time-consuming and subject to personal experience. This study innovatively proposes a fully automatic QCA workflow based on artificial intelligence (AI-QCA), which can quickly and accurately make a quantitative assessment of stenosis severity. The whole AI-QCA workflow mainly consists of three parts: the boundary-aware segmentation on the coronary angiogram (CAG) images, the AI-enabled coronary artery tree construction, and the diameter fitting and stenosis detection. Experiments show that the precision, recall, and F1 score of the segmentation, evaluated on 1322 CAGs, are 0.866, 0.897, and 0.879, respectively. Furthermore, the RMSE between diameter stenosis assessed by AI-QCA and manual QCA served by senior experts, evaluated on 249 CAGs, is 0.064, and the Pearson coefficient is 0.765. Meanwhile, the operation time can be reduced from tens of minutes to several seconds by AI-QCA. As a conclusion, the proposed AI-QCA is able to quickly quantify stenosis parameters as accurately as senior experts, which is significant for the intelligent diagnosis and treatment of coronary artery disease.
Audience Academic
Author Zhang, Honggang
Wang, Xiaofei
Liu, Xuqing
Chen, Donghao
Author_xml – sequence: 1
  givenname: Xuqing
  orcidid: 0000-0002-7351-8981
  surname: Liu
  fullname: Liu, Xuqing
– sequence: 2
  givenname: Xiaofei
  surname: Wang
  fullname: Wang, Xiaofei
– sequence: 3
  givenname: Donghao
  surname: Chen
  fullname: Chen, Donghao
– sequence: 4
  givenname: Honggang
  surname: Zhang
  fullname: Zhang, Honggang
BookMark eNptUV1rWzEMNaODdW2f9gcu7HGkk_wR208jS7euECiD7tkovr7BIbHv7JtB_329phvdqPQgIc45SDpv2UnKKTD2DuFSCAsfaRxRgOJWq1fslIOez4REffKsf8Muat1CC4vCIJyyT4vDlPc0Rd99P1Ca4tT6X6Fb5pITlftukWh3X2PtPlMNfZdTdxXC2K0ClRTT5py9HmhXw8VTPWM_vn65W36brW6vb5aL1cxLgdMMFWohaAjeagnWcvCotJ3PrSbfK2OkR8CeiNSaTKAA6NfGeOyBSy7X4ozdHHX7TFs3lrhvy7lM0T0Octk4Ku2KXXAcLVigNfLBSml7giB7UMRlGJRF1bTeH7XGkn8eQp3cNh9Ku7M6ro1Cw3lb9i9qQ000piFPhfw-Vu8WWqE1RoFtqMsXUC37sI--GTTENv-HgEeCL7nWEgbnH3-eUyPGnUNwv910z9xsnA__cf484CX0A68PnkM
CitedBy_id crossref_primary_10_1016_j_jacadv_2024_101093
crossref_primary_10_3390_diagnostics13132274
crossref_primary_10_1007_s10554_025_03342_9
crossref_primary_10_1002_hsr2_70286
crossref_primary_10_3390_diagnostics13183011
crossref_primary_10_1016_j_ijcard_2024_132598
Cites_doi 10.1109/TMI.2006.879967
10.1016/j.compbiomed.2021.104667
10.1109/CVPR.2019.00766
10.1038/s41598-019-53254-7
10.1007/BFb0056195
10.1056/NEJM199408253310801
10.1016/j.eswa.2021.116112
10.1161/01.CIR.55.2.329
10.1002/ccd.1810280301
10.1007/s12928-020-00653-7
10.1007/978-3-319-24574-4_28
10.1016/j.patcog.2020.107404
10.4244/EIJ-D-20-00570
10.1109/ICCVW54120.2021.00378
10.1002/(SICI)1097-0304(199601)37:1<24::AID-CCD7>3.0.CO;2-6
10.1109/CVPR.2017.632
10.1109/CVPR.2017.660
10.1016/j.knosys.2013.01.026
10.3390/jcm11133918
10.1007/978-3-031-12053-4_63
10.1016/j.media.2020.101634
10.1016/j.crad.2019.10.012
10.1161/hc4201.098056
10.1186/s12880-022-00734-4
10.1109/CVPRW.2010.5543594
10.1145/357994.358023
10.1137/0111030
10.1016/0735-1097(94)90566-5
10.1007/s11548-019-02022-z
10.1007/s10479-005-5724-z
10.51130/graphicon-2020-2-3-75
10.1002/nav.3800020408
10.1111/j.1540-8183.2009.00491.x
10.1016/0002-9149(84)90235-2
10.1109/BIBM47256.2019.8983033
10.1109/EMBC.2016.7590784
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app13052975
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_219090ab12f9449da0e4d05a24ef5915
A751988509
10_3390_app13052975
GeographicLocations Netherlands
GeographicLocations_xml – name: Netherlands
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c431t-151733afec97409920c15796697acd5884c101daaa5ba8eae01cb88c1d02424b3
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:25:35 EDT 2025
Mon Jun 30 07:32:47 EDT 2025
Tue Jun 17 21:04:28 EDT 2025
Tue Jun 10 20:25:48 EDT 2025
Tue Jul 01 04:32:56 EDT 2025
Thu Apr 24 23:01:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-151733afec97409920c15796697acd5884c101daaa5ba8eae01cb88c1d02424b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7351-8981
OpenAccessLink https://doaj.org/article/219090ab12f9449da0e4d05a24ef5915
PQID 2785182273
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_219090ab12f9449da0e4d05a24ef5915
proquest_journals_2785182273
gale_infotracmisc_A751988509
gale_infotracacademiconefile_A751988509
crossref_citationtrail_10_3390_app13052975
crossref_primary_10_3390_app13052975
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 20230201
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Du (ref_39) 2021; 17
Garrone (ref_9) 2009; 22
ref_14
ref_13
ref_35
Soares (ref_12) 2006; 25
Qin (ref_42) 2020; 106
Suzuki (ref_8) 2020; 35
ref_11
Wang (ref_19) 2020; 75
Xian (ref_27) 2020; 10
ref_10
ref_32
ref_31
ref_30
Zhao (ref_29) 2021; 136
Ma (ref_17) 2020; 61
ref_18
Sousa (ref_4) 2001; 104
ref_38
ref_37
Kroese (ref_36) 2005; 134
Brown (ref_1) 1977; 55
Reiber (ref_6) 1994; 24
Serruys (ref_2) 1984; 54
Sianos (ref_45) 2005; 1
Yang (ref_21) 2019; 9
Bustince (ref_34) 2013; 44
Zhang (ref_33) 1984; 27
ref_25
ref_22
Andrushia (ref_24) 2015; 7
ref_43
ref_20
Baskaran (ref_23) 2020; 13
ref_41
(ref_15) 2022; 189
Serruys (ref_3) 1994; 331
ref_28
Tmenova (ref_16) 2019; 14
ref_26
Reiber (ref_5) 1993; 28
Karlin (ref_44) 1955; 2
Beauman (ref_7) 1996; 37
Marquardt (ref_40) 1963; 11
References_xml – volume: 25
  start-page: 1214
  year: 2006
  ident: ref_12
  article-title: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.879967
– volume: 136
  start-page: 104667
  year: 2021
  ident: ref_29
  article-title: Automatic extraction and stenosis evaluation of coronary arteries in invasive coronary angiograms
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104667
– ident: ref_30
– ident: ref_31
  doi: 10.1109/CVPR.2019.00766
– volume: 9
  start-page: 16897
  year: 2019
  ident: ref_21
  article-title: Deep learning segmentation of major vessels in X-ray coronary angiography
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-53254-7
– volume: 7
  start-page: 172
  year: 2015
  ident: ref_24
  article-title: Visual attention-based leukocyte image segmentation using extreme learning machine
  publication-title: Int. J. Adv. Intell. Paradig.
– ident: ref_10
  doi: 10.1007/BFb0056195
– volume: 331
  start-page: 489
  year: 1994
  ident: ref_3
  article-title: A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199408253310801
– volume: 189
  start-page: 116112
  year: 2022
  ident: ref_15
  article-title: Hybrid classical-quantum Convolutional Neural Network for stenosis detection in X-ray coronary angiography
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116112
– volume: 55
  start-page: 329
  year: 1977
  ident: ref_1
  article-title: Quantitative coronary arteriography: Estimation of dimensions, hemodynamic resistance, and atheroma mass of coronary artery lesions using the arteriogram and digital computation
  publication-title: Circulation
  doi: 10.1161/01.CIR.55.2.329
– volume: 1
  start-page: 219
  year: 2005
  ident: ref_45
  article-title: The SYNTAX Score: An angiographic tool grading the complexity of coronary artery disease
  publication-title: EuroIntervention
– volume: 28
  start-page: 187
  year: 1993
  ident: ref_5
  article-title: Accuracy and precision of quantitative digital coronary arteriography: Observer-, short-, and medium-term variabilities
  publication-title: Cathet. Cardiovasc. Diagn.
  doi: 10.1002/ccd.1810280301
– volume: 35
  start-page: 105
  year: 2020
  ident: ref_8
  article-title: Clinical expert consensus document on quantitative coronary angiography from the Japanese Association of Cardiovascular Intervention and Therapeutics
  publication-title: Cardiovasc. Interv. Ther.
  doi: 10.1007/s12928-020-00653-7
– ident: ref_35
  doi: 10.1007/978-3-319-24574-4_28
– volume: 106
  start-page: 107404
  year: 2020
  ident: ref_42
  article-title: U2-Net: Going deeper with nested U-structure for salient object detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107404
– volume: 17
  start-page: 32
  year: 2021
  ident: ref_39
  article-title: Training and validation of a deep learning architecture for the automatic analysis of coronary angiography
  publication-title: EuroIntervention
  doi: 10.4244/EIJ-D-20-00570
– ident: ref_26
  doi: 10.1109/ICCVW54120.2021.00378
– ident: ref_37
– volume: 37
  start-page: 24
  year: 1996
  ident: ref_7
  article-title: Comparisons of angiographic core laboratory analyses of phantom and clinical images: Interlaboratory variability
  publication-title: Cathet. Cardiovasc. Diagn.
  doi: 10.1002/(SICI)1097-0304(199601)37:1<24::AID-CCD7>3.0.CO;2-6
– volume: 10
  start-page: 8858344
  year: 2020
  ident: ref_27
  article-title: Main coronary vessel segmentation using deep learning in smart medical
  publication-title: Math. Probl. Eng.
– ident: ref_43
  doi: 10.1109/CVPR.2017.632
– ident: ref_32
  doi: 10.1109/CVPR.2017.660
– volume: 44
  start-page: 101
  year: 2013
  ident: ref_34
  article-title: Multiscale edge detection based on Gaussian smoothing and edge tracking
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2013.01.026
– ident: ref_18
  doi: 10.3390/jcm11133918
– ident: ref_28
  doi: 10.1007/978-3-031-12053-4_63
– volume: 61
  start-page: 101634
  year: 2020
  ident: ref_17
  article-title: Dynamic coronary roadmapping via catheter tip tracking in x-ray fluoroscopy with deep learning based Bayesian filtering
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101634
– volume: 13
  start-page: 1163
  year: 2020
  ident: ref_23
  article-title: Identification and quantification of cardiovascular structures from CCTA: An end-to-end, rapid, pixel-wise, deep-learning method
  publication-title: Cardiovasc. Imaging
– volume: 75
  start-page: 237.e11
  year: 2020
  ident: ref_19
  article-title: Coronary artery calcium score quantification using a deep-learning algorithm
  publication-title: Clin. Radiol.
  doi: 10.1016/j.crad.2019.10.012
– volume: 104
  start-page: 2007
  year: 2001
  ident: ref_4
  article-title: Sustained suppression of neointimal proliferation by sirolimus-eluting stents: 1-year angiographic and intravascular ultrasound follow-up
  publication-title: Circulation
  doi: 10.1161/hc4201.098056
– ident: ref_25
  doi: 10.1186/s12880-022-00734-4
– ident: ref_11
  doi: 10.1109/CVPRW.2010.5543594
– volume: 27
  start-page: 236
  year: 1984
  ident: ref_33
  article-title: A fast parallel algorithm for thinning digital patterns
  publication-title: Commun. ACM
  doi: 10.1145/357994.358023
– volume: 11
  start-page: 431
  year: 1963
  ident: ref_40
  article-title: An algorithm for least-squares estimation of nonlinear parameters
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0111030
– volume: 24
  start-page: 216
  year: 1994
  ident: ref_6
  article-title: A new approach for the quantification of complex lesion morphology: The gradient field transform; basic principles and validation results
  publication-title: J. Am. Coll Cardiol.
  doi: 10.1016/0735-1097(94)90566-5
– ident: ref_41
– volume: 14
  start-page: 1785
  year: 2019
  ident: ref_16
  article-title: CycleGAN for style transfer in X-ray angiography
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-019-02022-z
– volume: 134
  start-page: 19
  year: 2005
  ident: ref_36
  article-title: A tutorial on the cross-entropy method
  publication-title: Ann. OR
  doi: 10.1007/s10479-005-5724-z
– ident: ref_14
  doi: 10.51130/graphicon-2020-2-3-75
– ident: ref_38
– volume: 2
  start-page: 285
  year: 1955
  ident: ref_44
  article-title: The structure of dynamic programing models
  publication-title: Nav. Res. Logist. Q.
  doi: 10.1002/nav.3800020408
– volume: 22
  start-page: 527
  year: 2009
  ident: ref_9
  article-title: Quantitative coronary angiography in the current era: Principles and applications
  publication-title: J. Interv. Cardiol.
  doi: 10.1111/j.1540-8183.2009.00491.x
– ident: ref_22
– volume: 54
  start-page: 482
  year: 1984
  ident: ref_2
  article-title: Assessment of percutaneous transluminal coronary angioplasty by quantitative coronary angiography: Diameter versus densitometric area measurements
  publication-title: Am. J. Cardiol.
  doi: 10.1016/0002-9149(84)90235-2
– ident: ref_13
  doi: 10.1109/BIBM47256.2019.8983033
– ident: ref_20
  doi: 10.1109/EMBC.2016.7590784
SSID ssj0000913810
Score 2.314081
Snippet As a core technique to quantitatively assess the stenosis severity of coronary arteries, quantitative coronary analysis (QCA) is urgently supposed to become...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2975
SubjectTerms Accuracy
Algorithms
Angioplasty
Artificial intelligence
Automation
Cardiology
Cardiovascular disease
coronary angiogram
Coronary heart disease
Coronary vessels
Deep learning
Medical imaging
Methods
Mortality
qantitative coronary analysis
Stents
Tomography
Vein & artery diseases
vessel segmentation
vessel tree
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60XvQgWhXriz0IPiCYNJtkc5LWByIoKgreln2lF0lqHwf_vTPptragXrNDSOY9uzvfAByHFoOGUyrIdawDLrQlP2gDrJwLVACTmLoX5uExvXvj9-_Ju99wG_prlVOfWDtqWxnaI79o0xR5jGZZfNn_DGhqFJ2u-hEay7CCLliIBqx0bx6fXma7LIR6KaJw0pgXY31P58LothNqKF0IRTVi_19-uQ42txuw7rNE1pmIdROWXNmEtTnswCZseqscslMPHX22BZed8aiqQVjZ81iVdQMZujN2RTgFavDFphgkrIvRy7KqZNfO9ZlHWe1tw9vtzevVXeBHJAQGI_8owHidxbEqnMG6AJO9dmgi6i5N80wZS02oBm3OKqUSrYRTLoyMFsJElmIz1_EONMqqdLvAUm4szwWaJMopdpHWdOJXuIynokgz14LzKbek8fjhNMbiQ2IdQayVc6xtwfGMuD-BzfidrEtsn5EQ1nX9oBr0pDcdiT41zEOlo3aRc55bFTpuw0ShjhVJHuFLTkhokiwSP8go31iAv0XYVrKTYZYqBGZGLThYoERLMovLU7FLb8lD-aN3e_8v78MqjaKf3Og-gMZoMHaHmLCM9JHXym9O1ufK
  priority: 102
  providerName: ProQuest
Title Automatic Quantitative Coronary Analysis Based on Deep Learning
URI https://www.proquest.com/docview/2785182273
https://doaj.org/article/219090ab12f9449da0e4d05a24ef5915
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB58XPQgPrE-yh4EHxBMmk2yOUmrVhEUFQVvy77iRdKi7cF_78xmKy0oXrwmA9nM7LzY_b4BOIgtJg2nVFTqVEdcaEtx0EbYOVe4AUxmPBbm9i6_fuY3L9nL1KgvuhPW0AM3ijtFj4rLWOmkU5Wcl1bFjts4U_iFKis9vLyDOW-qmfIxuEyIuqoB5KXY19N5MIbrjICkMynIM_X_Fo99kumvwkqoDlm3WdUazLl6HZanOAPXYS144wc7CpTRxxtw1h2PBp58lT2MVe2BYxjG2DnxE6j3TzbhHmE9zFqWDWp24dyQBXbV10147l8-nV9HYTRCZDDjjyLM00WaqsoZ7AewyOvEJiFUaV4WylgCnxr0NauUyrQSTrk4MVoIk1jKyVynW7BQD2q3DSznxvJSoCuifVKXaE0nfZUreC6qvHAtOJloS5rAG07jK94k9g-kWjml2hYcfAsPG7qMn8V6pPZvEeK49g_Q8jJYXv5l-RYcktEkeSIuyKgAKMDfIk4r2S2wOhUCK6IW7M1IogeZ2dcTs8vgwR-yU2AtitVTke78x2J3YYkG1Tf3vfdgYfQ-dvtYzox0G-ZF_6oNi73Lu_vHtt_HX8uc8KI
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiBYQWwr4UMRDinASJ3EOqNq2LFv6kJBaqTfXr_SCku0-hPqn-I3MJM7SlYBbr7FlJePxfOPY3zcAO9whaHito9KkJhLSOIqDLsKdc4UOYDPbcmFOTvPxufh2kV2swa-eC0PXKvuY2AZq11j6R_4poSryiGZFuju5jqhqFJ2u9iU0Orc48jc_ccs2-3x4gPP7NklGX872x1GoKhBZBMt5hBBXpKmuvMVUGvOjhNuYCJl5WWjriLdp0U2d1jozWnrteWyNlDZ2BGfCpDjuPbgvUkRyYqaPvi7_6ZDGpox5RwPEdk6n0AgSGdFXV4CvrQ_wLxRooW30BB6HnJQNOyfagDVfb8KjW0qFm7ARYsCMvQ9C1R-ewu5wMW9ayVf2faHrlq6GwZPtkyqCnt6wXvGE7SFWOtbU7MD7CQuarlfP4PxOTPcc1uum9i-A5cI6UUoMAOgVqY-NofPFyhcil1Ve-AF87K2lbFArp6IZPxTuWsi06pZpB7Cz7DzpRDr-3m2PzL7sQsra7YNmeqXCQlUYwXnJtYmTqhSidJp74Xim0aOrrIxxkHc0aYrWP76Q1YHGgJ9FSlpqWGBOLCXmYQPYXumJ69auNvfTrkLcmKk_Xr71_-Y38GB8dnKsjg9Pj17CwwRTr-4u-Tasz6cL_wpTpbl53fong8u7XhC_AVXbIpU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggGgBsbSAD0U8pKhO4rwOqNrtdtVSWBVEpd5cv9ILSrb7EOpf49cxkzhLVwJuvcaWlYzH3zeOPd8A7HGLpOGUCgod60Dk2hIO2gB3ziU6gElMkwvzZZIen4tPF8nFBvzqcmHoWmWHiQ1Q29rQP_L9iKrII5tl8X7pr0WcjcYH0-uAKkjRSWtXTqN1kVN38xO3b_OPJyOc6zdRND76fngc-AoDgUHiXARId1kcq9IZDKsxVoq4CSk5My0yZSzlcBp0WauUSrTKnXI8NDrPTWiJ2oSOcdx7sJnRrqgHm8Ojydm31R8eUtzMQ94mBcZxwelMGikjoWTWNRpsqgX8ixMaohs_hkc-QmWD1qW2YMNV2_Dwlm7hNmx5RJizd162-v0TOBgsF3UjAMu-LlXVJK8hlLJD0khQsxvW6Z-wITKnZXXFRs5NmVd4vXoK53divGfQq-rKPQeWCmNFkSMcoI_ELtSaThtLl4k0L9PM9eFDZy1pvHY5ldD4IXEPQ6aVt0zbh71V52kr2fH3bkMy-6oL6Ww3D-rZlfTLViKe84IrHUZlIURhFXfC8kShf5dJEeIgb2nSJKEBvpBRPqkBP4t0teQgwwg5zzEq68PuWk9cxWa9uZt26VFkLv_4_Iv_N7-G-7gY5OeTyekOPIgwDmsvlu9CbzFbupcYNy30K--gDC7vek38BtPTKCc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Quantitative+Coronary+Analysis+Based+on+Deep+Learning&rft.jtitle=Applied+sciences&rft.au=Liu%2C+Xuqing&rft.au=Wang%2C+Xiaofei&rft.au=Chen%2C+Donghao&rft.au=Zhang%2C+Honggang&rft.date=2023-02-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=5&rft_id=info:doi/10.3390%2Fapp13052975&rft.externalDocID=A751988509
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon