Accelerating forest tree breeding by integrating genomic selection and greenhouse phenotyping

Breeding forest species can be a costly and slow process because of the extensive areas needed for field trials and the long periods (e.g., five years) that are required to measure economically and environmentally relevant phenotypes (e.g., adult plant biomass or plant height). Genomic selection (GS...

Full description

Saved in:
Bibliographic Details
Published inThe plant genome Vol. 13; no. 3; pp. e20048 - n/a
Main Authors Alves, Filipe C., Balmant, Kelly M., Resende, Marcio F. R., Kirst, Matias, los Campos, Gustavo
Format Journal Article
LanguageEnglish
Published United States Wiley 01.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Breeding forest species can be a costly and slow process because of the extensive areas needed for field trials and the long periods (e.g., five years) that are required to measure economically and environmentally relevant phenotypes (e.g., adult plant biomass or plant height). Genomic selection (GS) and indirect selection using early phenotypes (e.g., phenotypes collected in greenhouse conditions) are two ways by which tree breeding can be accelerated. These approaches can both reduce the costs of field‐testing and the time required to make selection decisions. Moreover, these approaches can be highly synergistic. Therefore, in this study, we used a data set comprising DNA genotypes and longitudinal measurements of growth collected from a population of Populus deltoides W. Bartram ex Marshall (eastern cottonwood) in the greenhouse and the field, to evaluate the potential impact of integrating large‐scale greenhouse phenotyping with conventional GS. We found that the integration of greenhouse phenotyping and GS can deliver very early selection decisions that are moderately accurate. Therefore, we conclude that the adoption of these approaches, in conjunction with reproductive techniques that shorten the generation interval, can lead to an unprecedented acceleration of selection gains in P. deltoides and, potentially, other commercially planted tree species.
AbstractList Breeding forest species can be a costly and slow process because of the extensive areas needed for field trials and the long periods (e.g., five years) that are required to measure economically and environmentally relevant phenotypes (e.g., adult plant biomass or plant height). Genomic selection (GS) and indirect selection using early phenotypes (e.g., phenotypes collected in greenhouse conditions) are two ways by which tree breeding can be accelerated. These approaches can both reduce the costs of field-testing and the time required to make selection decisions. Moreover, these approaches can be highly synergistic. Therefore, in this study, we used a data set comprising DNA genotypes and longitudinal measurements of growth collected from a population of Populus deltoides W. Bartram ex Marshall (eastern cottonwood) in the greenhouse and the field, to evaluate the potential impact of integrating large-scale greenhouse phenotyping with conventional GS. We found that the integration of greenhouse phenotyping and GS can deliver very early selection decisions that are moderately accurate. Therefore, we conclude that the adoption of these approaches, in conjunction with reproductive techniques that shorten the generation interval, can lead to an unprecedented acceleration of selection gains in P. deltoides and, potentially, other commercially planted tree species.
Abstract Breeding forest species can be a costly and slow process because of the extensive areas needed for field trials and the long periods (e.g., five years) that are required to measure economically and environmentally relevant phenotypes (e.g., adult plant biomass or plant height). Genomic selection (GS) and indirect selection using early phenotypes (e.g., phenotypes collected in greenhouse conditions) are two ways by which tree breeding can be accelerated. These approaches can both reduce the costs of field‐testing and the time required to make selection decisions. Moreover, these approaches can be highly synergistic. Therefore, in this study, we used a data set comprising DNA genotypes and longitudinal measurements of growth collected from a population of Populus deltoides W. Bartram ex Marshall (eastern cottonwood) in the greenhouse and the field, to evaluate the potential impact of integrating large‐scale greenhouse phenotyping with conventional GS. We found that the integration of greenhouse phenotyping and GS can deliver very early selection decisions that are moderately accurate. Therefore, we conclude that the adoption of these approaches, in conjunction with reproductive techniques that shorten the generation interval, can lead to an unprecedented acceleration of selection gains in P. deltoides and, potentially, other commercially planted tree species.
Abstract Breeding forest species can be a costly and slow process because of the extensive areas needed for field trials and the long periods (e.g., five years) that are required to measure economically and environmentally relevant phenotypes (e.g., adult plant biomass or plant height). Genomic selection (GS) and indirect selection using early phenotypes (e.g., phenotypes collected in greenhouse conditions) are two ways by which tree breeding can be accelerated. These approaches can both reduce the costs of field‐testing and the time required to make selection decisions. Moreover, these approaches can be highly synergistic. Therefore, in this study, we used a data set comprising DNA genotypes and longitudinal measurements of growth collected from a population of Populus deltoides W. Bartram ex Marshall (eastern cottonwood) in the greenhouse and the field, to evaluate the potential impact of integrating large‐scale greenhouse phenotyping with conventional GS. We found that the integration of greenhouse phenotyping and GS can deliver very early selection decisions that are moderately accurate. Therefore, we conclude that the adoption of these approaches, in conjunction with reproductive techniques that shorten the generation interval, can lead to an unprecedented acceleration of selection gains in P. deltoides and, potentially, other commercially planted tree species.
Author Alves, Filipe C.
Kirst, Matias
Resende, Marcio F. R.
los Campos, Gustavo
Balmant, Kelly M.
Author_xml – sequence: 1
  givenname: Filipe C.
  orcidid: 0000-0002-2127-4276
  surname: Alves
  fullname: Alves, Filipe C.
  email: filipecouto02@gmail.com
  organization: Michigan State University
– sequence: 2
  givenname: Kelly M.
  orcidid: 0000-0001-5189-5121
  surname: Balmant
  fullname: Balmant, Kelly M.
  organization: University of Florida
– sequence: 3
  givenname: Marcio F. R.
  orcidid: 0000-0002-2367-0766
  surname: Resende
  fullname: Resende, Marcio F. R.
  organization: University of Florida
– sequence: 4
  givenname: Matias
  orcidid: 0000-0002-8186-3945
  surname: Kirst
  fullname: Kirst, Matias
  organization: University of Florida
– sequence: 5
  givenname: Gustavo
  orcidid: 0000-0001-5692-7129
  surname: los Campos
  fullname: los Campos, Gustavo
  email: gustavoc@msu.edu
  organization: Michigan State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33217213$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1r3DAQhkVJaLJpL_0BxccS2ERftuRjCE0aWEgOyTEIWRp5FbySK3kJ---rXW9DT71Iw_DMIzTvAp2EGAChbwRfEYzp9TT29IpizOUndE5ajpeMCXryT32GFjm_YVyLVvLP6IwxSgQl7By93hgDAyQ9-dBXLibIUzUlgKorh903u13lwwT9kekhxI03VS5jZvIxVDrYqi90WMdthmpcF2LajQX-gk6dHjJ8Pd4X6OXu5_Ptr-Xq8f7h9ma1NJwRuRSMO9BEC4qNps5YzVnL2waMsDXhHcbS1HUtCtCYVtbWda3Dna0tkcZayy7Qw-y1Ub-pMfmNTjsVtVeHRky90mnyZgBVBhriJMWNkLzUnQZGwFHeatkK3RXXj9k1pvh7W9ahNj6XHQ06QPmforxhBMsyX9DLGTUp5pzAfTxNsNpHo_bRqEM0Bf5-9G67DdgP9G8WBSAz8O4H2P1HpZ6f7uks_QN9v5v-
CitedBy_id crossref_primary_10_1038_s41437_022_00582_6
crossref_primary_10_1371_journal_pone_0264780
crossref_primary_10_3390_f11111190
crossref_primary_10_3389_fpls_2023_1149469
crossref_primary_10_1038_s41437_024_00702_4
crossref_primary_10_3389_fpls_2021_638969
crossref_primary_10_3390_genes12050783
crossref_primary_10_1111_pbr_12979
crossref_primary_10_1016_j_indcrop_2021_113891
crossref_primary_10_2478_sg_2022_0011
crossref_primary_10_3390_genes14071484
crossref_primary_10_3390_f13122116
crossref_primary_10_1111_pbr_13001
crossref_primary_10_3390_biology12101298
Cites_doi 10.1534/g3.114.016097
10.1079/9781780641089.0000
10.1016/j.tplants.2011.11.005
10.1111/j.1469-1809.1936.tb02143.x
10.1534/genetics.112.143313
10.1093/genetics/28.6.476
10.1093/genetics/157.4.1819
10.3835/plantgenome2016.02.0016
10.1111/j.1469-8137.2011.04038.x
10.1038/hdy.2016.23
10.1186/1297-9686-30-3-221
10.1534/genetics.108.090159
10.1111/pbi.12213
10.3390/f10110993
10.1038/nrg2575
10.1534/genetics.117.300271
10.3168/jds.S0022-0302(06)72294-9
10.1038/s41477-017-0083-8
10.1038/506153a
10.3389/fpls.2018.01693
10.1007/s11056-014-9422-z
10.1002/ece3.3466
10.3168/jds.S0022-0302(97)75996-4
10.1534/g3.116.035584
10.1186/1297-9686-37-6-473
10.1534/genetics.107.081190
10.1007/s00122-013-2243-1
10.1534/genetics.118.301267
10.1139/x93-084
10.1016/S0301-6226(99)00183-9
10.1534/genetics.111.137026
10.3168/jds.2007-0980
10.1093/treephys/tpw015
10.1007/978-1-4419-1541-2_14
10.1186/s13007-019-0388-x
10.1534/g3.119.400346
10.2135/cropsci2011.06.0299
10.1534/genetics.114.171322
10.1002/pld3.80
10.1111/j.1469-8137.2011.03895.x
10.1016/S0301-6226(03)00151-9
10.1016/j.plantsci.2017.11.011
10.1038/s41598-020-65011-2
10.1007/s11295-010-0328-4
10.1038/s41437-018-0053-6
10.1111/nph.14154
10.1534/genetics.114.164442
ContentType Journal Article
Copyright 2020 The Authors. published by Wiley Periodicals, Inc. on behalf of Crop Science Society of America
2020 The Authors. The Plant Genome published by Wiley Periodicals, Inc. on behalf of Crop Science Society of America.
Copyright_xml – notice: 2020 The Authors. published by Wiley Periodicals, Inc. on behalf of Crop Science Society of America
– notice: 2020 The Authors. The Plant Genome published by Wiley Periodicals, Inc. on behalf of Crop Science Society of America.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOA
DOI 10.1002/tpg2.20048
DatabaseName Open Access: Wiley-Blackwell Open Access Journals
Wiley Online Library Free Content
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1940-3372
EndPage n/a
ExternalDocumentID oai_doaj_org_article_8cd61f8206784cd6bae31ef249a897ab
10_1002_tpg2_20048
33217213
TPG220048
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: U.S. National Science Foundation Plant Genome Research Program
  funderid: NSF IOS‐1444543
GroupedDBID .~0
0R~
123
18M
1OC
24P
5VS
6KN
AAHBH
AAHHS
ACAWQ
ACCFJ
ACXQS
ADBBV
ADKYN
ADZMN
AEEZP
AENEX
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CS3
EBS
ECGQY
EJD
FRP
GROUPED_DOAJ
H13
HCIFZ
IAO
IPNFZ
KQ8
M7P
MV1
M~E
NHAZY
O9-
OK1
PIMPY
RIG
TR2
WIN
CGR
CUY
CVF
ECM
EIF
ITC
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c4318-734fea1a720ca2fcda439496ec7d514b008c5557a726c985dfb9f0bd5d18cddd3
IEDL.DBID 24P
ISSN 1940-3372
IngestDate Tue Oct 22 14:52:32 EDT 2024
Fri Jun 28 12:04:15 EDT 2024
Thu Sep 26 18:17:18 EDT 2024
Sat Sep 28 08:30:12 EDT 2024
Sat Aug 24 01:06:40 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
2020 The Authors. The Plant Genome published by Wiley Periodicals, Inc. on behalf of Crop Science Society of America.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4318-734fea1a720ca2fcda439496ec7d514b008c5557a726c985dfb9f0bd5d18cddd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5189-5121
0000-0002-2367-0766
0000-0002-8186-3945
0000-0001-5692-7129
0000-0002-2127-4276
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftpg2.20048
PMID 33217213
PQID 2463108067
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_8cd61f8206784cd6bae31ef249a897ab
proquest_miscellaneous_2463108067
crossref_primary_10_1002_tpg2_20048
pubmed_primary_33217213
wiley_primary_10_1002_tpg2_20048_TPG220048
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
20201101
2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The plant genome
PublicationTitleAlternate Plant Genome
PublicationYear 2020
Publisher Wiley
Publisher_xml – name: Wiley
References 1997; 80
2017; 7
2017a; 7
2018; 121
1993; 23
2019; 10
2019; 15
2012; 17
2020; 10
2012a; 194
1936; 7
2016; 36
2012; 52
2017; 207
2018; 9
2014; 127
2018; 210
2018; 2
2009; 10
2018; 4
2007; 177
2016; 117
2005; 37
2013; 193
2014; 12
2019; 9
2012c; 190
2004; 86
2015; 5
2010
2000; 65
2018; 267
1996
2006; 18
2014; 198
2014; 45
2011; 7
2008; 91
2008; 180
2001; 157
2012b; 193
2014; 506
2006; 89
1943; 28
2016
2014
2017b; 213
1998; 30
2016; 9
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Hsu C. Y. (e_1_2_10_24_1) 2006; 18
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_6_1
Eckenwalder J. (e_1_2_10_11_1) 1996
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_8_1
e_1_2_10_37_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_32_1
e_1_2_10_30_1
Griffin A. R. (e_1_2_10_18_1) 1993; 23
e_1_2_10_51_1
Lopez‐Cruz M. (e_1_2_10_33_1) 2020; 10
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_45_1
Falconer D. S. (e_1_2_10_14_1) 1996
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Liu Y. X. (e_1_2_10_31_1) 2006; 89
e_1_2_10_19_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
Meyer K. (e_1_2_10_38_1) 2005; 37
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_50_1
Varona L. (e_1_2_10_52_1) 2018; 9
Alves F. C. (e_1_2_10_3_1) 2019; 15
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 213
  start-page: 799
  issue: 2
  year: 2017b
  end-page: 811
  article-title: Genome‐wide association study reveals putative regulators of bioenergy traits in
  publication-title: New Phytologist
– volume: 194
  start-page: 116
  issue: 1
  year: 2012a
  end-page: 128
  article-title: Genomic selection for growth and wood quality in Eucalyptus: Capturing the missing heritability and accelerating breeding for complex traits in forest trees
  publication-title: New Phytologist
– volume: 506
  start-page: 153
  issue: 7487
  year: 2014
  end-page: 155
  article-title: Carbon sequestration: Managing forests in uncertain times
  publication-title: Nature
– volume: 10
  start-page: 993
  issue: 11
  year: 2019
  article-title: Tree water use, water use efficiency, and carbon isotope discrimination in relation to growth potential in and Hybrids under field conditions
  publication-title: Forests
– volume: 15
  start-page: 14
  issue: 1
  year: 2019
  article-title: Bayesian analysis and prediction of hybrid performance
  publication-title: Plant Methods
– volume: 52
  start-page: 707
  issue: 2
  year: 2012
  article-title: Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers
  publication-title: Crop Science
– volume: 7
  start-page: 240
  year: 1936
  end-page: 250
  article-title: A discriminant function for plant selection
  publication-title: Annals of Eugenics
– volume: 91
  start-page: 4414
  issue: 11
  year: 2008
  end-page: 4423
  article-title: Efficient methods to compute genomic predictions
  publication-title: Journal of Dairy Science
– volume: 207
  start-page: 1135
  issue: 3
  year: 2017
  end-page: 1145
  article-title: Will big data close the missing heritability gap?
  publication-title: Genetics
– volume: 37
  start-page: 473
  issue: 5
  year: 2005
  end-page: 500
  article-title: Random regression analyses using B‐splines to model growth of Australian Angus cattle
  publication-title: Genetics Selection Evolution
– year: 2014
– start-page: 7
  year: 1996
  end-page: 32
– volume: 18
  start-page: 1856
  issue: 8
  year: 2006
  end-page: 1861
  article-title: Poplar FT2 shortens the juvenile phase and promotes seasonal flowering
  publication-title: Plant Cell
– volume: 198
  start-page: 483
  year: 2014
  end-page: 495
  article-title: Genome‐wide regression and prediction with the BGLR statistical package
  publication-title: Genetics
– volume: 9
  start-page: 1693
  year: 2018
  article-title: Quantitative genetics and genomics converge to accelerate forest tree breeding
  publication-title: Frontiers in Plant Science
– start-page: 309
  year: 2010
  end-page: 348
  article-title: Populus breeding: From the classical to the genomic approach
– volume: 89
  start-page: 2233
  issue: 6
  year: 2006
  end-page: 2235
  article-title: Short communication: Optimal random regression models for milk production in dairy cattle
  publication-title: Journal of Dairy Science
– volume: 23
  start-page: 640
  issue: 4
  year: 1993
  end-page: 647
  article-title: Effect of paclobutrazol on flower‐bud production and vegetative growth in two species of Eucalyptus
  publication-title: Canadian Journal of Forest Research
– volume: 121
  start-page: 24
  issue: 1
  year: 2018
  end-page: 37
  article-title: Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi‐environment trials
  publication-title: Heredity
– volume: 193
  start-page: 327
  year: 2013
  end-page: 345
  article-title: Whole‐genome regression and prediction methods applied to plant and animal breeding
  publication-title: Genetics
– volume: 2
  issue: 9
  year: 2018
  article-title: Utilizing random regression models for genomic prediction of a longitudinal trait derived from high‐throughput phenotyping
  publication-title: Plant Direct
– volume: 9
  issue: 78
  year: 2018
  article-title: Non‐additive effects in genomic selection
  publication-title: Frontiers in Genetics
– volume: 180
  start-page: 1153
  issue: 2
  year: 2008
  end-page: 1166
  article-title: Perils of parsimony: Properties of reduced‐rank estimates of genetic covariance matrices
  publication-title: Genetics
– volume: 17
  start-page: 64
  issue: 2
  year: 2012
  end-page: 72
  article-title: Accelerating the domestication of forest trees in a changing world
  publication-title: Trends in Plant Science
– volume: 127
  start-page: 595
  issue: 3
  year: 2014
  end-page: 607
  article-title: A reaction norm model for genomic selection using high‐dimensional genomic and environmental data
  publication-title: TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik
– volume: 86
  start-page: 35
  issue: 1–3
  year: 2004
  end-page: 45
  article-title: Application of random regression models in animal breeding
  publication-title: Livestock Production Science
– volume: 177
  start-page: 2389
  issue: 4
  year: 2007
  end-page: 2397
  article-title: The impact of genetic relationship information on genome‐assisted breeding values
  publication-title: Genetics
– volume: 193
  start-page: 617
  issue: 3
  year: 2012b
  end-page: 624
  article-title: Accelerating the domestication of trees using genomic selection: Accuracy of prediction models across ages and environments
  publication-title: New Phytologist
– volume: 10
  start-page: 381
  year: 2009
  end-page: 391
  article-title: Mapping genes for complex traits in domestic animals and their use in breeding programmes
  publication-title: Nature Reviews Genetics
– volume: 7
  start-page: 41
  issue: 1
  year: 2017
  end-page: 53
  article-title: Bayesian genomic prediction with genotype × environment interaction Kernel models
  publication-title: G3: Genes|Genomes|Genetics
– volume: 30
  start-page: 221
  issue: 3
  year: 1998
  end-page: 240
  article-title: Estimating covariance functions for longitudinal data using a random regression model
  publication-title: Genetics Selection Evolution
– volume: 267
  start-page: 84
  year: 2018
  end-page: 93
  article-title: Genomic relationships reveal significant dominance effects for growth in hybrid Eucalyptus
  publication-title: Plant Science
– year: 1996
– volume: 80
  start-page: 762
  issue: 4
  year: 1997
  end-page: 770
  article-title: Estimates of genetic parameters for a test day model with random regressions for yield traits of first lactation Holsteins
  publication-title: Journal of Dairy Science
– year: 2016
– volume: 65
  start-page: 19
  issue: 1–2
  year: 2000
  end-page: 38
  article-title: Random regressions to model phenotypic variation in monthly weights of Australian beef cows
  publication-title: Livestock Production Science
– volume: 210
  start-page: 477
  issue: 2
  year: 2018
  end-page: 497
  article-title: Accurate genomic prediction of human height
  publication-title: Genetics
– volume: 7
  start-page: 241
  issue: 2
  year: 2011
  end-page: 255
  article-title: Genomic selection in forest tree breeding
  publication-title: Tree Genetics and Genomes
– volume: 28
  start-page: 476
  year: 1943
  end-page: 490
  article-title: The genetic basis for constructing selection indexes
  publication-title: Genetics
– volume: 9
  start-page: 3369
  issue: 10
  year: 2019
  end-page: 3380
  article-title: Predicting longitudinal traits derived from high‐throughput phenomics in contrasting environments using genomic legendre polynomials and b‐splines
  publication-title: G3 Genes|Genomes|Genetics
– volume: 7
  start-page: 9426
  issue: 22
  year: 2017a
  end-page: 9440
  article-title: Population genomics of the eastern cottonwood ( )
  publication-title: Ecology and Evolution
– volume: 117
  start-page: 33
  issue: 1
  year: 2016
  end-page: 41
  article-title: The contribution of dominance to phenotype prediction in a pine breeding and simulated population
  publication-title: Heredity
– volume: 10
  start-page: 8195
  issue: 1
  year: 2020
  article-title: Regularized selection indices for breeding value prediction using hyper‐spectral image data
  publication-title: Scientific Reports
– volume: 9
  start-page: 1
  issue: 2
  year: 2016
  end-page: 8
  article-title: Genomic prediction of barley hybrid performance
  publication-title: The Plant Genome
– volume: 45
  start-page: 379
  issue: 3
  year: 2014
  end-page: 401
  article-title: Genomic selection in forest tree breeding: The concept and an outlook to the future
  publication-title: New Forests
– volume: 4
  start-page: 23
  issue: 1
  year: 2018
  end-page: 29
  article-title: Speed breeding is a powerful tool to accelerate crop research and breeding
  publication-title: Nature Plants
– volume: 12
  start-page: 1066
  issue: 8
  year: 2014
  end-page: 1074
  article-title: Successful crossings with early flowering transgenic poplar: Interspecific crossings, but not transgenesis, promoted aberrant phenotypes in offspring
  publication-title: Plant Biotechnology Journal
– volume: 5
  start-page: 569
  issue: 4
  year: 2015
  end-page: 582
  article-title: Increased prediction accuracy in wheat breeding trials using a marker × environment interaction genomic selection model
  publication-title: G3: Genes|Genomes|Genetics
– volume: 198
  start-page: 1759
  issue: 4
  year: 2014
  end-page: 1768
  article-title: Unraveling additive from nonadditive effects using genomic relationship matrices
  publication-title: Genetics
– volume: 36
  start-page: 667
  issue: 5
  year: 2016
  end-page: 677
  article-title: Low temperatures are required to induce the development of fertile flowers in transgenic male and female early flowering poplar ( L.)
  publication-title: Tree Physiology
– volume: 157
  start-page: 1819
  issue: 4
  year: 2001
  end-page: 1829
  article-title: Prediction of total genetic value using genome‐wide dense marker maps
  publication-title: Genetics
– volume: 190
  start-page: 1503
  issue: 4
  year: 2012c
  end-page: 1510
  article-title: Accuracy of genomic selection methods in a standard data set of loblolly pine ( L.)
  publication-title: Genetics
– ident: e_1_2_10_32_1
  doi: 10.1534/g3.114.016097
– ident: e_1_2_10_25_1
  doi: 10.1079/9781780641089.0000
– ident: e_1_2_10_20_1
  doi: 10.1016/j.tplants.2011.11.005
– ident: e_1_2_10_48_1
  doi: 10.1111/j.1469-1809.1936.tb02143.x
– ident: e_1_2_10_8_1
  doi: 10.1534/genetics.112.143313
– ident: e_1_2_10_21_1
  doi: 10.1093/genetics/28.6.476
– volume-title: Introduction to quantitative genetics
  year: 1996
  ident: e_1_2_10_14_1
  contributor:
    fullname: Falconer D. S.
– ident: e_1_2_10_35_1
  doi: 10.1093/genetics/157.4.1819
– ident: e_1_2_10_43_1
  doi: 10.3835/plantgenome2016.02.0016
– ident: e_1_2_10_44_1
  doi: 10.1111/j.1469-8137.2011.04038.x
– ident: e_1_2_10_2_1
  doi: 10.1038/hdy.2016.23
– ident: e_1_2_10_36_1
  doi: 10.1186/1297-9686-30-3-221
– ident: e_1_2_10_39_1
  doi: 10.1534/genetics.108.090159
– ident: e_1_2_10_23_1
  doi: 10.1111/pbi.12213
– ident: e_1_2_10_34_1
  doi: 10.3390/f10110993
– ident: e_1_2_10_15_1
  doi: 10.1038/nrg2575
– ident: e_1_2_10_29_1
  doi: 10.1534/genetics.117.300271
– volume: 89
  start-page: 2233
  issue: 6
  year: 2006
  ident: e_1_2_10_31_1
  article-title: Short communication: Optimal random regression models for milk production in dairy cattle
  publication-title: Journal of Dairy Science
  doi: 10.3168/jds.S0022-0302(06)72294-9
  contributor:
    fullname: Liu Y. X.
– ident: e_1_2_10_53_1
  doi: 10.1038/s41477-017-0083-8
– ident: e_1_2_10_4_1
  doi: 10.1038/506153a
– ident: e_1_2_10_17_1
  doi: 10.3389/fpls.2018.01693
– ident: e_1_2_10_26_1
  doi: 10.1007/s11056-014-9422-z
– ident: e_1_2_10_12_1
  doi: 10.1002/ece3.3466
– ident: e_1_2_10_27_1
  doi: 10.3168/jds.S0022-0302(97)75996-4
– ident: e_1_2_10_7_1
  doi: 10.1534/g3.116.035584
– volume: 37
  start-page: 473
  issue: 5
  year: 2005
  ident: e_1_2_10_38_1
  article-title: Random regression analyses using B‐splines to model growth of Australian Angus cattle
  publication-title: Genetics Selection Evolution
  doi: 10.1186/1297-9686-37-6-473
  contributor:
    fullname: Meyer K.
– ident: e_1_2_10_19_1
  doi: 10.1534/genetics.107.081190
– ident: e_1_2_10_28_1
  doi: 10.1007/s00122-013-2243-1
– ident: e_1_2_10_30_1
  doi: 10.1534/genetics.118.301267
– volume: 23
  start-page: 640
  issue: 4
  year: 1993
  ident: e_1_2_10_18_1
  article-title: Effect of paclobutrazol on flower‐bud production and vegetative growth in two species of Eucalyptus
  publication-title: Canadian Journal of Forest Research
  doi: 10.1139/x93-084
  contributor:
    fullname: Griffin A. R.
– ident: e_1_2_10_37_1
  doi: 10.1016/S0301-6226(99)00183-9
– ident: e_1_2_10_46_1
  doi: 10.1534/genetics.111.137026
– volume: 9
  issue: 78
  year: 2018
  ident: e_1_2_10_52_1
  article-title: Non‐additive effects in genomic selection
  publication-title: Frontiers in Genetics
  contributor:
    fullname: Varona L.
– ident: e_1_2_10_51_1
  doi: 10.3168/jds.2007-0980
– ident: e_1_2_10_22_1
  doi: 10.1093/treephys/tpw015
– start-page: 7
  volume-title: Biology of Populus and its implications for management and conservation
  year: 1996
  ident: e_1_2_10_11_1
  contributor:
    fullname: Eckenwalder J.
– ident: e_1_2_10_49_1
  doi: 10.1007/978-1-4419-1541-2_14
– volume: 15
  start-page: 14
  issue: 1
  year: 2019
  ident: e_1_2_10_3_1
  article-title: Bayesian analysis and prediction of hybrid performance
  publication-title: Plant Methods
  doi: 10.1186/s13007-019-0388-x
  contributor:
    fullname: Alves F. C.
– ident: e_1_2_10_40_1
  doi: 10.1534/g3.119.400346
– ident: e_1_2_10_5_1
  doi: 10.2135/cropsci2011.06.0299
– ident: e_1_2_10_41_1
  doi: 10.1534/genetics.114.171322
– volume: 18
  start-page: 1856
  issue: 8
  year: 2006
  ident: e_1_2_10_24_1
  article-title: Poplar FT2 shortens the juvenile phase and promotes seasonal flowering
  publication-title: Plant Cell
  contributor:
    fullname: Hsu C. Y.
– ident: e_1_2_10_6_1
  doi: 10.1002/pld3.80
– ident: e_1_2_10_45_1
  doi: 10.1111/j.1469-8137.2011.03895.x
– ident: e_1_2_10_47_1
  doi: 10.1016/S0301-6226(03)00151-9
– ident: e_1_2_10_50_1
  doi: 10.1016/j.plantsci.2017.11.011
– ident: e_1_2_10_9_1
– volume: 10
  start-page: 8195
  issue: 1
  year: 2020
  ident: e_1_2_10_33_1
  article-title: Regularized selection indices for breeding value prediction using hyper‐spectral image data
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-65011-2
  contributor:
    fullname: Lopez‐Cruz M.
– ident: e_1_2_10_16_1
  doi: 10.1007/s11295-010-0328-4
– ident: e_1_2_10_10_1
  doi: 10.1038/s41437-018-0053-6
– ident: e_1_2_10_13_1
  doi: 10.1111/nph.14154
– ident: e_1_2_10_42_1
  doi: 10.1534/genetics.114.164442
SSID ssj0057984
Score 2.32593
Snippet Breeding forest species can be a costly and slow process because of the extensive areas needed for field trials and the long periods (e.g., five years) that...
Abstract Breeding forest species can be a costly and slow process because of the extensive areas needed for field trials and the long periods (e.g., five...
Abstract Breeding forest species can be a costly and slow process because of the extensive areas needed for field trials and the long periods (e.g., five...
SourceID doaj
proquest
crossref
pubmed
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage e20048
SubjectTerms Breeding
Forests
Genomics
Selection, Genetic
Trees - genetics
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcCCeBNeMoIJKWpi5-GMLaJUDIihlbogy_GjMJBWEIb-e-6cpioSgoXNiSzH-s7x3SefvyPkGlhEZJNSh8JxE6KmVFg47sJIgXfOVKGY9Vm-j9lwnDxM0slaqS_MCWvkgRvgukKbLHZeZVwk0C6V5bF1wBqUKHJV-t03Tlsy1ezBaV6IZCVGyrr1fOpFJ7HKz5r78Sr9P4WW3yNV72oGO2R7GSPSXjO3XbJhqz2y2Z9BHLfYJ889rcFXoOWqKYWYE4akeLZMgd16V0TLBW1lIPARdVjfXjX98DVvwBBUVYZOMePmBYi_pZjnNasXeHXqgIwHd6PbYbgskhBq8P0izHnirIpVziKtmNNG4V3XIrM6NwA3_FVCp2maQ4dMFyI1rixcVJrUxACtMfyQdKpZZY8JzQwiCfGBUHnimAYmFnOgN5zD0CZOAnLVYifnjRaGbFSPmUSEpUc4IH2EddUD9av9C7CqXFpV_mXVgFy2RpGw3vEQQ1UWIJEsyTjmRWZ5QI4aa60-xTmW24p5QG68-X6ZpRw93TPfOvmP-Z6SLYZE3F9SPCOd-v3TnkO0UpcXfmF-ASFl5yw
  priority: 102
  providerName: Directory of Open Access Journals
Title Accelerating forest tree breeding by integrating genomic selection and greenhouse phenotyping
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftpg2.20048
https://www.ncbi.nlm.nih.gov/pubmed/33217213
https://search.proquest.com/docview/2463108067
https://doaj.org/article/8cd61f8206784cd6bae31ef249a897ab
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7y6CGX0qQvt82i0J4KJmtJtmToJRvyIIewlARyKULWY9ND7ZDdHPbfd0ZebwiEQG62kSUzo9F8Y818AviBUcQ4yMblOgqfE6dUXkcR87FF71zZ2vKQsnwvq_NreXFT3mzAr6EWpueHWP9wI8tI6zUZuG3mh4-koYu7WSKSlHoTthHXaJrTXE6HdbhUte73lCWuNELxNTkpP3x894k7Sqz9z0HNp8g1uZ7Td_B2hRnZUa_kXdgI7R68mXSI65bv4c-Rc-g7SJPtjCEGxS4Z7TUzjHaTa2LNkg20EHRLvKz__jo2T2fgoGKYbT2bUQbObfcwD4zyvrrFkkqpPsD16cnV8Xm-OjQhd4gFdK6EjMEWVvGxszw6b6n2ta6CUx7Fj1amXVmWChtUrtalj00dx40vfaGd9158hK22a8NnYJXnhBdRtFbJyB1GZoXAcEcI7NoXMoPvg-zMXc-NYXoWZG5IwiZJOIMJiXXdgvis04PufmZW5mFw6KqIiUteS7xubBBFiBgbWl0r22RwMCjF4PynTQ3bBhSJ4bISlCdZqQw-9dpaDyUEHb9ViAx-JvW98JXmanrG09WX1zT-CjucAvBUnPgNthb3D2EfUcqiGaXJOILtycnl9Pcoxfr_AXyz40o
link.rule.ids 315,786,790,870,2115,11589,27955,27956,33778,46085,46509,50847,50956
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61tBJcqj4h9OWqPVWK2NhO7BwBQbftdsVhV9pLZTl-LBxIECyH_ffMOLuLkCqk3pLIsaOZjOcbe-YzwDeMIgZBNi7XUficOKXyOoqYDyx658rWloeU5TuuhlP5a1bOVrk5VAvT80NsFtzIMtJ8TQZOC9IH96yhi6t5YpKU-ik8k8QER8TO8mw9EZeq1v2mssSpRii-YSflB_fvPvBHibb_X1jzIXRNvuf0JbxYgUZ22Gv5FTwJ7Wt4ftQhsFu-gb-HzqHzIFW2c4YgFLtktNnMMNxNvok1S7bmhaBbIma9vHDsJh2Cg5phtvVsTik4593tTWCU-NUtllRL9RampyeT42G-OjUhdwgGdK6EjMEWVvGBszw6b6n4ta6CUx7lj2amXVmWChtUrtalj00dB40vfaGd9168g622a8MesMpzAoxFqa2SkTsMzQqB8Y4Q2LUvZAZf17IzVz05hulpkLkhCZsk4QyOSKybFkRonR5013Ozsg-DQ1dFTGTyWuJ1Y4MoQsTg0Opa2SaDL2ulGDQA2tWwbUCRGC4rQYmSlcpgt9fWZigh6PytQmTwPanvka80k7MfPF3t_0_jz7A9nPwZmdHP8e_3sMMpGk-Vih9ga3F9Gz4iZFk0n9KPeQdBsuQj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VghAXxLMEKBjBCSnqxnZsR-LS11IeqvbQSr0gy_Fj4UCyareH_ffMOJutKiEkbknk2NGMx_NNPPMZ4ANGEZMoW1-aJEJJnFJlk0QqJw69s3KN4zFn-Z6qk3P59aK-2IJPYy3MwA-x-eFGlpHXazLwRUh7N6Shy8U8E0lKcwfuSoXQgXid5Wxch2vdmGFPWeJKIzTfkJPyvZt3b7mjzNr_N6h5G7lm1zN9BA_XmJHtD0p-DFuxewL3DnrEdaun8GPfe_QdpMluzhCDYpeM9poZRrvZNbF2xUZaCLolXtbfvzy7ymfgoGKY6wKbUwbOz_76KjLK--qXKyqlegbn0-Ozw5NyfWhC6RELmFILmaKrnOYT73jywVHta6Oi1wHFj1ZmfF3XGhso35g6pLZJkzbUoTI-hCCew3bXd_EFMBU44cWqNk7LxD1GZpXAcEcI7DpUsoD3o-zsYuDGsAMLMrckYZslXMABiXXTgvis84P-cm7X5mFxaFWlzCVvJF63LooqJowNnWm0awt4NyrF4vynTQ3XRRSJ5VIJypNUuoCdQVuboYSg47cqUcDHrL5_fKU9m33m-erl_zR-C_dnR1P7_cvpt1fwgFMsnusUX8P28vI67iJgWbZv8rz8A-v640w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+forest+tree+breeding+by+integrating+genomic+selection+and+greenhouse+phenotyping&rft.jtitle=The+plant+genome&rft.au=Alves%2C+Filipe+C&rft.au=Balmant%2C+Kelly+M&rft.au=Resende%2C+Jr%2C+Marcio+F+R&rft.au=Kirst%2C+Matias&rft.date=2020-11-01&rft.eissn=1940-3372&rft.volume=13&rft.issue=3&rft.spage=e20048&rft_id=info:doi/10.1002%2Ftpg2.20048&rft_id=info%3Apmid%2F33217213&rft.externalDocID=33217213
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1940-3372&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1940-3372&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1940-3372&client=summon