Placenta‐Derived Multipotent Cells Exhibit Immunosuppressive Properties That Are Enhanced in the Presence of Interferon‐γ
Several types of nonhematopoietic stem cells, including bone marrow mesenchymal stem cells (BMMSCs) and embryonic stem cells, have been shown to have immunosuppressive properties. We show that human placenta‐derived multipotent cells (PDMCs), which are isolated from a source without ethical concern...
Saved in:
Published in | Stem cells (Dayton, Ohio) Vol. 24; no. 11; pp. 2466 - 2477 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
John Wiley & Sons, Ltd
01.11.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Several types of nonhematopoietic stem cells, including bone marrow mesenchymal stem cells (BMMSCs) and embryonic stem cells, have been shown to have immunosuppressive properties. We show that human placenta‐derived multipotent cells (PDMCs), which are isolated from a source without ethical concern and harbor multilineage differentiation potential, have strong immunosuppressive properties. PDMCs suppress both mitogen‐induced and allogeneic lymphocyte proliferation in both CD4 and CD8 populations. The immunosuppression seen with PDMCs was significantly stronger than that with BMMSCs. Both PDMCs and BMMSCs express indoleamine 2,3‐dioxygenase, but only PDMCs are positive for intracellular human leukocyte antigen‐G (HLA). Mechanistically, suppression of lymphocyte reactivity by PDMCs is not due to cell death but to decreased cell proliferation and increased numbers of regulatory T cells. Addition of neutralizing antibodies to interleukin‐10 and transforming growth factor (TGF)‐β partially restored lymphocyte proliferation. Unlike BMMSCs, PDMCs treated with interferon‐γ for 3 days only very minimally upregulated HLA‐DR. On the contrary, PD‐L1, a cell surface marker that plays an inhibitory role in T‐cell activation, was upregulated and TGF‐β expression was seen. The immunosuppressive properties of PDMCs, along with their multilineage differentiation potential, ease of accessibility, and abundant cell numbers, may render these cells as good potential sources for future therapeutic applications. |
---|---|
AbstractList | Several types of nonhematopoietic stem cells, including bone marrow mesenchymal stem cells (BMMSCs) and embryonic stem cells, have been shown to have immunosuppressive properties. We show that human placenta-derived multipotent cells (PDMCs), which are isolated from a source without ethical concern and harbor multilineage differentiation potential, have strong immunosuppressive properties. PDMCs suppress both mitogen-induced and allogeneic lymphocyte proliferation in both CD4 and CD8 populations. The immunosuppression seen with PDMCs was significantly stronger than that with BMMSCs. Both PDMCs and BMMSCs express indoleamine 2,3-dioxygenase, but only PDMCs are positive for intracellular human leukocyte antigen-G (HLA). Mechanistically, suppression of lymphocyte reactivity by PDMCs is not due to cell death but to decreased cell proliferation and increased numbers of regulatory T cells. Addition of neutralizing antibodies to interleukin-10 and transforming growth factor (TGF)-beta partially restored lymphocyte proliferation. Unlike BMMSCs, PDMCs treated with interferon-gamma for 3 days only very minimally upregulated HLA-DR. On the contrary, PD-L1, a cell surface marker that plays an inhibitory role in T-cell activation, was upregulated and TGF-beta expression was seen. The immunosuppressive properties of PDMCs, along with their multilineage differentiation potential, ease of accessibility, and abundant cell numbers, may render these cells as good potential sources for future therapeutic applications. Several types of nonhematopoietic stem cells, including bone marrow mesenchymal stem cells (BMMSCs) and embryonic stem cells, have been shown to have immunosuppressive properties. We show that human placenta-derived multipotent cells (PDMCs), which are isolated from a source without ethical concern and harbor multilineage differentiation potential, have strong immunosuppressive properties. PDMCs suppress both mitogen-induced and allogeneic lymphocyte proliferation in both CD4 and CD8 populations. The immunosuppression seen with PDMCs was significantly stronger than that with BMMSCs. Both PDMCs and BMMSCs express indoleamine 2,3-dioxygenase, but only PDMCs are positive for intracellular human leukocyte antigen-G (HLA). Mechanistically, suppression of lymphocyte reactivity by PDMCs is not due to cell death but to decreased cell proliferation and increased numbers of regulatory T cells. Addition of neutralizing antibodies to interleukin-10 and transforming growth factor (TGF)-{szligbeta} partially restored lymphocyte proliferation. Unlike BMMSCs, PDMCs treated with interferon- gamma for 3 days only very minimally upregulated HLA-DR. On the contrary, PD-L1, a cell surface marker that plays an inhibitory role in T-cell activation, was upregulated and TGF-{szligbeta} expression was seen. The immunosuppressive properties of PDMCs, along with their multilineage differentiation potential, ease of accessibility, and abundant cell numbers, may render these cells as good potential sources for future therapeutic applications. Several types of nonhematopoietic stem cells, including bone marrow mesenchymal stem cells (BMMSCs) and embryonic stem cells, have been shown to have immunosuppressive properties. We show that human placenta‐derived multipotent cells (PDMCs), which are isolated from a source without ethical concern and harbor multilineage differentiation potential, have strong immunosuppressive properties. PDMCs suppress both mitogen‐induced and allogeneic lymphocyte proliferation in both CD4 and CD8 populations. The immunosuppression seen with PDMCs was significantly stronger than that with BMMSCs. Both PDMCs and BMMSCs express indoleamine 2,3‐dioxygenase, but only PDMCs are positive for intracellular human leukocyte antigen‐G (HLA). Mechanistically, suppression of lymphocyte reactivity by PDMCs is not due to cell death but to decreased cell proliferation and increased numbers of regulatory T cells. Addition of neutralizing antibodies to interleukin‐10 and transforming growth factor (TGF)‐β partially restored lymphocyte proliferation. Unlike BMMSCs, PDMCs treated with interferon‐γ for 3 days only very minimally upregulated HLA‐DR. On the contrary, PD‐L1, a cell surface marker that plays an inhibitory role in T‐cell activation, was upregulated and TGF‐β expression was seen. The immunosuppressive properties of PDMCs, along with their multilineage differentiation potential, ease of accessibility, and abundant cell numbers, may render these cells as good potential sources for future therapeutic applications. |
Author | Chien, Chih‐Cheng Yen, B. Linju Chen, Yao‐Chang Huang, Hsing‐I. Bai, Chyi‐Huey Chang, Chun‐Jung Yen, Men‐Luh |
Author_xml | – sequence: 1 givenname: Chun‐Jung surname: Chang fullname: Chang, Chun‐Jung – sequence: 2 givenname: Men‐Luh surname: Yen fullname: Yen, Men‐Luh – sequence: 3 givenname: Yao‐Chang surname: Chen fullname: Chen, Yao‐Chang – sequence: 4 givenname: Chih‐Cheng surname: Chien fullname: Chien, Chih‐Cheng – sequence: 5 givenname: Hsing‐I. surname: Huang fullname: Huang, Hsing‐I. – sequence: 6 givenname: Chyi‐Huey surname: Bai fullname: Bai, Chyi‐Huey – sequence: 7 givenname: B. Linju surname: Yen fullname: Yen, B. Linju email: blyen@nhri.org.tw |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17071860$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc9u1DAQhy1URP_AEyAhn7il2LFjx-JUbRdYqRWVWM6W40y0RokTbKelF8Qj8C59jz4ET4KjXcERTrZmvvmNNN8pOvKjB4ReUnJOBeNvYoLBQt_H85IQURAi6RN0QiuuCq5ofZT_RIiiIkodo9MYvxBCeVXXz9AxlRmuBTlB3296Y8En8-vHz0sI7hZafD33yU1jymW8Whbg9beda1zCm2GY_RjnaQoQY4bxTRgnCMlBxNudSfgiAF77nfE2BzmP025hIEIu4LHDG58gdBBGnxc-PjxHTzvTR3hxeM_Q53fr7epDcfXx_WZ1cVVYzqgobAW0sWBbBaZuSwtKMgqNYobbjsi2yQ2pWAc1MRWlsqJKCltRBqZreCfZGXq9z53C-HWGmPTg4nI842GcoxaKUJmv8k-QKiVLzusMsj1owxhjgE5PwQ0m3GtK9OJH__GjFz968ZOnXh3i52aA9u_MQUgG3u6BO9fD_f9k6k_b9XXJSy4E-w3qcai8 |
CitedBy_id | crossref_primary_10_1007_s00018_019_03268_1 crossref_primary_10_1007_s12015_017_9759_8 crossref_primary_10_1089_scd_2007_0156 crossref_primary_10_1002_jcb_22873 crossref_primary_10_1089_scd_2007_0154 crossref_primary_10_3390_ijms21145075 crossref_primary_10_1002_stem_157 crossref_primary_10_1189_jlb_3A0513_242R crossref_primary_10_3390_ijms19082385 crossref_primary_10_3727_096368910X564067 crossref_primary_10_1111_petr_12990 crossref_primary_10_1177_09636897241226737 crossref_primary_10_32604_biocell_2022_018200 crossref_primary_10_1186_1741_7015_10_56 crossref_primary_10_1002_jcb_24303 crossref_primary_10_1016_j_jcyt_2015_03_006 crossref_primary_10_3892_ol_2012_772 crossref_primary_10_1177_021849230801600501 crossref_primary_10_3390_cells10010054 crossref_primary_10_3892_mmr_2012_1000 crossref_primary_10_1016_j_molimm_2017_03_003 crossref_primary_10_1002_stem_2795 crossref_primary_10_1016_j_jneuroim_2009_12_005 crossref_primary_10_1155_2017_8492797 crossref_primary_10_3727_096368911X637380 crossref_primary_10_1002_med_21322 crossref_primary_10_1002_term_362 crossref_primary_10_1111_j_1582_4934_2012_01575_x crossref_primary_10_1111_jcmm_15800 crossref_primary_10_1007_s10439_022_02920_5 crossref_primary_10_1016_j_brainres_2009_12_001 crossref_primary_10_3390_ani14091292 crossref_primary_10_1111_jcmm_16851 crossref_primary_10_5966_sctm_2015_0012 crossref_primary_10_1016_j_stemcr_2015_07_013 crossref_primary_10_1038_srep14135 crossref_primary_10_1002_cbin_10024 crossref_primary_10_3389_fbioe_2020_00180 crossref_primary_10_1146_annurev_bioeng_070909_105309 crossref_primary_10_1155_2014_216806 crossref_primary_10_1371_journal_pone_0059403 crossref_primary_10_1016_j_semcdb_2007_09_012 crossref_primary_10_18632_oncotarget_16682 crossref_primary_10_1093_cvr_cvr018 crossref_primary_10_3727_096368914X685230 crossref_primary_10_3109_14653249_2010_536213 crossref_primary_10_1186_s13643_020_01437_z crossref_primary_10_3727_096368915X686922 crossref_primary_10_5966_sctm_2015_0363 crossref_primary_10_1016_j_bbi_2012_10_015 crossref_primary_10_1634_stemcells_2007_0878 crossref_primary_10_1038_labinvest_2016_37 crossref_primary_10_1167_iovs_19_27041 crossref_primary_10_1186_s13287_017_0660_9 crossref_primary_10_1007_s11302_016_9529_0 crossref_primary_10_3390_cells11152319 crossref_primary_10_1186_s13104_018_3411_9 crossref_primary_10_1016_j_bbrc_2019_09_129 crossref_primary_10_1016_j_tjog_2014_04_011 crossref_primary_10_1111_j_1537_2995_2011_03077_x crossref_primary_10_3389_fvets_2017_00083 crossref_primary_10_3390_ijms23031674 crossref_primary_10_1371_journal_pone_0155161 crossref_primary_10_1016_j_athoracsur_2012_11_053 crossref_primary_10_1007_s10404_014_1455_2 crossref_primary_10_1016_j_lfs_2016_04_009 crossref_primary_10_1634_stemcells_2007_0491 crossref_primary_10_1016_j_ajg_2017_05_012 crossref_primary_10_1016_j_jbiosc_2014_05_001 crossref_primary_10_1111_j_1398_9995_2012_02875_x crossref_primary_10_3389_fbioe_2020_619980 crossref_primary_10_3748_wjg_v21_i14_4379 crossref_primary_10_1016_j_humimm_2012_12_011 crossref_primary_10_1097_TP_0b013e31821aba18 crossref_primary_10_1007_s00441_013_1560_7 crossref_primary_10_1097_MIB_0000000000000111 crossref_primary_10_1016_j_biomaterials_2013_03_016 crossref_primary_10_3109_14653249_2011_602338 crossref_primary_10_1186_s13287_017_0611_5 crossref_primary_10_3727_096368915X688263 crossref_primary_10_1159_000128968 crossref_primary_10_3109_14653240903493417 crossref_primary_10_1186_s12929_016_0289_5 crossref_primary_10_1016_j_biomaterials_2013_02_062 crossref_primary_10_1016_j_semcancer_2019_08_015 crossref_primary_10_1111_edt_12599 crossref_primary_10_1016_j_placenta_2012_12_015 crossref_primary_10_4142_jvs_2012_13_1_23 crossref_primary_10_1186_scrt339 crossref_primary_10_3727_096368911X580590 crossref_primary_10_4049_jimmunol_0902318 crossref_primary_10_1089_scd_2016_0041 crossref_primary_10_1038_srep30314 crossref_primary_10_3390_ijms231911475 crossref_primary_10_1089_scd_2016_0324 crossref_primary_10_1016_j_placenta_2007_07_001 crossref_primary_10_1016_j_neurobiolaging_2013_03_029 crossref_primary_10_4081_oncol_2020_429 crossref_primary_10_1007_s12015_010_9200_z crossref_primary_10_1634_stemcells_2008_0390 crossref_primary_10_1089_scd_2009_0404 crossref_primary_10_1002_jbm_b_33478 crossref_primary_10_1016_j_humimm_2008_10_016 crossref_primary_10_1002_stem_1387 crossref_primary_10_1111_j_1365_2249_2011_04540_x crossref_primary_10_1016_j_bmhime_2017_11_036 crossref_primary_10_3389_fimmu_2023_1241068 crossref_primary_10_1016_j_biomaterials_2010_02_011 crossref_primary_10_3727_096368915X687200 crossref_primary_10_1016_j_neuroscience_2016_05_028 crossref_primary_10_1007_s10875_010_9415_4 crossref_primary_10_2217_rme_2020_0044 crossref_primary_10_1016_j_biomaterials_2011_09_090 crossref_primary_10_3727_096368915X687543 crossref_primary_10_1089_scd_2012_0084 crossref_primary_10_1186_s13287_019_1134_z crossref_primary_10_3390_ijms13079298 crossref_primary_10_1002_sctm_18_0042 crossref_primary_10_1016_j_bbrc_2014_08_152 crossref_primary_10_1089_ten_tea_2008_0566 crossref_primary_10_1177_0963689718766324 crossref_primary_10_1186_s40001_023_01244_x crossref_primary_10_1186_1423_0127_18_49 crossref_primary_10_1016_j_tice_2012_09_002 crossref_primary_10_1089_scd_2013_0016 crossref_primary_10_3727_096368910X519292 crossref_primary_10_1016_j_ajog_2010_06_045 crossref_primary_10_1089_ars_2012_4692 crossref_primary_10_4252_wjsc_v2_i3_50 crossref_primary_10_3390_cells10112837 crossref_primary_10_1016_j_biomaterials_2012_12_034 crossref_primary_10_37349_ei_2023_00092 crossref_primary_10_1007_s00441_014_1903_z crossref_primary_10_1186_s13287_017_0616_0 crossref_primary_10_4049_jimmunol_1401536 crossref_primary_10_1038_s41598_022_23158_0 crossref_primary_10_1186_s13287_019_1262_5 crossref_primary_10_3390_ijms25020976 crossref_primary_10_1002_sctm_20_0289 crossref_primary_10_1016_j_bmhimx_2016_10_003 crossref_primary_10_1016_j_cellsig_2023_110843 crossref_primary_10_1038_icb_2012_60 crossref_primary_10_1371_journal_pone_0034284 crossref_primary_10_3390_cells8121491 crossref_primary_10_3727_096368915X686841 crossref_primary_10_1016_S1773_035X_10_70732_2 crossref_primary_10_1089_scd_2014_0568 crossref_primary_10_1177_0363546515612750 crossref_primary_10_1016_j_transproceed_2013_12_059 crossref_primary_10_1089_scd_2014_0327 crossref_primary_10_1016_j_semcdb_2016_02_011 crossref_primary_10_1016_j_stemcr_2013_06_006 crossref_primary_10_1002_iub_1427 crossref_primary_10_1097_MD_0000000000009212 crossref_primary_10_1016_j_humimm_2012_02_018 crossref_primary_10_1089_scd_2013_0363 crossref_primary_10_1186_scrt392 crossref_primary_10_1089_scd_2018_0033 crossref_primary_10_1186_scrt395 crossref_primary_10_1111_j_1749_6632_2009_04568_x crossref_primary_10_1016_j_diff_2013_11_001 crossref_primary_10_1007_s13577_014_0095_x crossref_primary_10_1016_j_pmrj_2009_04_010 crossref_primary_10_4252_wjsc_v14_i6_365 crossref_primary_10_1111_febs_16438 crossref_primary_10_1111_j_1365_2249_2009_03874_x crossref_primary_10_1186_s13287_022_02885_1 crossref_primary_10_1007_s11064_017_2226_8 crossref_primary_10_2478_ams_2013_0007 crossref_primary_10_1007_s00011_019_01237_9 crossref_primary_10_1016_j_placenta_2017_04_003 crossref_primary_10_2217_imt_11_132 crossref_primary_10_1080_2162402X_2015_1091146 crossref_primary_10_1155_2015_394917 crossref_primary_10_1016_j_pmrj_2009_02_013 crossref_primary_10_1089_scd_2013_0079 crossref_primary_10_1111_jcmm_13087 crossref_primary_10_1080_14653240802582075 crossref_primary_10_1016_j_jss_2013_05_084 crossref_primary_10_3727_096368915X688182 crossref_primary_10_1016_j_biomaterials_2011_05_092 crossref_primary_10_1111_j_1365_2184_2008_00553_x crossref_primary_10_1016_j_intimp_2012_03_024 crossref_primary_10_1007_s12015_011_9312_0 crossref_primary_10_1016_j_jcyt_2016_06_002 |
Cites_doi | 10.1016/j.bbmt.2004.11.009 10.1002/eji.200425405 10.1182/blood.V99.10.3838 10.1016/j.amjcard.2004.03.034 10.1016/S0301-472X(01)00769-X 10.1038/sj.bmt.1703650 10.1634/stemcells.22-4-448 10.1111/j.1365-2141.2005.05409.x 10.1634/stemcells.2005-0008 10.1182/blood-2004-09-3696 10.1073/pnas.142298299 10.1126/science.282.5391.1145 10.1038/sj.leu.2403871 10.1182/blood-2004-02-0586 10.1634/stemcells.2005-0188 10.1038/74447 10.1038/32588 10.1126/science.281.5380.1191 10.1182/blood.V95.10.3106 10.1016/S0047-6374(01)00224-X 10.1182/blood.V88.3.795.795 10.1038/70932 10.1182/blood-2003-11-3909 10.1096/fj.04-2078rev 10.1200/JCO.2000.18.2.307 10.1016/j.bbmt.2005.02.001 10.1038/ni1130 10.1038/sj.bmt.1700718 10.1016/j.ajog.2003.07.022 10.1016/S0952-7915(97)80153-7 10.1634/stemcells.2004-0058 10.1182/blood-2004-04-1559 10.1084/jem.20040395 10.1073/pnas.0508123103 10.1080/14660820310014653 10.1182/blood-2003-04-1193 10.1634/stemcells.22-5-649 10.1111/j.0300-9475.2004.01483.x 10.1002/jor.1100090504 10.1634/stemcells.2004-0098 10.1034/j.1600-065X.2001.1820102.x 10.1097/01.TP.0000082540.43730.80 10.1126/science.1079490 10.1016/S0140-6736(04)16104-7 10.1097/01.TP.0000045055.63901.A9 10.1182/blood-2004-07-2921 10.1182/blood-2002-07-2104 10.1084/jem.192.7.1027 |
ContentType | Journal Article |
Copyright | Copyright © 2006 AlphaMed Press |
Copyright_xml | – notice: Copyright © 2006 AlphaMed Press |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7T5 8FD FR3 H94 P64 7X8 |
DOI | 10.1634/stemcells.2006-0071 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Immunology Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1549-4918 |
EndPage | 2477 |
ExternalDocumentID | 10_1634_stemcells_2006_0071 17071860 STEM242466 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | --- .GJ 05W 0R~ 123 18M 1OB 1OC 24P 2WC 31~ 3WU 4.4 53G 5RE 5WD 8-0 8-1 A00 AABZA AACZT AAESR AAIHA AAONW AAPGJ AAPXW AARHZ AASNB AAUAY AAVAP AAWDT AAZKR ABCUV ABHFT ABLJU ABMNT ABNHQ ABPTD ABXVV ACFRR ACGFO ACGFS ACIWK ACPOU ACPRK ACUFI ACUTJ ACXQS ACZBC ADBBV ADGKP ADIPN ADKYN ADQBN ADVEK ADXAS ADZMN AENEX AEUQT AFBPY AFFZL AFGWE AFRAH AFYAG AFZJQ AGMDO AHMBA AIURR AJAOE AJEEA ALMA_UNASSIGNED_HOLDINGS AMYDB APJGH ATGXG AVNTJ AZBYB AZVAB BAWUL BCRHZ BEYMZ BMXJE BRXPI CS3 DCZOG DIK DU5 E3Z EBS EJD EMB EMOBN F5P FD6 G-S GODZA GX1 H13 HHY HZ~ IH2 KOP KSI KSN LATKE LEEKS LH4 LITHE LMP LOXES LUTES LW6 LYRES MY~ N9A NNB NOMLY O66 O9- OBOKY OCZFY OIG OJZSN OK1 OPAEJ OVD OWPYF P2P P2W P4E PALCI PQQKQ RAO RIWAO RJQFR ROL ROX RWI SUPJJ SV3 TEORI TMA TR2 WBKPD WOHZO WOQ WYB WYJ XV2 ZGI ZXP ZZTAW ~S- CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7T5 8FD FR3 H94 P64 7X8 |
ID | FETCH-LOGICAL-c4316-c5e1bcecd9ea8d2ce9731eb93a4cf07dbd9e793fe80a511751976c513eafb4f73 |
ISSN | 1066-5099 |
IngestDate | Fri Oct 25 01:27:29 EDT 2024 Fri Oct 25 12:19:31 EDT 2024 Fri Aug 23 03:25:25 EDT 2024 Tue Oct 15 23:44:42 EDT 2024 Sat Aug 24 00:54:30 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4316-c5e1bcecd9ea8d2ce9731eb93a4cf07dbd9e793fe80a511751976c513eafb4f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/stmcls/article-pdf/24/11/2466/40735184/stmcls_24_11_2466.pdf |
PMID | 17071860 |
PQID | 19972448 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_69017170 proquest_miscellaneous_19972448 crossref_primary_10_1634_stemcells_2006_0071 pubmed_primary_17071860 wiley_primary_10_1634_stemcells_2006_0071_STEM242466 |
PublicationCentury | 2000 |
PublicationDate | November 2006 |
PublicationDateYYYYMMDD | 2006-11-01 |
PublicationDate_xml | – month: 11 year: 2006 text: November 2006 |
PublicationDecade | 2000 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol – name: United States |
PublicationTitle | Stem cells (Dayton, Ohio) |
PublicationTitleAlternate | Stem Cells |
PublicationYear | 2006 |
Publisher | John Wiley & Sons, Ltd |
Publisher_xml | – name: John Wiley & Sons, Ltd |
References | 2001; 122 2004; 200 2004; 22 1998; 281 2004; 363 2004; 103 2004; 60 2002; 30 2001; 182 2005; 90 2002; 99 2000; 95 1999; 284 2004; 5 1997; 3 2003; 299 1999; 5 2003; 75 1997; 9 2003; 76 2005; 23 1998; 392 2000; 192 2000; 18 2004; 94 2005; 19 2006; 24 2004; 190 2005; 105 1997; 19 2005; 129 2003; 4 2003; 102 2003; 101 2005; 11 1998; 282 2005; 35 2006; 103 1996; 88 e_1_2_8_49_2 e_1_2_8_24_2 e_1_2_8_45_2 e_1_2_8_26_2 e_1_2_8_47_2 e_1_2_8_9_2 e_1_2_8_3_2 e_1_2_8_5_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_41_2 e_1_2_8_22_2 e_1_2_8_43_2 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_19_2 e_1_2_8_13_2 e_1_2_8_34_2 e_1_2_8_15_2 e_1_2_8_36_2 e_1_2_8_30_2 e_1_2_8_11_2 e_1_2_8_32_2 e_1_2_8_51_2 e_1_2_8_27_2 e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_25_2 e_1_2_8_48_2 e_1_2_8_2_2 e_1_2_8_4_2 e_1_2_8_6_2 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_21_2 e_1_2_8_40_2 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_18_2 e_1_2_8_12_2 Miller JS (e_1_2_8_28_2) 1997; 3 e_1_2_8_35_2 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_31_2 e_1_2_8_10_2 e_1_2_8_33_2 Maccario R (e_1_2_8_44_2) 2005; 90 e_1_2_8_50_2 |
References_xml | – volume: 122 start-page: 713 year: 2001 end-page: 734 article-title: Stem cells and aging: Expanding the possibilities publication-title: Mech Ageing Dev – volume: 18 start-page: 307 year: 2000 end-page: 316 article-title: Rapid hematopoietic recovery after coinfusion of autologous‐blood stem cells and culture‐expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high‐dose chemotherapy publication-title: J Clin Oncol – volume: 282 start-page: 1145 year: 1998 end-page: 1147 article-title: Embryonic stem cell lines derived from human blastocysts publication-title: Science – volume: 11 start-page: 17 issue: 2 suppl 2 year: 2005 end-page: 20 article-title: Introduction to graft‐versus‐host disease publication-title: Biol Blood Marrow Transplant – volume: 9 start-page: 10 year: 1997 end-page: 16 article-title: Origin, maturation and antigen presenting function of dendritic cells publication-title: Curr Opin Immunol – volume: 19 start-page: 1597 year: 2005 end-page: 1604 article-title: Mesenchymal stem cells induce apoptosis of activated T cells publication-title: Leukemia – volume: 5 start-page: 1365 year: 1999 end-page: 1369 article-title: B7–H1, a third member of the B7 family, co‐stimulates T‐cell proliferation and interleukin‐10 secretion publication-title: Nat Med – volume: 200 start-page: 1123 year: 2004 end-page: 1134 article-title: Essential roles of CD8 CD122 regulatory T cells in the maintenance of T cell homeostasis publication-title: J Exp Med – volume: 363 start-page: 1439 year: 2004 end-page: 1441 article-title: Treatment of severe acute graft‐versus‐host disease with third party haploidentical mesenchymal stem cells publication-title: Lancet – volume: 99 start-page: 3838 year: 2002 end-page: 3843 article-title: Human bone marrow stromal cells suppress T‐lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli publication-title: Blood – volume: 192 start-page: 1027 year: 2000 end-page: 1034 article-title: Engagement of the PD‐1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation publication-title: J Exp Med – volume: 95 start-page: 3106 year: 2000 end-page: 3112 article-title: In vitro differentiation of endothelial cells from AC133‐positive progenitor cells publication-title: Blood – volume: 190 start-page: 239 year: 2004 end-page: 245 article-title: Immunologic properties of human fetal mesenchymal stem cells publication-title: Am J Obstet Gynecol – volume: 90 start-page: 516 year: 2005 end-page: 525 article-title: Interaction of human mesenchymal stem cells with cells involved in alloantigen‐specific immune response favors the differentiation of CD4 T‐cell subsets expressing a regulatory/suppressive phenotype publication-title: Haematologica – volume: 11 start-page: 389 year: 2005 end-page: 398 article-title: Cotransplantation of HLA‐identical sibling culture‐expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients publication-title: Biol Blood Marrow Transplant – volume: 4 start-page: 158 year: 2003 end-page: 161 article-title: Stem cell therapy in amyotrophic lateral sclerosis: A methodological approach in humans publication-title: Amyotroph Lateral Scler Other Motor Neuron Disord – volume: 101 start-page: 3722 year: 2003 end-page: 3729 article-title: Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen‐specific T cells to their cognate peptide publication-title: Blood – volume: 24 start-page: 386 year: 2006 end-page: 398 article-title: Role for interferon‐gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells publication-title: Stem Cells – volume: 105 start-page: 4120 year: 2005 end-page: 4126 article-title: Human mesenchymal stem cells inhibit differentiation and function of monocyte‐derived dendritic cells publication-title: Blood – volume: 19 start-page: 681 year: 2005 end-page: 693 article-title: HLA‐G and immune tolerance in pregnancy publication-title: FASEB J – volume: 99 start-page: 9864 year: 2002 end-page: 9869 article-title: Characterization of the expression of MHC proteins in human embryonic stem cells publication-title: Proc Natl Acad Sci U S A – volume: 103 start-page: 4005 year: 2006 end-page: 4010 article-title: Engineered antibody Fc variants with enhanced effector function publication-title: Proc Natl Acad Sci U S A – volume: 284 start-page: 143 year: 1999 end-page: 147 article-title: Multilineage potential of adult human mesenchymal stem cells publication-title: Science – volume: 19 start-page: 691 year: 1997 end-page: 695 article-title: Decreased interleukin 10 and increased interferon‐gamma production in patients with chronic graft‐versus‐host disease after allogeneic bone marrow transplantation publication-title: Bone Marrow Transplant – volume: 30 start-page: 42 year: 2002 end-page: 48 article-title: Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo publication-title: Exp Hematol – volume: 105 start-page: 2821 year: 2005 end-page: 2827 article-title: Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells publication-title: Blood – volume: 299 start-page: 1057 year: 2003 end-page: 1061 article-title: Control of regulatory T cell development by the transcription factor Foxp3 publication-title: Science – volume: 75 start-page: 389 year: 2003 end-page: 397 article-title: Suppression of allogeneic T‐cell proliferation by human marrow stromal cells: Implications in transplantation publication-title: Transplantation – volume: 94 start-page: 92 year: 2004 end-page: 95 article-title: Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction publication-title: Am J Cardiol – volume: 60 start-page: 307 year: 2004 end-page: 315 article-title: Mesenchymal stem cells inhibit the expression of CD25 (interleukin‐2 receptor) and CD38 on phytohaemagglutinin‐activated lymphocytes publication-title: Scand J Immunol – volume: 76 start-page: 1208 year: 2003 end-page: 1213 article-title: Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells publication-title: Transplantation – volume: 35 start-page: 1482 year: 2005 end-page: 1490 article-title: Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway publication-title: Eur J Immunol – volume: 392 start-page: 245 year: 1998 end-page: 252 article-title: Dendritic cells and the control of immunity publication-title: Nature – volume: 18 start-page: 399 year: 2000 end-page: 404 article-title: Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro publication-title: Nat Biotechnol – volume: 22 start-page: 649 year: 2004 end-page: 658 article-title: Human placenta‐derived cells have mesenchymal stem/progenitor cell potential publication-title: Stem Cells – volume: 102 start-page: 3837 year: 2003 end-page: 3844 article-title: Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals publication-title: Blood – volume: 129 start-page: 118 year: 2005 end-page: 129 article-title: Immunomodulatory effect of human adipose tissue‐derived adult stem cells: Comparison with bone marrow mesenchymal stem cells publication-title: Br J Haematol – volume: 5 start-page: 1124 year: 2004 end-page: 1133 article-title: Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells publication-title: Nat Immunol – volume: 103 start-page: 4619 year: 2004 end-page: 4621 article-title: Human bone marrow stromal cells inhibit allogeneic T‐cell responses by indoleamine 2,3‐dioxygenase‐mediated tryptophan degradation publication-title: Blood – volume: 88 start-page: 795 year: 1996 end-page: 802 article-title: Successful transplantation of HLA‐matched and HLA‐mismatched umbilical cord blood from unrelated donors: Analysis of engraftment and acute graft‐versus‐host disease publication-title: Blood – volume: 105 start-page: 2214 year: 2005 end-page: 2219 article-title: Human mesenchymal stem cells alter antigen‐presenting cell maturation and induce T‐cell unresponsiveness publication-title: Blood – volume: 23 start-page: 3 year: 2005 end-page: 9 article-title: Isolation of multipotent cells from human term placenta publication-title: Stem Cells – volume: 3 start-page: 34 year: 1997 end-page: 44 article-title: Low dose subcutaneous interleukin‐2 after autologous transplantation generates sustained in vivo natural killer cell activity publication-title: Biol Blood Marrow Transplant – volume: 182 start-page: 18 year: 2001 end-page: 32 article-title: Immunologic tolerance maintained by CD25 CD4 regulatory T cells: Their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance publication-title: Immunol Rev – volume: 105 start-page: 1815 year: 2005 end-page: 1822 article-title: Human mesenchymal stem cells modulate allogeneic immune cell responses publication-title: Blood – volume: 22 start-page: 448 year: 2004 end-page: 456 article-title: Human embryonic stem cells possess immune‐privileged properties publication-title: Stem Cells – volume: 22 start-page: 1338 year: 2004 end-page: 1345 article-title: Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta publication-title: Stem Cells – volume: 30 start-page: 215 year: 2002 end-page: 222 article-title: Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS‐IH) publication-title: Bone Marrow Transplant – volume: 281 start-page: 1191 year: 1998 end-page: 1193 article-title: Prevention of allogeneic fetal rejection by tryptophan catabolism publication-title: Science – volume: 24 start-page: 221 year: 2006 end-page: 229 article-title: Human embryonic stem cells and their differentiated derivatives are less susceptible for immune rejection than adult cells publication-title: Stem Cells – ident: e_1_2_8_10_2 doi: 10.1016/j.bbmt.2004.11.009 – ident: e_1_2_8_22_2 doi: 10.1002/eji.200425405 – ident: e_1_2_8_12_2 doi: 10.1182/blood.V99.10.3838 – volume: 3 start-page: 34 year: 1997 ident: e_1_2_8_28_2 article-title: Low dose subcutaneous interleukin‐2 after autologous transplantation generates sustained in vivo natural killer cell activity publication-title: Biol Blood Marrow Transplant contributor: fullname: Miller JS – ident: e_1_2_8_6_2 doi: 10.1016/j.amjcard.2004.03.034 – ident: e_1_2_8_11_2 doi: 10.1016/S0301-472X(01)00769-X – ident: e_1_2_8_8_2 doi: 10.1038/sj.bmt.1703650 – ident: e_1_2_8_40_2 doi: 10.1634/stemcells.22-4-448 – volume: 90 start-page: 516 year: 2005 ident: e_1_2_8_44_2 article-title: Interaction of human mesenchymal stem cells with cells involved in alloantigen‐specific immune response favors the differentiation of CD4+ T‐cell subsets expressing a regulatory/suppressive phenotype publication-title: Haematologica contributor: fullname: Maccario R – ident: e_1_2_8_42_2 doi: 10.1111/j.1365-2141.2005.05409.x – ident: e_1_2_8_19_2 doi: 10.1634/stemcells.2005-0008 – ident: e_1_2_8_16_2 doi: 10.1182/blood-2004-09-3696 – ident: e_1_2_8_39_2 doi: 10.1073/pnas.142298299 – ident: e_1_2_8_2_2 doi: 10.1126/science.282.5391.1145 – ident: e_1_2_8_21_2 doi: 10.1038/sj.leu.2403871 – ident: e_1_2_8_49_2 doi: 10.1182/blood-2004-02-0586 – ident: e_1_2_8_38_2 doi: 10.1634/stemcells.2005-0188 – ident: e_1_2_8_3_2 doi: 10.1038/74447 – ident: e_1_2_8_47_2 doi: 10.1038/32588 – ident: e_1_2_8_31_2 doi: 10.1126/science.281.5380.1191 – ident: e_1_2_8_30_2 doi: 10.1182/blood.V95.10.3106 – ident: e_1_2_8_23_2 doi: 10.1016/S0047-6374(01)00224-X – ident: e_1_2_8_27_2 doi: 10.1182/blood.V88.3.795.795 – ident: e_1_2_8_36_2 doi: 10.1038/70932 – ident: e_1_2_8_43_2 doi: 10.1182/blood-2003-11-3909 – ident: e_1_2_8_32_2 doi: 10.1096/fj.04-2078rev – ident: e_1_2_8_5_2 doi: 10.1200/JCO.2000.18.2.307 – ident: e_1_2_8_9_2 doi: 10.1016/j.bbmt.2005.02.001 – ident: e_1_2_8_50_2 doi: 10.1038/ni1130 – ident: e_1_2_8_35_2 doi: 10.1038/sj.bmt.1700718 – ident: e_1_2_8_41_2 doi: 10.1016/j.ajog.2003.07.022 – ident: e_1_2_8_48_2 doi: 10.1016/S0952-7915(97)80153-7 – ident: e_1_2_8_25_2 doi: 10.1634/stemcells.2004-0058 – ident: e_1_2_8_45_2 doi: 10.1182/blood-2004-04-1559 – ident: e_1_2_8_46_2 doi: 10.1084/jem.20040395 – ident: e_1_2_8_29_2 doi: 10.1073/pnas.0508123103 – ident: e_1_2_8_7_2 doi: 10.1080/14660820310014653 – ident: e_1_2_8_13_2 doi: 10.1182/blood-2003-04-1193 – ident: e_1_2_8_24_2 doi: 10.1634/stemcells.22-5-649 – ident: e_1_2_8_18_2 doi: 10.1111/j.0300-9475.2004.01483.x – ident: e_1_2_8_4_2 doi: 10.1002/jor.1100090504 – ident: e_1_2_8_26_2 doi: 10.1634/stemcells.2004-0098 – ident: e_1_2_8_33_2 doi: 10.1034/j.1600-065X.2001.1820102.x – ident: e_1_2_8_20_2 doi: 10.1097/01.TP.0000082540.43730.80 – ident: e_1_2_8_34_2 doi: 10.1126/science.1079490 – ident: e_1_2_8_51_2 doi: 10.1016/S0140-6736(04)16104-7 – ident: e_1_2_8_15_2 doi: 10.1097/01.TP.0000045055.63901.A9 – ident: e_1_2_8_17_2 doi: 10.1182/blood-2004-07-2921 – ident: e_1_2_8_14_2 doi: 10.1182/blood-2002-07-2104 – ident: e_1_2_8_37_2 doi: 10.1084/jem.192.7.1027 |
SSID | ssj0014588 |
Score | 2.376231 |
Snippet | Several types of nonhematopoietic stem cells, including bone marrow mesenchymal stem cells (BMMSCs) and embryonic stem cells, have been shown to have... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2466 |
SubjectTerms | Bone Marrow Cells - immunology CD8-Positive T-Lymphocytes - drug effects CD8-Positive T-Lymphocytes - immunology Cell Communication Cell Differentiation Cell Lineage Cells, Cultured Coculture Techniques Cytotoxicity, Immunologic Female Fluorescent Antibody Technique Human leukocyte antigen, class I, G Humans Immunophenotyping Immunosuppression Indoleamine 2,3‐dioxygenase Interferon-gamma - immunology Interferon‐γ Interleukin-10 - immunology Isoantigens - immunology Killer Cells, Natural - immunology Lymphocyte Activation - drug effects Mesenchymal stem cell Mesenchymal Stromal Cells - immunology Mitogens - immunology Mixed lymphocyte culture Multilineage differentiation Multipotent Stem Cells - immunology Placenta Placenta - cytology Placenta - immunology T-Lymphocytes, Regulatory - drug effects T-Lymphocytes, Regulatory - immunology Transforming Growth Factor beta - immunology |
Title | Placenta‐Derived Multipotent Cells Exhibit Immunosuppressive Properties That Are Enhanced in the Presence of Interferon‐γ |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1634%2Fstemcells.2006-0071 https://www.ncbi.nlm.nih.gov/pubmed/17071860 https://search.proquest.com/docview/19972448 https://search.proquest.com/docview/69017170 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF5FRRwR_5TfPdCTcfHP2k6OJQ2UikKlplI5WfZ6LEcqdpTYlcoB8Qi8C-_BQ_AKvAAz3vVPSEEtFyvybmbWO59nZ8czO4w9DzzccTnSM6nqNm5QPHylHBdMATYaE6mdeJKSkw_e-3vHYv_EOxkMfvWilqoy3pafL8wr-R-p4j2UK2XJXkGyLVG8gb9RvnhFCeP1UjI-JB94jvZfE7Gwi1zP0ISs02rnRUkf-sdwero0JlQIe1YabykfpFhWcxUAewaUKjCn4GpYGtMsKo2dBRiTPFORAToK8rBOUpLQJJ4sUligzdiw3RpPtl65fTv3qIRPhqw5owm7G53rKP0P2azoOR_Gjbt6nFUduf1KL6e1L1cFG0PX_K7Kuv-r5o9R0TbXNLsOM9BhBbOs1wV0l87fYbf-DqWi0Ugy0cxRQwWttgXVytOaXOt1lZvd4Nfua2nh-70V3xGqkszaauK7gnCDM1ZP2LZyv1iqZszq2d1_rKltpCPtsZBM2BKhup8USUjnHlxzUDtSHOKbkzYuyabU4foTvX5MfVQWEnl5wUhWzam1PdLqlqu2maY32Q292eE7Crm32ADy2-y6Kn96fod9afD78-s3jVzeQy6vkcs1cvkacnmHXE7IRT7AG-TyWc4RubxBLi9S3iEXGf74fpcdv55Mx3umrgdiSjqwwZQe2LEEmYwgGiaOBCq7BvHIjYRMrSCJsQEnNIWhFXl0BK2Ntrb0bBeiNBZp4N5jG3mRwwPGU7BiJxEikC6IURKMYgsixx2hhkriQFqb7EUzreFcHfsS_kOUm-xZM_UhqmdqjXIoqmVIcVxoQQ__3oMqwgV2gCzvK5l1DAMkPfSxRdRCvMxIwqPp5IBSvnz_4dWe4RG5rCxbvW6P2Ua5qOAJGtxl_LQG6G9_eNOC |
link.rule.ids | 315,783,787,27938,27939 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Placenta%E2%80%90Derived+Multipotent+Cells+Exhibit+Immunosuppressive+Properties+That+Are+Enhanced+in+the+Presence+of+Interferon%E2%80%90%CE%B3&rft.jtitle=Stem+cells+%28Dayton%2C+Ohio%29&rft.au=Chang%2C+Chun%E2%80%90Jung&rft.au=Yen%2C+Men%E2%80%90Luh&rft.au=Chen%2C+Yao%E2%80%90Chang&rft.au=Chien%2C+Chih%E2%80%90Cheng&rft.date=2006-11-01&rft.issn=1066-5099&rft.eissn=1549-4918&rft.volume=24&rft.issue=11&rft.spage=2466&rft.epage=2477&rft_id=info:doi/10.1634%2Fstemcells.2006-0071&rft.externalDBID=n%2Fa&rft.externalDocID=10_1634_stemcells_2006_0071 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-5099&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-5099&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-5099&client=summon |