Placenta‐Derived Multipotent Cells Exhibit Immunosuppressive Properties That Are Enhanced in the Presence of Interferon‐γ

Several types of nonhematopoietic stem cells, including bone marrow mesenchymal stem cells (BMMSCs) and embryonic stem cells, have been shown to have immunosuppressive properties. We show that human placenta‐derived multipotent cells (PDMCs), which are isolated from a source without ethical concern...

Full description

Saved in:
Bibliographic Details
Published inStem cells (Dayton, Ohio) Vol. 24; no. 11; pp. 2466 - 2477
Main Authors Chang, Chun‐Jung, Yen, Men‐Luh, Chen, Yao‐Chang, Chien, Chih‐Cheng, Huang, Hsing‐I., Bai, Chyi‐Huey, Yen, B. Linju
Format Journal Article
LanguageEnglish
Published Bristol John Wiley & Sons, Ltd 01.11.2006
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Several types of nonhematopoietic stem cells, including bone marrow mesenchymal stem cells (BMMSCs) and embryonic stem cells, have been shown to have immunosuppressive properties. We show that human placenta‐derived multipotent cells (PDMCs), which are isolated from a source without ethical concern and harbor multilineage differentiation potential, have strong immunosuppressive properties. PDMCs suppress both mitogen‐induced and allogeneic lymphocyte proliferation in both CD4 and CD8 populations. The immunosuppression seen with PDMCs was significantly stronger than that with BMMSCs. Both PDMCs and BMMSCs express indoleamine 2,3‐dioxygenase, but only PDMCs are positive for intracellular human leukocyte antigen‐G (HLA). Mechanistically, suppression of lymphocyte reactivity by PDMCs is not due to cell death but to decreased cell proliferation and increased numbers of regulatory T cells. Addition of neutralizing antibodies to interleukin‐10 and transforming growth factor (TGF)‐β partially restored lymphocyte proliferation. Unlike BMMSCs, PDMCs treated with interferon‐γ for 3 days only very minimally upregulated HLA‐DR. On the contrary, PD‐L1, a cell surface marker that plays an inhibitory role in T‐cell activation, was upregulated and TGF‐β expression was seen. The immunosuppressive properties of PDMCs, along with their multilineage differentiation potential, ease of accessibility, and abundant cell numbers, may render these cells as good potential sources for future therapeutic applications.
AbstractList Several types of nonhematopoietic stem cells, including bone marrow mesenchymal stem cells (BMMSCs) and embryonic stem cells, have been shown to have immunosuppressive properties. We show that human placenta-derived multipotent cells (PDMCs), which are isolated from a source without ethical concern and harbor multilineage differentiation potential, have strong immunosuppressive properties. PDMCs suppress both mitogen-induced and allogeneic lymphocyte proliferation in both CD4 and CD8 populations. The immunosuppression seen with PDMCs was significantly stronger than that with BMMSCs. Both PDMCs and BMMSCs express indoleamine 2,3-dioxygenase, but only PDMCs are positive for intracellular human leukocyte antigen-G (HLA). Mechanistically, suppression of lymphocyte reactivity by PDMCs is not due to cell death but to decreased cell proliferation and increased numbers of regulatory T cells. Addition of neutralizing antibodies to interleukin-10 and transforming growth factor (TGF)-beta partially restored lymphocyte proliferation. Unlike BMMSCs, PDMCs treated with interferon-gamma for 3 days only very minimally upregulated HLA-DR. On the contrary, PD-L1, a cell surface marker that plays an inhibitory role in T-cell activation, was upregulated and TGF-beta expression was seen. The immunosuppressive properties of PDMCs, along with their multilineage differentiation potential, ease of accessibility, and abundant cell numbers, may render these cells as good potential sources for future therapeutic applications.
Several types of nonhematopoietic stem cells, including bone marrow mesenchymal stem cells (BMMSCs) and embryonic stem cells, have been shown to have immunosuppressive properties. We show that human placenta-derived multipotent cells (PDMCs), which are isolated from a source without ethical concern and harbor multilineage differentiation potential, have strong immunosuppressive properties. PDMCs suppress both mitogen-induced and allogeneic lymphocyte proliferation in both CD4 and CD8 populations. The immunosuppression seen with PDMCs was significantly stronger than that with BMMSCs. Both PDMCs and BMMSCs express indoleamine 2,3-dioxygenase, but only PDMCs are positive for intracellular human leukocyte antigen-G (HLA). Mechanistically, suppression of lymphocyte reactivity by PDMCs is not due to cell death but to decreased cell proliferation and increased numbers of regulatory T cells. Addition of neutralizing antibodies to interleukin-10 and transforming growth factor (TGF)-{szligbeta} partially restored lymphocyte proliferation. Unlike BMMSCs, PDMCs treated with interferon- gamma for 3 days only very minimally upregulated HLA-DR. On the contrary, PD-L1, a cell surface marker that plays an inhibitory role in T-cell activation, was upregulated and TGF-{szligbeta} expression was seen. The immunosuppressive properties of PDMCs, along with their multilineage differentiation potential, ease of accessibility, and abundant cell numbers, may render these cells as good potential sources for future therapeutic applications.
Several types of nonhematopoietic stem cells, including bone marrow mesenchymal stem cells (BMMSCs) and embryonic stem cells, have been shown to have immunosuppressive properties. We show that human placenta‐derived multipotent cells (PDMCs), which are isolated from a source without ethical concern and harbor multilineage differentiation potential, have strong immunosuppressive properties. PDMCs suppress both mitogen‐induced and allogeneic lymphocyte proliferation in both CD4 and CD8 populations. The immunosuppression seen with PDMCs was significantly stronger than that with BMMSCs. Both PDMCs and BMMSCs express indoleamine 2,3‐dioxygenase, but only PDMCs are positive for intracellular human leukocyte antigen‐G (HLA). Mechanistically, suppression of lymphocyte reactivity by PDMCs is not due to cell death but to decreased cell proliferation and increased numbers of regulatory T cells. Addition of neutralizing antibodies to interleukin‐10 and transforming growth factor (TGF)‐β partially restored lymphocyte proliferation. Unlike BMMSCs, PDMCs treated with interferon‐γ for 3 days only very minimally upregulated HLA‐DR. On the contrary, PD‐L1, a cell surface marker that plays an inhibitory role in T‐cell activation, was upregulated and TGF‐β expression was seen. The immunosuppressive properties of PDMCs, along with their multilineage differentiation potential, ease of accessibility, and abundant cell numbers, may render these cells as good potential sources for future therapeutic applications.
Author Chien, Chih‐Cheng
Yen, B. Linju
Chen, Yao‐Chang
Huang, Hsing‐I.
Bai, Chyi‐Huey
Chang, Chun‐Jung
Yen, Men‐Luh
Author_xml – sequence: 1
  givenname: Chun‐Jung
  surname: Chang
  fullname: Chang, Chun‐Jung
– sequence: 2
  givenname: Men‐Luh
  surname: Yen
  fullname: Yen, Men‐Luh
– sequence: 3
  givenname: Yao‐Chang
  surname: Chen
  fullname: Chen, Yao‐Chang
– sequence: 4
  givenname: Chih‐Cheng
  surname: Chien
  fullname: Chien, Chih‐Cheng
– sequence: 5
  givenname: Hsing‐I.
  surname: Huang
  fullname: Huang, Hsing‐I.
– sequence: 6
  givenname: Chyi‐Huey
  surname: Bai
  fullname: Bai, Chyi‐Huey
– sequence: 7
  givenname: B. Linju
  surname: Yen
  fullname: Yen, B. Linju
  email: blyen@nhri.org.tw
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17071860$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9u1DAQhy1URP_AEyAhn7il2LFjx-JUbRdYqRWVWM6W40y0RokTbKelF8Qj8C59jz4ET4KjXcERTrZmvvmNNN8pOvKjB4ReUnJOBeNvYoLBQt_H85IQURAi6RN0QiuuCq5ofZT_RIiiIkodo9MYvxBCeVXXz9AxlRmuBTlB3296Y8En8-vHz0sI7hZafD33yU1jymW8Whbg9beda1zCm2GY_RjnaQoQY4bxTRgnCMlBxNudSfgiAF77nfE2BzmP025hIEIu4LHDG58gdBBGnxc-PjxHTzvTR3hxeM_Q53fr7epDcfXx_WZ1cVVYzqgobAW0sWBbBaZuSwtKMgqNYobbjsi2yQ2pWAc1MRWlsqJKCltRBqZreCfZGXq9z53C-HWGmPTg4nI842GcoxaKUJmv8k-QKiVLzusMsj1owxhjgE5PwQ0m3GtK9OJH__GjFz968ZOnXh3i52aA9u_MQUgG3u6BO9fD_f9k6k_b9XXJSy4E-w3qcai8
CitedBy_id crossref_primary_10_1007_s00018_019_03268_1
crossref_primary_10_1007_s12015_017_9759_8
crossref_primary_10_1089_scd_2007_0156
crossref_primary_10_1002_jcb_22873
crossref_primary_10_1089_scd_2007_0154
crossref_primary_10_3390_ijms21145075
crossref_primary_10_1002_stem_157
crossref_primary_10_1189_jlb_3A0513_242R
crossref_primary_10_3390_ijms19082385
crossref_primary_10_3727_096368910X564067
crossref_primary_10_1111_petr_12990
crossref_primary_10_1177_09636897241226737
crossref_primary_10_32604_biocell_2022_018200
crossref_primary_10_1186_1741_7015_10_56
crossref_primary_10_1002_jcb_24303
crossref_primary_10_1016_j_jcyt_2015_03_006
crossref_primary_10_3892_ol_2012_772
crossref_primary_10_1177_021849230801600501
crossref_primary_10_3390_cells10010054
crossref_primary_10_3892_mmr_2012_1000
crossref_primary_10_1016_j_molimm_2017_03_003
crossref_primary_10_1002_stem_2795
crossref_primary_10_1016_j_jneuroim_2009_12_005
crossref_primary_10_1155_2017_8492797
crossref_primary_10_3727_096368911X637380
crossref_primary_10_1002_med_21322
crossref_primary_10_1002_term_362
crossref_primary_10_1111_j_1582_4934_2012_01575_x
crossref_primary_10_1111_jcmm_15800
crossref_primary_10_1007_s10439_022_02920_5
crossref_primary_10_1016_j_brainres_2009_12_001
crossref_primary_10_3390_ani14091292
crossref_primary_10_1111_jcmm_16851
crossref_primary_10_5966_sctm_2015_0012
crossref_primary_10_1016_j_stemcr_2015_07_013
crossref_primary_10_1038_srep14135
crossref_primary_10_1002_cbin_10024
crossref_primary_10_3389_fbioe_2020_00180
crossref_primary_10_1146_annurev_bioeng_070909_105309
crossref_primary_10_1155_2014_216806
crossref_primary_10_1371_journal_pone_0059403
crossref_primary_10_1016_j_semcdb_2007_09_012
crossref_primary_10_18632_oncotarget_16682
crossref_primary_10_1093_cvr_cvr018
crossref_primary_10_3727_096368914X685230
crossref_primary_10_3109_14653249_2010_536213
crossref_primary_10_1186_s13643_020_01437_z
crossref_primary_10_3727_096368915X686922
crossref_primary_10_5966_sctm_2015_0363
crossref_primary_10_1016_j_bbi_2012_10_015
crossref_primary_10_1634_stemcells_2007_0878
crossref_primary_10_1038_labinvest_2016_37
crossref_primary_10_1167_iovs_19_27041
crossref_primary_10_1186_s13287_017_0660_9
crossref_primary_10_1007_s11302_016_9529_0
crossref_primary_10_3390_cells11152319
crossref_primary_10_1186_s13104_018_3411_9
crossref_primary_10_1016_j_bbrc_2019_09_129
crossref_primary_10_1016_j_tjog_2014_04_011
crossref_primary_10_1111_j_1537_2995_2011_03077_x
crossref_primary_10_3389_fvets_2017_00083
crossref_primary_10_3390_ijms23031674
crossref_primary_10_1371_journal_pone_0155161
crossref_primary_10_1016_j_athoracsur_2012_11_053
crossref_primary_10_1007_s10404_014_1455_2
crossref_primary_10_1016_j_lfs_2016_04_009
crossref_primary_10_1634_stemcells_2007_0491
crossref_primary_10_1016_j_ajg_2017_05_012
crossref_primary_10_1016_j_jbiosc_2014_05_001
crossref_primary_10_1111_j_1398_9995_2012_02875_x
crossref_primary_10_3389_fbioe_2020_619980
crossref_primary_10_3748_wjg_v21_i14_4379
crossref_primary_10_1016_j_humimm_2012_12_011
crossref_primary_10_1097_TP_0b013e31821aba18
crossref_primary_10_1007_s00441_013_1560_7
crossref_primary_10_1097_MIB_0000000000000111
crossref_primary_10_1016_j_biomaterials_2013_03_016
crossref_primary_10_3109_14653249_2011_602338
crossref_primary_10_1186_s13287_017_0611_5
crossref_primary_10_3727_096368915X688263
crossref_primary_10_1159_000128968
crossref_primary_10_3109_14653240903493417
crossref_primary_10_1186_s12929_016_0289_5
crossref_primary_10_1016_j_biomaterials_2013_02_062
crossref_primary_10_1016_j_semcancer_2019_08_015
crossref_primary_10_1111_edt_12599
crossref_primary_10_1016_j_placenta_2012_12_015
crossref_primary_10_4142_jvs_2012_13_1_23
crossref_primary_10_1186_scrt339
crossref_primary_10_3727_096368911X580590
crossref_primary_10_4049_jimmunol_0902318
crossref_primary_10_1089_scd_2016_0041
crossref_primary_10_1038_srep30314
crossref_primary_10_3390_ijms231911475
crossref_primary_10_1089_scd_2016_0324
crossref_primary_10_1016_j_placenta_2007_07_001
crossref_primary_10_1016_j_neurobiolaging_2013_03_029
crossref_primary_10_4081_oncol_2020_429
crossref_primary_10_1007_s12015_010_9200_z
crossref_primary_10_1634_stemcells_2008_0390
crossref_primary_10_1089_scd_2009_0404
crossref_primary_10_1002_jbm_b_33478
crossref_primary_10_1016_j_humimm_2008_10_016
crossref_primary_10_1002_stem_1387
crossref_primary_10_1111_j_1365_2249_2011_04540_x
crossref_primary_10_1016_j_bmhime_2017_11_036
crossref_primary_10_3389_fimmu_2023_1241068
crossref_primary_10_1016_j_biomaterials_2010_02_011
crossref_primary_10_3727_096368915X687200
crossref_primary_10_1016_j_neuroscience_2016_05_028
crossref_primary_10_1007_s10875_010_9415_4
crossref_primary_10_2217_rme_2020_0044
crossref_primary_10_1016_j_biomaterials_2011_09_090
crossref_primary_10_3727_096368915X687543
crossref_primary_10_1089_scd_2012_0084
crossref_primary_10_1186_s13287_019_1134_z
crossref_primary_10_3390_ijms13079298
crossref_primary_10_1002_sctm_18_0042
crossref_primary_10_1016_j_bbrc_2014_08_152
crossref_primary_10_1089_ten_tea_2008_0566
crossref_primary_10_1177_0963689718766324
crossref_primary_10_1186_s40001_023_01244_x
crossref_primary_10_1186_1423_0127_18_49
crossref_primary_10_1016_j_tice_2012_09_002
crossref_primary_10_1089_scd_2013_0016
crossref_primary_10_3727_096368910X519292
crossref_primary_10_1016_j_ajog_2010_06_045
crossref_primary_10_1089_ars_2012_4692
crossref_primary_10_4252_wjsc_v2_i3_50
crossref_primary_10_3390_cells10112837
crossref_primary_10_1016_j_biomaterials_2012_12_034
crossref_primary_10_37349_ei_2023_00092
crossref_primary_10_1007_s00441_014_1903_z
crossref_primary_10_1186_s13287_017_0616_0
crossref_primary_10_4049_jimmunol_1401536
crossref_primary_10_1038_s41598_022_23158_0
crossref_primary_10_1186_s13287_019_1262_5
crossref_primary_10_3390_ijms25020976
crossref_primary_10_1002_sctm_20_0289
crossref_primary_10_1016_j_bmhimx_2016_10_003
crossref_primary_10_1016_j_cellsig_2023_110843
crossref_primary_10_1038_icb_2012_60
crossref_primary_10_1371_journal_pone_0034284
crossref_primary_10_3390_cells8121491
crossref_primary_10_3727_096368915X686841
crossref_primary_10_1016_S1773_035X_10_70732_2
crossref_primary_10_1089_scd_2014_0568
crossref_primary_10_1177_0363546515612750
crossref_primary_10_1016_j_transproceed_2013_12_059
crossref_primary_10_1089_scd_2014_0327
crossref_primary_10_1016_j_semcdb_2016_02_011
crossref_primary_10_1016_j_stemcr_2013_06_006
crossref_primary_10_1002_iub_1427
crossref_primary_10_1097_MD_0000000000009212
crossref_primary_10_1016_j_humimm_2012_02_018
crossref_primary_10_1089_scd_2013_0363
crossref_primary_10_1186_scrt392
crossref_primary_10_1089_scd_2018_0033
crossref_primary_10_1186_scrt395
crossref_primary_10_1111_j_1749_6632_2009_04568_x
crossref_primary_10_1016_j_diff_2013_11_001
crossref_primary_10_1007_s13577_014_0095_x
crossref_primary_10_1016_j_pmrj_2009_04_010
crossref_primary_10_4252_wjsc_v14_i6_365
crossref_primary_10_1111_febs_16438
crossref_primary_10_1111_j_1365_2249_2009_03874_x
crossref_primary_10_1186_s13287_022_02885_1
crossref_primary_10_1007_s11064_017_2226_8
crossref_primary_10_2478_ams_2013_0007
crossref_primary_10_1007_s00011_019_01237_9
crossref_primary_10_1016_j_placenta_2017_04_003
crossref_primary_10_2217_imt_11_132
crossref_primary_10_1080_2162402X_2015_1091146
crossref_primary_10_1155_2015_394917
crossref_primary_10_1016_j_pmrj_2009_02_013
crossref_primary_10_1089_scd_2013_0079
crossref_primary_10_1111_jcmm_13087
crossref_primary_10_1080_14653240802582075
crossref_primary_10_1016_j_jss_2013_05_084
crossref_primary_10_3727_096368915X688182
crossref_primary_10_1016_j_biomaterials_2011_05_092
crossref_primary_10_1111_j_1365_2184_2008_00553_x
crossref_primary_10_1016_j_intimp_2012_03_024
crossref_primary_10_1007_s12015_011_9312_0
crossref_primary_10_1016_j_jcyt_2016_06_002
Cites_doi 10.1016/j.bbmt.2004.11.009
10.1002/eji.200425405
10.1182/blood.V99.10.3838
10.1016/j.amjcard.2004.03.034
10.1016/S0301-472X(01)00769-X
10.1038/sj.bmt.1703650
10.1634/stemcells.22-4-448
10.1111/j.1365-2141.2005.05409.x
10.1634/stemcells.2005-0008
10.1182/blood-2004-09-3696
10.1073/pnas.142298299
10.1126/science.282.5391.1145
10.1038/sj.leu.2403871
10.1182/blood-2004-02-0586
10.1634/stemcells.2005-0188
10.1038/74447
10.1038/32588
10.1126/science.281.5380.1191
10.1182/blood.V95.10.3106
10.1016/S0047-6374(01)00224-X
10.1182/blood.V88.3.795.795
10.1038/70932
10.1182/blood-2003-11-3909
10.1096/fj.04-2078rev
10.1200/JCO.2000.18.2.307
10.1016/j.bbmt.2005.02.001
10.1038/ni1130
10.1038/sj.bmt.1700718
10.1016/j.ajog.2003.07.022
10.1016/S0952-7915(97)80153-7
10.1634/stemcells.2004-0058
10.1182/blood-2004-04-1559
10.1084/jem.20040395
10.1073/pnas.0508123103
10.1080/14660820310014653
10.1182/blood-2003-04-1193
10.1634/stemcells.22-5-649
10.1111/j.0300-9475.2004.01483.x
10.1002/jor.1100090504
10.1634/stemcells.2004-0098
10.1034/j.1600-065X.2001.1820102.x
10.1097/01.TP.0000082540.43730.80
10.1126/science.1079490
10.1016/S0140-6736(04)16104-7
10.1097/01.TP.0000045055.63901.A9
10.1182/blood-2004-07-2921
10.1182/blood-2002-07-2104
10.1084/jem.192.7.1027
ContentType Journal Article
Copyright Copyright © 2006 AlphaMed Press
Copyright_xml – notice: Copyright © 2006 AlphaMed Press
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7T5
8FD
FR3
H94
P64
7X8
DOI 10.1634/stemcells.2006-0071
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Immunology Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
AIDS and Cancer Research Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1549-4918
EndPage 2477
ExternalDocumentID 10_1634_stemcells_2006_0071
17071860
STEM242466
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
.GJ
05W
0R~
123
18M
1OB
1OC
24P
2WC
31~
3WU
4.4
53G
5RE
5WD
8-0
8-1
A00
AABZA
AACZT
AAESR
AAIHA
AAONW
AAPGJ
AAPXW
AARHZ
AASNB
AAUAY
AAVAP
AAWDT
AAZKR
ABCUV
ABHFT
ABLJU
ABMNT
ABNHQ
ABPTD
ABXVV
ACFRR
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACUFI
ACUTJ
ACXQS
ACZBC
ADBBV
ADGKP
ADIPN
ADKYN
ADQBN
ADVEK
ADXAS
ADZMN
AENEX
AEUQT
AFBPY
AFFZL
AFGWE
AFRAH
AFYAG
AFZJQ
AGMDO
AHMBA
AIURR
AJAOE
AJEEA
ALMA_UNASSIGNED_HOLDINGS
AMYDB
APJGH
ATGXG
AVNTJ
AZBYB
AZVAB
BAWUL
BCRHZ
BEYMZ
BMXJE
BRXPI
CS3
DCZOG
DIK
DU5
E3Z
EBS
EJD
EMB
EMOBN
F5P
FD6
G-S
GODZA
GX1
H13
HHY
HZ~
IH2
KOP
KSI
KSN
LATKE
LEEKS
LH4
LITHE
LMP
LOXES
LUTES
LW6
LYRES
MY~
N9A
NNB
NOMLY
O66
O9-
OBOKY
OCZFY
OIG
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P2W
P4E
PALCI
PQQKQ
RAO
RIWAO
RJQFR
ROL
ROX
RWI
SUPJJ
SV3
TEORI
TMA
TR2
WBKPD
WOHZO
WOQ
WYB
WYJ
XV2
ZGI
ZXP
ZZTAW
~S-
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7T5
8FD
FR3
H94
P64
7X8
ID FETCH-LOGICAL-c4316-c5e1bcecd9ea8d2ce9731eb93a4cf07dbd9e793fe80a511751976c513eafb4f73
ISSN 1066-5099
IngestDate Fri Oct 25 01:27:29 EDT 2024
Fri Oct 25 12:19:31 EDT 2024
Fri Aug 23 03:25:25 EDT 2024
Tue Oct 15 23:44:42 EDT 2024
Sat Aug 24 00:54:30 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4316-c5e1bcecd9ea8d2ce9731eb93a4cf07dbd9e793fe80a511751976c513eafb4f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/stmcls/article-pdf/24/11/2466/40735184/stmcls_24_11_2466.pdf
PMID 17071860
PQID 19972448
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_69017170
proquest_miscellaneous_19972448
crossref_primary_10_1634_stemcells_2006_0071
pubmed_primary_17071860
wiley_primary_10_1634_stemcells_2006_0071_STEM242466
PublicationCentury 2000
PublicationDate November 2006
PublicationDateYYYYMMDD 2006-11-01
PublicationDate_xml – month: 11
  year: 2006
  text: November 2006
PublicationDecade 2000
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
– name: United States
PublicationTitle Stem cells (Dayton, Ohio)
PublicationTitleAlternate Stem Cells
PublicationYear 2006
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References 2001; 122
2004; 200
2004; 22
1998; 281
2004; 363
2004; 103
2004; 60
2002; 30
2001; 182
2005; 90
2002; 99
2000; 95
1999; 284
2004; 5
1997; 3
2003; 299
1999; 5
2003; 75
1997; 9
2003; 76
2005; 23
1998; 392
2000; 192
2000; 18
2004; 94
2005; 19
2006; 24
2004; 190
2005; 105
1997; 19
2005; 129
2003; 4
2003; 102
2003; 101
2005; 11
1998; 282
2005; 35
2006; 103
1996; 88
e_1_2_8_49_2
e_1_2_8_24_2
e_1_2_8_45_2
e_1_2_8_26_2
e_1_2_8_47_2
e_1_2_8_9_2
e_1_2_8_3_2
e_1_2_8_5_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_22_2
e_1_2_8_43_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_19_2
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_15_2
e_1_2_8_36_2
e_1_2_8_30_2
e_1_2_8_11_2
e_1_2_8_32_2
e_1_2_8_51_2
e_1_2_8_27_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_6_2
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_21_2
e_1_2_8_40_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_18_2
e_1_2_8_12_2
Miller JS (e_1_2_8_28_2) 1997; 3
e_1_2_8_35_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_31_2
e_1_2_8_10_2
e_1_2_8_33_2
Maccario R (e_1_2_8_44_2) 2005; 90
e_1_2_8_50_2
References_xml – volume: 122
  start-page: 713
  year: 2001
  end-page: 734
  article-title: Stem cells and aging: Expanding the possibilities
  publication-title: Mech Ageing Dev
– volume: 18
  start-page: 307
  year: 2000
  end-page: 316
  article-title: Rapid hematopoietic recovery after coinfusion of autologous‐blood stem cells and culture‐expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high‐dose chemotherapy
  publication-title: J Clin Oncol
– volume: 282
  start-page: 1145
  year: 1998
  end-page: 1147
  article-title: Embryonic stem cell lines derived from human blastocysts
  publication-title: Science
– volume: 11
  start-page: 17
  issue: 2 suppl 2
  year: 2005
  end-page: 20
  article-title: Introduction to graft‐versus‐host disease
  publication-title: Biol Blood Marrow Transplant
– volume: 9
  start-page: 10
  year: 1997
  end-page: 16
  article-title: Origin, maturation and antigen presenting function of dendritic cells
  publication-title: Curr Opin Immunol
– volume: 19
  start-page: 1597
  year: 2005
  end-page: 1604
  article-title: Mesenchymal stem cells induce apoptosis of activated T cells
  publication-title: Leukemia
– volume: 5
  start-page: 1365
  year: 1999
  end-page: 1369
  article-title: B7–H1, a third member of the B7 family, co‐stimulates T‐cell proliferation and interleukin‐10 secretion
  publication-title: Nat Med
– volume: 200
  start-page: 1123
  year: 2004
  end-page: 1134
  article-title: Essential roles of CD8 CD122 regulatory T cells in the maintenance of T cell homeostasis
  publication-title: J Exp Med
– volume: 363
  start-page: 1439
  year: 2004
  end-page: 1441
  article-title: Treatment of severe acute graft‐versus‐host disease with third party haploidentical mesenchymal stem cells
  publication-title: Lancet
– volume: 99
  start-page: 3838
  year: 2002
  end-page: 3843
  article-title: Human bone marrow stromal cells suppress T‐lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli
  publication-title: Blood
– volume: 192
  start-page: 1027
  year: 2000
  end-page: 1034
  article-title: Engagement of the PD‐1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation
  publication-title: J Exp Med
– volume: 95
  start-page: 3106
  year: 2000
  end-page: 3112
  article-title: In vitro differentiation of endothelial cells from AC133‐positive progenitor cells
  publication-title: Blood
– volume: 190
  start-page: 239
  year: 2004
  end-page: 245
  article-title: Immunologic properties of human fetal mesenchymal stem cells
  publication-title: Am J Obstet Gynecol
– volume: 90
  start-page: 516
  year: 2005
  end-page: 525
  article-title: Interaction of human mesenchymal stem cells with cells involved in alloantigen‐specific immune response favors the differentiation of CD4 T‐cell subsets expressing a regulatory/suppressive phenotype
  publication-title: Haematologica
– volume: 11
  start-page: 389
  year: 2005
  end-page: 398
  article-title: Cotransplantation of HLA‐identical sibling culture‐expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients
  publication-title: Biol Blood Marrow Transplant
– volume: 4
  start-page: 158
  year: 2003
  end-page: 161
  article-title: Stem cell therapy in amyotrophic lateral sclerosis: A methodological approach in humans
  publication-title: Amyotroph Lateral Scler Other Motor Neuron Disord
– volume: 101
  start-page: 3722
  year: 2003
  end-page: 3729
  article-title: Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen‐specific T cells to their cognate peptide
  publication-title: Blood
– volume: 24
  start-page: 386
  year: 2006
  end-page: 398
  article-title: Role for interferon‐gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells
  publication-title: Stem Cells
– volume: 105
  start-page: 4120
  year: 2005
  end-page: 4126
  article-title: Human mesenchymal stem cells inhibit differentiation and function of monocyte‐derived dendritic cells
  publication-title: Blood
– volume: 19
  start-page: 681
  year: 2005
  end-page: 693
  article-title: HLA‐G and immune tolerance in pregnancy
  publication-title: FASEB J
– volume: 99
  start-page: 9864
  year: 2002
  end-page: 9869
  article-title: Characterization of the expression of MHC proteins in human embryonic stem cells
  publication-title: Proc Natl Acad Sci U S A
– volume: 103
  start-page: 4005
  year: 2006
  end-page: 4010
  article-title: Engineered antibody Fc variants with enhanced effector function
  publication-title: Proc Natl Acad Sci U S A
– volume: 284
  start-page: 143
  year: 1999
  end-page: 147
  article-title: Multilineage potential of adult human mesenchymal stem cells
  publication-title: Science
– volume: 19
  start-page: 691
  year: 1997
  end-page: 695
  article-title: Decreased interleukin 10 and increased interferon‐gamma production in patients with chronic graft‐versus‐host disease after allogeneic bone marrow transplantation
  publication-title: Bone Marrow Transplant
– volume: 30
  start-page: 42
  year: 2002
  end-page: 48
  article-title: Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo
  publication-title: Exp Hematol
– volume: 105
  start-page: 2821
  year: 2005
  end-page: 2827
  article-title: Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells
  publication-title: Blood
– volume: 299
  start-page: 1057
  year: 2003
  end-page: 1061
  article-title: Control of regulatory T cell development by the transcription factor Foxp3
  publication-title: Science
– volume: 75
  start-page: 389
  year: 2003
  end-page: 397
  article-title: Suppression of allogeneic T‐cell proliferation by human marrow stromal cells: Implications in transplantation
  publication-title: Transplantation
– volume: 94
  start-page: 92
  year: 2004
  end-page: 95
  article-title: Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction
  publication-title: Am J Cardiol
– volume: 60
  start-page: 307
  year: 2004
  end-page: 315
  article-title: Mesenchymal stem cells inhibit the expression of CD25 (interleukin‐2 receptor) and CD38 on phytohaemagglutinin‐activated lymphocytes
  publication-title: Scand J Immunol
– volume: 76
  start-page: 1208
  year: 2003
  end-page: 1213
  article-title: Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells
  publication-title: Transplantation
– volume: 35
  start-page: 1482
  year: 2005
  end-page: 1490
  article-title: Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway
  publication-title: Eur J Immunol
– volume: 392
  start-page: 245
  year: 1998
  end-page: 252
  article-title: Dendritic cells and the control of immunity
  publication-title: Nature
– volume: 18
  start-page: 399
  year: 2000
  end-page: 404
  article-title: Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro
  publication-title: Nat Biotechnol
– volume: 22
  start-page: 649
  year: 2004
  end-page: 658
  article-title: Human placenta‐derived cells have mesenchymal stem/progenitor cell potential
  publication-title: Stem Cells
– volume: 102
  start-page: 3837
  year: 2003
  end-page: 3844
  article-title: Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals
  publication-title: Blood
– volume: 129
  start-page: 118
  year: 2005
  end-page: 129
  article-title: Immunomodulatory effect of human adipose tissue‐derived adult stem cells: Comparison with bone marrow mesenchymal stem cells
  publication-title: Br J Haematol
– volume: 5
  start-page: 1124
  year: 2004
  end-page: 1133
  article-title: Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells
  publication-title: Nat Immunol
– volume: 103
  start-page: 4619
  year: 2004
  end-page: 4621
  article-title: Human bone marrow stromal cells inhibit allogeneic T‐cell responses by indoleamine 2,3‐dioxygenase‐mediated tryptophan degradation
  publication-title: Blood
– volume: 88
  start-page: 795
  year: 1996
  end-page: 802
  article-title: Successful transplantation of HLA‐matched and HLA‐mismatched umbilical cord blood from unrelated donors: Analysis of engraftment and acute graft‐versus‐host disease
  publication-title: Blood
– volume: 105
  start-page: 2214
  year: 2005
  end-page: 2219
  article-title: Human mesenchymal stem cells alter antigen‐presenting cell maturation and induce T‐cell unresponsiveness
  publication-title: Blood
– volume: 23
  start-page: 3
  year: 2005
  end-page: 9
  article-title: Isolation of multipotent cells from human term placenta
  publication-title: Stem Cells
– volume: 3
  start-page: 34
  year: 1997
  end-page: 44
  article-title: Low dose subcutaneous interleukin‐2 after autologous transplantation generates sustained in vivo natural killer cell activity
  publication-title: Biol Blood Marrow Transplant
– volume: 182
  start-page: 18
  year: 2001
  end-page: 32
  article-title: Immunologic tolerance maintained by CD25 CD4 regulatory T cells: Their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance
  publication-title: Immunol Rev
– volume: 105
  start-page: 1815
  year: 2005
  end-page: 1822
  article-title: Human mesenchymal stem cells modulate allogeneic immune cell responses
  publication-title: Blood
– volume: 22
  start-page: 448
  year: 2004
  end-page: 456
  article-title: Human embryonic stem cells possess immune‐privileged properties
  publication-title: Stem Cells
– volume: 22
  start-page: 1338
  year: 2004
  end-page: 1345
  article-title: Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta
  publication-title: Stem Cells
– volume: 30
  start-page: 215
  year: 2002
  end-page: 222
  article-title: Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS‐IH)
  publication-title: Bone Marrow Transplant
– volume: 281
  start-page: 1191
  year: 1998
  end-page: 1193
  article-title: Prevention of allogeneic fetal rejection by tryptophan catabolism
  publication-title: Science
– volume: 24
  start-page: 221
  year: 2006
  end-page: 229
  article-title: Human embryonic stem cells and their differentiated derivatives are less susceptible for immune rejection than adult cells
  publication-title: Stem Cells
– ident: e_1_2_8_10_2
  doi: 10.1016/j.bbmt.2004.11.009
– ident: e_1_2_8_22_2
  doi: 10.1002/eji.200425405
– ident: e_1_2_8_12_2
  doi: 10.1182/blood.V99.10.3838
– volume: 3
  start-page: 34
  year: 1997
  ident: e_1_2_8_28_2
  article-title: Low dose subcutaneous interleukin‐2 after autologous transplantation generates sustained in vivo natural killer cell activity
  publication-title: Biol Blood Marrow Transplant
  contributor:
    fullname: Miller JS
– ident: e_1_2_8_6_2
  doi: 10.1016/j.amjcard.2004.03.034
– ident: e_1_2_8_11_2
  doi: 10.1016/S0301-472X(01)00769-X
– ident: e_1_2_8_8_2
  doi: 10.1038/sj.bmt.1703650
– ident: e_1_2_8_40_2
  doi: 10.1634/stemcells.22-4-448
– volume: 90
  start-page: 516
  year: 2005
  ident: e_1_2_8_44_2
  article-title: Interaction of human mesenchymal stem cells with cells involved in alloantigen‐specific immune response favors the differentiation of CD4+ T‐cell subsets expressing a regulatory/suppressive phenotype
  publication-title: Haematologica
  contributor:
    fullname: Maccario R
– ident: e_1_2_8_42_2
  doi: 10.1111/j.1365-2141.2005.05409.x
– ident: e_1_2_8_19_2
  doi: 10.1634/stemcells.2005-0008
– ident: e_1_2_8_16_2
  doi: 10.1182/blood-2004-09-3696
– ident: e_1_2_8_39_2
  doi: 10.1073/pnas.142298299
– ident: e_1_2_8_2_2
  doi: 10.1126/science.282.5391.1145
– ident: e_1_2_8_21_2
  doi: 10.1038/sj.leu.2403871
– ident: e_1_2_8_49_2
  doi: 10.1182/blood-2004-02-0586
– ident: e_1_2_8_38_2
  doi: 10.1634/stemcells.2005-0188
– ident: e_1_2_8_3_2
  doi: 10.1038/74447
– ident: e_1_2_8_47_2
  doi: 10.1038/32588
– ident: e_1_2_8_31_2
  doi: 10.1126/science.281.5380.1191
– ident: e_1_2_8_30_2
  doi: 10.1182/blood.V95.10.3106
– ident: e_1_2_8_23_2
  doi: 10.1016/S0047-6374(01)00224-X
– ident: e_1_2_8_27_2
  doi: 10.1182/blood.V88.3.795.795
– ident: e_1_2_8_36_2
  doi: 10.1038/70932
– ident: e_1_2_8_43_2
  doi: 10.1182/blood-2003-11-3909
– ident: e_1_2_8_32_2
  doi: 10.1096/fj.04-2078rev
– ident: e_1_2_8_5_2
  doi: 10.1200/JCO.2000.18.2.307
– ident: e_1_2_8_9_2
  doi: 10.1016/j.bbmt.2005.02.001
– ident: e_1_2_8_50_2
  doi: 10.1038/ni1130
– ident: e_1_2_8_35_2
  doi: 10.1038/sj.bmt.1700718
– ident: e_1_2_8_41_2
  doi: 10.1016/j.ajog.2003.07.022
– ident: e_1_2_8_48_2
  doi: 10.1016/S0952-7915(97)80153-7
– ident: e_1_2_8_25_2
  doi: 10.1634/stemcells.2004-0058
– ident: e_1_2_8_45_2
  doi: 10.1182/blood-2004-04-1559
– ident: e_1_2_8_46_2
  doi: 10.1084/jem.20040395
– ident: e_1_2_8_29_2
  doi: 10.1073/pnas.0508123103
– ident: e_1_2_8_7_2
  doi: 10.1080/14660820310014653
– ident: e_1_2_8_13_2
  doi: 10.1182/blood-2003-04-1193
– ident: e_1_2_8_24_2
  doi: 10.1634/stemcells.22-5-649
– ident: e_1_2_8_18_2
  doi: 10.1111/j.0300-9475.2004.01483.x
– ident: e_1_2_8_4_2
  doi: 10.1002/jor.1100090504
– ident: e_1_2_8_26_2
  doi: 10.1634/stemcells.2004-0098
– ident: e_1_2_8_33_2
  doi: 10.1034/j.1600-065X.2001.1820102.x
– ident: e_1_2_8_20_2
  doi: 10.1097/01.TP.0000082540.43730.80
– ident: e_1_2_8_34_2
  doi: 10.1126/science.1079490
– ident: e_1_2_8_51_2
  doi: 10.1016/S0140-6736(04)16104-7
– ident: e_1_2_8_15_2
  doi: 10.1097/01.TP.0000045055.63901.A9
– ident: e_1_2_8_17_2
  doi: 10.1182/blood-2004-07-2921
– ident: e_1_2_8_14_2
  doi: 10.1182/blood-2002-07-2104
– ident: e_1_2_8_37_2
  doi: 10.1084/jem.192.7.1027
SSID ssj0014588
Score 2.376231
Snippet Several types of nonhematopoietic stem cells, including bone marrow mesenchymal stem cells (BMMSCs) and embryonic stem cells, have been shown to have...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 2466
SubjectTerms Bone Marrow Cells - immunology
CD8-Positive T-Lymphocytes - drug effects
CD8-Positive T-Lymphocytes - immunology
Cell Communication
Cell Differentiation
Cell Lineage
Cells, Cultured
Coculture Techniques
Cytotoxicity, Immunologic
Female
Fluorescent Antibody Technique
Human leukocyte antigen, class I, G
Humans
Immunophenotyping
Immunosuppression
Indoleamine 2,3‐dioxygenase
Interferon-gamma - immunology
Interferon‐γ
Interleukin-10 - immunology
Isoantigens - immunology
Killer Cells, Natural - immunology
Lymphocyte Activation - drug effects
Mesenchymal stem cell
Mesenchymal Stromal Cells - immunology
Mitogens - immunology
Mixed lymphocyte culture
Multilineage differentiation
Multipotent Stem Cells - immunology
Placenta
Placenta - cytology
Placenta - immunology
T-Lymphocytes, Regulatory - drug effects
T-Lymphocytes, Regulatory - immunology
Transforming Growth Factor beta - immunology
Title Placenta‐Derived Multipotent Cells Exhibit Immunosuppressive Properties That Are Enhanced in the Presence of Interferon‐γ
URI https://onlinelibrary.wiley.com/doi/abs/10.1634%2Fstemcells.2006-0071
https://www.ncbi.nlm.nih.gov/pubmed/17071860
https://search.proquest.com/docview/19972448
https://search.proquest.com/docview/69017170
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF5FRRwR_5TfPdCTcfHP2k6OJQ2UikKlplI5WfZ6LEcqdpTYlcoB8Qi8C-_BQ_AKvAAz3vVPSEEtFyvybmbWO59nZ8czO4w9DzzccTnSM6nqNm5QPHylHBdMATYaE6mdeJKSkw_e-3vHYv_EOxkMfvWilqoy3pafL8wr-R-p4j2UK2XJXkGyLVG8gb9RvnhFCeP1UjI-JB94jvZfE7Gwi1zP0ISs02rnRUkf-sdwero0JlQIe1YabykfpFhWcxUAewaUKjCn4GpYGtMsKo2dBRiTPFORAToK8rBOUpLQJJ4sUligzdiw3RpPtl65fTv3qIRPhqw5owm7G53rKP0P2azoOR_Gjbt6nFUduf1KL6e1L1cFG0PX_K7Kuv-r5o9R0TbXNLsOM9BhBbOs1wV0l87fYbf-DqWi0Ugy0cxRQwWttgXVytOaXOt1lZvd4Nfua2nh-70V3xGqkszaauK7gnCDM1ZP2LZyv1iqZszq2d1_rKltpCPtsZBM2BKhup8USUjnHlxzUDtSHOKbkzYuyabU4foTvX5MfVQWEnl5wUhWzam1PdLqlqu2maY32Q292eE7Crm32ADy2-y6Kn96fod9afD78-s3jVzeQy6vkcs1cvkacnmHXE7IRT7AG-TyWc4RubxBLi9S3iEXGf74fpcdv55Mx3umrgdiSjqwwZQe2LEEmYwgGiaOBCq7BvHIjYRMrSCJsQEnNIWhFXl0BK2Ntrb0bBeiNBZp4N5jG3mRwwPGU7BiJxEikC6IURKMYgsixx2hhkriQFqb7EUzreFcHfsS_kOUm-xZM_UhqmdqjXIoqmVIcVxoQQ__3oMqwgV2gCzvK5l1DAMkPfSxRdRCvMxIwqPp5IBSvnz_4dWe4RG5rCxbvW6P2Ua5qOAJGtxl_LQG6G9_eNOC
link.rule.ids 315,783,787,27938,27939
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Placenta%E2%80%90Derived+Multipotent+Cells+Exhibit+Immunosuppressive+Properties+That+Are+Enhanced+in+the+Presence+of+Interferon%E2%80%90%CE%B3&rft.jtitle=Stem+cells+%28Dayton%2C+Ohio%29&rft.au=Chang%2C+Chun%E2%80%90Jung&rft.au=Yen%2C+Men%E2%80%90Luh&rft.au=Chen%2C+Yao%E2%80%90Chang&rft.au=Chien%2C+Chih%E2%80%90Cheng&rft.date=2006-11-01&rft.issn=1066-5099&rft.eissn=1549-4918&rft.volume=24&rft.issue=11&rft.spage=2466&rft.epage=2477&rft_id=info:doi/10.1634%2Fstemcells.2006-0071&rft.externalDBID=n%2Fa&rft.externalDocID=10_1634_stemcells_2006_0071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-5099&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-5099&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-5099&client=summon