Intrinsic unstructuredness and abundance of PEST motifs in eukaryotic proteomes
The study of unfolded protein regions has gained importance because of their prevalence and important roles in various cellular functions. These regions have characteristically high net charge and low hydrophobicity. The amino acid sequence determines the intrinsic unstructuredness of a region and,...
Saved in:
Published in | Proteins, structure, function, and bioinformatics Vol. 62; no. 2; pp. 309 - 315 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.02.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The study of unfolded protein regions has gained importance because of their prevalence and important roles in various cellular functions. These regions have characteristically high net charge and low hydrophobicity. The amino acid sequence determines the intrinsic unstructuredness of a region and, therefore, efforts are ongoing to delineate the sequence motifs, which might contribute to protein disorder. We find that PEST motifs are enriched in the characterized disordered regions as compared with globular ones. Analysis of representative PDB chains revealed very few structures containing PEST sequences and the majority of them lacked regular secondary structure. A proteome‐wide study in completely sequenced eukaryotes with predicted unfolded and folded proteins shows that PEST proteins make up a large fraction of unfolded dataset as compared with the folded proteins. Our data also reveal the prevalence of PEST proteins in eukaryotic proteomes (∼25%). Functional classification of the PEST‐containing proteins shows an over‐ and under‐representation in proteins involved in regulation and metabolism, respectively. Furthermore, our analysis shows that predicted PEST regions do not exhibit any preference to be localized in the C terminals of proteins, as reported earlier. Proteins 2006. © 2005 Wiley‐Liss, Inc. |
---|---|
AbstractList | The study of unfolded protein regions has gained importance because of their prevalence and important roles in various cellular functions. These regions have characteristically high net charge and low hydrophobicity. The amino acid sequence determines the intrinsic unstructuredness of a region and, therefore, efforts are ongoing to delineate the sequence motifs, which might contribute to protein disorder. We find that PEST motifs are enriched in the characterized disordered regions as compared with globular ones. Analysis of representative PDB chains revealed very few structures containing PEST sequences and the majority of them lacked regular secondary structure. A proteome-wide study in completely sequenced eukaryotes with predicted unfolded and folded proteins shows that PEST proteins make up a large fraction of unfolded dataset as compared with the folded proteins. Our data also reveal the prevalence of PEST proteins in eukaryotic proteomes (approximately 25%). Functional classification of the PEST-containing proteins shows an over- and under-representation in proteins involved in regulation and metabolism, respectively. Furthermore, our analysis shows that predicted PEST regions do not exhibit any preference to be localized in the C terminals of proteins, as reported earlier. Abstract The study of unfolded protein regions has gained importance because of their prevalence and important roles in various cellular functions. These regions have characteristically high net charge and low hydrophobicity. The amino acid sequence determines the intrinsic unstructuredness of a region and, therefore, efforts are ongoing to delineate the sequence motifs, which might contribute to protein disorder. We find that PEST motifs are enriched in the characterized disordered regions as compared with globular ones. Analysis of representative PDB chains revealed very few structures containing PEST sequences and the majority of them lacked regular secondary structure. A proteome‐wide study in completely sequenced eukaryotes with predicted unfolded and folded proteins shows that PEST proteins make up a large fraction of unfolded dataset as compared with the folded proteins. Our data also reveal the prevalence of PEST proteins in eukaryotic proteomes (∼25%). Functional classification of the PEST‐containing proteins shows an over‐ and under‐representation in proteins involved in regulation and metabolism, respectively. Furthermore, our analysis shows that predicted PEST regions do not exhibit any preference to be localized in the C terminals of proteins, as reported earlier. Proteins 2006. © 2005 Wiley‐Liss, Inc. The study of unfolded protein regions has gained importance because of their prevalence and important roles in various cellular functions. These regions have characteristically high net charge and low hydrophobicity. The amino acid sequence determines the intrinsic unstructuredness of a region and, therefore, efforts are ongoing to delineate the sequence motifs, which might contribute to protein disorder. We find that PEST motifs are enriched in the characterized disordered regions as compared with globular ones. Analysis of representative PDB chains revealed very few structures containing PEST sequences and the majority of them lacked regular secondary structure. A proteome‐wide study in completely sequenced eukaryotes with predicted unfolded and folded proteins shows that PEST proteins make up a large fraction of unfolded dataset as compared with the folded proteins. Our data also reveal the prevalence of PEST proteins in eukaryotic proteomes (∼25%). Functional classification of the PEST‐containing proteins shows an over‐ and under‐representation in proteins involved in regulation and metabolism, respectively. Furthermore, our analysis shows that predicted PEST regions do not exhibit any preference to be localized in the C terminals of proteins, as reported earlier. Proteins 2006. © 2005 Wiley‐Liss, Inc. |
Author | Dash, Debasis Ganapathi, Mythily Singh, Gajinder Pal Sandhu, Kuljeet Singh |
Author_xml | – sequence: 1 givenname: Gajinder Pal surname: Singh fullname: Singh, Gajinder Pal organization: Institute of Genomics and Integrative Biology (CSIR), Delhi University Campus, Delhi, India – sequence: 2 givenname: Mythily surname: Ganapathi fullname: Ganapathi, Mythily organization: Institute of Genomics and Integrative Biology (CSIR), Delhi University Campus, Delhi, India – sequence: 3 givenname: Kuljeet Singh surname: Sandhu fullname: Sandhu, Kuljeet Singh organization: Institute of Genomics and Integrative Biology (CSIR), Delhi University Campus, Delhi, India – sequence: 4 givenname: Debasis surname: Dash fullname: Dash, Debasis email: ddash@igib.res.in organization: Institute of Genomics and Integrative Biology (CSIR), Delhi University Campus, Delhi, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16299712$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kEtPwzAQhC0EouVx4QcgnzggpdixYztHQDwqKlpBUY-WY2-kQOOAnQj496S0wI3T7krfzI5mD237xgNCR5SMKCHp2Wto2lFKJBdbaEhJLhNCGd9GQ6KUTFimsgHai_GZECJyJnbRgIo0zyVNh2g69m2ofKws7nxsQ2fbLoDzECM23mFTdN4ZbwE3JZ5dPc5x3bRVGXHlMXQvJnz2p8WrCNDUEA_QTmmWEQ43cx89XV_NL2-TyfRmfHk-SSxnVCSWZYWiuTA8c5ZbLklpFShbUMrLUsrcMpcZS41TBU_7zUknVOGUSIXNLLB9dLL27T-_dRBbXVfRwnJpPDRd1EJmOaFc9ODpGrShiTFAqV9DVfe5NSV6VZ9eZdff9fXw8ca1K2pwf-imrx6ga-C9WsLnP1Z69jCd_5gma00VW_j41Zjw0qdkMtOL-xud3qqLBWF3-oJ9AfkIjUs |
CitedBy_id | crossref_primary_10_4161_idp_24684 crossref_primary_10_1016_j_bbrc_2008_04_072 crossref_primary_10_4161_idp_26782 crossref_primary_10_1002_prot_25323 crossref_primary_10_1016_j_sbi_2008_10_002 crossref_primary_10_1002_prot_21328 crossref_primary_10_1093_bioinformatics_btq043 crossref_primary_10_1371_journal_pone_0023650 crossref_primary_10_1016_j_neuroscience_2013_02_006 crossref_primary_10_1016_j_bbapap_2011_03_010 crossref_primary_10_1016_j_plaphy_2015_10_017 crossref_primary_10_3390_biomedicines11030990 crossref_primary_10_1002_prot_20918 crossref_primary_10_1002_pro_4968 crossref_primary_10_1039_C3CP54884H crossref_primary_10_3109_09553002_2010_486016 crossref_primary_10_3390_ijms17010024 crossref_primary_10_1016_j_jsb_2020_107665 crossref_primary_10_7717_peerj_2 crossref_primary_10_3390_ijms241713158 crossref_primary_10_1111_jnc_12955 crossref_primary_10_1002_prot_21773 crossref_primary_10_1093_jxb_erab554 crossref_primary_10_1002_prot_21497 crossref_primary_10_1074_jbc_R115_685859 crossref_primary_10_3390_ijms18040740 crossref_primary_10_1021_acs_biochem_8b00441 crossref_primary_10_1016_j_ceca_2020_102185 crossref_primary_10_1111_tpj_12933 crossref_primary_10_1038_s41419_024_06591_z crossref_primary_10_3389_fgene_2021_706260 crossref_primary_10_3389_fpls_2021_648494 crossref_primary_10_1111_febs_14182 crossref_primary_10_1016_j_bbapap_2012_12_008 crossref_primary_10_3389_fpls_2019_00387 crossref_primary_10_1007_s00018_018_2798_8 crossref_primary_10_1021_cr4007329 crossref_primary_10_1007_s00018_018_2968_8 crossref_primary_10_1080_07391102_2007_10507123 crossref_primary_10_1186_1471_2164_11_197 crossref_primary_10_1016_j_biomaterials_2008_12_021 crossref_primary_10_1002_prot_22555 crossref_primary_10_1016_j_cytogfr_2015_07_012 crossref_primary_10_1080_07391102_2019_1592027 crossref_primary_10_1515_hsz_2015_0303 crossref_primary_10_1016_j_febslet_2015_08_014 crossref_primary_10_4161_idp_27454 crossref_primary_10_1007_s12551_021_00853_2 crossref_primary_10_1016_j_neuroscience_2014_06_049 crossref_primary_10_3390_molecules23020328 crossref_primary_10_1371_journal_pcbi_0030162 crossref_primary_10_1016_j_febslet_2015_06_004 crossref_primary_10_7717_peerj_1265 crossref_primary_10_1161_CIRCRESAHA_116_309685 crossref_primary_10_1529_biophysj_106_094045 crossref_primary_10_1021_ac203096k crossref_primary_10_1007_s00018_020_03697_3 crossref_primary_10_1038_sj_cdd_4401934 crossref_primary_10_3390_ijms18122761 crossref_primary_10_3390_ijms21249755 crossref_primary_10_1002_ajmg_b_32431 crossref_primary_10_1016_j_bbrep_2015_03_003 crossref_primary_10_1038_s41598_018_35547_5 crossref_primary_10_1080_21690707_2015_1027032 crossref_primary_10_1038_s41598_021_00618_7 crossref_primary_10_1186_1471_2164_9_S1_S1 crossref_primary_10_1089_omi_2007_4324 crossref_primary_10_1146_annurev_biochem_072711_164947 crossref_primary_10_1186_1471_2164_10_S1_S12 crossref_primary_10_1016_j_jbiotec_2019_05_307 crossref_primary_10_1093_gbe_evv105 crossref_primary_10_4236_abb_2014_513118 crossref_primary_10_1002_prot_25880 crossref_primary_10_1371_journal_pone_0073476 crossref_primary_10_4161_idp_34500 |
Cites_doi | 10.1101/gr.849004 10.1128/MCB.22.13.4463-4476.2002 10.1074/jbc.M010377200 10.1016/j.jmb.2004.10.045 10.3109/10799899809047740 10.1007/BF01076559 10.1074/jbc.M402507200 10.1016/j.str.2003.10.002 10.1074/jbc.M313873200 10.1093/nar/gkg022 10.1016/S0168-9525(03)00140-9 10.4049/jimmunol.164.8.4292 10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7 10.1110/ps.29401 10.1128/MCB.18.1.314 10.1126/science.2876518 10.1093/bioinformatics/bti1034 10.1074/jbc.M402475200 10.1046/j.0014-2956.2001.02649.x 10.1186/1475-2875-2-16 10.1016/j.febslet.2004.09.036 10.1002/prot.340200303 10.1006/jmbi.1999.3110 10.1093/bioinformatics/bth407 10.1023/A:1014476123120 10.1128/MCB.15.2.731 10.1016/S0014-5793(02)03246-5 10.1128/MCB.16.4.1401 10.1093/nar/gkh253 10.1016/S1359-0278(97)00010-2 10.1016/j.jmb.2005.01.071 10.1016/S0166-6851(01)00452-2 10.1128/JVI.73.3.2038-2044.1999 10.1016/j.jmb.2004.11.008 10.1146/annurev.micro.55.1.673 10.1074/jbc.M112037200 10.1016/S0022-2836(02)00736-2 10.1016/S0968-0004(96)10031-1 10.1016/S0014-5793(00)01809-3 10.1093/bioinformatics/bth344 10.1021/bi992455a 10.1021/bi00356a001 10.1002/prot.20279 10.1016/S0968-0004(02)02169-2 10.1016/S1093-3263(00)00138-8 10.1515/BC.2005.011 10.1038/nsmb814 10.1128/MCB.20.7.2423-2435.2000 10.1002/bip.360221211 10.1128/MCB.16.11.6037 |
ContentType | Journal Article |
Copyright | Copyright © 2005 Wiley‐Liss, Inc. 2005 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2005 Wiley‐Liss, Inc. – notice: 2005 Wiley-Liss, Inc. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1002/prot.20746 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1097-0134 |
EndPage | 315 |
ExternalDocumentID | 10_1002_prot_20746 16299712 PROT20746 ark_67375_WNG_2H8BW03K_B |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: CSIR funderid: CMM0017 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RBB RNS ROL RWI RX1 SUPJJ UB1 V2E W8V W99 WBFHL WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM .GJ 53G AAYXX ABEML ACSCC CITATION EBD EMOBN FA8 HF~ LH6 NDZJH PALCI RIWAO RJQFR SAMSI SV3 WSB ZGI ZXP 7X8 |
ID | FETCH-LOGICAL-c4316-c35b8196a45dc4c470fc8e8cb114ff779c3d5ac1ad8b425acd7d68bd8626c5ce3 |
IEDL.DBID | DR2 |
ISSN | 0887-3585 |
IngestDate | Sat Aug 17 03:16:14 EDT 2024 Fri Aug 23 01:42:18 EDT 2024 Sat Sep 28 07:50:22 EDT 2024 Sat Aug 24 00:53:22 EDT 2024 Wed Oct 30 09:56:46 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | 2005 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4316-c35b8196a45dc4c470fc8e8cb114ff779c3d5ac1ad8b425acd7d68bd8626c5ce3 |
Notes | ArticleID:PROT20746 CSIR - No. CMM0017 istex:70D0D1097F43B28D4466AE24B80ECC8A39AD91E0 ark:/67375/WNG-2H8BW03K-B The authors wish it to be known that, in their opinion, Gajinder Pal Singh and Mythily Ganapathi should be regarded as joint first authors. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 16299712 |
PQID | 67590146 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_67590146 crossref_primary_10_1002_prot_20746 pubmed_primary_16299712 wiley_primary_10_1002_prot_20746_PROT20746 istex_primary_ark_67375_WNG_2H8BW03K_B |
PublicationCentury | 2000 |
PublicationDate | 1 February 2006 |
PublicationDateYYYYMMDD | 2006-02-01 |
PublicationDate_xml | – month: 02 year: 2006 text: 1 February 2006 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Proteins, structure, function, and bioinformatics |
PublicationTitleAlternate | Proteins |
PublicationYear | 2006 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Dosztanyi Z, Csizmok V, Tompa P, Simon I. The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 2005; 347(4): 827-839. Yaglom J, Linskens MH, Sadis S, Rubin DM, Futcher B, Finley D. p34Cdc28-mediated control of Cln3 cyclin degradation. Mol Cell Biol 1995; 15(2): 731-741. Iakoucheva LM, Kimzey AL, Masselon CD, et al. Identification of intrinsic order and disorder in the DNA repair protein XPA. Protein Sci 2001; 10(3): 560-571. Cox CJ, Dutta K, Petri ET, et al. The regions of securin and cyclin B proteins recognized by the ubiquitination machinery are natively unfolded. FEBS Lett 2002; 527(1-3): 303-308. Sekhar KR, Freeman ML. PEST sequences in proteins involved in cyclic nucleotide signalling pathways. J Recept Signal Transduct Res 1998; 18(2-3): 113-132. Sachdeva G, Kumar K, Jain P, Ramachandran S. SPAAN: a software for prediction of adhesins and adhesin-like proteins using neural networks. Bioinformatics 2004; 16: 16. Barnes JA, Gomes AV. Proteolytic signals in the primary structure of annexins. Mol Cell Biochem 2002; 231(1-2): 1-7. Tompa P. Intrinsically unstructured proteins. Trends Biochem Sci 2002; 27(10): 527-533. Li J, Matsuoka H, Mitamura T, Horii T. Characterization of proteases involved in the processing of Plasmodium falciparum serine repeat antigen (SERA). Mol Biochem Parasitol 2002; 120(2): 177-186. Uversky VN. What does it mean to be natively unfolded? Eur J Biochem 2002; 269(1): 2-12. Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res 2004; 14(6): 1188-1190. Liu J, Tan H, Rost B. Loopy proteins appear conserved in evolution. J Mol Biol 2002; 322(1): 53-64. Prakash T, Ramakrishnan C, Dash D, Brahmachari SK. Conformational analysis of invariant peptide sequences in bacterial genomes. J Mol Biol 2005; 345(5): 937-955. Akgul C, Moulding DA, White MR, Edwards SW. In vivo localisation and stability of human Mcl-1 using green fluorescent protein (GFP) fusion proteins. FEBS Lett 2000; 478(1-2): 72-76. Rechsteiner M, Rogers SW. PEST sequences and regulation by proteolysis. Trends Biochem Sci 1996; 21(7): 267-271. Tompa P, Buzder-Lantos P, Tantos A, et al. On the sequential determinants of calpain cleavage. J Biol Chem 2004; 279(20): 20775-20785. Mark WY, Liao JC, Lu Y, et al. Characterization of segments from the central region of BRCA1: an intrinsically disordered scaffold for multiple protein-protein and protein-DNA interactions? J Mol Biol 2005; 345(2): 275-287. Berset C, Griac P, Tempel R, La Rue J, Wittenberg C, Lanker S. Transferable domain in the G(1) cyclin Cln2 sufficient to switch degradation of Sic1 from the E3 ubiquitin ligase SCF(Cdc4) to SCF(Grr1). Mol Cell Biol 2002; 22(13): 4463-4476. Huber AH, Stewart DB, Laurents DV, Nelson WJ, Weis WI. The cadherin cytoplasmic domain is unstructured in the absence of beta-catenin. A possible mechanism for regulating cadherin turnover. J Biol Chem 2001; 276(15): 12301-12309. Fontana A, Polverino de Laureto P, De Filippis V, Scaramella E, Zambonin M. Probing the partly folded states of proteins by limited proteolysis. Fold Des 1997; 2(2): R17-26. Kyes S, Horrocks P, Newbold C. Antigenic variation at the infected red cell surface in malaria. Annu Rev Microbiol 2001; 55: 673-707. Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB. Protein disorder prediction: implications for structural proteomics. Structure (Camb) 2003; 11(11): 1453-1459. Rost B, Sander C. Conservation and prediction of solvent accessibility in protein families. Proteins 1994; 20(3): 216-226. Ghosh M, Shanker S, Siwanowicz I, Mann K, Machleidt W, Holak TA. Proteolysis of insulin-like growth factor binding proteins (IGFBPs) by calpain. Biol Chem 2005; 386(1): 85-93. Iakoucheva LM, Radivojac P, Brown CJ, et al. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 2004; 32(3): 1037-1049. Wright PE, Dyson HJ. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 1999; 293(2): 321-331. Lin R, Beauparlant P, Makris C, Meloche S, Hiscott J. Phosphorylation of IkappaBalpha in the C-terminal PEST domain by casein kinase II affects intrinsic protein stability. Mol Cell Biol 1996; 16(4): 1401-1409. Spencer ML, Theodosiou M, Noonan DJ. NPDC-1, a novel regulator of neuronal proliferation, is degraded by the ubiquitin/proteasome system through a PEST degradation motif. J Biol Chem 2004; 279(35): 37069-37078. Weathers EA, Paulaitis ME, Woolf TB, Hoh JH. Reduced amino acid alphabet is sufficient to accurately recognize intrinsically disordered protein. FEBS Lett 2004; 576(3): 348-352. Van Antwerp DJ, Verma IM. Signal-induced degradation of I(kappa)B(alpha): association with NF-kappaB and the PEST sequence in I(kappa)B(alpha) are not required. Mol Cell Biol 1996; 16(11): 6037-6045. Fontana A, Fassina G, Vita C, Dalzoppo D, Zamai M, Zambonin M. Correlation between sites of limited proteolysis and segmental mobility in thermolysin. Biochemistry 1986; 25(8): 1847-1851. Pandey N, Ganapathi M, Kumar K, Dasgupta D, Das Sutar SK, Dash D. Comparative analysis of protein unfoldedness in human housekeeping and non-housekeeping proteins. Bioinformatics 2004; 20(17): 2904-2910. Mitchell D, Bell A. PEST sequences in the malaria parasite Plasmodium falciparum: a genomic study. Malar J 2003; 2(1): 16. Williams RM, Obradovic Z, Mathura V, et al. The protein nonfolding problem: amino acid determinants of intrinsic order and disorder. Pac Symp Biocomput 2001; 6: 89-100. Eisenberg E, Levanon EY. Human housekeeping genes are compact. Trends Genet 2003; 19(7): 362-365. Marchal C, Haguenauer-Tsapis R, Urban-Grimal D. A PEST-like sequence mediates phosphorylation and efficient ubiquitination of yeast uracil permease. Mol Cell Biol 1998; 18(1): 314-321. Barnes JA, Gomes AV. PEST sequences in calmodulin-binding proteins. Mol Cell Biochem 1995; 149-150: 17-27. Lise S, Jones DT. Sequence patterns associated with disordered regions in proteins. Proteins 2005; 58(1): 144-150. Schoonbroodt S, Ferreira V, Best-Belpomme M, et al. Crucial role of the amino-terminal tyrosine residue 42 and the carboxyl-terminal PEST domain of I kappa B alpha in NF-kappa B activation by an oxidative stress. J Immunol 2000; 164(8): 4292-4300. Gomes AV, Barnes JA. Pest sequences in EF-hand calcium-binding proteins. Biochem Mol Biol Int 1995; 37(5): 853-860. Bies J, Nazarov V, Wolff L. Identification of protein instability determinants in the carboxy-terminal region of c-Myb removed as a result of retroviral integration in murine monocytic leukemias. J Virol 1999; 73(3): 2038-2044. Medintz I, Wang X, Hradek T, Michels CA. A PEST-like sequence in the N-terminal cytoplasmic domain of Saccharomyces maltose permease is required for glucose-induced proteolysis and rapid inactivation of transport activity. Biochemistry 2000; 39(15): 4518-4526. Liu F, Dowling M, Yang XJ, Kao GD. Caspase-mediated specific cleavage of human histone deacetylase 4. J Biol Chem 2004; 279(33): 34537-34546. Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 1986; 234(4774): 364-368. Prakash S, Tian L, Ratliff KS, Lehotzky RE, Matouschek A. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat Struct Mol Biol 2004; 11(9): 830-837. Gregory MA, Hann SR. c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt's lymphoma cells. Mol Cell Biol 2000; 20(7): 2423-2435. Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ. Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform 2000; 11: 161-171. Gomes AV, Barnes JA. Protein phosphatases are pest containing proteins. Biochem Mol Biol Int 1997; 41(1): 65-73. Uversky VN, Gillespie JR, Fink AL. Why are "natively unfolded" proteins unstructured under physiologic conditions? Proteins 2000; 41(3): 415-427. Dunker AK, Lawson JD, Brown CJ, et al. Intrinsically disordered protein. J Mol Graph Model 2001; 19(1): 26-59. Bordone L, Campbell C. DNA ligase III is degraded by calpain during cell death induced by DNA-damaging agents. J Biol Chem 2002; 277(29): 26673-26680. Catic A, Collins C, Church GM, Ploegh HL. Preferred in vivo ubiquitination sites. Bioinformatics 2004; 20(18): 3302-3307. Noguchi T, Akiyama Y. PDB-REPRDB: a database of representative protein chains from the Protein Data Bank (PDB) in 2003. Nucleic Acids Res 2003; 31(1): 492-493. Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983; 22(12): 2577-2637. Garay-Malpartida HM, Occhiucci JM, Alves J, Belizario JE. CaSPredictor: a new computer-based tool for caspase substrate prediction. Bioinformatics 2005; 21( Suppl 1): i169-i176. 2004; 20 2002; 231 1995; 37 1997; 41 1999; 293 2000; 41 2002; 277 2005; 21 1997; 2 2003; 19 2003; 11 1994; 20 2004; 32 1998; 18 2004; 576 2005; 386 2005; 345 2000; 11 2005; 347 2001; 19 2003; 2 2002; 269 2000; 164 2001; 55 1996; 21 1983; 22 2001; 10 1986; 234 1995; 15 2000; 478 2000; 20 1995; 149–150 1996; 16 2003; 31 2002; 27 2001; 276 2004; 11 2004; 279 2000; 39 2002; 120 2001; 6 2004; 16 2004; 14 2002; 322 1986; 25 2002; 22 1999; 73 2002; 527 2005; 58 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_13_2 e_1_2_7_11_2 e_1_2_7_43_2 Van Antwerp DJ (e_1_2_7_40_2) 1996; 16 e_1_2_7_45_2 e_1_2_7_47_2 Gomes AV (e_1_2_7_50_2) 1995; 37 e_1_2_7_49_2 Gomes AV (e_1_2_7_51_2) 1997; 41 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_35_2 Dunker AK (e_1_2_7_41_2) 2000; 11 Williams RM (e_1_2_7_6_2) 2001; 6 e_1_2_7_37_2 e_1_2_7_39_2 Marchal C (e_1_2_7_26_2) 1998; 18 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_18_2 e_1_2_7_16_2 e_1_2_7_14_2 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_46_2 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_2 Bies J (e_1_2_7_22_2) 1999; 73 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_38_2 Sachdeva G (e_1_2_7_28_2) 2004; 16 |
References_xml | – volume: 19 start-page: 362 issue: 7 year: 2003 end-page: 365 article-title: Human housekeeping genes are compact publication-title: Trends Genet – volume: 279 start-page: 20775 issue: 20 year: 2004 end-page: 20785 article-title: On the sequential determinants of calpain cleavage publication-title: J Biol Chem – volume: 527 start-page: 303 issue: 1–3 year: 2002 end-page: 308 article-title: The regions of securin and cyclin B proteins recognized by the ubiquitination machinery are natively unfolded publication-title: FEBS Lett – volume: 347 start-page: 827 issue: 4 year: 2005 end-page: 839 article-title: The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins publication-title: J Mol Biol – volume: 15 start-page: 731 issue: 2 year: 1995 end-page: 741 article-title: p34Cdc28‐mediated control of Cln3 cyclin degradation publication-title: Mol Cell Biol – volume: 279 start-page: 37069 issue: 35 year: 2004 end-page: 37078 article-title: NPDC‐1, a novel regulator of neuronal proliferation, is degraded by the ubiquitin/proteasome system through a PEST degradation motif publication-title: J Biol Chem – volume: 20 start-page: 216 issue: 3 year: 1994 end-page: 226 article-title: Conservation and prediction of solvent accessibility in protein families publication-title: Proteins – volume: 18 start-page: 113 issue: 2–3 year: 1998 end-page: 132 article-title: PEST sequences in proteins involved in cyclic nucleotide signalling pathways publication-title: J Recept Signal Transduct Res – volume: 120 start-page: 177 issue: 2 year: 2002 end-page: 186 article-title: Characterization of proteases involved in the processing of serine repeat antigen (SERA) publication-title: Mol Biochem Parasitol – volume: 41 start-page: 65 issue: 1 year: 1997 end-page: 73 article-title: Protein phosphatases are pest containing proteins publication-title: Biochem Mol Biol Int – volume: 6 start-page: 89 year: 2001 end-page: 100 article-title: The protein nonfolding problem: amino acid determinants of intrinsic order and disorder publication-title: Pac Symp Biocomput – volume: 10 start-page: 560 issue: 3 year: 2001 end-page: 571 article-title: Identification of intrinsic order and disorder in the DNA repair protein XPA publication-title: Protein Sci – volume: 269 start-page: 2 issue: 1 year: 2002 end-page: 12 article-title: What does it mean to be natively unfolded? publication-title: Eur J Biochem – volume: 234 start-page: 364 issue: 4774 year: 1986 end-page: 368 article-title: Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis publication-title: Science – volume: 25 start-page: 1847 issue: 8 year: 1986 end-page: 1851 article-title: Correlation between sites of limited proteolysis and segmental mobility in thermolysin publication-title: Biochemistry – volume: 279 start-page: 34537 issue: 33 year: 2004 end-page: 34546 article-title: Caspase‐mediated specific cleavage of human histone deacetylase 4 publication-title: J Biol Chem – volume: 58 start-page: 144 issue: 1 year: 2005 end-page: 150 article-title: Sequence patterns associated with disordered regions in proteins publication-title: Proteins – volume: 276 start-page: 12301 issue: 15 year: 2001 end-page: 12309 article-title: The cadherin cytoplasmic domain is unstructured in the absence of beta‐catenin. A possible mechanism for regulating cadherin turnover publication-title: J Biol Chem – volume: 21 start-page: i169 issue: Suppl 1 year: 2005 end-page: i176 article-title: CaSPredictor: a new computer‐based tool for caspase substrate prediction publication-title: Bioinformatics – volume: 149–150 start-page: 17 year: 1995 end-page: 27 article-title: PEST sequences in calmodulin‐binding proteins publication-title: Mol Cell Biochem – volume: 293 start-page: 321 issue: 2 year: 1999 end-page: 331 article-title: Intrinsically unstructured proteins: re‐assessing the protein structure‐function paradigm publication-title: J Mol Biol – volume: 386 start-page: 85 issue: 1 year: 2005 end-page: 93 article-title: Proteolysis of insulin‐like growth factor binding proteins (IGFBPs) by calpain publication-title: Biol Chem – volume: 41 start-page: 415 issue: 3 year: 2000 end-page: 427 article-title: Why are “natively unfolded” proteins unstructured under physiologic conditions? publication-title: Proteins – volume: 16 start-page: 6037 issue: 11 year: 1996 end-page: 6045 article-title: Signal‐induced degradation of I(kappa)B(alpha): association with NF‐kappaB and the PEST sequence in I(kappa)B(alpha) are not required publication-title: Mol Cell Biol – volume: 21 start-page: 267 issue: 7 year: 1996 end-page: 271 article-title: PEST sequences and regulation by proteolysis publication-title: Trends Biochem Sci – volume: 345 start-page: 937 issue: 5 year: 2005 end-page: 955 article-title: Conformational analysis of invariant peptide sequences in bacterial genomes publication-title: J Mol Biol – volume: 73 start-page: 2038 issue: 3 year: 1999 end-page: 2044 article-title: Identification of protein instability determinants in the carboxy‐terminal region of c‐Myb removed as a result of retroviral integration in murine monocytic leukemias publication-title: J Virol – volume: 322 start-page: 53 issue: 1 year: 2002 end-page: 64 article-title: Loopy proteins appear conserved in evolution publication-title: J Mol Biol – volume: 11 start-page: 161 year: 2000 end-page: 171 article-title: Intrinsic protein disorder in complete genomes publication-title: Genome Inform Ser Workshop Genome Inform – volume: 16 start-page: 1401 issue: 4 year: 1996 end-page: 1409 article-title: Phosphorylation of IkappaBalpha in the C‐terminal PEST domain by casein kinase II affects intrinsic protein stability publication-title: Mol Cell Biol – volume: 20 start-page: 3302 issue: 18 year: 2004 end-page: 3307 article-title: Preferred in vivo ubiquitination sites publication-title: Bioinformatics – volume: 20 start-page: 2904 issue: 17 year: 2004 end-page: 2910 article-title: Comparative analysis of protein unfoldedness in human housekeeping and non‐housekeeping proteins publication-title: Bioinformatics – volume: 2 start-page: 16 issue: 1 year: 2003 article-title: PEST sequences in the malaria parasite : a genomic study publication-title: Malar J – volume: 478 start-page: 72 issue: 1–2 year: 2000 end-page: 76 article-title: In vivo localisation and stability of human Mcl‐1 using green fluorescent protein (GFP) fusion proteins publication-title: FEBS Lett – volume: 55 start-page: 673 year: 2001 end-page: 707 article-title: Antigenic variation at the infected red cell surface in malaria publication-title: Annu Rev Microbiol – volume: 27 start-page: 527 issue: 10 year: 2002 end-page: 533 article-title: Intrinsically unstructured proteins publication-title: Trends Biochem Sci – volume: 16 start-page: 16 year: 2004 article-title: SPAAN: a software for prediction of adhesins and adhesin‐like proteins using neural networks publication-title: Bioinformatics – volume: 31 start-page: 492 issue: 1 year: 2003 end-page: 493 article-title: PDB‐REPRDB: a database of representative protein chains from the Protein Data Bank (PDB) in 2003 publication-title: Nucleic Acids Res – volume: 37 start-page: 853 issue: 5 year: 1995 end-page: 860 article-title: Pest sequences in EF‐hand calcium‐binding proteins publication-title: Biochem Mol Biol Int – volume: 14 start-page: 1188 issue: 6 year: 2004 end-page: 1190 article-title: WebLogo: a sequence logo generator publication-title: Genome Res – volume: 277 start-page: 26673 issue: 29 year: 2002 end-page: 26680 article-title: DNA ligase III is degraded by calpain during cell death induced by DNA‐damaging agents publication-title: J Biol Chem – volume: 576 start-page: 348 issue: 3 year: 2004 end-page: 352 article-title: Reduced amino acid alphabet is sufficient to accurately recognize intrinsically disordered protein publication-title: FEBS Lett – volume: 39 start-page: 4518 issue: 15 year: 2000 end-page: 4526 article-title: A PEST‐like sequence in the N‐terminal cytoplasmic domain of maltose permease is required for glucose‐induced proteolysis and rapid inactivation of transport activity publication-title: Biochemistry – volume: 22 start-page: 2577 issue: 12 year: 1983 end-page: 2637 article-title: Dictionary of protein secondary structure: pattern recognition of hydrogen‐bonded and geometrical features publication-title: Biopolymers – volume: 32 start-page: 1037 issue: 3 year: 2004 end-page: 1049 article-title: The importance of intrinsic disorder for protein phosphorylation publication-title: Nucleic Acids Res – volume: 18 start-page: 314 issue: 1 year: 1998 end-page: 321 article-title: A PEST‐like sequence mediates phosphorylation and efficient ubiquitination of yeast uracil permease publication-title: Mol Cell Biol – volume: 11 start-page: 1453 issue: 11 year: 2003 end-page: 1459 article-title: Protein disorder prediction: implications for structural proteomics publication-title: Structure (Camb) – volume: 231 start-page: 1 issue: 1–2 year: 2002 end-page: 7 article-title: Proteolytic signals in the primary structure of annexins publication-title: Mol Cell Biochem – volume: 345 start-page: 275 issue: 2 year: 2005 end-page: 287 article-title: Characterization of segments from the central region of BRCA1: an intrinsically disordered scaffold for multiple protein‐protein and protein‐DNA interactions? publication-title: J Mol Biol – volume: 11 start-page: 830 issue: 9 year: 2004 end-page: 837 article-title: An unstructured initiation site is required for efficient proteasome‐mediated degradation publication-title: Nat Struct Mol Biol – volume: 164 start-page: 4292 issue: 8 year: 2000 end-page: 4300 article-title: Crucial role of the amino‐terminal tyrosine residue 42 and the carboxyl‐terminal PEST domain of I kappa B alpha in NF‐kappa B activation by an oxidative stress publication-title: J Immunol – volume: 22 start-page: 4463 issue: 13 year: 2002 end-page: 4476 article-title: Transferable domain in the G(1) cyclin Cln2 sufficient to switch degradation of Sic1 from the E3 ubiquitin ligase SCF(Cdc4) to SCF(Grr1) publication-title: Mol Cell Biol – volume: 19 start-page: 26 issue: 1 year: 2001 end-page: 59 article-title: Intrinsically disordered protein publication-title: J Mol Graph Model – volume: 20 start-page: 2423 issue: 7 year: 2000 end-page: 2435 article-title: c‐Myc proteolysis by the ubiquitin‐proteasome pathway: stabilization of c‐Myc in Burkitt's lymphoma cells publication-title: Mol Cell Biol – volume: 2 start-page: R17 issue: 2 year: 1997 end-page: 26 article-title: Probing the partly folded states of proteins by limited proteolysis publication-title: Fold Des – ident: e_1_2_7_36_2 doi: 10.1101/gr.849004 – ident: e_1_2_7_21_2 doi: 10.1128/MCB.22.13.4463-4476.2002 – ident: e_1_2_7_55_2 doi: 10.1074/jbc.M010377200 – ident: e_1_2_7_10_2 doi: 10.1016/j.jmb.2004.10.045 – ident: e_1_2_7_52_2 doi: 10.3109/10799899809047740 – volume: 16 start-page: 16 year: 2004 ident: e_1_2_7_28_2 article-title: SPAAN: a software for prediction of adhesins and adhesin‐like proteins using neural networks publication-title: Bioinformatics contributor: fullname: Sachdeva G – ident: e_1_2_7_48_2 doi: 10.1007/BF01076559 – ident: e_1_2_7_43_2 doi: 10.1074/jbc.M402507200 – volume: 41 start-page: 65 issue: 1 year: 1997 ident: e_1_2_7_51_2 article-title: Protein phosphatases are pest containing proteins publication-title: Biochem Mol Biol Int contributor: fullname: Gomes AV – ident: e_1_2_7_32_2 doi: 10.1016/j.str.2003.10.002 – ident: e_1_2_7_14_2 doi: 10.1074/jbc.M313873200 – ident: e_1_2_7_29_2 doi: 10.1093/nar/gkg022 – ident: e_1_2_7_27_2 doi: 10.1016/S0168-9525(03)00140-9 – ident: e_1_2_7_39_2 doi: 10.4049/jimmunol.164.8.4292 – ident: e_1_2_7_5_2 doi: 10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7 – ident: e_1_2_7_11_2 doi: 10.1110/ps.29401 – volume: 18 start-page: 314 issue: 1 year: 1998 ident: e_1_2_7_26_2 article-title: A PEST‐like sequence mediates phosphorylation and efficient ubiquitination of yeast uracil permease publication-title: Mol Cell Biol doi: 10.1128/MCB.18.1.314 contributor: fullname: Marchal C – volume: 11 start-page: 161 year: 2000 ident: e_1_2_7_41_2 article-title: Intrinsic protein disorder in complete genomes publication-title: Genome Inform Ser Workshop Genome Inform contributor: fullname: Dunker AK – ident: e_1_2_7_16_2 doi: 10.1126/science.2876518 – ident: e_1_2_7_44_2 doi: 10.1093/bioinformatics/bti1034 – ident: e_1_2_7_42_2 doi: 10.1074/jbc.M402475200 – ident: e_1_2_7_2_2 doi: 10.1046/j.0014-2956.2001.02649.x – ident: e_1_2_7_54_2 doi: 10.1186/1475-2875-2-16 – ident: e_1_2_7_7_2 doi: 10.1016/j.febslet.2004.09.036 – ident: e_1_2_7_31_2 doi: 10.1002/prot.340200303 – ident: e_1_2_7_3_2 doi: 10.1006/jmbi.1999.3110 – ident: e_1_2_7_13_2 doi: 10.1093/bioinformatics/bth407 – ident: e_1_2_7_49_2 doi: 10.1023/A:1014476123120 – volume: 6 start-page: 89 year: 2001 ident: e_1_2_7_6_2 article-title: The protein nonfolding problem: amino acid determinants of intrinsic order and disorder publication-title: Pac Symp Biocomput contributor: fullname: Williams RM – ident: e_1_2_7_20_2 doi: 10.1128/MCB.15.2.731 – ident: e_1_2_7_12_2 doi: 10.1016/S0014-5793(02)03246-5 – ident: e_1_2_7_25_2 doi: 10.1128/MCB.16.4.1401 – volume: 37 start-page: 853 issue: 5 year: 1995 ident: e_1_2_7_50_2 article-title: Pest sequences in EF‐hand calcium‐binding proteins publication-title: Biochem Mol Biol Int contributor: fullname: Gomes AV – ident: e_1_2_7_24_2 doi: 10.1093/nar/gkh253 – ident: e_1_2_7_46_2 doi: 10.1016/S1359-0278(97)00010-2 – ident: e_1_2_7_34_2 doi: 10.1016/j.jmb.2005.01.071 – ident: e_1_2_7_56_2 doi: 10.1016/S0166-6851(01)00452-2 – volume: 73 start-page: 2038 issue: 3 year: 1999 ident: e_1_2_7_22_2 article-title: Identification of protein instability determinants in the carboxy‐terminal region of c‐Myb removed as a result of retroviral integration in murine monocytic leukemias publication-title: J Virol doi: 10.1128/JVI.73.3.2038-2044.1999 contributor: fullname: Bies J – ident: e_1_2_7_35_2 doi: 10.1016/j.jmb.2004.11.008 – ident: e_1_2_7_53_2 doi: 10.1146/annurev.micro.55.1.673 – ident: e_1_2_7_18_2 doi: 10.1074/jbc.M112037200 – ident: e_1_2_7_37_2 doi: 10.1016/S0022-2836(02)00736-2 – ident: e_1_2_7_17_2 doi: 10.1016/S0968-0004(96)10031-1 – ident: e_1_2_7_23_2 doi: 10.1016/S0014-5793(00)01809-3 – ident: e_1_2_7_33_2 doi: 10.1093/bioinformatics/bth344 – ident: e_1_2_7_38_2 doi: 10.1021/bi992455a – ident: e_1_2_7_45_2 doi: 10.1021/bi00356a001 – ident: e_1_2_7_8_2 doi: 10.1002/prot.20279 – ident: e_1_2_7_9_2 doi: 10.1016/S0968-0004(02)02169-2 – ident: e_1_2_7_4_2 doi: 10.1016/S1093-3263(00)00138-8 – ident: e_1_2_7_47_2 doi: 10.1515/BC.2005.011 – ident: e_1_2_7_15_2 doi: 10.1038/nsmb814 – ident: e_1_2_7_19_2 doi: 10.1128/MCB.20.7.2423-2435.2000 – ident: e_1_2_7_30_2 doi: 10.1002/bip.360221211 – volume: 16 start-page: 6037 issue: 11 year: 1996 ident: e_1_2_7_40_2 article-title: Signal‐induced degradation of I(kappa)B(alpha): association with NF‐kappaB and the PEST sequence in I(kappa)B(alpha) are not required publication-title: Mol Cell Biol doi: 10.1128/MCB.16.11.6037 contributor: fullname: Van Antwerp DJ |
SSID | ssj0006936 |
Score | 2.1862254 |
Snippet | The study of unfolded protein regions has gained importance because of their prevalence and important roles in various cellular functions. These regions have... Abstract The study of unfolded protein regions has gained importance because of their prevalence and important roles in various cellular functions. These... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 309 |
SubjectTerms | Amino Acid Sequence Animals Genome Humans PEST motifs protein degradation signals Protein Denaturation protein disorder Protein Folding protein unfoldedness Proteins - chemistry Proteins - genetics proteolysis Proteome Surface Properties unstructured regions |
Title | Intrinsic unstructuredness and abundance of PEST motifs in eukaryotic proteomes |
URI | https://api.istex.fr/ark:/67375/WNG-2H8BW03K-B/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.20746 https://www.ncbi.nlm.nih.gov/pubmed/16299712 https://search.proquest.com/docview/67590146 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swED9Kx9i-7NHukXYPwUY_DNwmfsmGfmm6dtnG2tKltF-GkE4ylFClJDF0--t7J8cJHWOwfZNBts-60z3ku98BvC8duq7JuhFSMBCRlnRR6Xp5FKN2ZC-q0iZcO_ztKB-cpV8usosV2G1rYRp8iMWBG--MoK95g2sz3VmChjKOAcV3MmW87V4iOZ_r4-kSOyovQ3_AZheRU7zAJo13lrfesUb3eGFv_uRq3vVcg-k5fAw_WqKbjJPRdj0z2_jrNzzH__2qJ_Bo7pOKvUaInsKK82uwvucpHr_6KbZEyBINx-9rcL_fjh7st73i1uH4s59NLj1xXNRzSNp64iyrUaG9FdpwwQnJlxhX4uTg-1BwDmA1FZdeuHpE5NIligAaMb5y02dwdngw3B9E81YNEXItfYRJZsi3yHWaWUwxld0KC1egoXCrqqQsMbGZxp62hSEtodFKmxfGcjyFGbrkOaz6sXcvQXBL3sIW5Oe4NGU4OlYSFZZkOFGW2nXgXcsydd0gcqgGezlWTKYKq9eBrcDNxRQ9GXEOm8zU-dEnFQ-K_nk3-ar6HXjbslvRovHvEu3duJ7SbK7L5Ue9aKRg-bqcjLjsxR34EHj5FzrUyenxMIw2_mXyJjxszno4b-YVrBLj3GvyfmbmTZDyW_BgAFw |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9tAEB5xqKIv3NAUKCu14qGSIfHtR8IVroBoELyt1rNrCUVsUBJLbX89M-scAlWV2re1tLbXO7NzeeYbgG-ZQVPPo7qH5Ax4JCWNl5lG7PmoDOmLItMB1w5ft-PWfXjxGD2OcnO4FqbCh5gE3PhkOHnNB5wD0gdT1FAGMiAHLwnjWZin8x5w54bjuyl6VJy5DoHVOSKzeIJO6h9M732jj-Z5a3_-ydh8a7s65XO6VHVYHTjMQs456e6Xw3wff79DdPzv71qGxZFZKg4rPlqBGWNXYe3Qkkv-_EvsCZco6iLwq_ChOR4tHI3bxa3Bzbkd9p8sEV2UI1Tasm80S1KhrBYq55oTYjHRK8TtyY-O4DTAYiCerDBll9ZLlygcbkTv2QzW4f70pHPU8kbdGjzkcnoPgygn8yJWYaQxxDCpF5iaFHPyuIoiSTIMdKSwoXSak6BQqBMdp7lmlwojNMEGzNmeNZ9AcFfeVKdk6pgwZEQ6lhMFZqQ7McmUqcHXMc3kSwXKISv4ZV_yMqXbvRrsOXJOpqh-l9PYkkg-tM-k30qbD_XgUjZrsDumt6RN4z8myppeOaDZXJrLj9qs2GD6upj0eNLwa_DdEfMv65C3dzcdN_r8L5N3YaHVub6SV-ftyy34WIV-OI1mG-aIiGaHjKFh_sWx_CvgcQR0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8xENtexgb76GDD0iYekAJtviPthQJdGaxUrAheJss5OxKqcFHbSNv--t05TSumaRJ7cyQncXznu985dz8DfMwMmmYeNT2kYMAjK2m8zLRiz0dlyF8UmQ64dvhrL-5ehl-uo-sl-FTXwlT8EPMNN14Zzl7zAr_Txf6CNJR5DCi-S8L4EayEMUFfhkQXC_KoOHMHBFbLiFDxnJzU31_ce88drfDM_vgb1rwPXZ3v6azB93rUVcrJcK-c5nv46w9Cx__9rOfwbAZKxUGlRS9gydh12DiwFJDf_hQ7wqWJuv33dVht160nh_VhcRtwfmKn4xtLIhfljJO2HBvNdlQoq4XKueKEFEyMCtE__jYQnARYTMSNFaYc0nDpEoVjjRjdmslLuOwcDw673uysBg-5mN7DIMoJXMQqjDSGGCbNAlOTYk7xVlEkSYaBjhS2lE5zMhMKdaLjNNccUGGEJngFy3ZkzRsQfCZvqlMCOiYMmY-OrUSBGXlOTDJlGvChFpm8qyg5ZEW-7EsepnSz14AdJ815FzUechJbEsmr3mfpd9P2VTM4le0GbNfiljRp_L9EWTMqJ9SbC3P5Ua8rLVi8LiYvnrT8Buw6Wf5jHLJ_cT5wrbcP6bwNj_tHHXl20jvdhKfVvg_n0GzBMsnQvCMkNM3fO4X_DdaVAyM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsic+unstructuredness+and+abundance+of+PEST+motifs+in+eukaryotic+proteomes&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Singh%2C+Gajinder+Pal&rft.au=Ganapathi%2C+Mythily&rft.au=Sandhu%2C+Kuljeet+Singh&rft.au=Dash%2C+Debasis&rft.date=2006-02-01&rft.eissn=1097-0134&rft.volume=62&rft.issue=2&rft.spage=309&rft.epage=315&rft_id=info:doi/10.1002%2Fprot.20746&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon |