Intrinsic unstructuredness and abundance of PEST motifs in eukaryotic proteomes

The study of unfolded protein regions has gained importance because of their prevalence and important roles in various cellular functions. These regions have characteristically high net charge and low hydrophobicity. The amino acid sequence determines the intrinsic unstructuredness of a region and,...

Full description

Saved in:
Bibliographic Details
Published inProteins, structure, function, and bioinformatics Vol. 62; no. 2; pp. 309 - 315
Main Authors Singh, Gajinder Pal, Ganapathi, Mythily, Sandhu, Kuljeet Singh, Dash, Debasis
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.02.2006
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The study of unfolded protein regions has gained importance because of their prevalence and important roles in various cellular functions. These regions have characteristically high net charge and low hydrophobicity. The amino acid sequence determines the intrinsic unstructuredness of a region and, therefore, efforts are ongoing to delineate the sequence motifs, which might contribute to protein disorder. We find that PEST motifs are enriched in the characterized disordered regions as compared with globular ones. Analysis of representative PDB chains revealed very few structures containing PEST sequences and the majority of them lacked regular secondary structure. A proteome‐wide study in completely sequenced eukaryotes with predicted unfolded and folded proteins shows that PEST proteins make up a large fraction of unfolded dataset as compared with the folded proteins. Our data also reveal the prevalence of PEST proteins in eukaryotic proteomes (∼25%). Functional classification of the PEST‐containing proteins shows an over‐ and under‐representation in proteins involved in regulation and metabolism, respectively. Furthermore, our analysis shows that predicted PEST regions do not exhibit any preference to be localized in the C terminals of proteins, as reported earlier. Proteins 2006. © 2005 Wiley‐Liss, Inc.
AbstractList The study of unfolded protein regions has gained importance because of their prevalence and important roles in various cellular functions. These regions have characteristically high net charge and low hydrophobicity. The amino acid sequence determines the intrinsic unstructuredness of a region and, therefore, efforts are ongoing to delineate the sequence motifs, which might contribute to protein disorder. We find that PEST motifs are enriched in the characterized disordered regions as compared with globular ones. Analysis of representative PDB chains revealed very few structures containing PEST sequences and the majority of them lacked regular secondary structure. A proteome-wide study in completely sequenced eukaryotes with predicted unfolded and folded proteins shows that PEST proteins make up a large fraction of unfolded dataset as compared with the folded proteins. Our data also reveal the prevalence of PEST proteins in eukaryotic proteomes (approximately 25%). Functional classification of the PEST-containing proteins shows an over- and under-representation in proteins involved in regulation and metabolism, respectively. Furthermore, our analysis shows that predicted PEST regions do not exhibit any preference to be localized in the C terminals of proteins, as reported earlier.
Abstract The study of unfolded protein regions has gained importance because of their prevalence and important roles in various cellular functions. These regions have characteristically high net charge and low hydrophobicity. The amino acid sequence determines the intrinsic unstructuredness of a region and, therefore, efforts are ongoing to delineate the sequence motifs, which might contribute to protein disorder. We find that PEST motifs are enriched in the characterized disordered regions as compared with globular ones. Analysis of representative PDB chains revealed very few structures containing PEST sequences and the majority of them lacked regular secondary structure. A proteome‐wide study in completely sequenced eukaryotes with predicted unfolded and folded proteins shows that PEST proteins make up a large fraction of unfolded dataset as compared with the folded proteins. Our data also reveal the prevalence of PEST proteins in eukaryotic proteomes (∼25%). Functional classification of the PEST‐containing proteins shows an over‐ and under‐representation in proteins involved in regulation and metabolism, respectively. Furthermore, our analysis shows that predicted PEST regions do not exhibit any preference to be localized in the C terminals of proteins, as reported earlier. Proteins 2006. © 2005 Wiley‐Liss, Inc.
The study of unfolded protein regions has gained importance because of their prevalence and important roles in various cellular functions. These regions have characteristically high net charge and low hydrophobicity. The amino acid sequence determines the intrinsic unstructuredness of a region and, therefore, efforts are ongoing to delineate the sequence motifs, which might contribute to protein disorder. We find that PEST motifs are enriched in the characterized disordered regions as compared with globular ones. Analysis of representative PDB chains revealed very few structures containing PEST sequences and the majority of them lacked regular secondary structure. A proteome‐wide study in completely sequenced eukaryotes with predicted unfolded and folded proteins shows that PEST proteins make up a large fraction of unfolded dataset as compared with the folded proteins. Our data also reveal the prevalence of PEST proteins in eukaryotic proteomes (∼25%). Functional classification of the PEST‐containing proteins shows an over‐ and under‐representation in proteins involved in regulation and metabolism, respectively. Furthermore, our analysis shows that predicted PEST regions do not exhibit any preference to be localized in the C terminals of proteins, as reported earlier. Proteins 2006. © 2005 Wiley‐Liss, Inc.
Author Dash, Debasis
Ganapathi, Mythily
Singh, Gajinder Pal
Sandhu, Kuljeet Singh
Author_xml – sequence: 1
  givenname: Gajinder Pal
  surname: Singh
  fullname: Singh, Gajinder Pal
  organization: Institute of Genomics and Integrative Biology (CSIR), Delhi University Campus, Delhi, India
– sequence: 2
  givenname: Mythily
  surname: Ganapathi
  fullname: Ganapathi, Mythily
  organization: Institute of Genomics and Integrative Biology (CSIR), Delhi University Campus, Delhi, India
– sequence: 3
  givenname: Kuljeet Singh
  surname: Sandhu
  fullname: Sandhu, Kuljeet Singh
  organization: Institute of Genomics and Integrative Biology (CSIR), Delhi University Campus, Delhi, India
– sequence: 4
  givenname: Debasis
  surname: Dash
  fullname: Dash, Debasis
  email: ddash@igib.res.in
  organization: Institute of Genomics and Integrative Biology (CSIR), Delhi University Campus, Delhi, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16299712$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtPwzAQhC0EouVx4QcgnzggpdixYztHQDwqKlpBUY-WY2-kQOOAnQj496S0wI3T7krfzI5mD237xgNCR5SMKCHp2Wto2lFKJBdbaEhJLhNCGd9GQ6KUTFimsgHai_GZECJyJnbRgIo0zyVNh2g69m2ofKws7nxsQ2fbLoDzECM23mFTdN4ZbwE3JZ5dPc5x3bRVGXHlMXQvJnz2p8WrCNDUEA_QTmmWEQ43cx89XV_NL2-TyfRmfHk-SSxnVCSWZYWiuTA8c5ZbLklpFShbUMrLUsrcMpcZS41TBU_7zUknVOGUSIXNLLB9dLL27T-_dRBbXVfRwnJpPDRd1EJmOaFc9ODpGrShiTFAqV9DVfe5NSV6VZ9eZdff9fXw8ca1K2pwf-imrx6ga-C9WsLnP1Z69jCd_5gma00VW_j41Zjw0qdkMtOL-xud3qqLBWF3-oJ9AfkIjUs
CitedBy_id crossref_primary_10_4161_idp_24684
crossref_primary_10_1016_j_bbrc_2008_04_072
crossref_primary_10_4161_idp_26782
crossref_primary_10_1002_prot_25323
crossref_primary_10_1016_j_sbi_2008_10_002
crossref_primary_10_1002_prot_21328
crossref_primary_10_1093_bioinformatics_btq043
crossref_primary_10_1371_journal_pone_0023650
crossref_primary_10_1016_j_neuroscience_2013_02_006
crossref_primary_10_1016_j_bbapap_2011_03_010
crossref_primary_10_1016_j_plaphy_2015_10_017
crossref_primary_10_3390_biomedicines11030990
crossref_primary_10_1002_prot_20918
crossref_primary_10_1002_pro_4968
crossref_primary_10_1039_C3CP54884H
crossref_primary_10_3109_09553002_2010_486016
crossref_primary_10_3390_ijms17010024
crossref_primary_10_1016_j_jsb_2020_107665
crossref_primary_10_7717_peerj_2
crossref_primary_10_3390_ijms241713158
crossref_primary_10_1111_jnc_12955
crossref_primary_10_1002_prot_21773
crossref_primary_10_1093_jxb_erab554
crossref_primary_10_1002_prot_21497
crossref_primary_10_1074_jbc_R115_685859
crossref_primary_10_3390_ijms18040740
crossref_primary_10_1021_acs_biochem_8b00441
crossref_primary_10_1016_j_ceca_2020_102185
crossref_primary_10_1111_tpj_12933
crossref_primary_10_1038_s41419_024_06591_z
crossref_primary_10_3389_fgene_2021_706260
crossref_primary_10_3389_fpls_2021_648494
crossref_primary_10_1111_febs_14182
crossref_primary_10_1016_j_bbapap_2012_12_008
crossref_primary_10_3389_fpls_2019_00387
crossref_primary_10_1007_s00018_018_2798_8
crossref_primary_10_1021_cr4007329
crossref_primary_10_1007_s00018_018_2968_8
crossref_primary_10_1080_07391102_2007_10507123
crossref_primary_10_1186_1471_2164_11_197
crossref_primary_10_1016_j_biomaterials_2008_12_021
crossref_primary_10_1002_prot_22555
crossref_primary_10_1016_j_cytogfr_2015_07_012
crossref_primary_10_1080_07391102_2019_1592027
crossref_primary_10_1515_hsz_2015_0303
crossref_primary_10_1016_j_febslet_2015_08_014
crossref_primary_10_4161_idp_27454
crossref_primary_10_1007_s12551_021_00853_2
crossref_primary_10_1016_j_neuroscience_2014_06_049
crossref_primary_10_3390_molecules23020328
crossref_primary_10_1371_journal_pcbi_0030162
crossref_primary_10_1016_j_febslet_2015_06_004
crossref_primary_10_7717_peerj_1265
crossref_primary_10_1161_CIRCRESAHA_116_309685
crossref_primary_10_1529_biophysj_106_094045
crossref_primary_10_1021_ac203096k
crossref_primary_10_1007_s00018_020_03697_3
crossref_primary_10_1038_sj_cdd_4401934
crossref_primary_10_3390_ijms18122761
crossref_primary_10_3390_ijms21249755
crossref_primary_10_1002_ajmg_b_32431
crossref_primary_10_1016_j_bbrep_2015_03_003
crossref_primary_10_1038_s41598_018_35547_5
crossref_primary_10_1080_21690707_2015_1027032
crossref_primary_10_1038_s41598_021_00618_7
crossref_primary_10_1186_1471_2164_9_S1_S1
crossref_primary_10_1089_omi_2007_4324
crossref_primary_10_1146_annurev_biochem_072711_164947
crossref_primary_10_1186_1471_2164_10_S1_S12
crossref_primary_10_1016_j_jbiotec_2019_05_307
crossref_primary_10_1093_gbe_evv105
crossref_primary_10_4236_abb_2014_513118
crossref_primary_10_1002_prot_25880
crossref_primary_10_1371_journal_pone_0073476
crossref_primary_10_4161_idp_34500
Cites_doi 10.1101/gr.849004
10.1128/MCB.22.13.4463-4476.2002
10.1074/jbc.M010377200
10.1016/j.jmb.2004.10.045
10.3109/10799899809047740
10.1007/BF01076559
10.1074/jbc.M402507200
10.1016/j.str.2003.10.002
10.1074/jbc.M313873200
10.1093/nar/gkg022
10.1016/S0168-9525(03)00140-9
10.4049/jimmunol.164.8.4292
10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7
10.1110/ps.29401
10.1128/MCB.18.1.314
10.1126/science.2876518
10.1093/bioinformatics/bti1034
10.1074/jbc.M402475200
10.1046/j.0014-2956.2001.02649.x
10.1186/1475-2875-2-16
10.1016/j.febslet.2004.09.036
10.1002/prot.340200303
10.1006/jmbi.1999.3110
10.1093/bioinformatics/bth407
10.1023/A:1014476123120
10.1128/MCB.15.2.731
10.1016/S0014-5793(02)03246-5
10.1128/MCB.16.4.1401
10.1093/nar/gkh253
10.1016/S1359-0278(97)00010-2
10.1016/j.jmb.2005.01.071
10.1016/S0166-6851(01)00452-2
10.1128/JVI.73.3.2038-2044.1999
10.1016/j.jmb.2004.11.008
10.1146/annurev.micro.55.1.673
10.1074/jbc.M112037200
10.1016/S0022-2836(02)00736-2
10.1016/S0968-0004(96)10031-1
10.1016/S0014-5793(00)01809-3
10.1093/bioinformatics/bth344
10.1021/bi992455a
10.1021/bi00356a001
10.1002/prot.20279
10.1016/S0968-0004(02)02169-2
10.1016/S1093-3263(00)00138-8
10.1515/BC.2005.011
10.1038/nsmb814
10.1128/MCB.20.7.2423-2435.2000
10.1002/bip.360221211
10.1128/MCB.16.11.6037
ContentType Journal Article
Copyright Copyright © 2005 Wiley‐Liss, Inc.
2005 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2005 Wiley‐Liss, Inc.
– notice: 2005 Wiley-Liss, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1002/prot.20746
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1097-0134
EndPage 315
ExternalDocumentID 10_1002_prot_20746
16299712
PROT20746
ark_67375_WNG_2H8BW03K_B
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CSIR
  funderid: CMM0017
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RNS
ROL
RWI
RX1
SUPJJ
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
.GJ
53G
AAYXX
ABEML
ACSCC
CITATION
EBD
EMOBN
FA8
HF~
LH6
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
SV3
WSB
ZGI
ZXP
7X8
ID FETCH-LOGICAL-c4316-c35b8196a45dc4c470fc8e8cb114ff779c3d5ac1ad8b425acd7d68bd8626c5ce3
IEDL.DBID DR2
ISSN 0887-3585
IngestDate Sat Aug 17 03:16:14 EDT 2024
Fri Aug 23 01:42:18 EDT 2024
Sat Sep 28 07:50:22 EDT 2024
Sat Aug 24 00:53:22 EDT 2024
Wed Oct 30 09:56:46 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License 2005 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4316-c35b8196a45dc4c470fc8e8cb114ff779c3d5ac1ad8b425acd7d68bd8626c5ce3
Notes ArticleID:PROT20746
CSIR - No. CMM0017
istex:70D0D1097F43B28D4466AE24B80ECC8A39AD91E0
ark:/67375/WNG-2H8BW03K-B
The authors wish it to be known that, in their opinion, Gajinder Pal Singh and Mythily Ganapathi should be regarded as joint first authors.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 16299712
PQID 67590146
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_67590146
crossref_primary_10_1002_prot_20746
pubmed_primary_16299712
wiley_primary_10_1002_prot_20746_PROT20746
istex_primary_ark_67375_WNG_2H8BW03K_B
PublicationCentury 2000
PublicationDate 1 February 2006
PublicationDateYYYYMMDD 2006-02-01
PublicationDate_xml – month: 02
  year: 2006
  text: 1 February 2006
  day: 01
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Proteins, structure, function, and bioinformatics
PublicationTitleAlternate Proteins
PublicationYear 2006
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Dosztanyi Z, Csizmok V, Tompa P, Simon I. The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 2005; 347(4): 827-839.
Yaglom J, Linskens MH, Sadis S, Rubin DM, Futcher B, Finley D. p34Cdc28-mediated control of Cln3 cyclin degradation. Mol Cell Biol 1995; 15(2): 731-741.
Iakoucheva LM, Kimzey AL, Masselon CD, et al. Identification of intrinsic order and disorder in the DNA repair protein XPA. Protein Sci 2001; 10(3): 560-571.
Cox CJ, Dutta K, Petri ET, et al. The regions of securin and cyclin B proteins recognized by the ubiquitination machinery are natively unfolded. FEBS Lett 2002; 527(1-3): 303-308.
Sekhar KR, Freeman ML. PEST sequences in proteins involved in cyclic nucleotide signalling pathways. J Recept Signal Transduct Res 1998; 18(2-3): 113-132.
Sachdeva G, Kumar K, Jain P, Ramachandran S. SPAAN: a software for prediction of adhesins and adhesin-like proteins using neural networks. Bioinformatics 2004; 16: 16.
Barnes JA, Gomes AV. Proteolytic signals in the primary structure of annexins. Mol Cell Biochem 2002; 231(1-2): 1-7.
Tompa P. Intrinsically unstructured proteins. Trends Biochem Sci 2002; 27(10): 527-533.
Li J, Matsuoka H, Mitamura T, Horii T. Characterization of proteases involved in the processing of Plasmodium falciparum serine repeat antigen (SERA). Mol Biochem Parasitol 2002; 120(2): 177-186.
Uversky VN. What does it mean to be natively unfolded? Eur J Biochem 2002; 269(1): 2-12.
Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res 2004; 14(6): 1188-1190.
Liu J, Tan H, Rost B. Loopy proteins appear conserved in evolution. J Mol Biol 2002; 322(1): 53-64.
Prakash T, Ramakrishnan C, Dash D, Brahmachari SK. Conformational analysis of invariant peptide sequences in bacterial genomes. J Mol Biol 2005; 345(5): 937-955.
Akgul C, Moulding DA, White MR, Edwards SW. In vivo localisation and stability of human Mcl-1 using green fluorescent protein (GFP) fusion proteins. FEBS Lett 2000; 478(1-2): 72-76.
Rechsteiner M, Rogers SW. PEST sequences and regulation by proteolysis. Trends Biochem Sci 1996; 21(7): 267-271.
Tompa P, Buzder-Lantos P, Tantos A, et al. On the sequential determinants of calpain cleavage. J Biol Chem 2004; 279(20): 20775-20785.
Mark WY, Liao JC, Lu Y, et al. Characterization of segments from the central region of BRCA1: an intrinsically disordered scaffold for multiple protein-protein and protein-DNA interactions? J Mol Biol 2005; 345(2): 275-287.
Berset C, Griac P, Tempel R, La Rue J, Wittenberg C, Lanker S. Transferable domain in the G(1) cyclin Cln2 sufficient to switch degradation of Sic1 from the E3 ubiquitin ligase SCF(Cdc4) to SCF(Grr1). Mol Cell Biol 2002; 22(13): 4463-4476.
Huber AH, Stewart DB, Laurents DV, Nelson WJ, Weis WI. The cadherin cytoplasmic domain is unstructured in the absence of beta-catenin. A possible mechanism for regulating cadherin turnover. J Biol Chem 2001; 276(15): 12301-12309.
Fontana A, Polverino de Laureto P, De Filippis V, Scaramella E, Zambonin M. Probing the partly folded states of proteins by limited proteolysis. Fold Des 1997; 2(2): R17-26.
Kyes S, Horrocks P, Newbold C. Antigenic variation at the infected red cell surface in malaria. Annu Rev Microbiol 2001; 55: 673-707.
Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB. Protein disorder prediction: implications for structural proteomics. Structure (Camb) 2003; 11(11): 1453-1459.
Rost B, Sander C. Conservation and prediction of solvent accessibility in protein families. Proteins 1994; 20(3): 216-226.
Ghosh M, Shanker S, Siwanowicz I, Mann K, Machleidt W, Holak TA. Proteolysis of insulin-like growth factor binding proteins (IGFBPs) by calpain. Biol Chem 2005; 386(1): 85-93.
Iakoucheva LM, Radivojac P, Brown CJ, et al. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 2004; 32(3): 1037-1049.
Wright PE, Dyson HJ. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 1999; 293(2): 321-331.
Lin R, Beauparlant P, Makris C, Meloche S, Hiscott J. Phosphorylation of IkappaBalpha in the C-terminal PEST domain by casein kinase II affects intrinsic protein stability. Mol Cell Biol 1996; 16(4): 1401-1409.
Spencer ML, Theodosiou M, Noonan DJ. NPDC-1, a novel regulator of neuronal proliferation, is degraded by the ubiquitin/proteasome system through a PEST degradation motif. J Biol Chem 2004; 279(35): 37069-37078.
Weathers EA, Paulaitis ME, Woolf TB, Hoh JH. Reduced amino acid alphabet is sufficient to accurately recognize intrinsically disordered protein. FEBS Lett 2004; 576(3): 348-352.
Van Antwerp DJ, Verma IM. Signal-induced degradation of I(kappa)B(alpha): association with NF-kappaB and the PEST sequence in I(kappa)B(alpha) are not required. Mol Cell Biol 1996; 16(11): 6037-6045.
Fontana A, Fassina G, Vita C, Dalzoppo D, Zamai M, Zambonin M. Correlation between sites of limited proteolysis and segmental mobility in thermolysin. Biochemistry 1986; 25(8): 1847-1851.
Pandey N, Ganapathi M, Kumar K, Dasgupta D, Das Sutar SK, Dash D. Comparative analysis of protein unfoldedness in human housekeeping and non-housekeeping proteins. Bioinformatics 2004; 20(17): 2904-2910.
Mitchell D, Bell A. PEST sequences in the malaria parasite Plasmodium falciparum: a genomic study. Malar J 2003; 2(1): 16.
Williams RM, Obradovic Z, Mathura V, et al. The protein nonfolding problem: amino acid determinants of intrinsic order and disorder. Pac Symp Biocomput 2001; 6: 89-100.
Eisenberg E, Levanon EY. Human housekeeping genes are compact. Trends Genet 2003; 19(7): 362-365.
Marchal C, Haguenauer-Tsapis R, Urban-Grimal D. A PEST-like sequence mediates phosphorylation and efficient ubiquitination of yeast uracil permease. Mol Cell Biol 1998; 18(1): 314-321.
Barnes JA, Gomes AV. PEST sequences in calmodulin-binding proteins. Mol Cell Biochem 1995; 149-150: 17-27.
Lise S, Jones DT. Sequence patterns associated with disordered regions in proteins. Proteins 2005; 58(1): 144-150.
Schoonbroodt S, Ferreira V, Best-Belpomme M, et al. Crucial role of the amino-terminal tyrosine residue 42 and the carboxyl-terminal PEST domain of I kappa B alpha in NF-kappa B activation by an oxidative stress. J Immunol 2000; 164(8): 4292-4300.
Gomes AV, Barnes JA. Pest sequences in EF-hand calcium-binding proteins. Biochem Mol Biol Int 1995; 37(5): 853-860.
Bies J, Nazarov V, Wolff L. Identification of protein instability determinants in the carboxy-terminal region of c-Myb removed as a result of retroviral integration in murine monocytic leukemias. J Virol 1999; 73(3): 2038-2044.
Medintz I, Wang X, Hradek T, Michels CA. A PEST-like sequence in the N-terminal cytoplasmic domain of Saccharomyces maltose permease is required for glucose-induced proteolysis and rapid inactivation of transport activity. Biochemistry 2000; 39(15): 4518-4526.
Liu F, Dowling M, Yang XJ, Kao GD. Caspase-mediated specific cleavage of human histone deacetylase 4. J Biol Chem 2004; 279(33): 34537-34546.
Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 1986; 234(4774): 364-368.
Prakash S, Tian L, Ratliff KS, Lehotzky RE, Matouschek A. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat Struct Mol Biol 2004; 11(9): 830-837.
Gregory MA, Hann SR. c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt's lymphoma cells. Mol Cell Biol 2000; 20(7): 2423-2435.
Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ. Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform 2000; 11: 161-171.
Gomes AV, Barnes JA. Protein phosphatases are pest containing proteins. Biochem Mol Biol Int 1997; 41(1): 65-73.
Uversky VN, Gillespie JR, Fink AL. Why are "natively unfolded" proteins unstructured under physiologic conditions? Proteins 2000; 41(3): 415-427.
Dunker AK, Lawson JD, Brown CJ, et al. Intrinsically disordered protein. J Mol Graph Model 2001; 19(1): 26-59.
Bordone L, Campbell C. DNA ligase III is degraded by calpain during cell death induced by DNA-damaging agents. J Biol Chem 2002; 277(29): 26673-26680.
Catic A, Collins C, Church GM, Ploegh HL. Preferred in vivo ubiquitination sites. Bioinformatics 2004; 20(18): 3302-3307.
Noguchi T, Akiyama Y. PDB-REPRDB: a database of representative protein chains from the Protein Data Bank (PDB) in 2003. Nucleic Acids Res 2003; 31(1): 492-493.
Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983; 22(12): 2577-2637.
Garay-Malpartida HM, Occhiucci JM, Alves J, Belizario JE. CaSPredictor: a new computer-based tool for caspase substrate prediction. Bioinformatics 2005; 21( Suppl 1): i169-i176.
2004; 20
2002; 231
1995; 37
1997; 41
1999; 293
2000; 41
2002; 277
2005; 21
1997; 2
2003; 19
2003; 11
1994; 20
2004; 32
1998; 18
2004; 576
2005; 386
2005; 345
2000; 11
2005; 347
2001; 19
2003; 2
2002; 269
2000; 164
2001; 55
1996; 21
1983; 22
2001; 10
1986; 234
1995; 15
2000; 478
2000; 20
1995; 149–150
1996; 16
2003; 31
2002; 27
2001; 276
2004; 11
2004; 279
2000; 39
2002; 120
2001; 6
2004; 16
2004; 14
2002; 322
1986; 25
2002; 22
1999; 73
2002; 527
2005; 58
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_13_2
e_1_2_7_11_2
e_1_2_7_43_2
Van Antwerp DJ (e_1_2_7_40_2) 1996; 16
e_1_2_7_45_2
e_1_2_7_47_2
Gomes AV (e_1_2_7_50_2) 1995; 37
e_1_2_7_49_2
Gomes AV (e_1_2_7_51_2) 1997; 41
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_35_2
Dunker AK (e_1_2_7_41_2) 2000; 11
Williams RM (e_1_2_7_6_2) 2001; 6
e_1_2_7_37_2
e_1_2_7_39_2
Marchal C (e_1_2_7_26_2) 1998; 18
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_18_2
e_1_2_7_16_2
e_1_2_7_14_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_46_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
Bies J (e_1_2_7_22_2) 1999; 73
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_38_2
Sachdeva G (e_1_2_7_28_2) 2004; 16
References_xml – volume: 19
  start-page: 362
  issue: 7
  year: 2003
  end-page: 365
  article-title: Human housekeeping genes are compact
  publication-title: Trends Genet
– volume: 279
  start-page: 20775
  issue: 20
  year: 2004
  end-page: 20785
  article-title: On the sequential determinants of calpain cleavage
  publication-title: J Biol Chem
– volume: 527
  start-page: 303
  issue: 1–3
  year: 2002
  end-page: 308
  article-title: The regions of securin and cyclin B proteins recognized by the ubiquitination machinery are natively unfolded
  publication-title: FEBS Lett
– volume: 347
  start-page: 827
  issue: 4
  year: 2005
  end-page: 839
  article-title: The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins
  publication-title: J Mol Biol
– volume: 15
  start-page: 731
  issue: 2
  year: 1995
  end-page: 741
  article-title: p34Cdc28‐mediated control of Cln3 cyclin degradation
  publication-title: Mol Cell Biol
– volume: 279
  start-page: 37069
  issue: 35
  year: 2004
  end-page: 37078
  article-title: NPDC‐1, a novel regulator of neuronal proliferation, is degraded by the ubiquitin/proteasome system through a PEST degradation motif
  publication-title: J Biol Chem
– volume: 20
  start-page: 216
  issue: 3
  year: 1994
  end-page: 226
  article-title: Conservation and prediction of solvent accessibility in protein families
  publication-title: Proteins
– volume: 18
  start-page: 113
  issue: 2–3
  year: 1998
  end-page: 132
  article-title: PEST sequences in proteins involved in cyclic nucleotide signalling pathways
  publication-title: J Recept Signal Transduct Res
– volume: 120
  start-page: 177
  issue: 2
  year: 2002
  end-page: 186
  article-title: Characterization of proteases involved in the processing of serine repeat antigen (SERA)
  publication-title: Mol Biochem Parasitol
– volume: 41
  start-page: 65
  issue: 1
  year: 1997
  end-page: 73
  article-title: Protein phosphatases are pest containing proteins
  publication-title: Biochem Mol Biol Int
– volume: 6
  start-page: 89
  year: 2001
  end-page: 100
  article-title: The protein nonfolding problem: amino acid determinants of intrinsic order and disorder
  publication-title: Pac Symp Biocomput
– volume: 10
  start-page: 560
  issue: 3
  year: 2001
  end-page: 571
  article-title: Identification of intrinsic order and disorder in the DNA repair protein XPA
  publication-title: Protein Sci
– volume: 269
  start-page: 2
  issue: 1
  year: 2002
  end-page: 12
  article-title: What does it mean to be natively unfolded?
  publication-title: Eur J Biochem
– volume: 234
  start-page: 364
  issue: 4774
  year: 1986
  end-page: 368
  article-title: Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis
  publication-title: Science
– volume: 25
  start-page: 1847
  issue: 8
  year: 1986
  end-page: 1851
  article-title: Correlation between sites of limited proteolysis and segmental mobility in thermolysin
  publication-title: Biochemistry
– volume: 279
  start-page: 34537
  issue: 33
  year: 2004
  end-page: 34546
  article-title: Caspase‐mediated specific cleavage of human histone deacetylase 4
  publication-title: J Biol Chem
– volume: 58
  start-page: 144
  issue: 1
  year: 2005
  end-page: 150
  article-title: Sequence patterns associated with disordered regions in proteins
  publication-title: Proteins
– volume: 276
  start-page: 12301
  issue: 15
  year: 2001
  end-page: 12309
  article-title: The cadherin cytoplasmic domain is unstructured in the absence of beta‐catenin. A possible mechanism for regulating cadherin turnover
  publication-title: J Biol Chem
– volume: 21
  start-page: i169
  issue: Suppl 1
  year: 2005
  end-page: i176
  article-title: CaSPredictor: a new computer‐based tool for caspase substrate prediction
  publication-title: Bioinformatics
– volume: 149–150
  start-page: 17
  year: 1995
  end-page: 27
  article-title: PEST sequences in calmodulin‐binding proteins
  publication-title: Mol Cell Biochem
– volume: 293
  start-page: 321
  issue: 2
  year: 1999
  end-page: 331
  article-title: Intrinsically unstructured proteins: re‐assessing the protein structure‐function paradigm
  publication-title: J Mol Biol
– volume: 386
  start-page: 85
  issue: 1
  year: 2005
  end-page: 93
  article-title: Proteolysis of insulin‐like growth factor binding proteins (IGFBPs) by calpain
  publication-title: Biol Chem
– volume: 41
  start-page: 415
  issue: 3
  year: 2000
  end-page: 427
  article-title: Why are “natively unfolded” proteins unstructured under physiologic conditions?
  publication-title: Proteins
– volume: 16
  start-page: 6037
  issue: 11
  year: 1996
  end-page: 6045
  article-title: Signal‐induced degradation of I(kappa)B(alpha): association with NF‐kappaB and the PEST sequence in I(kappa)B(alpha) are not required
  publication-title: Mol Cell Biol
– volume: 21
  start-page: 267
  issue: 7
  year: 1996
  end-page: 271
  article-title: PEST sequences and regulation by proteolysis
  publication-title: Trends Biochem Sci
– volume: 345
  start-page: 937
  issue: 5
  year: 2005
  end-page: 955
  article-title: Conformational analysis of invariant peptide sequences in bacterial genomes
  publication-title: J Mol Biol
– volume: 73
  start-page: 2038
  issue: 3
  year: 1999
  end-page: 2044
  article-title: Identification of protein instability determinants in the carboxy‐terminal region of c‐Myb removed as a result of retroviral integration in murine monocytic leukemias
  publication-title: J Virol
– volume: 322
  start-page: 53
  issue: 1
  year: 2002
  end-page: 64
  article-title: Loopy proteins appear conserved in evolution
  publication-title: J Mol Biol
– volume: 11
  start-page: 161
  year: 2000
  end-page: 171
  article-title: Intrinsic protein disorder in complete genomes
  publication-title: Genome Inform Ser Workshop Genome Inform
– volume: 16
  start-page: 1401
  issue: 4
  year: 1996
  end-page: 1409
  article-title: Phosphorylation of IkappaBalpha in the C‐terminal PEST domain by casein kinase II affects intrinsic protein stability
  publication-title: Mol Cell Biol
– volume: 20
  start-page: 3302
  issue: 18
  year: 2004
  end-page: 3307
  article-title: Preferred in vivo ubiquitination sites
  publication-title: Bioinformatics
– volume: 20
  start-page: 2904
  issue: 17
  year: 2004
  end-page: 2910
  article-title: Comparative analysis of protein unfoldedness in human housekeeping and non‐housekeeping proteins
  publication-title: Bioinformatics
– volume: 2
  start-page: 16
  issue: 1
  year: 2003
  article-title: PEST sequences in the malaria parasite : a genomic study
  publication-title: Malar J
– volume: 478
  start-page: 72
  issue: 1–2
  year: 2000
  end-page: 76
  article-title: In vivo localisation and stability of human Mcl‐1 using green fluorescent protein (GFP) fusion proteins
  publication-title: FEBS Lett
– volume: 55
  start-page: 673
  year: 2001
  end-page: 707
  article-title: Antigenic variation at the infected red cell surface in malaria
  publication-title: Annu Rev Microbiol
– volume: 27
  start-page: 527
  issue: 10
  year: 2002
  end-page: 533
  article-title: Intrinsically unstructured proteins
  publication-title: Trends Biochem Sci
– volume: 16
  start-page: 16
  year: 2004
  article-title: SPAAN: a software for prediction of adhesins and adhesin‐like proteins using neural networks
  publication-title: Bioinformatics
– volume: 31
  start-page: 492
  issue: 1
  year: 2003
  end-page: 493
  article-title: PDB‐REPRDB: a database of representative protein chains from the Protein Data Bank (PDB) in 2003
  publication-title: Nucleic Acids Res
– volume: 37
  start-page: 853
  issue: 5
  year: 1995
  end-page: 860
  article-title: Pest sequences in EF‐hand calcium‐binding proteins
  publication-title: Biochem Mol Biol Int
– volume: 14
  start-page: 1188
  issue: 6
  year: 2004
  end-page: 1190
  article-title: WebLogo: a sequence logo generator
  publication-title: Genome Res
– volume: 277
  start-page: 26673
  issue: 29
  year: 2002
  end-page: 26680
  article-title: DNA ligase III is degraded by calpain during cell death induced by DNA‐damaging agents
  publication-title: J Biol Chem
– volume: 576
  start-page: 348
  issue: 3
  year: 2004
  end-page: 352
  article-title: Reduced amino acid alphabet is sufficient to accurately recognize intrinsically disordered protein
  publication-title: FEBS Lett
– volume: 39
  start-page: 4518
  issue: 15
  year: 2000
  end-page: 4526
  article-title: A PEST‐like sequence in the N‐terminal cytoplasmic domain of maltose permease is required for glucose‐induced proteolysis and rapid inactivation of transport activity
  publication-title: Biochemistry
– volume: 22
  start-page: 2577
  issue: 12
  year: 1983
  end-page: 2637
  article-title: Dictionary of protein secondary structure: pattern recognition of hydrogen‐bonded and geometrical features
  publication-title: Biopolymers
– volume: 32
  start-page: 1037
  issue: 3
  year: 2004
  end-page: 1049
  article-title: The importance of intrinsic disorder for protein phosphorylation
  publication-title: Nucleic Acids Res
– volume: 18
  start-page: 314
  issue: 1
  year: 1998
  end-page: 321
  article-title: A PEST‐like sequence mediates phosphorylation and efficient ubiquitination of yeast uracil permease
  publication-title: Mol Cell Biol
– volume: 11
  start-page: 1453
  issue: 11
  year: 2003
  end-page: 1459
  article-title: Protein disorder prediction: implications for structural proteomics
  publication-title: Structure (Camb)
– volume: 231
  start-page: 1
  issue: 1–2
  year: 2002
  end-page: 7
  article-title: Proteolytic signals in the primary structure of annexins
  publication-title: Mol Cell Biochem
– volume: 345
  start-page: 275
  issue: 2
  year: 2005
  end-page: 287
  article-title: Characterization of segments from the central region of BRCA1: an intrinsically disordered scaffold for multiple protein‐protein and protein‐DNA interactions?
  publication-title: J Mol Biol
– volume: 11
  start-page: 830
  issue: 9
  year: 2004
  end-page: 837
  article-title: An unstructured initiation site is required for efficient proteasome‐mediated degradation
  publication-title: Nat Struct Mol Biol
– volume: 164
  start-page: 4292
  issue: 8
  year: 2000
  end-page: 4300
  article-title: Crucial role of the amino‐terminal tyrosine residue 42 and the carboxyl‐terminal PEST domain of I kappa B alpha in NF‐kappa B activation by an oxidative stress
  publication-title: J Immunol
– volume: 22
  start-page: 4463
  issue: 13
  year: 2002
  end-page: 4476
  article-title: Transferable domain in the G(1) cyclin Cln2 sufficient to switch degradation of Sic1 from the E3 ubiquitin ligase SCF(Cdc4) to SCF(Grr1)
  publication-title: Mol Cell Biol
– volume: 19
  start-page: 26
  issue: 1
  year: 2001
  end-page: 59
  article-title: Intrinsically disordered protein
  publication-title: J Mol Graph Model
– volume: 20
  start-page: 2423
  issue: 7
  year: 2000
  end-page: 2435
  article-title: c‐Myc proteolysis by the ubiquitin‐proteasome pathway: stabilization of c‐Myc in Burkitt's lymphoma cells
  publication-title: Mol Cell Biol
– volume: 2
  start-page: R17
  issue: 2
  year: 1997
  end-page: 26
  article-title: Probing the partly folded states of proteins by limited proteolysis
  publication-title: Fold Des
– ident: e_1_2_7_36_2
  doi: 10.1101/gr.849004
– ident: e_1_2_7_21_2
  doi: 10.1128/MCB.22.13.4463-4476.2002
– ident: e_1_2_7_55_2
  doi: 10.1074/jbc.M010377200
– ident: e_1_2_7_10_2
  doi: 10.1016/j.jmb.2004.10.045
– ident: e_1_2_7_52_2
  doi: 10.3109/10799899809047740
– volume: 16
  start-page: 16
  year: 2004
  ident: e_1_2_7_28_2
  article-title: SPAAN: a software for prediction of adhesins and adhesin‐like proteins using neural networks
  publication-title: Bioinformatics
  contributor:
    fullname: Sachdeva G
– ident: e_1_2_7_48_2
  doi: 10.1007/BF01076559
– ident: e_1_2_7_43_2
  doi: 10.1074/jbc.M402507200
– volume: 41
  start-page: 65
  issue: 1
  year: 1997
  ident: e_1_2_7_51_2
  article-title: Protein phosphatases are pest containing proteins
  publication-title: Biochem Mol Biol Int
  contributor:
    fullname: Gomes AV
– ident: e_1_2_7_32_2
  doi: 10.1016/j.str.2003.10.002
– ident: e_1_2_7_14_2
  doi: 10.1074/jbc.M313873200
– ident: e_1_2_7_29_2
  doi: 10.1093/nar/gkg022
– ident: e_1_2_7_27_2
  doi: 10.1016/S0168-9525(03)00140-9
– ident: e_1_2_7_39_2
  doi: 10.4049/jimmunol.164.8.4292
– ident: e_1_2_7_5_2
  doi: 10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7
– ident: e_1_2_7_11_2
  doi: 10.1110/ps.29401
– volume: 18
  start-page: 314
  issue: 1
  year: 1998
  ident: e_1_2_7_26_2
  article-title: A PEST‐like sequence mediates phosphorylation and efficient ubiquitination of yeast uracil permease
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.18.1.314
  contributor:
    fullname: Marchal C
– volume: 11
  start-page: 161
  year: 2000
  ident: e_1_2_7_41_2
  article-title: Intrinsic protein disorder in complete genomes
  publication-title: Genome Inform Ser Workshop Genome Inform
  contributor:
    fullname: Dunker AK
– ident: e_1_2_7_16_2
  doi: 10.1126/science.2876518
– ident: e_1_2_7_44_2
  doi: 10.1093/bioinformatics/bti1034
– ident: e_1_2_7_42_2
  doi: 10.1074/jbc.M402475200
– ident: e_1_2_7_2_2
  doi: 10.1046/j.0014-2956.2001.02649.x
– ident: e_1_2_7_54_2
  doi: 10.1186/1475-2875-2-16
– ident: e_1_2_7_7_2
  doi: 10.1016/j.febslet.2004.09.036
– ident: e_1_2_7_31_2
  doi: 10.1002/prot.340200303
– ident: e_1_2_7_3_2
  doi: 10.1006/jmbi.1999.3110
– ident: e_1_2_7_13_2
  doi: 10.1093/bioinformatics/bth407
– ident: e_1_2_7_49_2
  doi: 10.1023/A:1014476123120
– volume: 6
  start-page: 89
  year: 2001
  ident: e_1_2_7_6_2
  article-title: The protein nonfolding problem: amino acid determinants of intrinsic order and disorder
  publication-title: Pac Symp Biocomput
  contributor:
    fullname: Williams RM
– ident: e_1_2_7_20_2
  doi: 10.1128/MCB.15.2.731
– ident: e_1_2_7_12_2
  doi: 10.1016/S0014-5793(02)03246-5
– ident: e_1_2_7_25_2
  doi: 10.1128/MCB.16.4.1401
– volume: 37
  start-page: 853
  issue: 5
  year: 1995
  ident: e_1_2_7_50_2
  article-title: Pest sequences in EF‐hand calcium‐binding proteins
  publication-title: Biochem Mol Biol Int
  contributor:
    fullname: Gomes AV
– ident: e_1_2_7_24_2
  doi: 10.1093/nar/gkh253
– ident: e_1_2_7_46_2
  doi: 10.1016/S1359-0278(97)00010-2
– ident: e_1_2_7_34_2
  doi: 10.1016/j.jmb.2005.01.071
– ident: e_1_2_7_56_2
  doi: 10.1016/S0166-6851(01)00452-2
– volume: 73
  start-page: 2038
  issue: 3
  year: 1999
  ident: e_1_2_7_22_2
  article-title: Identification of protein instability determinants in the carboxy‐terminal region of c‐Myb removed as a result of retroviral integration in murine monocytic leukemias
  publication-title: J Virol
  doi: 10.1128/JVI.73.3.2038-2044.1999
  contributor:
    fullname: Bies J
– ident: e_1_2_7_35_2
  doi: 10.1016/j.jmb.2004.11.008
– ident: e_1_2_7_53_2
  doi: 10.1146/annurev.micro.55.1.673
– ident: e_1_2_7_18_2
  doi: 10.1074/jbc.M112037200
– ident: e_1_2_7_37_2
  doi: 10.1016/S0022-2836(02)00736-2
– ident: e_1_2_7_17_2
  doi: 10.1016/S0968-0004(96)10031-1
– ident: e_1_2_7_23_2
  doi: 10.1016/S0014-5793(00)01809-3
– ident: e_1_2_7_33_2
  doi: 10.1093/bioinformatics/bth344
– ident: e_1_2_7_38_2
  doi: 10.1021/bi992455a
– ident: e_1_2_7_45_2
  doi: 10.1021/bi00356a001
– ident: e_1_2_7_8_2
  doi: 10.1002/prot.20279
– ident: e_1_2_7_9_2
  doi: 10.1016/S0968-0004(02)02169-2
– ident: e_1_2_7_4_2
  doi: 10.1016/S1093-3263(00)00138-8
– ident: e_1_2_7_47_2
  doi: 10.1515/BC.2005.011
– ident: e_1_2_7_15_2
  doi: 10.1038/nsmb814
– ident: e_1_2_7_19_2
  doi: 10.1128/MCB.20.7.2423-2435.2000
– ident: e_1_2_7_30_2
  doi: 10.1002/bip.360221211
– volume: 16
  start-page: 6037
  issue: 11
  year: 1996
  ident: e_1_2_7_40_2
  article-title: Signal‐induced degradation of I(kappa)B(alpha): association with NF‐kappaB and the PEST sequence in I(kappa)B(alpha) are not required
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.16.11.6037
  contributor:
    fullname: Van Antwerp DJ
SSID ssj0006936
Score 2.1862254
Snippet The study of unfolded protein regions has gained importance because of their prevalence and important roles in various cellular functions. These regions have...
Abstract The study of unfolded protein regions has gained importance because of their prevalence and important roles in various cellular functions. These...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 309
SubjectTerms Amino Acid Sequence
Animals
Genome
Humans
PEST motifs
protein degradation signals
Protein Denaturation
protein disorder
Protein Folding
protein unfoldedness
Proteins - chemistry
Proteins - genetics
proteolysis
Proteome
Surface Properties
unstructured regions
Title Intrinsic unstructuredness and abundance of PEST motifs in eukaryotic proteomes
URI https://api.istex.fr/ark:/67375/WNG-2H8BW03K-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.20746
https://www.ncbi.nlm.nih.gov/pubmed/16299712
https://search.proquest.com/docview/67590146
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swED9Kx9i-7NHukXYPwUY_DNwmfsmGfmm6dtnG2tKltF-GkE4ylFClJDF0--t7J8cJHWOwfZNBts-60z3ku98BvC8duq7JuhFSMBCRlnRR6Xp5FKN2ZC-q0iZcO_ztKB-cpV8usosV2G1rYRp8iMWBG--MoK95g2sz3VmChjKOAcV3MmW87V4iOZ_r4-kSOyovQ3_AZheRU7zAJo13lrfesUb3eGFv_uRq3vVcg-k5fAw_WqKbjJPRdj0z2_jrNzzH__2qJ_Bo7pOKvUaInsKK82uwvucpHr_6KbZEyBINx-9rcL_fjh7st73i1uH4s59NLj1xXNRzSNp64iyrUaG9FdpwwQnJlxhX4uTg-1BwDmA1FZdeuHpE5NIligAaMb5y02dwdngw3B9E81YNEXItfYRJZsi3yHWaWUwxld0KC1egoXCrqqQsMbGZxp62hSEtodFKmxfGcjyFGbrkOaz6sXcvQXBL3sIW5Oe4NGU4OlYSFZZkOFGW2nXgXcsydd0gcqgGezlWTKYKq9eBrcDNxRQ9GXEOm8zU-dEnFQ-K_nk3-ar6HXjbslvRovHvEu3duJ7SbK7L5Ue9aKRg-bqcjLjsxR34EHj5FzrUyenxMIw2_mXyJjxszno4b-YVrBLj3GvyfmbmTZDyW_BgAFw
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9tAEB5xqKIv3NAUKCu14qGSIfHtR8IVroBoELyt1rNrCUVsUBJLbX89M-scAlWV2re1tLbXO7NzeeYbgG-ZQVPPo7qH5Ax4JCWNl5lG7PmoDOmLItMB1w5ft-PWfXjxGD2OcnO4FqbCh5gE3PhkOHnNB5wD0gdT1FAGMiAHLwnjWZin8x5w54bjuyl6VJy5DoHVOSKzeIJO6h9M732jj-Z5a3_-ydh8a7s65XO6VHVYHTjMQs456e6Xw3wff79DdPzv71qGxZFZKg4rPlqBGWNXYe3Qkkv-_EvsCZco6iLwq_ChOR4tHI3bxa3Bzbkd9p8sEV2UI1Tasm80S1KhrBYq55oTYjHRK8TtyY-O4DTAYiCerDBll9ZLlygcbkTv2QzW4f70pHPU8kbdGjzkcnoPgygn8yJWYaQxxDCpF5iaFHPyuIoiSTIMdKSwoXSak6BQqBMdp7lmlwojNMEGzNmeNZ9AcFfeVKdk6pgwZEQ6lhMFZqQ7McmUqcHXMc3kSwXKISv4ZV_yMqXbvRrsOXJOpqh-l9PYkkg-tM-k30qbD_XgUjZrsDumt6RN4z8myppeOaDZXJrLj9qs2GD6upj0eNLwa_DdEfMv65C3dzcdN_r8L5N3YaHVub6SV-ftyy34WIV-OI1mG-aIiGaHjKFh_sWx_CvgcQR0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8xENtexgb76GDD0iYekAJtviPthQJdGaxUrAheJss5OxKqcFHbSNv--t05TSumaRJ7cyQncXznu985dz8DfMwMmmYeNT2kYMAjK2m8zLRiz0dlyF8UmQ64dvhrL-5ehl-uo-sl-FTXwlT8EPMNN14Zzl7zAr_Txf6CNJR5DCi-S8L4EayEMUFfhkQXC_KoOHMHBFbLiFDxnJzU31_ce88drfDM_vgb1rwPXZ3v6azB93rUVcrJcK-c5nv46w9Cx__9rOfwbAZKxUGlRS9gydh12DiwFJDf_hQ7wqWJuv33dVht160nh_VhcRtwfmKn4xtLIhfljJO2HBvNdlQoq4XKueKEFEyMCtE__jYQnARYTMSNFaYc0nDpEoVjjRjdmslLuOwcDw673uysBg-5mN7DIMoJXMQqjDSGGCbNAlOTYk7xVlEkSYaBjhS2lE5zMhMKdaLjNNccUGGEJngFy3ZkzRsQfCZvqlMCOiYMmY-OrUSBGXlOTDJlGvChFpm8qyg5ZEW-7EsepnSz14AdJ815FzUechJbEsmr3mfpd9P2VTM4le0GbNfiljRp_L9EWTMqJ9SbC3P5Ua8rLVi8LiYvnrT8Buw6Wf5jHLJ_cT5wrbcP6bwNj_tHHXl20jvdhKfVvg_n0GzBMsnQvCMkNM3fO4X_DdaVAyM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsic+unstructuredness+and+abundance+of+PEST+motifs+in+eukaryotic+proteomes&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Singh%2C+Gajinder+Pal&rft.au=Ganapathi%2C+Mythily&rft.au=Sandhu%2C+Kuljeet+Singh&rft.au=Dash%2C+Debasis&rft.date=2006-02-01&rft.eissn=1097-0134&rft.volume=62&rft.issue=2&rft.spage=309&rft.epage=315&rft_id=info:doi/10.1002%2Fprot.20746&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon