Development of a fatigue crack growth testing apparatus and its application to thin titanium foil

ABSTRACT A low‐cost experimental apparatus has been developed to investigate the mode I fatigue crack growth behaviour of thin metallic foils and sheets. The apparatus utilizes magnetic coupling between a ceramic magnet and a rotating steel disc to induce cyclic tensile loads in notched rectangular...

Full description

Saved in:
Bibliographic Details
Published inFatigue & fracture of engineering materials & structures Vol. 36; no. 11; pp. 1187 - 1198
Main Authors Lee, C.-W., Liu, L., Holmes, J. W.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.11.2013
Blackwell
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT A low‐cost experimental apparatus has been developed to investigate the mode I fatigue crack growth behaviour of thin metallic foils and sheets. The apparatus utilizes magnetic coupling between a ceramic magnet and a rotating steel disc to induce cyclic tensile loads in notched rectangular specimens. To illustrate the testing apparatus, mode I fatigue crack growth in 30‐µm‐thick high‐purity titanium foils was studied. Experiments were performed at ambient temperature using a loading frequency of 2 Hz and a nominal stress ratio of 0.1. The cyclic crack growth data could be fit to a Paris relationship between crack growth rate and stress intensity range. The stress intensity factor exponent, m, in the Paris relationship was between 4 and 6, which is comparable with the relatively high values found in the literature for the tension–tension fatigue of other metallic bulk materials. Incomplete self‐similarity analysis was used to explain the observed higher m values for thin metallic foils.
AbstractList A low-cost experimental apparatus has been developed to investigate the mode I fatigue crack growth behaviour of thin metallic foils and sheets. The apparatus utilizes magnetic coupling between a ceramic magnet and a rotating steel disc to induce cyclic tensile loads in notched rectangular specimens. To illustrate the testing apparatus, mode I fatigue crack growth in 30-µm-thick high-purity titanium foils was studied. Experiments were performed at ambient temperature using a loading frequency of 2Hz and a nominal stress ratio of 0.1. The cyclic crack growth data could be fit to a Paris relationship between crack growth rate and stress intensity range. The stress intensity factor exponent, m, in the Paris relationship was between 4 and 6, which is comparable with the relatively high values found in the literature for the tension-tension fatigue of other metallic bulk materials. Incomplete self-similarity analysis was used to explain the observed higher m values for thin metallic foils. [PUBLICATION ABSTRACT]
A low-cost experimental apparatus has been developed to investigate the mode I fatigue crack growth behaviour of thin metallic foils and sheets. The apparatus utilizes magnetic coupling between a ceramic magnet and a rotating steel disc to induce cyclic tensile loads in notched rectangular specimens. To illustrate the testing apparatus, mode I fatigue crack growth in 30- mu m-thick high-purity titanium foils was studied. Experiments were performed at ambient temperature using a loading frequency of 2 Hz and a nominal stress ratio of 0.1. The cyclic crack growth data could be fit to a Paris relationship between crack growth rate and stress intensity range. The stress intensity factor exponent, m, in the Paris relationship was between 4 and 6, which is comparable with the relatively high values found in the literature for the tension-tension fatigue of other metallic bulk materials. Incomplete self-similarity analysis was used to explain the observed higher m values for thin metallic foils.
ABSTRACT A low‐cost experimental apparatus has been developed to investigate the mode I fatigue crack growth behaviour of thin metallic foils and sheets. The apparatus utilizes magnetic coupling between a ceramic magnet and a rotating steel disc to induce cyclic tensile loads in notched rectangular specimens. To illustrate the testing apparatus, mode I fatigue crack growth in 30‐µm‐thick high‐purity titanium foils was studied. Experiments were performed at ambient temperature using a loading frequency of 2 Hz and a nominal stress ratio of 0.1. The cyclic crack growth data could be fit to a Paris relationship between crack growth rate and stress intensity range. The stress intensity factor exponent, m , in the Paris relationship was between 4 and 6, which is comparable with the relatively high values found in the literature for the tension–tension fatigue of other metallic bulk materials. Incomplete self‐similarity analysis was used to explain the observed higher m values for thin metallic foils.
ABSTRACT A low‐cost experimental apparatus has been developed to investigate the mode I fatigue crack growth behaviour of thin metallic foils and sheets. The apparatus utilizes magnetic coupling between a ceramic magnet and a rotating steel disc to induce cyclic tensile loads in notched rectangular specimens. To illustrate the testing apparatus, mode I fatigue crack growth in 30‐µm‐thick high‐purity titanium foils was studied. Experiments were performed at ambient temperature using a loading frequency of 2 Hz and a nominal stress ratio of 0.1. The cyclic crack growth data could be fit to a Paris relationship between crack growth rate and stress intensity range. The stress intensity factor exponent, m, in the Paris relationship was between 4 and 6, which is comparable with the relatively high values found in the literature for the tension–tension fatigue of other metallic bulk materials. Incomplete self‐similarity analysis was used to explain the observed higher m values for thin metallic foils.
Author Holmes, J. W.
Liu, L.
Lee, C.-W.
Author_xml – sequence: 1
  givenname: C.-W.
  surname: Lee
  fullname: Lee, C.-W.
  organization: Department of Advanced Analysis and Characterization, Korea Institute of Materials Science, Changwon, South Korea
– sequence: 2
  givenname: L.
  surname: Liu
  fullname: Liu, L.
  email: liuliu@bit.edu.cn
  organization: School of Aerospace Engineering, Beijing Institute of Technology, 100081, Beijing, China
– sequence: 3
  givenname: J. W.
  surname: Holmes
  fullname: Holmes, J. W.
  organization: Center for Clean Energy Systems and Materials, Beihang University, 100191, Beijing, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27844870$$DView record in Pascal Francis
BookMark eNqNkVtrVDEUhYNUcFp98B8ERNCH0yY5uT5q7VRh8AJKfQuZnGSa9kxymuT08u9NndoHQXC_LNh8a7E3ax_sxRQdAC8xOsRtjrx3h5ggyZ-ABaYcdYQrtgcWUjDeCSZ_PgP7pVwghDnt-wUwH9y1G9O0dbHC5KGB3tSwmR202dhLuMnppp7D6koNcQPNNJls6lygiQMMtdxvxmCbJ0VYE6znoWmoJoZ5C30K43Pw1JuxuBcPegB-LE--H3_sVl9OPx2_W3WW9ph3VCqhFFFKOCYHQ6RcS2WH3lhikXPrQRJOBceWip4qZwkZFFk7ryhBCHHeH4A3u9wpp6u53au3oVg3jia6NBeNucCMIPU_KOWUcUUEbeirv9CLNOfYHmkUJT1TTLJGvd1RNqdSsvN6ymFr8p3GSN_3olsv-ncvjX39kGiKNaPPJtpQHg1ESEqlQI072nE3YXR3_w7Uy-XJn-Ru5wiluttHh8mXmoteMH32-VSfff22Ypgr_b7_BbiNq0o
CODEN FFESEY
CitedBy_id crossref_primary_10_1088_1361_6439_acddf3
crossref_primary_10_1016_j_ijfatigue_2017_01_046
crossref_primary_10_1016_j_ijfatigue_2018_05_009
crossref_primary_10_1016_j_msea_2018_01_039
crossref_primary_10_1016_j_engfailanal_2014_11_026
crossref_primary_10_1016_j_engfailanal_2023_107623
Cites_doi 10.1023/A:1018655917051
10.1016/0013-7944(84)90123-1
10.1007/BF00040143
10.1016/S0921-5093(01)01249-7
10.1016/0013-7944(81)90039-4
10.7449/1991/Superalloys_1991_491_500
10.1016/j.actamat.2011.11.015
10.1016/j.msea.2007.02.132
10.1016/j.ijfatigue.2005.06.035
10.1023/A:1007630813025
10.1016/0013-7944(85)90109-2
10.1016/S0921-5093(01)01043-7
10.7449/2001/Superalloys_2001_669_678
10.1016/0921-5093(96)10226-4
10.1115/1.3609569
10.1016/j.msea.2011.04.046
10.1111/j.1460-2695.1980.tb01359.x
10.1007/s10704-005-2266-y
10.1023/B:FRAC.0000007376.06477.e8
10.1017/CBO9780511814921
10.1007/BF02643221
10.1016/j.msea.2006.03.090
10.1016/j.msea.2006.06.124
10.1115/1.2772324
ContentType Journal Article
Copyright 2013 Wiley Publishing Ltd.
2014 INIST-CNRS
Copyright_xml – notice: 2013 Wiley Publishing Ltd.
– notice: 2014 INIST-CNRS
DBID BSCLL
IQODW
AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
7QQ
DOI 10.1111/ffe.12086
DatabaseName Istex
Pascal-Francis
CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Ceramic Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
Ceramic Abstracts
DatabaseTitleList Materials Research Database
Materials Research Database
CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1460-2695
EndPage 1198
ExternalDocumentID 3100644591
10_1111_ffe_12086
27844870
FFE12086
ark_67375_WNG_WPQL5169_B
Genre article
Feature
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 11002020
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29H
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6KP
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABDEX
ABEFU
ABEML
ABHUG
ABPTK
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACIWK
ACPOU
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AHEFC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EAD
EAP
EBS
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TUS
UB1
W8V
W99
WBKPD
WFSAM
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
AITYG
HGLYW
OIG
WTY
6XO
8W4
IPNFZ
IQODW
PQEST
UMP
AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
7QQ
ID FETCH-LOGICAL-c4316-4897992997e58da288b89cd3ac2c0eebd8264761c47349ec22d92bef942000663
IEDL.DBID DR2
ISSN 8756-758X
IngestDate Fri Aug 16 21:01:01 EDT 2024
Sat Aug 17 02:26:07 EDT 2024
Fri Sep 13 04:54:46 EDT 2024
Fri Aug 23 01:45:21 EDT 2024
Thu Nov 24 18:35:43 EST 2022
Sat Aug 24 00:50:11 EDT 2024
Wed Jan 17 05:11:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Propagation velocity
fatigue crack growth rate
Growth
titanium
Mechanical properties
Fatigue
finite element analysis
Modeling
Fatigue crack
Crack propagation
Finite element method
fatigue testing
Thin sheet
Development
incomplete self-similarity
Application
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4316-4897992997e58da288b89cd3ac2c0eebd8264761c47349ec22d92bef942000663
Notes ArticleID:FFE12086
ark:/67375/WNG-WPQL5169-B
National Natural Science Foundation of China - No. 11002020
istex:48F9CCFC148CC53DB26F941EF036F319BCAD665D
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1442359585
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1671520966
proquest_miscellaneous_1464569274
proquest_journals_1442359585
crossref_primary_10_1111_ffe_12086
pascalfrancis_primary_27844870
wiley_primary_10_1111_ffe_12086_FFE12086
istex_primary_ark_67375_WNG_WPQL5169_B
PublicationCentury 2000
PublicationDate November 2013
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: November 2013
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Fatigue & fracture of engineering materials & structures
PublicationTitleAlternate Fatigue Fract Engng Mater Struct
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Blackwell
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
– name: Wiley Subscription Services, Inc
References Yang, D., Liu, L. and Holmes, J. W. (2006). Fatigue Crack Growth Behavior of Ti-Alloy Foils. 2006 Chinese MRS: Beijing.
James, L. A. and Mills, W. J. (1985). Effect of heat-treatment and heat-to-heat variations in the fatigue crack growth response of alloy 718. Eng. Fract. Mech., 22, 797-817.
Bloom, J. M. (1967). The short single edge crack specimen with linearly varying end displacements. Int. J. Fract., 3, 235-42.
Sharpe, W. N. and Turner, K. T. (1999). Fatigue testing of materials used in microelectro mechanical systems, Edited by in X. R. Wu, Z. G. Wang), Fatigue 99, EMAS: UK, 1837-1844.
Yarema, S. Ya. and Ostash, O. P. (1975). A study of the fatigue crack growth at low temperatures. Physico-Chem. Mech. Mater., 2, 48-52.
McClintock, F. A., Parks, D. M., Holmes, J. W. and Bain, K. R. (1984). Drop in KI due to load shift in single-edge-notch tests with compliant drawbars. Eng. Fract. Mech., 20, 159-167.
Bernd O. (2011). Modeling the fatigue crack growth behavior of Ti-6Al-4V by considering grain size and stress ratio. Mater. Sci. Eng., A, 528, 5983-5992.
Ritchie R. O. (1999). Mechanisms of fatigue-crack propagation in ductile and brittle solids. Int. J. Fract., 100, 55-86.
Barenblatt, G. I. (2003). Scaling. Cambridge University Press: Cambridge, U.K.
Paris, P. C. and Erdogan, F. (1963). A critical analysis of crack propagation laws. J. Bas. Eng. Trans. Am. Soc. Mech. Engrs. Series D, 85, 528-534.
Meirom, R. A., Clark, T. E. and Muhlstein, C. L. (2012). The role of specimen thickness in the fracture toughness and fatigue crack growth resistance of nanocrystalline platinum films. Acta Mater., 60, 1408-1417.
Cotterell, B. and Reddel, J. K. (1977). The essential work of plane stress ductile fracture. Inter. J. Fract., 13, 267-77.
Sun, Q. Y. and Gu, H. C. (2001). Tensile and low-cycle fatigue behavior of commercially pure titanium and Ti-5Al-2.5Sn alloy at 293 and 77 K. Mater. Sci. Eng., A, 316, 80-86.
Hanlon, T., Tabachnikov, E. D. and Suresh, S. (2005). Fatigue behavior of nanocrystalline metals and alloys. Int. J. Fatigue, 27, 1147-1158.
Bowie, O. L. and Freese, C. E. (1981). Cracked rectangular sheet with linearly varying end displacements. Eng. Frac. Mech., 14, 519-26.
Liu, L. and Holmes, J. W. (2007). Experimental technique for elevated temperature Mode I fatigue crack growth testing of Ni-base metal foils. J. Eng. Mater. Technol. Trans. ASME, 129, 594-602.
Heiser, F. A. and Mortimer, W. (1972). Effects of thickness and orientation on fatigue crack growth rate in 4340 steel. Met. Trans., 3, 2119-2123.
Ostash, O. P., Yarema, S. Ya. and Stepanenko, V. A. (1977). The influence of low temperatures on the rate of fatigue crack growth and its microfractographic peculiarities in aluminium alloys. Physico-Chem. Mech. Mater., 3, 26-28.
Yang, Y., Imasogie, B. I., Allameh, S. M., Boyce, B., Lian, K., Lou, J., and Soboyejo, W. O. (2007). Mechanisms of fatigue in LIGA Ni MEMS thin films. Mater. Sci. Eng., A, 444, 39-50.
ASTM E 647-08. (2008). Standard Test Method for Measurement of Fatigue Crack Growth Rates. American Society for Testing & Materials: West Conshohocken, Pennsylvania.
Takao, K. and Kusukawa K. (1996). Low-cycle fatigue behavior of commercially pure titanium. Mater. Sci. Eng., A, 213, 81-85.
Barenblatt, G. I. and Botvina, L. R. (1980). Incomplete self-similarity of fatigue in the linear range of crack growth. Fatigue Eng. Mater Struct., 3, 193-202.
Zhang, G. P., Sun, K. H., Zhang, B., Gong, J., Sun, C. and Wang, Z. G. (2008). Tensile and fatigue strength of ultrathin copper films. Mater. Sci. Eng., A, 483-484, 387-390.
Zhang, G. P., Takashima, K. and Higo, Y.. (2006). Fatigue strength of small-scale type 304 stainless steel thin films. Mater. Sci. Eng., A, 426, 95-100.
Broek, D. (1974). Elementary Engineering Fracture Mechanics. Noordhoff International Publishing, Leyden.
Hadrboletz, A., Weiss, B. and Khatibi, G. (2001). Fatigue and fracture properties of thin metallic foils. Int. J. Fract., 107, 307-327.
Klein, M., Hadrboletz, A., Weiss, B. and Khatibi G.. (2001). The 'size effect' on the stress-strain, fatigue and fracture properties of thin metallic foils. Mater. Sci. Eng., A, 319-321, 924-928.
Harris, D. O. (1969). Stress intensity factors for hollow circumferentially notched round bar. Trans. ASME J. Basic Eng., 89, 49-54.
Tada, H., Paris, P. C. and Irwin, G. R. (1973). The Stress Analysis of Cracks Handbook. 2nd ed. Del Research Corp.: Hellertown, Pensylvania.
Wang, H. W., Kang, Y. L., Zhang, Z. F. and Qin, Q. H. (2003). Size effect on the fracture toughness of metallic foil. Int. J. Fract., 123, 177-85.
Ritchie, R. O. (2005). Incomplete self-similarity and fatigue-crack growth. Int. J. Fract., 132, 197-203.
2007; 444
2012; 60
1984; 20
2007; 129
2005; 132
1963; 85
2001; 319‐321
2008
1974
2006
1973
2004
2003
1999; 100
1991
2002
1985; 22
2001; 107
2005; 27
2008; 483‐484
1999
1972; 3
2001
2011; 528
1967; 3
1980; 3
1969; 89
1981; 14
1977; 3
1975; 2
1977; 13
2001; 316
1996; 213
2006; 426
2003; 123
e_1_2_10_23_1
e_1_2_10_22_1
Cotterell B. (e_1_2_10_15_1) 1977; 13
Broek D. (e_1_2_10_14_1) 1974
Yarema S. Ya. (e_1_2_10_32_1) 1975; 2
Tada H. (e_1_2_10_21_1) 1973
e_1_2_10_2_1
e_1_2_10_4_1
Sharpe W. N. (e_1_2_10_7_1) 1999
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_8_1
e_1_2_10_36_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
Yang D. (e_1_2_10_12_1) 2006
e_1_2_10_11_1
Bloom J. M. (e_1_2_10_24_1) 1967; 3
e_1_2_10_31_1
e_1_2_10_30_1
ASTM E 647‐08 (e_1_2_10_17_1) 2008
Ostash O. P. (e_1_2_10_33_1) 1977; 3
Paris P. C. (e_1_2_10_20_1) 1963; 85
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 123
  start-page: 177
  year: 2003
  end-page: 85
  article-title: Size effect on the fracture toughness of metallic foil
  publication-title: Int. J. Fract.
– volume: 132
  start-page: 197
  year: 2005
  end-page: 203
  article-title: Incomplete self‐similarity and fatigue‐crack growth
  publication-title: Int. J. Fract.
– volume: 22
  start-page: 797
  year: 1985
  end-page: 817
  article-title: Effect of heat‐treatment and heat‐to‐heat variations in the fatigue crack growth response of alloy 718
  publication-title: Eng. Fract. Mech.
– volume: 3
  start-page: 235
  year: 1967
  end-page: 42
  article-title: The short single edge crack specimen with linearly varying end displacements
  publication-title: Int. J. Fract.
– year: 2001
– start-page: 491
  year: 1991
  end-page: 500
– volume: 27
  start-page: 1147
  year: 2005
  end-page: 1158
  article-title: Fatigue behavior of nanocrystalline metals and alloys
  publication-title: Int. J. Fatigue
– year: 2003
– year: 1973
– volume: 14
  start-page: 519
  year: 1981
  end-page: 26
  article-title: Cracked rectangular sheet with linearly varying end displacements
  publication-title: Eng. Frac. Mech.
– volume: 3
  start-page: 193
  year: 1980
  end-page: 202
  article-title: Incomplete self‐similarity of fatigue in the linear range of crack growth
  publication-title: Fatigue Eng. Mater Struct.
– volume: 213
  start-page: 81
  year: 1996
  end-page: 85
  article-title: Low‐cycle fatigue behavior of commercially pure titanium
  publication-title: Mater. Sci. Eng., A
– volume: 85
  start-page: 528
  year: 1963
  end-page: 534
  article-title: A critical analysis of crack propagation laws
  publication-title: J. Bas. Eng. Trans. Am. Soc. Mech. Engrs. Series D
– volume: 444
  start-page: 39
  year: 2007
  end-page: 50
  article-title: Mechanisms of fatigue in LIGA Ni MEMS thin films
  publication-title: Mater. Sci. Eng., A
– volume: 13
  start-page: 267
  year: 1977
  end-page: 77
  article-title: The essential work of plane stress ductile fracture
  publication-title: Inter. J. Fract.
– volume: 426
  start-page: 95
  year: 2006
  end-page: 100
  article-title: Fatigue strength of small‐scale type 304 stainless steel thin films
  publication-title: Mater. Sci. Eng., A
– volume: 3
  start-page: 26
  year: 1977
  end-page: 28
  article-title: The influence of low temperatures on the rate of fatigue crack growth and its microfractographic peculiarities in aluminium alloys
  publication-title: Physico‐Chem. Mech. Mater.
– volume: 100
  start-page: 55
  year: 1999
  end-page: 86
  article-title: Mechanisms of fatigue‐crack propagation in ductile and brittle solids
  publication-title: Int. J. Fract.
– volume: 316
  start-page: 80
  year: 2001
  end-page: 86
  article-title: Tensile and low‐cycle fatigue behavior of commercially pure titanium and Ti–5Al–2.5Sn alloy at 293 and 77 K
  publication-title: Mater. Sci. Eng., A
– volume: 129
  start-page: 594
  year: 2007
  end-page: 602
  article-title: Experimental technique for elevated temperature Mode I fatigue crack growth testing of Ni‐base metal foils
  publication-title: J. Eng. Mater. Technol. Trans. ASME
– volume: 2
  start-page: 48
  year: 1975
  end-page: 52
  article-title: A study of the fatigue crack growth at low temperatures
  publication-title: Physico‐Chem. Mech. Mater.
– volume: 483‐484
  start-page: 387
  year: 2008
  end-page: 390
  article-title: Tensile and fatigue strength of ultrathin copper films
  publication-title: Mater. Sci. Eng., A
– volume: 107
  start-page: 307
  year: 2001
  end-page: 327
  article-title: Fatigue and fracture properties of thin metallic foils
  publication-title: Int. J. Fract.
– year: 2002
– start-page: 1837
  year: 1999
  end-page: 1844
– year: 2008
– year: 2006
– year: 2004
– year: 1974
– volume: 89
  start-page: 49
  year: 1969
  end-page: 54
  article-title: Stress intensity factors for hollow circumferentially notched round bar
  publication-title: Trans. ASME J. Basic Eng.
– volume: 60
  start-page: 1408
  year: 2012
  end-page: 1417
  article-title: The role of specimen thickness in the fracture toughness and fatigue crack growth resistance of nanocrystalline platinum films
  publication-title: Acta Mater.
– volume: 20
  start-page: 159
  year: 1984
  end-page: 167
  article-title: Drop in KI due to load shift in single‐edge‐notch tests with compliant drawbars
  publication-title: Eng. Fract. Mech.
– volume: 319‐321
  start-page: 924
  year: 2001
  end-page: 928
  article-title: The ‘size effect’ on the stress–strain, fatigue and fracture properties of thin metallic foils
  publication-title: Mater. Sci. Eng., A
– volume: 3
  start-page: 2119
  year: 1972
  end-page: 2123
  article-title: Effects of thickness and orientation on fatigue crack growth rate in 4340 steel
  publication-title: Met. Trans.
– volume: 528
  start-page: 5983
  year: 2011
  end-page: 5992
  article-title: Modeling the fatigue crack growth behavior of Ti‐6Al‐4V by considering grain size and stress ratio
  publication-title: Mater. Sci. Eng., A
– volume-title: The Stress Analysis of Cracks Handbook
  year: 1973
  ident: e_1_2_10_21_1
  contributor:
    fullname: Tada H.
– volume: 85
  start-page: 528
  year: 1963
  ident: e_1_2_10_20_1
  article-title: A critical analysis of crack propagation laws
  publication-title: J. Bas. Eng. Trans. Am. Soc. Mech. Engrs. Series D
  contributor:
    fullname: Paris P. C.
– volume-title: Standard Test Method for Measurement of Fatigue Crack Growth Rates
  year: 2008
  ident: e_1_2_10_17_1
  contributor:
    fullname: ASTM E 647‐08
– ident: e_1_2_10_34_1
  doi: 10.1023/A:1018655917051
– ident: e_1_2_10_27_1
  doi: 10.1016/0013-7944(84)90123-1
– volume: 2
  start-page: 48
  year: 1975
  ident: e_1_2_10_32_1
  article-title: A study of the fatigue crack growth at low temperatures
  publication-title: Physico‐Chem. Mech. Mater.
  contributor:
    fullname: Yarema S. Ya.
– volume: 13
  start-page: 267
  year: 1977
  ident: e_1_2_10_15_1
  article-title: The essential work of plane stress ductile fracture
  publication-title: Inter. J. Fract.
  doi: 10.1007/BF00040143
  contributor:
    fullname: Cotterell B.
– ident: e_1_2_10_18_1
  doi: 10.1016/S0921-5093(01)01249-7
– ident: e_1_2_10_26_1
  doi: 10.1016/0013-7944(81)90039-4
– ident: e_1_2_10_36_1
– ident: e_1_2_10_10_1
  doi: 10.7449/1991/Superalloys_1991_491_500
– ident: e_1_2_10_13_1
  doi: 10.1016/j.actamat.2011.11.015
– volume: 3
  start-page: 26
  year: 1977
  ident: e_1_2_10_33_1
  article-title: The influence of low temperatures on the rate of fatigue crack growth and its microfractographic peculiarities in aluminium alloys
  publication-title: Physico‐Chem. Mech. Mater.
  contributor:
    fullname: Ostash O. P.
– ident: e_1_2_10_4_1
  doi: 10.1016/j.msea.2007.02.132
– ident: e_1_2_10_22_1
  doi: 10.1016/j.ijfatigue.2005.06.035
– ident: e_1_2_10_3_1
  doi: 10.1023/A:1007630813025
– ident: e_1_2_10_11_1
  doi: 10.1016/0013-7944(85)90109-2
– volume: 3
  start-page: 235
  year: 1967
  ident: e_1_2_10_24_1
  article-title: The short single edge crack specimen with linearly varying end displacements
  publication-title: Int. J. Fract.
  contributor:
    fullname: Bloom J. M.
– ident: e_1_2_10_2_1
  doi: 10.1016/S0921-5093(01)01043-7
– ident: e_1_2_10_8_1
  doi: 10.7449/2001/Superalloys_2001_669_678
– ident: e_1_2_10_19_1
  doi: 10.1016/0921-5093(96)10226-4
– ident: e_1_2_10_25_1
  doi: 10.1115/1.3609569
– ident: e_1_2_10_35_1
  doi: 10.1016/j.msea.2011.04.046
– ident: e_1_2_10_29_1
  doi: 10.1111/j.1460-2695.1980.tb01359.x
– ident: e_1_2_10_30_1
  doi: 10.1007/s10704-005-2266-y
– ident: e_1_2_10_23_1
– ident: e_1_2_10_16_1
  doi: 10.1023/B:FRAC.0000007376.06477.e8
– ident: e_1_2_10_28_1
  doi: 10.1017/CBO9780511814921
– ident: e_1_2_10_31_1
  doi: 10.1007/BF02643221
– ident: e_1_2_10_5_1
  doi: 10.1016/j.msea.2006.03.090
– volume-title: Elementary Engineering Fracture Mechanics
  year: 1974
  ident: e_1_2_10_14_1
  contributor:
    fullname: Broek D.
– ident: e_1_2_10_6_1
  doi: 10.1016/j.msea.2006.06.124
– volume-title: Fatigue Crack Growth Behavior of Ti‐Alloy Foils
  year: 2006
  ident: e_1_2_10_12_1
  contributor:
    fullname: Yang D.
– start-page: 1837
  volume-title: Fatigue testing of materials used in microelectro mechanical systems
  year: 1999
  ident: e_1_2_10_7_1
  contributor:
    fullname: Sharpe W. N.
– ident: e_1_2_10_9_1
  doi: 10.1115/1.2772324
SSID ssj0016433
Score 2.085477
Snippet ABSTRACT A low‐cost experimental apparatus has been developed to investigate the mode I fatigue crack growth behaviour of thin metallic foils and sheets. The...
A low-cost experimental apparatus has been developed to investigate the mode I fatigue crack growth behaviour of thin metallic foils and sheets. The apparatus...
SourceID proquest
crossref
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1187
SubjectTerms Applied sciences
Crack propagation
Exact sciences and technology
Fatigue
fatigue crack growth rate
Fatigue failure
fatigue testing
finite element analysis
Foils
Foils (structural shapes)
Fracture mechanics
incomplete self-similarity
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metal fatigue
Metals. Metallurgy
Paris
Stress intensity factors
Testing equipment
Titanium
Title Development of a fatigue crack growth testing apparatus and its application to thin titanium foil
URI https://api.istex.fr/ark:/67375/WNG-WPQL5169-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fffe.12086
https://www.proquest.com/docview/1442359585/abstract/
https://search.proquest.com/docview/1464569274
https://search.proquest.com/docview/1671520966
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB5KfakP_qiKsbVsRcSXHHdrLsnSJ5WepWhRsfQehDD76xrOJuWSgPjXd3ZzCTnBUnxKIBvY3dnJfl9m9huA17QDoNKJDBMUmggKLWO0xoSxlCnSElLKF-37chafnEen8-l8C466szCtPkT_w815hv9eOwdHWQ2c3FozmnBC5PT9dUJ6DhB976WjiAX4MvIEx-OQMPF8rSrksnj6Nzf2ontuWn-73EisaHpsW9diA3gO4avff2YP4WfX8zbtZDlqajlSf_4SdfzPoT2CB2tcyt63C-kxbJliF-4P1AqfAA4SjFhpGTJLZl00hqkVqiVbEKOvL1ntdDuKBcNrLyveVAwLzfK6YoNgOatLVl_mdM0JnebNFbNl_uspnM-Of3w8CdcVGkLljtCHUeqigrSjJWaaauRpKlOhNJmfq7ExUhN5iZJ4oqLkXSSM4lwLLo0VEW_BzjPYLsrCPAc2tjKNDUeptYhMYoSWHHGiUI2FEsgDeNXZKrtuhTiyjsDQfGV-vgJ4463Yt8DV0mWuJdPs4uxTdvH122cXF8w-BHCwYeb-BReHJQ43DmC_s3u29uqKaBKBz6kghhXAYf-Y_NEFWbAwZePaxIRJBZH9W9rEycSlH8XU4bd-Ifx7SNlsduxvXty96R7scFe1wx-Z3IftetWYl4SdanngneQGDJ4Vng
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N7QF44BsRGMMghHhJ1Zp8WeIF0EqBrgK0aX2ZLH92UbdkahMJ8ddzdpooRQIhnhIptmT77uLfz3e-A3iJO4BQOpVhKphGgoJqLKwxYSJlJlCFlPJF-45myeQk-jyP5zvwtr0L0-SH6A7cnGX4_7UzcHcg3bNya81gRBGSX4M9NPfYE6rvXfIo5AG-kDwC8iREVDzf5BVycTxd163daM8t7A8XHSnWuEC2qWyxBT37ANbvQOPbcNaOvQk8WQ7qSg7Uz9_SOv7v5O7ArQ00Je8aXboLO6a4Bzd7CQvvg-jFGJHSEkEsSnZRG6JWQi3JAkl9dU4ql7qjWBBx5TOL12siCk3yak16_nJSlaQ6z_GZI0DN60tiy_ziAZyMD48_TMJNkYZQuVv0YZQ5xyBuaqmJMy1olsmMKY0aQNXQGKmRv0RpMlJR-iZiRlGqGZXGsog2eOch7BZlYR4BGVqZJYYKqTWLTGqYllSIkRJqyBQTNIAXrbD4VZOLg7ccBteL-_UK4JUXY9dCrJYueC2N-ensIz_9-m3qXIP8fQAHW3LuOjhXLNK4YQD7reD5xrDXyJQQf8YMSVYAz7vPaJLOzyIKU9auTYKwlCHf_0ubJB25CKQEB_zaa8Kfp8TH40P_8vjfmz6D65Pjoymffpp9eQI3qCvi4W9Q7sNutarNU4RSlTzwFvMLZYsZwA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qC6IPfoupta4i4kuOu20uyeKT2saq9ahi6T0Ulv28hrPJcZeA-Nc7u7mEnKCITwlkFzbzkf39MrMzAC9wBxBKJzJMBNNIUNCMhTUmjKVMBZqQUr5p3-dJfHwWfZyOp1vwuj0L09SH6H64Oc_w32vn4Atte05urRmMKCLya7ATxQfUmfTh1652FNIA30ce8XgcIiierssKuTSeburGZrTj5PrDJUeKFcrHNo0tNpBnH7_6DSi7DRft0pu8k_mgruRA_fytquN_vtsduLUGpuRNY0l3YcsU9-Bmr1zhfRC9DCNSWiKIRb3OakPUUqg5mSGlry5J5Qp3FDMiFr6ueL0iotAkr1akFy0nVUmqyxyvOcLTvL4itsy_P4Cz7Ojbu-Nw3aIhVO4MfRilLiyIW1pixqkWNE1lypRG_VM1NEZqZC9REo9UlBxEzChKNaPSWBbRBu08hO2iLMwjIEMr09hQIbVmkUkM05IKMVJCDZliggbwvNUVXzSVOHjLYFBe3MsrgJdei90IsZy71LVkzM8n7_n56ZcTFxjkbwPY31BzN8EFYpHEDQPYa_XO1269Qp6E6HPMkGIF8Kx7jA7poiyiMGXtxsQIShmy_b-MiZORyz-KccGvvCH8-ZV4lh35m91_H_oUrp8eZvzkw-TTY7hBXQcPf3xyD7arZW2eII6q5L73l18Kthhv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+fatigue+crack+growth+testing+apparatus+and+its+application+to+thin+titanium+foil&rft.jtitle=Fatigue+%26+fracture+of+engineering+materials+%26+structures&rft.au=Lee%2C+C.-W.&rft.au=Liu%2C+L.&rft.au=Holmes%2C+J.+W.&rft.date=2013-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=8756-758X&rft.eissn=1460-2695&rft.volume=36&rft.issue=11&rft.spage=1187&rft.epage=1198&rft_id=info:doi/10.1111%2Fffe.12086&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_WPQL5169_B
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-758X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-758X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-758X&client=summon