Interobserver variability of selective region-of-interest measurement protocols for quantitative diffusion weighted imaging in soft tissue masses: Comparison with whole tumor volume measurements
Background To assess the interobserver reliability of three selective region‐of‐interest (ROI) measurement protocols for apparent diffusion coefficient (ADC) quantifications in soft tissue masses (STMs) compared with whole tumor volume (WTV) ADC measurements. Methods Institutional review board appro...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 43; no. 2; pp. 446 - 454 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.02.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
To assess the interobserver reliability of three selective region‐of‐interest (ROI) measurement protocols for apparent diffusion coefficient (ADC) quantifications in soft tissue masses (STMs) compared with whole tumor volume (WTV) ADC measurements.
Methods
Institutional review board approval was obtained and informed consent was waived. Three observers independently measured minimum and mean ADCs of 73 benign and malignant musculoskeletal STMs using three selective methods (single‐slice [SS], predefined three slices [PD], observer‐based [OB]) and WTV measurements at 3.0 Tesla. Minimum and mean ADC values derived from each method were compared with WTV measurements, and inter‐reader variation was assessed using the intraclass correlation coefficient (ICC). The time required for each method of ADC measurement was recorded.
Results
For the SS, PD, OB, and WTV methods, minimum ADC values ((×10−3 mm2/s)) were 0.97, 0.78, 0.73, and 0.67, respectively, and mean ADC values ((×10−3 mm2/s)) were 1.49, 1.49, 1.51, and 1.49, respectively. Interobserver agreement was good to excellent for the minimum and mean ADC values for the three readers using the SS, PD, OB, and WTV (ICC range 0.78–0.90). The SS, PD and OB methods required the least amount of measurement time (14 ± 5, 40 ± 17, and 38 ± 15 s, respectively) while the reference WTV method required the longest measurement time (111 ± 54 s) (P < 0.01).
Conclusion
While all selective and WTV measurements offer good to excellent interobserver agreement, the selective OB method of ADC measurement results in the closest values to WTV measurements and requires significantly less measurement time than that required for the WTV method. J. Magn. Reson. Imaging 2016;43:446–454. |
---|---|
AbstractList | To assess the interobserver reliability of three selective region-of-interest (ROI) measurement protocols for apparent diffusion coefficient (ADC) quantifications in soft tissue masses (STMs) compared with whole tumor volume (WTV) ADC measurements.
Institutional review board approval was obtained and informed consent was waived. Three observers independently measured minimum and mean ADCs of 73 benign and malignant musculoskeletal STMs using three selective methods (single-slice [SS], predefined three slices [PD], observer-based [OB]) and WTV measurements at 3.0 Tesla. Minimum and mean ADC values derived from each method were compared with WTV measurements, and inter-reader variation was assessed using the intraclass correlation coefficient (ICC). The time required for each method of ADC measurement was recorded.
For the SS, PD, OB, and WTV methods, minimum ADC values ((×10(-3) mm2 /s)) were 0.97, 0.78, 0.73, and 0.67, respectively, and mean ADC values ((×10(-3) mm2 /s)) were 1.49, 1.49, 1.51, and 1.49, respectively. Interobserver agreement was good to excellent for the minimum and mean ADC values for the three readers using the SS, PD, OB, and WTV (ICC range 0.78-0.90). The SS, PD and OB methods required the least amount of measurement time (14 ± 5, 40 ± 17, and 38 ± 15 s, respectively) while the reference WTV method required the longest measurement time (111 ± 54 s) (P < 0.01).
While all selective and WTV measurements offer good to excellent interobserver agreement, the selective OB method of ADC measurement results in the closest values to WTV measurements and requires significantly less measurement time than that required for the WTV method. Background To assess the interobserver reliability of three selective region‐of‐interest (ROI) measurement protocols for apparent diffusion coefficient (ADC) quantifications in soft tissue masses (STMs) compared with whole tumor volume (WTV) ADC measurements. Methods Institutional review board approval was obtained and informed consent was waived. Three observers independently measured minimum and mean ADCs of 73 benign and malignant musculoskeletal STMs using three selective methods (single‐slice [SS], predefined three slices [PD], observer‐based [OB]) and WTV measurements at 3.0 Tesla. Minimum and mean ADC values derived from each method were compared with WTV measurements, and inter‐reader variation was assessed using the intraclass correlation coefficient (ICC). The time required for each method of ADC measurement was recorded. Results For the SS, PD, OB, and WTV methods, minimum ADC values ((×10 −3 mm 2 /s)) were 0.97, 0.78, 0.73, and 0.67, respectively, and mean ADC values ((×10 −3 mm 2 /s)) were 1.49, 1.49, 1.51, and 1.49, respectively. Interobserver agreement was good to excellent for the minimum and mean ADC values for the three readers using the SS, PD, OB, and WTV (ICC range 0.78–0.90). The SS, PD and OB methods required the least amount of measurement time (14 ± 5, 40 ± 17, and 38 ± 15 s, respectively) while the reference WTV method required the longest measurement time (111 ± 54 s) ( P < 0.01). Conclusion While all selective and WTV measurements offer good to excellent interobserver agreement, the selective OB method of ADC measurement results in the closest values to WTV measurements and requires significantly less measurement time than that required for the WTV method. J. Magn. Reson. Imaging 2016;43:446–454. BACKGROUNDTo assess the interobserver reliability of three selective region-of-interest (ROI) measurement protocols for apparent diffusion coefficient (ADC) quantifications in soft tissue masses (STMs) compared with whole tumor volume (WTV) ADC measurements.METHODSInstitutional review board approval was obtained and informed consent was waived. Three observers independently measured minimum and mean ADCs of 73 benign and malignant musculoskeletal STMs using three selective methods (single-slice [SS], predefined three slices [PD], observer-based [OB]) and WTV measurements at 3.0 Tesla. Minimum and mean ADC values derived from each method were compared with WTV measurements, and inter-reader variation was assessed using the intraclass correlation coefficient (ICC). The time required for each method of ADC measurement was recorded.RESULTSFor the SS, PD, OB, and WTV methods, minimum ADC values ((×10(-3) mm2 /s)) were 0.97, 0.78, 0.73, and 0.67, respectively, and mean ADC values ((×10(-3) mm2 /s)) were 1.49, 1.49, 1.51, and 1.49, respectively. Interobserver agreement was good to excellent for the minimum and mean ADC values for the three readers using the SS, PD, OB, and WTV (ICC range 0.78-0.90). The SS, PD and OB methods required the least amount of measurement time (14 ± 5, 40 ± 17, and 38 ± 15 s, respectively) while the reference WTV method required the longest measurement time (111 ± 54 s) (P < 0.01).CONCLUSIONWhile all selective and WTV measurements offer good to excellent interobserver agreement, the selective OB method of ADC measurement results in the closest values to WTV measurements and requires significantly less measurement time than that required for the WTV method. Background To assess the interobserver reliability of three selective region‐of‐interest (ROI) measurement protocols for apparent diffusion coefficient (ADC) quantifications in soft tissue masses (STMs) compared with whole tumor volume (WTV) ADC measurements. Methods Institutional review board approval was obtained and informed consent was waived. Three observers independently measured minimum and mean ADCs of 73 benign and malignant musculoskeletal STMs using three selective methods (single‐slice [SS], predefined three slices [PD], observer‐based [OB]) and WTV measurements at 3.0 Tesla. Minimum and mean ADC values derived from each method were compared with WTV measurements, and inter‐reader variation was assessed using the intraclass correlation coefficient (ICC). The time required for each method of ADC measurement was recorded. Results For the SS, PD, OB, and WTV methods, minimum ADC values ((×10−3 mm2/s)) were 0.97, 0.78, 0.73, and 0.67, respectively, and mean ADC values ((×10−3 mm2/s)) were 1.49, 1.49, 1.51, and 1.49, respectively. Interobserver agreement was good to excellent for the minimum and mean ADC values for the three readers using the SS, PD, OB, and WTV (ICC range 0.78–0.90). The SS, PD and OB methods required the least amount of measurement time (14 ± 5, 40 ± 17, and 38 ± 15 s, respectively) while the reference WTV method required the longest measurement time (111 ± 54 s) (P < 0.01). Conclusion While all selective and WTV measurements offer good to excellent interobserver agreement, the selective OB method of ADC measurement results in the closest values to WTV measurements and requires significantly less measurement time than that required for the WTV method. J. Magn. Reson. Imaging 2016;43:446–454. Background To assess the interobserver reliability of three selective region-of-interest (ROI) measurement protocols for apparent diffusion coefficient (ADC) quantifications in soft tissue masses (STMs) compared with whole tumor volume (WTV) ADC measurements. Methods Institutional review board approval was obtained and informed consent was waived. Three observers independently measured minimum and mean ADCs of 73 benign and malignant musculoskeletal STMs using three selective methods (single-slice [SS], predefined three slices [PD], observer-based [OB]) and WTV measurements at 3.0 Tesla. Minimum and mean ADC values derived from each method were compared with WTV measurements, and inter-reader variation was assessed using the intraclass correlation coefficient (ICC). The time required for each method of ADC measurement was recorded. Results For the SS, PD, OB, and WTV methods, minimum ADC values ((×10-3 mm2/s)) were 0.97, 0.78, 0.73, and 0.67, respectively, and mean ADC values ((×10-3 mm2/s)) were 1.49, 1.49, 1.51, and 1.49, respectively. Interobserver agreement was good to excellent for the minimum and mean ADC values for the three readers using the SS, PD, OB, and WTV (ICC range 0.78-0.90). The SS, PD and OB methods required the least amount of measurement time (14±5, 40±17, and 38±15 s, respectively) while the reference WTV method required the longest measurement time (111±54 s) (P<0.01). Conclusion While all selective and WTV measurements offer good to excellent interobserver agreement, the selective OB method of ADC measurement results in the closest values to WTV measurements and requires significantly less measurement time than that required for the WTV method. J. Magn. Reson. Imaging 2016;43:446-454. |
Author | Subhawong, Ty K. Demehri, Shadpour Ahlawat, Shivani Del Grande, Filippo Khandheria, Paras Morelli, John Fayad, Laura M. |
Author_xml | – sequence: 1 givenname: Shivani surname: Ahlawat fullname: Ahlawat, Shivani email: sahlawa1@jhmi.edu organization: The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology & Radiological Science, Maryland, Baltimore, USA – sequence: 2 givenname: Paras surname: Khandheria fullname: Khandheria, Paras organization: The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology & Radiological Science, Maryland, Baltimore, USA – sequence: 3 givenname: Filippo surname: Del Grande fullname: Del Grande, Filippo organization: The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology & Radiological Science, Baltimore, Maryland, USA – sequence: 4 givenname: John surname: Morelli fullname: Morelli, John organization: Tulsa Radiology Associates, Oklahoma, Tulsa, USA – sequence: 5 givenname: Ty K. surname: Subhawong fullname: Subhawong, Ty K. organization: Department of Radiology (R-109), University of Miami, Florida, Miami, USA – sequence: 6 givenname: Shadpour surname: Demehri fullname: Demehri, Shadpour organization: The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology & Radiological Science, Maryland, Baltimore, USA – sequence: 7 givenname: Laura M. surname: Fayad fullname: Fayad, Laura M. organization: The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology & Radiological Science, Maryland, Baltimore, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26174705$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAURi1URH9gwwMgS2wQUoodx4nDDo2gTFVAVCC6s5zMzYxLHE99nRnm9XgynE5bIRas7MU5n6_vd0wOBj8AIc85O-WM5W-uXbCneVHXxSNyxGWeZ7lU5UG6Mykyrlh1SI4RrxljiZFPyGFe8qqomDwiv-dDhOAbhLCBQDcmWNPY3sYd9R1F6KGNdgM0wNL6IfNdZicBMFIHBscADoZI18FH3_oeaecDvRnNEG00t-bCdt2ISaZbsMtVhAW1ziztsKR2oOi7SKNFHIE6gwj4ls68W6c5cFJsXNHtyvdA4-hS9Mb3o4O_38an5HFneoRnd-cJ-f7h_bfZx-ziy9l89u4iawvBi4ybtpQKipbJVtWsKivVSsWZUGCYLJRQpSm5rEGphgkA1TEhi7w1jamZaEpxQl7tc9Nnb8a0Ae0sttD3ZgA_ouZVyWqRgif05T_otR_DkKZLlKxqmZqZqNd7qg0eMUCn1yGtJuw0Z3pqVk_N6ttmE_ziLnJsHCwe0PsqE8D3wNb2sPtPlD7_dDm_D832jsUIvx4cE37qshKV1D8-n-nz_Kq6kvyrvhR_AMusxNs |
CitedBy_id | crossref_primary_10_1002_jmri_25612 crossref_primary_10_1007_s00330_017_5142_z crossref_primary_10_1016_j_acra_2022_11_016 crossref_primary_10_1177_02841851241241055 crossref_primary_10_3348_kjr_2016_17_5_650 crossref_primary_10_1016_j_ejrad_2020_109028 crossref_primary_10_1111_jon_12875 crossref_primary_10_1002_jmri_27190 crossref_primary_10_1177_02841851221129714 crossref_primary_10_3348_kjr_2018_0545 crossref_primary_10_1007_s00330_024_10857_7 crossref_primary_10_1002_jmri_26059 crossref_primary_10_1007_s00330_018_5845_9 crossref_primary_10_1016_j_ejrad_2021_109934 crossref_primary_10_1148_radiol_2017170270 crossref_primary_10_1212_WNL_0000000000008092 crossref_primary_10_1259_bjro_20200004 crossref_primary_10_1002_jmri_25405 crossref_primary_10_1002_jmri_26659 crossref_primary_10_1177_20584601211044478 crossref_primary_10_1007_s00330_017_5265_2 crossref_primary_10_1007_s00256_020_03556_z crossref_primary_10_1002_jmri_25361 crossref_primary_10_1002_jmri_26293 crossref_primary_10_1007_s00256_019_03290_1 crossref_primary_10_3174_ajnr_A7166 crossref_primary_10_1002_jmri_25633 crossref_primary_10_1016_j_ejrad_2022_110319 crossref_primary_10_1007_s00256_017_2822_3 crossref_primary_10_1016_j_mri_2024_05_010 crossref_primary_10_12998_wjcc_v8_i15_3164 crossref_primary_10_1007_s00330_016_4527_8 crossref_primary_10_1186_s40644_020_00334_x crossref_primary_10_1002_jmri_25193 crossref_primary_10_1053_j_ro_2018_10_001 crossref_primary_10_1016_j_ejrad_2017_01_017 crossref_primary_10_1053_j_ro_2017_04_004 crossref_primary_10_1111_ane_13284 crossref_primary_10_3389_fonc_2021_640906 crossref_primary_10_3348_kjr_2018_0474 crossref_primary_10_1016_j_ejrad_2023_110802 crossref_primary_10_3389_fonc_2020_594366 crossref_primary_10_1002_jmri_28371 crossref_primary_10_1371_journal_pone_0229983 crossref_primary_10_1200_PO_23_00243 crossref_primary_10_1259_bjro_20180049 crossref_primary_10_1002_jso_25906 crossref_primary_10_1007_s00256_018_2999_0 crossref_primary_10_1177_0284185116637245 crossref_primary_10_1097_RMR_0000000000000137 |
Cites_doi | 10.1002/jmri.21512 10.3174/ajnr.A3910 10.1007/s00330-011-2220-5 10.1148/radiol.12120495 10.1016/j.crad.2013.08.007 10.1148/radiol.13130844 10.1007/s11604-008-0229-8 10.1007/s00330-009-1471-x 10.1002/jmri.24372 10.1007/s10334-014-0442-7 10.1148/rg.316115515 10.1371/journal.pone.0092211 10.1002/jmri.10061 10.1158/1078-0432.CCR-14-2454 10.1148/radiol.14131871 10.5152/dir.2014.14217 10.1097/RLI.0000000000000144 10.1016/j.jvir.2013.05.054 10.1002/jmri.24845 10.1148/radiol.12112161 10.1148/radiol.12112142 10.1007/s00256-013-1703-7 |
ContentType | Journal Article |
Copyright | 2015 Wiley Periodicals, Inc. 2016 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2015 Wiley Periodicals, Inc. – notice: 2016 Wiley Periodicals, Inc. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7TK 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/jmri.24994 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1522-2586 |
EndPage | 454 |
ExternalDocumentID | 3925188541 10_1002_jmri_24994 26174705 JMRI24994 ark_67375_WNG_J2X7X51Q_R |
Genre | article Journal Article Comparative Study |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7TK 8FD FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c4314-1ac658e4c05c8907678c581038ea0548386a6159e88b03ee8f03542caba903b63 |
IEDL.DBID | DR2 |
ISSN | 1053-1807 |
IngestDate | Sat Aug 17 02:46:17 EDT 2024 Thu Oct 10 23:02:11 EDT 2024 Fri Aug 23 02:04:51 EDT 2024 Sat Sep 28 08:08:01 EDT 2024 Sat Aug 24 00:49:23 EDT 2024 Wed Oct 30 10:04:58 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | soft tissue masses interobserver reliability ADC measurement DWI |
Language | English |
License | 2015 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4314-1ac658e4c05c8907678c581038ea0548386a6159e88b03ee8f03542caba903b63 |
Notes | istex:CAF3DB4E905596E33B52FF440F6A4AA9A4DF86E4 ArticleID:JMRI24994 ark:/67375/WNG-J2X7X51Q-R ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.24994 |
PMID | 26174705 |
PQID | 1757951056 |
PQPubID | 1006400 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1760930766 proquest_journals_1757951056 crossref_primary_10_1002_jmri_24994 pubmed_primary_26174705 wiley_primary_10_1002_jmri_24994_JMRI24994 istex_primary_ark_67375_WNG_J2X7X51Q_R |
PublicationCentury | 2000 |
PublicationDate | 2016-02 February 2016 2016-Feb 2016-02-00 20160201 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Nashville |
PublicationSubtitle | JMRI |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J. Magn. Reson. Imaging |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Demehri S, Belzberg A, Blakeley J, Fayad LM. Conventional and functional MR imaging of peripheral nerve sheath tumors: initial experience. AJNR Am J Neuroradiol 2014;35:1615-1620. Del Grande F, Subhawong T, Weber K, Aro M, Mugera C, Fayad LM. Detection of soft-tissue sarcoma recurrence: added value of functional MR imaging techniques at 3.0 T. Radiology 2014;271:499-511. Halappa VG, Bonekamp S, Corona-Villalobos CP, et al. Intrahepatic cholangiocarcinoma treated with local-regional therapy: quantitative volumetric apparent diffusion coefficient maps for assessment of tumor response. Radiology 2012;264:285-294. Namimoto T, Yamashita Y, Awai K, et al. Combined use of T2-weighted and diffusion-weighted 3-T MR imaging for differentiating uterine sarcomas from benign leiomyomas. Eur Radiol 2009;19:2756-2764. Van Rijswijk CS, Kunz P, Hogendoorn PC, Taminiau AH, Doornbos J, Bloem JL. Diffusion-weighted MRI in the characterization of soft-tissue tumors. J Magn Reson Imaging 2002;15:302-307. Gowdra Halappa V, Corona-Villalobos CP, Bonekamp S, et al. Neuroendocrine liver metastasis treated by using intraarterial therapy: volumetric functional imaging biomarkers of early tumor response and survival. Radiology 2013;266:502-513. Vouche M, Salem R, Lewandowski RJ, Miller FH. Can volumetric ADC measurement help predict response to Y90 radioembolization in HCC? Abdom Imaging 2014. [Epub ahead of print]. Nagata S, Nishimura H, Uchida M, et al. Diffusion-weighted imaging of soft tissue tumors: usefulness of the apparent diffusion coefficient for differential diagnosis. Radiat Med 2008;26:287-295. Tan SL, Rahmat K, Rozalli FI, et al. Differentiation between benign and malignant breast lesions using quantitative diffusion-weighted sequence on 3 T MRI. Clin Radiol 2014;69:63-71. Kokabi N, Camacho JC, Xing M, Edalat F, Mittal PK, Kim HS. Immediate post-doxorubicin drug-eluting beads chemoembolization Mr Apparent diffusion coefficient quantification predicts response in unresectable hepatocellular carcinoma: a pilot study. J Magn Reson Imaging 2015. doi: 10.1002/jmri.24845. [Epub ahead of print]. Nogueira L, Brandão S, Matos E, et al. Region of interest demarcation for quantification of the apparent diffusion coefficient in breast lesions and its interobserver variability. Diagn Interv Radiol 2015;21:123-127. Lee MS, Kim MD, Jung DC, et al. Apparent diffusion coefficient of uterine leiomyoma as a predictor of the potential response to uterine artery embolization. J Vasc Interv Radiol 2013;24:1361-1365. Inoue C, Fujii S, Kaneda S, et al. Apparent diffusion coefficient (ADC) measurement in endometrial carcinoma: effect of region of interest methods on ADC values. J Magn Reson Imaging 2014;40:157-161. Oka K, Yakushiji T, Sato H, et al. Ability of diffusion-weighted imaging for the differential diagnosis between chronic expanding hematomas and malignant soft tissue tumors. J Magn Reson Imaging 2008;28:1195-1200. Zhao F, Ahlawat S, Farahani SJ, et al. Can MR imaging be used to predict tumor grade in soft-tissue sarcoma? Radiology 2014;272:192-201. Barabasch A, Kraemer NA, Ciritsis A, et al. Diagnostic accuracy of diffusion-weighted magnetic resonance imaging versus positron emission tomography/computed tomography for early response assessment of liver metastases to Y90-radioembolization. Invest Radiol 2015;50:409-415. Mayerhoefer ME, Karanikas G, Kletter K, et al. Evaluation of diffusion-weighted magnetic resonance imaging for follow-up and treatment response assessment of lymphoma: results of an 18F-FDG-PET/CT-controlled prospective study in 64 patients. Clin Cancer Res 2015;21:2606-2513. Kwee RM, Dik AK, Sosef MN, et al. Interobserver reproducibility of diffusion-weighted MRI in monitoring tumor response to neoadjuvant therapy in esophageal cancer. PLoS One 2014;9:e92211. Subhawong TK, Durand DJ, Thawait GK, Jacobs MA, Fayad LM. Characterization of soft tissue masses: can quantitative diffusion weighted imaging reliably distinguish cysts from solid masses? Skeletal Radiol 2013;42:1583-1592. Li Z, Bonekamp S, Halappa VG, et al. Islet cell liver metastases: assessment of volumetric early response with functional MR imaging after transarterial chemoembolization. Radiology 2012;264:97-109. Lambregts DM, Beets GL, Maas M, et al. Tumour ADC measurements in rectal cancer: effect of ROI methods on ADC values and interobserver variability. Eur Radiol 2011;21:2567-2574. Malayeri AA, El Khouli RH, Zaheer A, et al. Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up. Radiographics 2011;31:1773-1791. Fathi Kazerooni A, Mohseni M, Rezaei S, Bakhshandehpour G, Saligheh Rad H. Multi-parametric (ADC/PWI/T2-w) image fusion approach for accurate semi-automatic segmentation of tumorous regions in glioblastoma multiforme. MAGMA 2015;28:13-22. 2002; 15 2015; 28 2012; 264 2013; 24 2015; 50 2013; 42 2008; 28 2015; 21 2013; 266 2011; 31 2008; 26 2014; 69 2014; 35 2011; 21 2014; 271 2015 2014; 272 2014 2014; 9 2009; 19 2014; 40 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 Vouche M (e_1_2_5_19_1) 2014 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_23_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_24_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_21_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_22_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_20_1 |
References_xml | – volume: 24 start-page: 1361 year: 2013 end-page: 1365 article-title: Apparent diffusion coefficient of uterine leiomyoma as a predictor of the potential response to uterine artery embolization publication-title: J Vasc Interv Radiol – volume: 28 start-page: 1195 year: 2008 end-page: 1200 article-title: Ability of diffusion‐weighted imaging for the differential diagnosis between chronic expanding hematomas and malignant soft tissue tumors publication-title: J Magn Reson Imaging – volume: 272 start-page: 192 year: 2014 end-page: 201 article-title: Can MR imaging be used to predict tumor grade in soft‐tissue sarcoma? publication-title: Radiology – volume: 40 start-page: 157 year: 2014 end-page: 161 article-title: Apparent diffusion coefficient (ADC) measurement in endometrial carcinoma: effect of region of interest methods on ADC values publication-title: J Magn Reson Imaging – volume: 271 start-page: 499 year: 2014 end-page: 511 article-title: Detection of soft‐tissue sarcoma recurrence: added value of functional MR imaging techniques at 3.0 T publication-title: Radiology – volume: 264 start-page: 97 year: 2012 end-page: 109 article-title: Islet cell liver metastases: assessment of volumetric early response with functional MR imaging after transarterial chemoembolization publication-title: Radiology – volume: 264 start-page: 285 year: 2012 end-page: 294 article-title: Intrahepatic cholangiocarcinoma treated with local‐regional therapy: quantitative volumetric apparent diffusion coefficient maps for assessment of tumor response publication-title: Radiology – volume: 21 start-page: 123 year: 2015 end-page: 127 article-title: Region of interest demarcation for quantification of the apparent diffusion coefficient in breast lesions and its interobserver variability publication-title: Diagn Interv Radiol – volume: 31 start-page: 1773 year: 2011 end-page: 1791 article-title: Principles and applications of diffusion‐weighted imaging in cancer detection, staging, and treatment follow‐up publication-title: Radiographics – volume: 19 start-page: 2756 year: 2009 end-page: 2764 article-title: Combined use of T2‐weighted and diffusion‐weighted 3‐T MR imaging for differentiating uterine sarcomas from benign leiomyomas publication-title: Eur Radiol – volume: 28 start-page: 13 year: 2015 end-page: 22 article-title: Multi‐parametric (ADC/PWI/T2‐w) image fusion approach for accurate semi‐automatic segmentation of tumorous regions in glioblastoma multiforme publication-title: MAGMA – volume: 69 start-page: 63 year: 2014 end-page: 71 article-title: Differentiation between benign and malignant breast lesions using quantitative diffusion‐weighted sequence on 3 T MRI publication-title: Clin Radiol – year: 2015 article-title: Immediate post‐doxorubicin drug‐eluting beads chemoembolization Mr Apparent diffusion coefficient quantification predicts response in unresectable hepatocellular carcinoma: a pilot study publication-title: J Magn Reson Imaging – volume: 42 start-page: 1583 year: 2013 end-page: 1592 article-title: Characterization of soft tissue masses: can quantitative diffusion weighted imaging reliably distinguish cysts from solid masses? publication-title: Skeletal Radiol – volume: 21 start-page: 2606 year: 2015 end-page: 2513 article-title: Evaluation of diffusion‐weighted magnetic resonance imaging for follow‐up and treatment response assessment of lymphoma: results of an 18F‐FDG‐PET/CT‐controlled prospective study in 64 patients publication-title: Clin Cancer Res – volume: 35 start-page: 1615 year: 2014 end-page: 1620 article-title: Conventional and functional MR imaging of peripheral nerve sheath tumors: initial experience publication-title: AJNR Am J Neuroradiol – volume: 9 start-page: e92211 year: 2014 article-title: Interobserver reproducibility of diffusion‐weighted MRI in monitoring tumor response to neoadjuvant therapy in esophageal cancer publication-title: PLoS One – volume: 266 start-page: 502 year: 2013 end-page: 513 article-title: Neuroendocrine liver metastasis treated by using intraarterial therapy: volumetric functional imaging biomarkers of early tumor response and survival publication-title: Radiology – volume: 15 start-page: 302 year: 2002 end-page: 307 article-title: Diffusion‐weighted MRI in the characterization of soft‐tissue tumors publication-title: J Magn Reson Imaging – volume: 50 start-page: 409 year: 2015 end-page: 415 article-title: Diagnostic accuracy of diffusion‐weighted magnetic resonance imaging versus positron emission tomography/computed tomography for early response assessment of liver metastases to Y90‐radioembolization publication-title: Invest Radiol – volume: 21 start-page: 2567 year: 2011 end-page: 2574 article-title: Tumour ADC measurements in rectal cancer: effect of ROI methods on ADC values and interobserver variability publication-title: Eur Radiol – year: 2014 article-title: Can volumetric ADC measurement help predict response to Y90 radioembolization in HCC? publication-title: Abdom Imaging – volume: 26 start-page: 287 year: 2008 end-page: 295 article-title: Diffusion‐weighted imaging of soft tissue tumors: usefulness of the apparent diffusion coefficient for differential diagnosis publication-title: Radiat Med – ident: e_1_2_5_4_1 doi: 10.1002/jmri.21512 – ident: e_1_2_5_6_1 doi: 10.3174/ajnr.A3910 – ident: e_1_2_5_17_1 doi: 10.1007/s00330-011-2220-5 – ident: e_1_2_5_23_1 doi: 10.1148/radiol.12120495 – year: 2014 ident: e_1_2_5_19_1 article-title: Can volumetric ADC measurement help predict response to Y90 radioembolization in HCC? publication-title: Abdom Imaging contributor: fullname: Vouche M – ident: e_1_2_5_8_1 doi: 10.1016/j.crad.2013.08.007 – ident: e_1_2_5_9_1 doi: 10.1148/radiol.13130844 – ident: e_1_2_5_2_1 doi: 10.1007/s11604-008-0229-8 – ident: e_1_2_5_3_1 doi: 10.1007/s00330-009-1471-x – ident: e_1_2_5_16_1 doi: 10.1002/jmri.24372 – ident: e_1_2_5_20_1 doi: 10.1007/s10334-014-0442-7 – ident: e_1_2_5_24_1 doi: 10.1148/rg.316115515 – ident: e_1_2_5_18_1 doi: 10.1371/journal.pone.0092211 – ident: e_1_2_5_5_1 doi: 10.1002/jmri.10061 – ident: e_1_2_5_11_1 doi: 10.1158/1078-0432.CCR-14-2454 – ident: e_1_2_5_14_1 doi: 10.1148/radiol.14131871 – ident: e_1_2_5_15_1 doi: 10.5152/dir.2014.14217 – ident: e_1_2_5_10_1 doi: 10.1097/RLI.0000000000000144 – ident: e_1_2_5_13_1 doi: 10.1016/j.jvir.2013.05.054 – ident: e_1_2_5_12_1 doi: 10.1002/jmri.24845 – ident: e_1_2_5_21_1 doi: 10.1148/radiol.12112161 – ident: e_1_2_5_22_1 doi: 10.1148/radiol.12112142 – ident: e_1_2_5_7_1 doi: 10.1007/s00256-013-1703-7 |
SSID | ssj0009945 |
Score | 2.4403632 |
Snippet | Background
To assess the interobserver reliability of three selective region‐of‐interest (ROI) measurement protocols for apparent diffusion coefficient (ADC)... To assess the interobserver reliability of three selective region-of-interest (ROI) measurement protocols for apparent diffusion coefficient (ADC)... Background To assess the interobserver reliability of three selective region-of-interest (ROI) measurement protocols for apparent diffusion coefficient (ADC)... BACKGROUNDTo assess the interobserver reliability of three selective region-of-interest (ROI) measurement protocols for apparent diffusion coefficient (ADC)... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 446 |
SubjectTerms | ADC measurement Adolescent Adult Aged Aged, 80 and over Child Child, Preschool Diffusion Magnetic Resonance Imaging - methods DWI Female Humans interobserver reliability Magnetic resonance imaging Male Middle Aged Observer Variation Reproducibility of Results Retrospective Studies Sensitivity and Specificity soft tissue masses Soft Tissue Neoplasms - pathology Tumor Burden Young Adult |
Title | Interobserver variability of selective region-of-interest measurement protocols for quantitative diffusion weighted imaging in soft tissue masses: Comparison with whole tumor volume measurements |
URI | https://api.istex.fr/ark:/67375/WNG-J2X7X51Q-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.24994 https://www.ncbi.nlm.nih.gov/pubmed/26174705 https://www.proquest.com/docview/1757951056 https://search.proquest.com/docview/1760930766 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NitRAEG6WFcSL_7rRVUoUD0Jmk3Q6nYgXWV3XgVlwcHEuErp7OjAuSXSSuOrJR_CpfBCfxKrOTMYVEfQSAqn8f131dXX3V4w9CG1YUFjzuYkDP87mia9EaH3BZaQlQiae02rkyVFyeByPZ2K2xZ6s18L0-hBDwo1ahvPX1MCVbvY2oqHvyuVihJ2HjMRAQy5pPtez6UY7Cg8IN9QpuB-mgRy0SaO9zalnotE5-rCf_kQ1zzJXF3oOLrG364fuZ5ycjLpWj8yX3_Qc__etLrOLK04KT3sQXWFbtrrKzk9Wo-7X2HeXNqw1JXDtEj5i97pX9_4MdQGNq6SDThOoyENd_fj6rS5wQ0IUVPgDyk0aEkgWokbsNYBkGT50qnKL3OhsKtXSUe4OTl261s5hUboaSrCooMFwAa1DCZSKRqofw_5QQxEonQynVOsX2q7ES_de99d7N9fZ8cHz1_uH_qr-g2-Q1sR-qAzyIxubQJgUO_EYV41ISdHdKmSaKU8ThYQss2mqA25tWgRcxJFRWmUB1wm_wbarurI7DHhohOBGSokWic3SOLKK-mpamrDQymP31zjI3_cyH3kv6Bzl9Ety90s89tBBZDBRyxOaGCdF_uboRT6OZnImwlf51GO7awzlK5_Q5EjUpOOzicfuDYexNdMQjaps3ZFNEmTodhO0udljb7gZaefHMhAee-QQ9JcHzceT6Uu3d-tfjG-zC8gHV5PSd9l2u-zsHeRcrb7r2tZPlwguKw |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLZgk4Ab_geBAUYgLpDSJbEdJ9yhwejKWolqE72zHNeRypQEmoYBVzwCT8WD8CSc42QpQwgJbqpKOa6T5vicz8f29xHyOLRhjmnNZ4YHPk_nsa9FaH3BZJRJcBk-x9PI40k8POKjmZh1e3PwLEzLD9EX3HBkuHiNAxwL0jtr1tB3xXIxgNlDys-TTeiOoXLDi-maPQquCLfYKZgfJoHs2UmjnXXbM_loE__aT38Cm2exq0s-e1dahdXacRbinpPjQbPKBubLb4yO__1cV8nlDpbS560fXSPnbHmdXBh3C-83yHdXOawyrOHaJf0IM-yW4PszrXJaOzEdiJsUdR6q8sfXb1UOH8hFgdoftFhXIikyQ1TgfjUFvEw_NLp059ywNaq1NFi-oyeuYmvndFE4GSW6KGkNGYOunKPQQuNi9TO628soUqwo0xOU-6WrpoCfbgPvr33XN8nR3svD3aHfSUD4BpAN90NtACJZbgJhEpjHQ2o1IkFSd6sBbCYsiTVgstQmSRYwa5M8YIJHRmc6DVgWsy2yUValvU0oC40QzEgpwSK2acIjq3G6lkkT5pn2yKNTR1DvW6YP1XI6RwpfiXKvxCNPnI_0Jnp5jHvjpFBvJ6_UKJrJmQjfqKlHtk-dSHVhoVaA1aSDtLFHHvaXYUDjKo0ubdWgTRykEHljsLnVOl_fGdLncxkIjzx1LvSXG1Wj8XTffbvzL8YPyMXh4fhAHexPXt8llwAednvUt8nGatnYewDBVtl9N9B-AjXSMkM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELVKK1W8cL8EChiBeEDKNhc7ThAvqLC0C7uCFRX7gizH60hLlaRsEgo88Ql8FR_ClzDjZLMUISR4iSJlcj-eOR7bZwi57xs_w7Dmhpp5Lkvmkau4b1weiiAVABk2x9XI40m0f8hGMz7bII9Xa2FafYg-4YYtw_prbODH82x3LRr6Pl8uBtB5SNgZssUioL5IiaZr8Sg4wu1YJw9dP_ZEL04a7K7PPRWOtvDLfvoT1zxNXW3sGZ4n71ZP3U45ORo0dTrQX34TdPzf17pAznWklD5pUXSRbJjiEtked8Pul8l3mzcsU8zgmiX9CP3rVt77My0zWtlSOuA1KVZ5KIsfX7-VGWxQiQIrf9B8nYekqAtRAvgqCmyZfmhUYVe54dlYq6XB5B09sflaM6eL3BZRoouCVhAvaG1hQnOFQ9WP6F5fRJFiPpmeYLFfWjc5XLp1u7_eu7pCDofP3uztu10BCFcDr2GurzQQJMO0x3UMvXgIrJrHKOluFFDNOIwjBYwsMXGceqExceaFnAVapSrxwjQKr5LNoizMdUJDX3MeaiEEWEQmiVlgFHbWUqH9LFUOubfCgTxudT5kq-gcSPwl0v4ShzywEOlN1PIIZ8YJLt9OnstRMBMz7r-WU4fsrDAkO6dQSWBqwhLayCF3-8PQnHGMRhWmbNAm8hLwuxHYXGux198MxfOZ8LhDHloE_eVB5Wg8PbB7N_7F-A7ZfvV0KF8eTF7cJGeBG3YT1HfIZr1szC3gX3V62zazn467MPI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interobserver+variability+of+selective+region-of-interest+measurement+protocols+for+quantitative+diffusion+weighted+imaging+in+soft+tissue+masses%3A+Comparison+with+whole+tumor+volume+measurements&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Ahlawat%2C+Shivani&rft.au=Khandheria%2C+Paras&rft.au=Del+Grande%2C+Filippo&rft.au=Morelli%2C+John&rft.date=2016-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=43&rft.issue=2&rft.spage=446&rft_id=info:doi/10.1002%2Fjmri.24994&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3925188541 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |