Interobserver variability of selective region-of-interest measurement protocols for quantitative diffusion weighted imaging in soft tissue masses: Comparison with whole tumor volume measurements

Background To assess the interobserver reliability of three selective region‐of‐interest (ROI) measurement protocols for apparent diffusion coefficient (ADC) quantifications in soft tissue masses (STMs) compared with whole tumor volume (WTV) ADC measurements. Methods Institutional review board appro...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 43; no. 2; pp. 446 - 454
Main Authors Ahlawat, Shivani, Khandheria, Paras, Del Grande, Filippo, Morelli, John, Subhawong, Ty K., Demehri, Shadpour, Fayad, Laura M.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.02.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background To assess the interobserver reliability of three selective region‐of‐interest (ROI) measurement protocols for apparent diffusion coefficient (ADC) quantifications in soft tissue masses (STMs) compared with whole tumor volume (WTV) ADC measurements. Methods Institutional review board approval was obtained and informed consent was waived. Three observers independently measured minimum and mean ADCs of 73 benign and malignant musculoskeletal STMs using three selective methods (single‐slice [SS], predefined three slices [PD], observer‐based [OB]) and WTV measurements at 3.0 Tesla. Minimum and mean ADC values derived from each method were compared with WTV measurements, and inter‐reader variation was assessed using the intraclass correlation coefficient (ICC). The time required for each method of ADC measurement was recorded. Results For the SS, PD, OB, and WTV methods, minimum ADC values ((×10−3 mm2/s)) were 0.97, 0.78, 0.73, and 0.67, respectively, and mean ADC values ((×10−3 mm2/s)) were 1.49, 1.49, 1.51, and 1.49, respectively. Interobserver agreement was good to excellent for the minimum and mean ADC values for the three readers using the SS, PD, OB, and WTV (ICC range 0.78–0.90). The SS, PD and OB methods required the least amount of measurement time (14 ± 5, 40 ± 17, and 38 ± 15 s, respectively) while the reference WTV method required the longest measurement time (111 ± 54 s) (P < 0.01). Conclusion While all selective and WTV measurements offer good to excellent interobserver agreement, the selective OB method of ADC measurement results in the closest values to WTV measurements and requires significantly less measurement time than that required for the WTV method. J. Magn. Reson. Imaging 2016;43:446–454.
AbstractList To assess the interobserver reliability of three selective region-of-interest (ROI) measurement protocols for apparent diffusion coefficient (ADC) quantifications in soft tissue masses (STMs) compared with whole tumor volume (WTV) ADC measurements. Institutional review board approval was obtained and informed consent was waived. Three observers independently measured minimum and mean ADCs of 73 benign and malignant musculoskeletal STMs using three selective methods (single-slice [SS], predefined three slices [PD], observer-based [OB]) and WTV measurements at 3.0 Tesla. Minimum and mean ADC values derived from each method were compared with WTV measurements, and inter-reader variation was assessed using the intraclass correlation coefficient (ICC). The time required for each method of ADC measurement was recorded. For the SS, PD, OB, and WTV methods, minimum ADC values ((×10(-3) mm2 /s)) were 0.97, 0.78, 0.73, and 0.67, respectively, and mean ADC values ((×10(-3) mm2 /s)) were 1.49, 1.49, 1.51, and 1.49, respectively. Interobserver agreement was good to excellent for the minimum and mean ADC values for the three readers using the SS, PD, OB, and WTV (ICC range 0.78-0.90). The SS, PD and OB methods required the least amount of measurement time (14 ± 5, 40 ± 17, and 38 ± 15 s, respectively) while the reference WTV method required the longest measurement time (111 ± 54 s) (P < 0.01). While all selective and WTV measurements offer good to excellent interobserver agreement, the selective OB method of ADC measurement results in the closest values to WTV measurements and requires significantly less measurement time than that required for the WTV method.
Background To assess the interobserver reliability of three selective region‐of‐interest (ROI) measurement protocols for apparent diffusion coefficient (ADC) quantifications in soft tissue masses (STMs) compared with whole tumor volume (WTV) ADC measurements. Methods Institutional review board approval was obtained and informed consent was waived. Three observers independently measured minimum and mean ADCs of 73 benign and malignant musculoskeletal STMs using three selective methods (single‐slice [SS], predefined three slices [PD], observer‐based [OB]) and WTV measurements at 3.0 Tesla. Minimum and mean ADC values derived from each method were compared with WTV measurements, and inter‐reader variation was assessed using the intraclass correlation coefficient (ICC). The time required for each method of ADC measurement was recorded. Results For the SS, PD, OB, and WTV methods, minimum ADC values ((×10 −3 mm 2 /s)) were 0.97, 0.78, 0.73, and 0.67, respectively, and mean ADC values ((×10 −3 mm 2 /s)) were 1.49, 1.49, 1.51, and 1.49, respectively. Interobserver agreement was good to excellent for the minimum and mean ADC values for the three readers using the SS, PD, OB, and WTV (ICC range 0.78–0.90). The SS, PD and OB methods required the least amount of measurement time (14 ± 5, 40 ± 17, and 38 ± 15 s, respectively) while the reference WTV method required the longest measurement time (111 ± 54 s) ( P  < 0.01). Conclusion While all selective and WTV measurements offer good to excellent interobserver agreement, the selective OB method of ADC measurement results in the closest values to WTV measurements and requires significantly less measurement time than that required for the WTV method. J. Magn. Reson. Imaging 2016;43:446–454.
BACKGROUNDTo assess the interobserver reliability of three selective region-of-interest (ROI) measurement protocols for apparent diffusion coefficient (ADC) quantifications in soft tissue masses (STMs) compared with whole tumor volume (WTV) ADC measurements.METHODSInstitutional review board approval was obtained and informed consent was waived. Three observers independently measured minimum and mean ADCs of 73 benign and malignant musculoskeletal STMs using three selective methods (single-slice [SS], predefined three slices [PD], observer-based [OB]) and WTV measurements at 3.0 Tesla. Minimum and mean ADC values derived from each method were compared with WTV measurements, and inter-reader variation was assessed using the intraclass correlation coefficient (ICC). The time required for each method of ADC measurement was recorded.RESULTSFor the SS, PD, OB, and WTV methods, minimum ADC values ((×10(-3) mm2 /s)) were 0.97, 0.78, 0.73, and 0.67, respectively, and mean ADC values ((×10(-3) mm2 /s)) were 1.49, 1.49, 1.51, and 1.49, respectively. Interobserver agreement was good to excellent for the minimum and mean ADC values for the three readers using the SS, PD, OB, and WTV (ICC range 0.78-0.90). The SS, PD and OB methods required the least amount of measurement time (14 ± 5, 40 ± 17, and 38 ± 15 s, respectively) while the reference WTV method required the longest measurement time (111 ± 54 s) (P < 0.01).CONCLUSIONWhile all selective and WTV measurements offer good to excellent interobserver agreement, the selective OB method of ADC measurement results in the closest values to WTV measurements and requires significantly less measurement time than that required for the WTV method.
Background To assess the interobserver reliability of three selective region‐of‐interest (ROI) measurement protocols for apparent diffusion coefficient (ADC) quantifications in soft tissue masses (STMs) compared with whole tumor volume (WTV) ADC measurements. Methods Institutional review board approval was obtained and informed consent was waived. Three observers independently measured minimum and mean ADCs of 73 benign and malignant musculoskeletal STMs using three selective methods (single‐slice [SS], predefined three slices [PD], observer‐based [OB]) and WTV measurements at 3.0 Tesla. Minimum and mean ADC values derived from each method were compared with WTV measurements, and inter‐reader variation was assessed using the intraclass correlation coefficient (ICC). The time required for each method of ADC measurement was recorded. Results For the SS, PD, OB, and WTV methods, minimum ADC values ((×10−3 mm2/s)) were 0.97, 0.78, 0.73, and 0.67, respectively, and mean ADC values ((×10−3 mm2/s)) were 1.49, 1.49, 1.51, and 1.49, respectively. Interobserver agreement was good to excellent for the minimum and mean ADC values for the three readers using the SS, PD, OB, and WTV (ICC range 0.78–0.90). The SS, PD and OB methods required the least amount of measurement time (14 ± 5, 40 ± 17, and 38 ± 15 s, respectively) while the reference WTV method required the longest measurement time (111 ± 54 s) (P < 0.01). Conclusion While all selective and WTV measurements offer good to excellent interobserver agreement, the selective OB method of ADC measurement results in the closest values to WTV measurements and requires significantly less measurement time than that required for the WTV method. J. Magn. Reson. Imaging 2016;43:446–454.
Background To assess the interobserver reliability of three selective region-of-interest (ROI) measurement protocols for apparent diffusion coefficient (ADC) quantifications in soft tissue masses (STMs) compared with whole tumor volume (WTV) ADC measurements. Methods Institutional review board approval was obtained and informed consent was waived. Three observers independently measured minimum and mean ADCs of 73 benign and malignant musculoskeletal STMs using three selective methods (single-slice [SS], predefined three slices [PD], observer-based [OB]) and WTV measurements at 3.0 Tesla. Minimum and mean ADC values derived from each method were compared with WTV measurements, and inter-reader variation was assessed using the intraclass correlation coefficient (ICC). The time required for each method of ADC measurement was recorded. Results For the SS, PD, OB, and WTV methods, minimum ADC values ((×10-3 mm2/s)) were 0.97, 0.78, 0.73, and 0.67, respectively, and mean ADC values ((×10-3 mm2/s)) were 1.49, 1.49, 1.51, and 1.49, respectively. Interobserver agreement was good to excellent for the minimum and mean ADC values for the three readers using the SS, PD, OB, and WTV (ICC range 0.78-0.90). The SS, PD and OB methods required the least amount of measurement time (14±5, 40±17, and 38±15 s, respectively) while the reference WTV method required the longest measurement time (111±54 s) (P<0.01). Conclusion While all selective and WTV measurements offer good to excellent interobserver agreement, the selective OB method of ADC measurement results in the closest values to WTV measurements and requires significantly less measurement time than that required for the WTV method. J. Magn. Reson. Imaging 2016;43:446-454.
Author Subhawong, Ty K.
Demehri, Shadpour
Ahlawat, Shivani
Del Grande, Filippo
Khandheria, Paras
Morelli, John
Fayad, Laura M.
Author_xml – sequence: 1
  givenname: Shivani
  surname: Ahlawat
  fullname: Ahlawat, Shivani
  email: sahlawa1@jhmi.edu
  organization: The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology & Radiological Science, Maryland, Baltimore, USA
– sequence: 2
  givenname: Paras
  surname: Khandheria
  fullname: Khandheria, Paras
  organization: The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology & Radiological Science, Maryland, Baltimore, USA
– sequence: 3
  givenname: Filippo
  surname: Del Grande
  fullname: Del Grande, Filippo
  organization: The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology & Radiological Science, Baltimore, Maryland, USA
– sequence: 4
  givenname: John
  surname: Morelli
  fullname: Morelli, John
  organization: Tulsa Radiology Associates, Oklahoma, Tulsa, USA
– sequence: 5
  givenname: Ty K.
  surname: Subhawong
  fullname: Subhawong, Ty K.
  organization: Department of Radiology (R-109), University of Miami, Florida, Miami, USA
– sequence: 6
  givenname: Shadpour
  surname: Demehri
  fullname: Demehri, Shadpour
  organization: The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology & Radiological Science, Maryland, Baltimore, USA
– sequence: 7
  givenname: Laura M.
  surname: Fayad
  fullname: Fayad, Laura M.
  organization: The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology & Radiological Science, Maryland, Baltimore, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26174705$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAURi1URH9gwwMgS2wQUoodx4nDDo2gTFVAVCC6s5zMzYxLHE99nRnm9XgynE5bIRas7MU5n6_vd0wOBj8AIc85O-WM5W-uXbCneVHXxSNyxGWeZ7lU5UG6Mykyrlh1SI4RrxljiZFPyGFe8qqomDwiv-dDhOAbhLCBQDcmWNPY3sYd9R1F6KGNdgM0wNL6IfNdZicBMFIHBscADoZI18FH3_oeaecDvRnNEG00t-bCdt2ISaZbsMtVhAW1ziztsKR2oOi7SKNFHIE6gwj4ls68W6c5cFJsXNHtyvdA4-hS9Mb3o4O_38an5HFneoRnd-cJ-f7h_bfZx-ziy9l89u4iawvBi4ybtpQKipbJVtWsKivVSsWZUGCYLJRQpSm5rEGphgkA1TEhi7w1jamZaEpxQl7tc9Nnb8a0Ae0sttD3ZgA_ouZVyWqRgif05T_otR_DkKZLlKxqmZqZqNd7qg0eMUCn1yGtJuw0Z3pqVk_N6ttmE_ziLnJsHCwe0PsqE8D3wNb2sPtPlD7_dDm_D832jsUIvx4cE37qshKV1D8-n-nz_Kq6kvyrvhR_AMusxNs
CitedBy_id crossref_primary_10_1002_jmri_25612
crossref_primary_10_1007_s00330_017_5142_z
crossref_primary_10_1016_j_acra_2022_11_016
crossref_primary_10_1177_02841851241241055
crossref_primary_10_3348_kjr_2016_17_5_650
crossref_primary_10_1016_j_ejrad_2020_109028
crossref_primary_10_1111_jon_12875
crossref_primary_10_1002_jmri_27190
crossref_primary_10_1177_02841851221129714
crossref_primary_10_3348_kjr_2018_0545
crossref_primary_10_1007_s00330_024_10857_7
crossref_primary_10_1002_jmri_26059
crossref_primary_10_1007_s00330_018_5845_9
crossref_primary_10_1016_j_ejrad_2021_109934
crossref_primary_10_1148_radiol_2017170270
crossref_primary_10_1212_WNL_0000000000008092
crossref_primary_10_1259_bjro_20200004
crossref_primary_10_1002_jmri_25405
crossref_primary_10_1002_jmri_26659
crossref_primary_10_1177_20584601211044478
crossref_primary_10_1007_s00330_017_5265_2
crossref_primary_10_1007_s00256_020_03556_z
crossref_primary_10_1002_jmri_25361
crossref_primary_10_1002_jmri_26293
crossref_primary_10_1007_s00256_019_03290_1
crossref_primary_10_3174_ajnr_A7166
crossref_primary_10_1002_jmri_25633
crossref_primary_10_1016_j_ejrad_2022_110319
crossref_primary_10_1007_s00256_017_2822_3
crossref_primary_10_1016_j_mri_2024_05_010
crossref_primary_10_12998_wjcc_v8_i15_3164
crossref_primary_10_1007_s00330_016_4527_8
crossref_primary_10_1186_s40644_020_00334_x
crossref_primary_10_1002_jmri_25193
crossref_primary_10_1053_j_ro_2018_10_001
crossref_primary_10_1016_j_ejrad_2017_01_017
crossref_primary_10_1053_j_ro_2017_04_004
crossref_primary_10_1111_ane_13284
crossref_primary_10_3389_fonc_2021_640906
crossref_primary_10_3348_kjr_2018_0474
crossref_primary_10_1016_j_ejrad_2023_110802
crossref_primary_10_3389_fonc_2020_594366
crossref_primary_10_1002_jmri_28371
crossref_primary_10_1371_journal_pone_0229983
crossref_primary_10_1200_PO_23_00243
crossref_primary_10_1259_bjro_20180049
crossref_primary_10_1002_jso_25906
crossref_primary_10_1007_s00256_018_2999_0
crossref_primary_10_1177_0284185116637245
crossref_primary_10_1097_RMR_0000000000000137
Cites_doi 10.1002/jmri.21512
10.3174/ajnr.A3910
10.1007/s00330-011-2220-5
10.1148/radiol.12120495
10.1016/j.crad.2013.08.007
10.1148/radiol.13130844
10.1007/s11604-008-0229-8
10.1007/s00330-009-1471-x
10.1002/jmri.24372
10.1007/s10334-014-0442-7
10.1148/rg.316115515
10.1371/journal.pone.0092211
10.1002/jmri.10061
10.1158/1078-0432.CCR-14-2454
10.1148/radiol.14131871
10.5152/dir.2014.14217
10.1097/RLI.0000000000000144
10.1016/j.jvir.2013.05.054
10.1002/jmri.24845
10.1148/radiol.12112161
10.1148/radiol.12112142
10.1007/s00256-013-1703-7
ContentType Journal Article
Copyright 2015 Wiley Periodicals, Inc.
2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2015 Wiley Periodicals, Inc.
– notice: 2016 Wiley Periodicals, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1002/jmri.24994
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 454
ExternalDocumentID 3925188541
10_1002_jmri_24994
26174705
JMRI24994
ark_67375_WNG_J2X7X51Q_R
Genre article
Journal Article
Comparative Study
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7TK
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c4314-1ac658e4c05c8907678c581038ea0548386a6159e88b03ee8f03542caba903b63
IEDL.DBID DR2
ISSN 1053-1807
IngestDate Sat Aug 17 02:46:17 EDT 2024
Thu Oct 10 23:02:11 EDT 2024
Fri Aug 23 02:04:51 EDT 2024
Sat Sep 28 08:08:01 EDT 2024
Sat Aug 24 00:49:23 EDT 2024
Wed Oct 30 10:04:58 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords soft tissue masses
interobserver reliability
ADC measurement
DWI
Language English
License 2015 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4314-1ac658e4c05c8907678c581038ea0548386a6159e88b03ee8f03542caba903b63
Notes istex:CAF3DB4E905596E33B52FF440F6A4AA9A4DF86E4
ArticleID:JMRI24994
ark:/67375/WNG-J2X7X51Q-R
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.24994
PMID 26174705
PQID 1757951056
PQPubID 1006400
PageCount 9
ParticipantIDs proquest_miscellaneous_1760930766
proquest_journals_1757951056
crossref_primary_10_1002_jmri_24994
pubmed_primary_26174705
wiley_primary_10_1002_jmri_24994_JMRI24994
istex_primary_ark_67375_WNG_J2X7X51Q_R
PublicationCentury 2000
PublicationDate 2016-02
February 2016
2016-Feb
2016-02-00
20160201
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J. Magn. Reson. Imaging
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Demehri S, Belzberg A, Blakeley J, Fayad LM. Conventional and functional MR imaging of peripheral nerve sheath tumors: initial experience. AJNR Am J Neuroradiol 2014;35:1615-1620.
Del Grande F, Subhawong T, Weber K, Aro M, Mugera C, Fayad LM. Detection of soft-tissue sarcoma recurrence: added value of functional MR imaging techniques at 3.0 T. Radiology 2014;271:499-511.
Halappa VG, Bonekamp S, Corona-Villalobos CP, et al. Intrahepatic cholangiocarcinoma treated with local-regional therapy: quantitative volumetric apparent diffusion coefficient maps for assessment of tumor response. Radiology 2012;264:285-294.
Namimoto T, Yamashita Y, Awai K, et al. Combined use of T2-weighted and diffusion-weighted 3-T MR imaging for differentiating uterine sarcomas from benign leiomyomas. Eur Radiol 2009;19:2756-2764.
Van Rijswijk CS, Kunz P, Hogendoorn PC, Taminiau AH, Doornbos J, Bloem JL. Diffusion-weighted MRI in the characterization of soft-tissue tumors. J Magn Reson Imaging 2002;15:302-307.
Gowdra Halappa V, Corona-Villalobos CP, Bonekamp S, et al. Neuroendocrine liver metastasis treated by using intraarterial therapy: volumetric functional imaging biomarkers of early tumor response and survival. Radiology 2013;266:502-513.
Vouche M, Salem R, Lewandowski RJ, Miller FH. Can volumetric ADC measurement help predict response to Y90 radioembolization in HCC? Abdom Imaging 2014. [Epub ahead of print].
Nagata S, Nishimura H, Uchida M, et al. Diffusion-weighted imaging of soft tissue tumors: usefulness of the apparent diffusion coefficient for differential diagnosis. Radiat Med 2008;26:287-295.
Tan SL, Rahmat K, Rozalli FI, et al. Differentiation between benign and malignant breast lesions using quantitative diffusion-weighted sequence on 3 T MRI. Clin Radiol 2014;69:63-71.
Kokabi N, Camacho JC, Xing M, Edalat F, Mittal PK, Kim HS. Immediate post-doxorubicin drug-eluting beads chemoembolization Mr Apparent diffusion coefficient quantification predicts response in unresectable hepatocellular carcinoma: a pilot study. J Magn Reson Imaging 2015. doi: 10.1002/jmri.24845. [Epub ahead of print].
Nogueira L, Brandão S, Matos E, et al. Region of interest demarcation for quantification of the apparent diffusion coefficient in breast lesions and its interobserver variability. Diagn Interv Radiol 2015;21:123-127.
Lee MS, Kim MD, Jung DC, et al. Apparent diffusion coefficient of uterine leiomyoma as a predictor of the potential response to uterine artery embolization. J Vasc Interv Radiol 2013;24:1361-1365.
Inoue C, Fujii S, Kaneda S, et al. Apparent diffusion coefficient (ADC) measurement in endometrial carcinoma: effect of region of interest methods on ADC values. J Magn Reson Imaging 2014;40:157-161.
Oka K, Yakushiji T, Sato H, et al. Ability of diffusion-weighted imaging for the differential diagnosis between chronic expanding hematomas and malignant soft tissue tumors. J Magn Reson Imaging 2008;28:1195-1200.
Zhao F, Ahlawat S, Farahani SJ, et al. Can MR imaging be used to predict tumor grade in soft-tissue sarcoma? Radiology 2014;272:192-201.
Barabasch A, Kraemer NA, Ciritsis A, et al. Diagnostic accuracy of diffusion-weighted magnetic resonance imaging versus positron emission tomography/computed tomography for early response assessment of liver metastases to Y90-radioembolization. Invest Radiol 2015;50:409-415.
Mayerhoefer ME, Karanikas G, Kletter K, et al. Evaluation of diffusion-weighted magnetic resonance imaging for follow-up and treatment response assessment of lymphoma: results of an 18F-FDG-PET/CT-controlled prospective study in 64 patients. Clin Cancer Res 2015;21:2606-2513.
Kwee RM, Dik AK, Sosef MN, et al. Interobserver reproducibility of diffusion-weighted MRI in monitoring tumor response to neoadjuvant therapy in esophageal cancer. PLoS One 2014;9:e92211.
Subhawong TK, Durand DJ, Thawait GK, Jacobs MA, Fayad LM. Characterization of soft tissue masses: can quantitative diffusion weighted imaging reliably distinguish cysts from solid masses? Skeletal Radiol 2013;42:1583-1592.
Li Z, Bonekamp S, Halappa VG, et al. Islet cell liver metastases: assessment of volumetric early response with functional MR imaging after transarterial chemoembolization. Radiology 2012;264:97-109.
Lambregts DM, Beets GL, Maas M, et al. Tumour ADC measurements in rectal cancer: effect of ROI methods on ADC values and interobserver variability. Eur Radiol 2011;21:2567-2574.
Malayeri AA, El Khouli RH, Zaheer A, et al. Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up. Radiographics 2011;31:1773-1791.
Fathi Kazerooni A, Mohseni M, Rezaei S, Bakhshandehpour G, Saligheh Rad H. Multi-parametric (ADC/PWI/T2-w) image fusion approach for accurate semi-automatic segmentation of tumorous regions in glioblastoma multiforme. MAGMA 2015;28:13-22.
2002; 15
2015; 28
2012; 264
2013; 24
2015; 50
2013; 42
2008; 28
2015; 21
2013; 266
2011; 31
2008; 26
2014; 69
2014; 35
2011; 21
2014; 271
2015
2014; 272
2014
2014; 9
2009; 19
2014; 40
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
Vouche M (e_1_2_5_19_1) 2014
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_23_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_24_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_21_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_22_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_20_1
References_xml – volume: 24
  start-page: 1361
  year: 2013
  end-page: 1365
  article-title: Apparent diffusion coefficient of uterine leiomyoma as a predictor of the potential response to uterine artery embolization
  publication-title: J Vasc Interv Radiol
– volume: 28
  start-page: 1195
  year: 2008
  end-page: 1200
  article-title: Ability of diffusion‐weighted imaging for the differential diagnosis between chronic expanding hematomas and malignant soft tissue tumors
  publication-title: J Magn Reson Imaging
– volume: 272
  start-page: 192
  year: 2014
  end-page: 201
  article-title: Can MR imaging be used to predict tumor grade in soft‐tissue sarcoma?
  publication-title: Radiology
– volume: 40
  start-page: 157
  year: 2014
  end-page: 161
  article-title: Apparent diffusion coefficient (ADC) measurement in endometrial carcinoma: effect of region of interest methods on ADC values
  publication-title: J Magn Reson Imaging
– volume: 271
  start-page: 499
  year: 2014
  end-page: 511
  article-title: Detection of soft‐tissue sarcoma recurrence: added value of functional MR imaging techniques at 3.0 T
  publication-title: Radiology
– volume: 264
  start-page: 97
  year: 2012
  end-page: 109
  article-title: Islet cell liver metastases: assessment of volumetric early response with functional MR imaging after transarterial chemoembolization
  publication-title: Radiology
– volume: 264
  start-page: 285
  year: 2012
  end-page: 294
  article-title: Intrahepatic cholangiocarcinoma treated with local‐regional therapy: quantitative volumetric apparent diffusion coefficient maps for assessment of tumor response
  publication-title: Radiology
– volume: 21
  start-page: 123
  year: 2015
  end-page: 127
  article-title: Region of interest demarcation for quantification of the apparent diffusion coefficient in breast lesions and its interobserver variability
  publication-title: Diagn Interv Radiol
– volume: 31
  start-page: 1773
  year: 2011
  end-page: 1791
  article-title: Principles and applications of diffusion‐weighted imaging in cancer detection, staging, and treatment follow‐up
  publication-title: Radiographics
– volume: 19
  start-page: 2756
  year: 2009
  end-page: 2764
  article-title: Combined use of T2‐weighted and diffusion‐weighted 3‐T MR imaging for differentiating uterine sarcomas from benign leiomyomas
  publication-title: Eur Radiol
– volume: 28
  start-page: 13
  year: 2015
  end-page: 22
  article-title: Multi‐parametric (ADC/PWI/T2‐w) image fusion approach for accurate semi‐automatic segmentation of tumorous regions in glioblastoma multiforme
  publication-title: MAGMA
– volume: 69
  start-page: 63
  year: 2014
  end-page: 71
  article-title: Differentiation between benign and malignant breast lesions using quantitative diffusion‐weighted sequence on 3 T MRI
  publication-title: Clin Radiol
– year: 2015
  article-title: Immediate post‐doxorubicin drug‐eluting beads chemoembolization Mr Apparent diffusion coefficient quantification predicts response in unresectable hepatocellular carcinoma: a pilot study
  publication-title: J Magn Reson Imaging
– volume: 42
  start-page: 1583
  year: 2013
  end-page: 1592
  article-title: Characterization of soft tissue masses: can quantitative diffusion weighted imaging reliably distinguish cysts from solid masses?
  publication-title: Skeletal Radiol
– volume: 21
  start-page: 2606
  year: 2015
  end-page: 2513
  article-title: Evaluation of diffusion‐weighted magnetic resonance imaging for follow‐up and treatment response assessment of lymphoma: results of an 18F‐FDG‐PET/CT‐controlled prospective study in 64 patients
  publication-title: Clin Cancer Res
– volume: 35
  start-page: 1615
  year: 2014
  end-page: 1620
  article-title: Conventional and functional MR imaging of peripheral nerve sheath tumors: initial experience
  publication-title: AJNR Am J Neuroradiol
– volume: 9
  start-page: e92211
  year: 2014
  article-title: Interobserver reproducibility of diffusion‐weighted MRI in monitoring tumor response to neoadjuvant therapy in esophageal cancer
  publication-title: PLoS One
– volume: 266
  start-page: 502
  year: 2013
  end-page: 513
  article-title: Neuroendocrine liver metastasis treated by using intraarterial therapy: volumetric functional imaging biomarkers of early tumor response and survival
  publication-title: Radiology
– volume: 15
  start-page: 302
  year: 2002
  end-page: 307
  article-title: Diffusion‐weighted MRI in the characterization of soft‐tissue tumors
  publication-title: J Magn Reson Imaging
– volume: 50
  start-page: 409
  year: 2015
  end-page: 415
  article-title: Diagnostic accuracy of diffusion‐weighted magnetic resonance imaging versus positron emission tomography/computed tomography for early response assessment of liver metastases to Y90‐radioembolization
  publication-title: Invest Radiol
– volume: 21
  start-page: 2567
  year: 2011
  end-page: 2574
  article-title: Tumour ADC measurements in rectal cancer: effect of ROI methods on ADC values and interobserver variability
  publication-title: Eur Radiol
– year: 2014
  article-title: Can volumetric ADC measurement help predict response to Y90 radioembolization in HCC?
  publication-title: Abdom Imaging
– volume: 26
  start-page: 287
  year: 2008
  end-page: 295
  article-title: Diffusion‐weighted imaging of soft tissue tumors: usefulness of the apparent diffusion coefficient for differential diagnosis
  publication-title: Radiat Med
– ident: e_1_2_5_4_1
  doi: 10.1002/jmri.21512
– ident: e_1_2_5_6_1
  doi: 10.3174/ajnr.A3910
– ident: e_1_2_5_17_1
  doi: 10.1007/s00330-011-2220-5
– ident: e_1_2_5_23_1
  doi: 10.1148/radiol.12120495
– year: 2014
  ident: e_1_2_5_19_1
  article-title: Can volumetric ADC measurement help predict response to Y90 radioembolization in HCC?
  publication-title: Abdom Imaging
  contributor:
    fullname: Vouche M
– ident: e_1_2_5_8_1
  doi: 10.1016/j.crad.2013.08.007
– ident: e_1_2_5_9_1
  doi: 10.1148/radiol.13130844
– ident: e_1_2_5_2_1
  doi: 10.1007/s11604-008-0229-8
– ident: e_1_2_5_3_1
  doi: 10.1007/s00330-009-1471-x
– ident: e_1_2_5_16_1
  doi: 10.1002/jmri.24372
– ident: e_1_2_5_20_1
  doi: 10.1007/s10334-014-0442-7
– ident: e_1_2_5_24_1
  doi: 10.1148/rg.316115515
– ident: e_1_2_5_18_1
  doi: 10.1371/journal.pone.0092211
– ident: e_1_2_5_5_1
  doi: 10.1002/jmri.10061
– ident: e_1_2_5_11_1
  doi: 10.1158/1078-0432.CCR-14-2454
– ident: e_1_2_5_14_1
  doi: 10.1148/radiol.14131871
– ident: e_1_2_5_15_1
  doi: 10.5152/dir.2014.14217
– ident: e_1_2_5_10_1
  doi: 10.1097/RLI.0000000000000144
– ident: e_1_2_5_13_1
  doi: 10.1016/j.jvir.2013.05.054
– ident: e_1_2_5_12_1
  doi: 10.1002/jmri.24845
– ident: e_1_2_5_21_1
  doi: 10.1148/radiol.12112161
– ident: e_1_2_5_22_1
  doi: 10.1148/radiol.12112142
– ident: e_1_2_5_7_1
  doi: 10.1007/s00256-013-1703-7
SSID ssj0009945
Score 2.4403632
Snippet Background To assess the interobserver reliability of three selective region‐of‐interest (ROI) measurement protocols for apparent diffusion coefficient (ADC)...
To assess the interobserver reliability of three selective region-of-interest (ROI) measurement protocols for apparent diffusion coefficient (ADC)...
Background To assess the interobserver reliability of three selective region-of-interest (ROI) measurement protocols for apparent diffusion coefficient (ADC)...
BACKGROUNDTo assess the interobserver reliability of three selective region-of-interest (ROI) measurement protocols for apparent diffusion coefficient (ADC)...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 446
SubjectTerms ADC measurement
Adolescent
Adult
Aged
Aged, 80 and over
Child
Child, Preschool
Diffusion Magnetic Resonance Imaging - methods
DWI
Female
Humans
interobserver reliability
Magnetic resonance imaging
Male
Middle Aged
Observer Variation
Reproducibility of Results
Retrospective Studies
Sensitivity and Specificity
soft tissue masses
Soft Tissue Neoplasms - pathology
Tumor Burden
Young Adult
Title Interobserver variability of selective region-of-interest measurement protocols for quantitative diffusion weighted imaging in soft tissue masses: Comparison with whole tumor volume measurements
URI https://api.istex.fr/ark:/67375/WNG-J2X7X51Q-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.24994
https://www.ncbi.nlm.nih.gov/pubmed/26174705
https://www.proquest.com/docview/1757951056
https://search.proquest.com/docview/1760930766
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NitRAEG6WFcSL_7rRVUoUD0Jmk3Q6nYgXWV3XgVlwcHEuErp7OjAuSXSSuOrJR_CpfBCfxKrOTMYVEfQSAqn8f131dXX3V4w9CG1YUFjzuYkDP87mia9EaH3BZaQlQiae02rkyVFyeByPZ2K2xZ6s18L0-hBDwo1ahvPX1MCVbvY2oqHvyuVihJ2HjMRAQy5pPtez6UY7Cg8IN9QpuB-mgRy0SaO9zalnotE5-rCf_kQ1zzJXF3oOLrG364fuZ5ycjLpWj8yX3_Qc__etLrOLK04KT3sQXWFbtrrKzk9Wo-7X2HeXNqw1JXDtEj5i97pX9_4MdQGNq6SDThOoyENd_fj6rS5wQ0IUVPgDyk0aEkgWokbsNYBkGT50qnKL3OhsKtXSUe4OTl261s5hUboaSrCooMFwAa1DCZSKRqofw_5QQxEonQynVOsX2q7ES_de99d7N9fZ8cHz1_uH_qr-g2-Q1sR-qAzyIxubQJgUO_EYV41ISdHdKmSaKU8ThYQss2mqA25tWgRcxJFRWmUB1wm_wbarurI7DHhohOBGSokWic3SOLKK-mpamrDQymP31zjI3_cyH3kv6Bzl9Ety90s89tBBZDBRyxOaGCdF_uboRT6OZnImwlf51GO7awzlK5_Q5EjUpOOzicfuDYexNdMQjaps3ZFNEmTodhO0udljb7gZaefHMhAee-QQ9JcHzceT6Uu3d-tfjG-zC8gHV5PSd9l2u-zsHeRcrb7r2tZPlwguKw
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLZgk4Ab_geBAUYgLpDSJbEdJ9yhwejKWolqE72zHNeRypQEmoYBVzwCT8WD8CSc42QpQwgJbqpKOa6T5vicz8f29xHyOLRhjmnNZ4YHPk_nsa9FaH3BZJRJcBk-x9PI40k8POKjmZh1e3PwLEzLD9EX3HBkuHiNAxwL0jtr1tB3xXIxgNlDys-TTeiOoXLDi-maPQquCLfYKZgfJoHs2UmjnXXbM_loE__aT38Cm2exq0s-e1dahdXacRbinpPjQbPKBubLb4yO__1cV8nlDpbS560fXSPnbHmdXBh3C-83yHdXOawyrOHaJf0IM-yW4PszrXJaOzEdiJsUdR6q8sfXb1UOH8hFgdoftFhXIikyQ1TgfjUFvEw_NLp059ywNaq1NFi-oyeuYmvndFE4GSW6KGkNGYOunKPQQuNi9TO628soUqwo0xOU-6WrpoCfbgPvr33XN8nR3svD3aHfSUD4BpAN90NtACJZbgJhEpjHQ2o1IkFSd6sBbCYsiTVgstQmSRYwa5M8YIJHRmc6DVgWsy2yUValvU0oC40QzEgpwSK2acIjq3G6lkkT5pn2yKNTR1DvW6YP1XI6RwpfiXKvxCNPnI_0Jnp5jHvjpFBvJ6_UKJrJmQjfqKlHtk-dSHVhoVaA1aSDtLFHHvaXYUDjKo0ubdWgTRykEHljsLnVOl_fGdLncxkIjzx1LvSXG1Wj8XTffbvzL8YPyMXh4fhAHexPXt8llwAednvUt8nGatnYewDBVtl9N9B-AjXSMkM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELVKK1W8cL8EChiBeEDKNhc7ThAvqLC0C7uCFRX7gizH60hLlaRsEgo88Ql8FR_ClzDjZLMUISR4iSJlcj-eOR7bZwi57xs_w7Dmhpp5Lkvmkau4b1weiiAVABk2x9XI40m0f8hGMz7bII9Xa2FafYg-4YYtw_prbODH82x3LRr6Pl8uBtB5SNgZssUioL5IiaZr8Sg4wu1YJw9dP_ZEL04a7K7PPRWOtvDLfvoT1zxNXW3sGZ4n71ZP3U45ORo0dTrQX34TdPzf17pAznWklD5pUXSRbJjiEtked8Pul8l3mzcsU8zgmiX9CP3rVt77My0zWtlSOuA1KVZ5KIsfX7-VGWxQiQIrf9B8nYekqAtRAvgqCmyZfmhUYVe54dlYq6XB5B09sflaM6eL3BZRoouCVhAvaG1hQnOFQ9WP6F5fRJFiPpmeYLFfWjc5XLp1u7_eu7pCDofP3uztu10BCFcDr2GurzQQJMO0x3UMvXgIrJrHKOluFFDNOIwjBYwsMXGceqExceaFnAVapSrxwjQKr5LNoizMdUJDX3MeaiEEWEQmiVlgFHbWUqH9LFUOubfCgTxudT5kq-gcSPwl0v4ShzywEOlN1PIIZ8YJLt9OnstRMBMz7r-WU4fsrDAkO6dQSWBqwhLayCF3-8PQnHGMRhWmbNAm8hLwuxHYXGux198MxfOZ8LhDHloE_eVB5Wg8PbB7N_7F-A7ZfvV0KF8eTF7cJGeBG3YT1HfIZr1szC3gX3V62zazn467MPI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interobserver+variability+of+selective+region-of-interest+measurement+protocols+for+quantitative+diffusion+weighted+imaging+in+soft+tissue+masses%3A+Comparison+with+whole+tumor+volume+measurements&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Ahlawat%2C+Shivani&rft.au=Khandheria%2C+Paras&rft.au=Del+Grande%2C+Filippo&rft.au=Morelli%2C+John&rft.date=2016-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=43&rft.issue=2&rft.spage=446&rft_id=info:doi/10.1002%2Fjmri.24994&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3925188541
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon