Reducing the time interval between concussion and voluntary exercise restores motor impairment, short-term memory, and alterations to gene expression
Despite the most common form of brain injury, there has been little progress in the prognosis and treatment of concussion/mild traumatic brain injury (mTBI). Current ‘return‐to‐play’ guidelines are conservative, deterring the initiation of physical and social activity until patients are asymptomatic...
Saved in:
Published in | The European journal of neuroscience Vol. 44; no. 7; pp. 2407 - 2417 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
France
Blackwell Publishing Ltd
01.10.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite the most common form of brain injury, there has been little progress in the prognosis and treatment of concussion/mild traumatic brain injury (mTBI). Current ‘return‐to‐play’ guidelines are conservative, deterring the initiation of physical and social activity until patients are asymptomatic; but the effects of post‐injury exercise have not been adequately investigated. Therefore, this study examined the effects of voluntary exercise on concussion recovery. Using a translational rodent model of concussion, we examined the influence of exercise on injury‐associated behaviours that comprise post‐concussive syndrome (PCS) and gene expression changes (bdnf, dnmt1, Igf‐1, pgc1‐a, Tert) in prefrontal cortex and hippocampus. In addition, as we have previously demonstrated telomere length (TL) to be a reliable predictor of mTBI prognosis, TL was also examined. The results suggest that exercise initiated within 1–3 days post‐concussion significantly improved motor and cognitive functioning, but had limited efficacy treating emotional impairments. What is more, when deprived of social interaction and exercise, a combination similar to clinical recommendations for rest until symptom resolution, animals did not recover and exhibited impairments similar to typical mTBI animals. Exercise aided in restoration of mTBI‐induced modifications to gene expression in both brain regions. An inverse relationship between the exercise return interval and TL was identified, indicating greater recovery with acute exercise reinstatement. Although additional strategies may need to be employed for emotional functioning, these findings support re‐evaluation of ‘return‐to‐play’ guidelines, suggesting that exercise is valuable for the treatment of concussion.
This study was designed to examine concussion outcomes following different ‘return‐to‐exercise’ time intervals, in order to elucidate optimal times to resume physical activity. Using behavioural, molecular, and genomic measures, we found that implementation of exercise within 1–3 days post‐injuy was beneficial, and actually ameliorated some of the negative consequences associated with mTBI. |
---|---|
AbstractList | Despite the most common form of brain injury, there has been little progress in the prognosis and treatment of concussion/mild traumatic brain injury (mTBI). Current ‘return‐to‐play’ guidelines are conservative, deterring the initiation of physical and social activity until patients are asymptomatic; but the effects of post‐injury exercise have not been adequately investigated. Therefore, this study examined the effects of voluntary exercise on concussion recovery. Using a translational rodent model of concussion, we examined the influence of exercise on injury‐associated behaviours that comprise post‐concussive syndrome (PCS) and gene expression changes (bdnf, dnmt1, Igf‐1, pgc1‐a, Tert) in prefrontal cortex and hippocampus. In addition, as we have previously demonstrated telomere length (TL) to be a reliable predictor of mTBI prognosis, TL was also examined. The results suggest that exercise initiated within 1–3 days post‐concussion significantly improved motor and cognitive functioning, but had limited efficacy treating emotional impairments. What is more, when deprived of social interaction and exercise, a combination similar to clinical recommendations for rest until symptom resolution, animals did not recover and exhibited impairments similar to typical mTBI animals. Exercise aided in restoration of mTBI‐induced modifications to gene expression in both brain regions. An inverse relationship between the exercise return interval and TL was identified, indicating greater recovery with acute exercise reinstatement. Although additional strategies may need to be employed for emotional functioning, these findings support re‐evaluation of ‘return‐to‐play’ guidelines, suggesting that exercise is valuable for the treatment of concussion.
This study was designed to examine concussion outcomes following different ‘return‐to‐exercise’ time intervals, in order to elucidate optimal times to resume physical activity. Using behavioural, molecular, and genomic measures, we found that implementation of exercise within 1–3 days post‐injuy was beneficial, and actually ameliorated some of the negative consequences associated with mTBI. Despite the most common form of brain injury, there has been little progress in the prognosis and treatment of concussion/mild traumatic brain injury (mTBI). Current 'return-to-play' guidelines are conservative, deterring the initiation of physical and social activity until patients are asymptomatic; but the effects of post-injury exercise have not been adequately investigated. Therefore, this study examined the effects of voluntary exercise on concussion recovery. Using a translational rodent model of concussion, we examined the influence of exercise on injury-associated behaviours that comprise post-concussive syndrome (PCS) and gene expression changes (bdnf, dnmt1, Igf-1, pgc1-a, Tert) in prefrontal cortex and hippocampus. In addition, as we have previously demonstrated telomere length (TL) to be a reliable predictor of mTBI prognosis, TL was also examined. The results suggest that exercise initiated within 1-3 days post-concussion significantly improved motor and cognitive functioning, but had limited efficacy treating emotional impairments. What is more, when deprived of social interaction and exercise, a combination similar to clinical recommendations for rest until symptom resolution, animals did not recover and exhibited impairments similar to typical mTBI animals. Exercise aided in restoration of mTBI-induced modifications to gene expression in both brain regions. An inverse relationship between the exercise return interval and TL was identified, indicating greater recovery with acute exercise reinstatement. Although additional strategies may need to be employed for emotional functioning, these findings support re-evaluation of 'return-to-play' guidelines, suggesting that exercise is valuable for the treatment of concussion. This study was designed to examine concussion outcomes following different 'return-to-exercise' time intervals, in order to elucidate optimal times to resume physical activity. Using behavioural, molecular, and genomic measures, we found that implementation of exercise within 1-3 days post-injuy was beneficial, and actually ameliorated some of the negative consequences associated with mTBI. Despite the most common form of brain injury, there has been little progress in the prognosis and treatment of concussion/mild traumatic brain injury (mTBI). Current 'return-to-play' guidelines are conservative, deterring the initiation of physical and social activity until patients are asymptomatic; but the effects of post-injury exercise have not been adequately investigated. Therefore, this study examined the effects of voluntary exercise on concussion recovery. Using a translational rodent model of concussion, we examined the influence of exercise on injury-associated behaviours that comprise post-concussive syndrome (PCS) and gene expression changes (bdnf, dnmt1, Igf-1, pgc1-a, Tert) in prefrontal cortex and hippocampus. In addition, as we have previously demonstrated telomere length (TL) to be a reliable predictor of mTBI prognosis, TL was also examined. The results suggest that exercise initiated within 1-3 days post-concussion significantly improved motor and cognitive functioning, but had limited efficacy treating emotional impairments. What is more, when deprived of social interaction and exercise, a combination similar to clinical recommendations for rest until symptom resolution, animals did not recover and exhibited impairments similar to typical mTBI animals. Exercise aided in restoration of mTBI-induced modifications to gene expression in both brain regions. An inverse relationship between the exercise return interval and TL was identified, indicating greater recovery with acute exercise reinstatement. Although additional strategies may need to be employed for emotional functioning, these findings support re-evaluation of 'return-to-play' guidelines, suggesting that exercise is valuable for the treatment of concussion. Abstract Despite the most common form of brain injury, there has been little progress in the prognosis and treatment of concussion/mild traumatic brain injury (mTBI). Current ‘return‐to‐play’ guidelines are conservative, deterring the initiation of physical and social activity until patients are asymptomatic; but the effects of post‐injury exercise have not been adequately investigated. Therefore, this study examined the effects of voluntary exercise on concussion recovery. Using a translational rodent model of concussion, we examined the influence of exercise on injury‐associated behaviours that comprise post‐concussive syndrome (PCS) and gene expression changes ( bdnf , dnmt1 , Igf‐1 , pgc1‐a , Tert ) in prefrontal cortex and hippocampus. In addition, as we have previously demonstrated telomere length (TL) to be a reliable predictor of mTBI prognosis, TL was also examined. The results suggest that exercise initiated within 1–3 days post‐concussion significantly improved motor and cognitive functioning, but had limited efficacy treating emotional impairments. What is more, when deprived of social interaction and exercise, a combination similar to clinical recommendations for rest until symptom resolution, animals did not recover and exhibited impairments similar to typical mTBI animals. Exercise aided in restoration of mTBI‐induced modifications to gene expression in both brain regions. An inverse relationship between the exercise return interval and TL was identified, indicating greater recovery with acute exercise reinstatement. Although additional strategies may need to be employed for emotional functioning, these findings support re‐evaluation of ‘return‐to‐play’ guidelines, suggesting that exercise is valuable for the treatment of concussion. |
Author | Candy, Sydney Mychasiuk, Richelle Hehar, Harleen Ma, Irene Esser, Michael J. |
Author_xml | – sequence: 1 givenname: Richelle surname: Mychasiuk fullname: Mychasiuk, Richelle email: rmmychas@ucalgary.ca, : Richelle Mychasiuk, as above., rmmychas@ucalgary.ca organization: Alberta Children's Hospital Research Institute, Department of Psychology, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive NW, AB, T2N 1N4, Calgary, Canada – sequence: 2 givenname: Harleen surname: Hehar fullname: Hehar, Harleen organization: Alberta Children's Hospital Research Institute, Department of Psychology, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive NW, AB, T2N 1N4, Calgary, Canada – sequence: 3 givenname: Irene surname: Ma fullname: Ma, Irene organization: Alberta Children's Hospital Research Institute, Department of Psychology, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive NW, AB, T2N 1N4, Calgary, Canada – sequence: 4 givenname: Sydney surname: Candy fullname: Candy, Sydney organization: Alberta Children's Hospital Research Institute, Faculty of Medicine, University of Calgary, AB, Calgary, Canada – sequence: 5 givenname: Michael J. surname: Esser fullname: Esser, Michael J. organization: Alberta Children's Hospital Research Institute, Faculty of Medicine, University of Calgary, AB, Calgary, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27521273$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc9OHSEUh0ljU6_aRV_AsGwTR_kzAzPLatS2MbeJtWl3hMucUXSAKzDqfZC-b9Gr7pqUBSeB73wn8NtCGz54QOgDJfu0rAO49vuUc0HeoBmtBam6RrQbaEa6hlctFb830VZK14SQVtTNO7TJZMMok3yG_pxDPxnrL3G-ApytA2x9hninR7yAfA_gsQneTCnZ4LH2Pb4L4-SzjisMDxCNTYAjpBzKhl0oFVu31DY68HkPp6sQc1WMDjtwIa72niR6LEc6F2fCOeBL8FB0y-J4nLOD3g56TPD-uW6jnyfHF0dfqrPvp1-PPp9VpuaUVIaKhsqhhq5ldNFD3WtBWtKB5AwIldIIIumiZr00FHraNpw2A2Hlph86Qfg2-rj2LmO4ncojlLPJwDhqD2FKira84VLUnP0HymRHilQW9NMaNTGkFGFQy2hd-TBFiXoMTJXA1FNghd191k4LB_0r-ZJQAQ7WwL0dYfVvkzr-Nn9RVusOmzI8vHboeKOE5LJRv-anan54cSIO5z9Ux_8C636y2g |
CitedBy_id | crossref_primary_10_1089_neu_2018_5744 crossref_primary_10_1177_2059700220975609 crossref_primary_10_1016_j_neuroscience_2019_06_022 crossref_primary_10_1080_02699052_2017_1346294 crossref_primary_10_3138_ptc_2019_0048 crossref_primary_10_3389_fneur_2020_616661 crossref_primary_10_1123_jsr_2017_0159 crossref_primary_10_1016_j_nicl_2018_01_033 crossref_primary_10_1097_JSM_0000000000000720 crossref_primary_10_3928_19382359_20170320_02 crossref_primary_10_1097_HTR_0000000000000930 crossref_primary_10_1177_0271678X241234770 crossref_primary_10_1016_j_brainres_2024_148908 crossref_primary_10_1136_bjsports_2022_106676 crossref_primary_10_1016_j_expneurol_2019_01_007 crossref_primary_10_3390_jcm10122598 crossref_primary_10_1101_cshperspect_a029736 crossref_primary_10_1177_0883073819877790 crossref_primary_10_1177_0271678X231212377 crossref_primary_10_1016_j_arr_2021_101411 crossref_primary_10_1177_10738584211012264 crossref_primary_10_3389_fneur_2021_685822 crossref_primary_10_1016_j_expneurol_2021_113958 crossref_primary_10_1007_s00381_017_3537_4 crossref_primary_10_1002_jnr_24472 crossref_primary_10_1016_j_cct_2022_106965 crossref_primary_10_1089_neu_2020_7389 crossref_primary_10_1123_jsr_2019_0070 crossref_primary_10_1016_j_apmr_2017_09_108 crossref_primary_10_1177_0363546518757984 crossref_primary_10_1371_journal_pone_0251315 crossref_primary_10_5483_BMBRep_2022_55_10_097 crossref_primary_10_1097_JSM_0000000000000663 crossref_primary_10_1016_j_jsams_2019_06_007 crossref_primary_10_1093_braincomms_fcaa042 crossref_primary_10_1136_bjsports_2018_100338 crossref_primary_10_3389_fnmol_2022_937350 crossref_primary_10_1186_s13102_024_00900_x crossref_primary_10_1123_pes_2017_0286 crossref_primary_10_1038_s41598_019_51267_w crossref_primary_10_1016_j_nbd_2020_105143 crossref_primary_10_3390_brainsci10050258 crossref_primary_10_1097_WNP_0000000000000931 crossref_primary_10_1249_JSR_0000000000000505 crossref_primary_10_55275_JPOSNA_2021_320 crossref_primary_10_1016_j_neuron_2017_05_003 crossref_primary_10_1089_neu_2019_6656 crossref_primary_10_1016_j_bbr_2020_113048 crossref_primary_10_1093_texcom_tgaa002 crossref_primary_10_3389_fneur_2019_00481 |
Cites_doi | 10.1038/oby.2006.46 10.1016/j.neulet.2004.03.059 10.1155/2015/736104 10.1016/S0047-6374(01)00223-8 10.3109/02699052.2016.1146962 10.1523/JNEUROSCI.4082-03.2004 10.1016/S0197-4580(02)00043-X 10.1080/00913847.2016.1121091 10.1093/nar/30.10.e47 10.1089/neu.2006.0255 10.1093/arclin/act083 10.1111/j.1460-9568.2004.03246.x 10.1016/j.neuroscience.2003.09.020 10.3109/09638288.2014.952452 10.2203/dose-response.09-048.Ji 10.1136/bjsm.2009.058214 10.1016/j.jneumeth.2015.10.002 10.1523/JNEUROSCI.22-02-00446.2002 10.1016/S0306-4522(02)00123-9 10.1186/1471-2202-14-46 10.1017/S1472928807000222 10.1136/bjsports-2013-092313 10.1089/neu.2013.3151 10.3171/2014.10.PEDS14356 10.1016/j.gene.2004.06.011 10.1016/j.brainres.2009.06.045 10.1016/S0531-5565(00)00115-7 10.1016/j.neulet.2011.11.059 10.1016/j.tins.2007.06.011 10.1002/syn.20496 10.1001/archneurol.2009.307 10.1016/j.bbr.2009.09.029 10.1111/bpa.12403 10.1006/exnr.1997.6629 10.1089/neu.2013.3132 10.1016/S0166-4328(05)80295-5 10.1097/00003677-200204000-00006 10.1080/09540260310001606692 10.1101/lm.1746710 10.1089/neu.2012.2616 10.1212/WNL.0000000000002679 10.1016/S0004-9514(05)70036-2 10.1016/j.csm.2010.09.001 10.1038/nrg1656 10.1016/j.nbd.2015.12.007 10.1038/nn.2514 10.1111/1467-9280.t01-1-01430 10.1093/nar/29.9.e45 10.1542/peds.2009-0925 10.1016/S0006-8993(00)03248-0 10.1227/01.NEU.0000345863.99099.C7 10.17159/2413-3108/2009/v21i2a296 10.1016/j.nbd.2012.12.017 10.1152/jappl.1985.58.5.1553 10.1016/j.jpeds.2016.03.014 10.1111/head.12087 10.1046/j.1471-4159.2000.0750117.x |
ContentType | Journal Article |
Copyright | 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd – notice: 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 7X8 |
DOI | 10.1111/ejn.13360 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1460-9568 |
Editor | Foxe, John |
Editor_xml | – sequence: 1 givenname: John surname: Foxe fullname: Foxe, John – sequence: 6 givenname: John surname: Foxe fullname: Foxe, John |
EndPage | 2417 |
ExternalDocumentID | 10_1111_ejn_13360 27521273 EJN13360 ark_67375_WNG_NBTF6BNS_9 |
Genre | regionalReview Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Canadian Institute for Health Research (CIHR) – fundername: Alberta Children's Hospital Research Institute (ACHRI) – fundername: Alberta Children's Hospital Foundation (ACHF) – fundername: CIHR |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 7X8 |
ID | FETCH-LOGICAL-c4310-c16517f4e9821bde4da60809e732e0177c6071b42d7c1ed185315f02177df9603 |
IEDL.DBID | DR2 |
ISSN | 0953-816X |
IngestDate | Fri Aug 16 05:22:38 EDT 2024 Fri Aug 16 00:49:14 EDT 2024 Fri Aug 23 01:14:07 EDT 2024 Wed Oct 16 01:00:16 EDT 2024 Sat Aug 24 00:55:23 EDT 2024 Wed Oct 30 09:52:12 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | hippocampus mild traumatic brain injury prefrontal cortex telomere length rodent models |
Language | English |
License | 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4310-c16517f4e9821bde4da60809e732e0177c6071b42d7c1ed185315f02177df9603 |
Notes | Alberta Children's Hospital Research Institute (ACHRI) istex:EA487E8A0463107E15F9DF8DEB1749E0F1052C7A ark:/67375/WNG-NBTF6BNS-9 Alberta Children's Hospital Foundation (ACHF) Canadian Institute for Health Research (CIHR) ArticleID:EJN13360 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ejn.13360 |
PMID | 27521273 |
PQID | 1827909607 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1835376432 proquest_miscellaneous_1827909607 crossref_primary_10_1111_ejn_13360 pubmed_primary_27521273 wiley_primary_10_1111_ejn_13360_EJN13360 istex_primary_ark_67375_WNG_NBTF6BNS_9 |
PublicationCentury | 2000 |
PublicationDate | 2016-10 October 2016 2016-10-00 20161001 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10 |
PublicationDecade | 2010 |
PublicationPlace | France |
PublicationPlace_xml | – name: France |
PublicationTitle | The European journal of neuroscience |
PublicationTitleAlternate | Eur J Neurosci |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Brooks, B., Kadoura, B., Turley, B., Crawford, S., Mikrogianakis, A. & Barlow, K. (2014) Perception of recovery after pediatric mild traumatic brain injury is influenced by the "good old days" bias: tangible implications for clinical practice and outcomes research. Arch. Clin. Neuropsych., 29, 186-193. Viano, D., Hamberger, A., Bolouri, A. & Saljo, A. (2009) Concussion in professional football: animal model of brain injury - Part 15. Neurosurgery, 64, 1162-1173. Griesbach, G., Tio, D., Nair, S. & Hovda, D. (2013) Temperature and heart rate responses to exercise following mild traumatic brain injury. J. Neurotraum., 30, 281-291. Cotman, C., Berchtold, N. & Christie, L. (2007) Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci., 30, 464-472. Baker, L., Frank, L., Foster-Schubert, K., Green, P., Wilkinson, C., McTiernan, A., Plymate, S., Fishel, M. et al. (2010) Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch. Neurol., 67, 71-79. Wu, A., Ying, Z. & Gomez-Pinilla, F. (2004) The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur. J. Neurosci., 19, 1699-1707. Bonefeld, B., Elfving, B. & Wegener, G. (2008) Reference genes for normalization: a study of rat brain tissue. Synapse, 62, 302-309. Morgan, C., Zuckerman, S., Lee, Y., King, L., Beaird, S., Sils, A. & Solomon, G. (2015) Predictors of postconcussion syndrome after sports-related concussion in young athletes: a matched case-control study. J. Neuros. Pediatr., 15, 589-598. Uryu, K., Laurer, H., McIntosh, T.K., Pratico, D., Martinez, D., Leight, S., Lee, V. & Trojanowski, J. (2002) Repetitive mild brain trauma accelerates AB deposition, lipid peroxidation, and cognitive impairment in a transgenic mouse model of Alzheimer amyloidosis. J. Neurosci., 22, 446-454. McCrory, P., Meeuwisse, W., Aubry, M., Cantu, B., Dvorak, J., Echemendia, R., Engebretsen, L., Benson, B. et al. (2013) Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport held in Zurich, November 2012. Brit. J. Sport. Med., 47, 250-258. Cotman, C. & Engesser-Cesar, C. (2002) Exercise enhances and protects brain function. Exercise Sport Sci. R., 30, 75-79. Griesbach, G., Gomez-Pinilla, F. & Hovda, D. (2007) Time window for voluntary exercise-induced inreases in hippocampal neuroplasticity molecules after tramatic brain injury is severity dependent. J. Neurotraum., 24, 1161-1171. Solomon, G., Kuhn, A. & Zuckerman, S. (2016) Depression as a modifying factor in sports-related concussion: a critical review of the literature. Physician Sports Med., 44, 14-19. Piao, C., Stoica, B., Wu, J., Sabirzhanov, B., Zhao, Z., Cabatbat, R., Loane, D. & Faden, A.L. (2013) Late exercise reduces neuroinflamation and cognitive dysfunction after traumatic brain injury. Neurobiol. Dis., 54, 252-263. Yadid, G., Overstreet, D. & Zangen, A. (2001) Limbic dopaminergic adaptation to a stressful stimulus in a rat model of depressino. Brain Res., 896, 43-47. DeMatteo, C., McCauley, D., Stazyk, K., Harper, J., Adamich, J., Randall, S. & Missiuna, C. (2015) Post-concussion return to play and return to school guidelines for children and youth: a scoping methodology. Disabil. Rehabil., 37, 1107-1112. Purcell, L. (2009) What are the most appropriate return to play guidelines for concussed child athletes. Brit. J. Sport. Med., 43, i51-i55. Barkhoudarian, G., Hovda, D. & Giza, C.C. (2011) The molecular pathophysiology of concussive brain injury. Clin. Sport. Med., 30, 33-48. Griesbach, G., Tio, D., Nair, S. & Hovda, D. (2014) Recovery of stress response coincides with responsiveness to voluntary exercise after traumatic brain injury. J. Neurotraum., 31, 674-682. McCrory, P., Meeuwisse, W., Johnston, K., Dvorak, J., Aubry, M., Molloy, M. & Cantu, R. (2009) Consensus statement on concussion in sport - the 3rd International Conference on Concussion in Sport held in Zurich, November 2008. S. Afr. J. Sports Med., 21, 36-46. Spanswick, S. & Sutherland, R. (2010) Object/context-specific memory deficits associated with loss of hippocampal granule cells after adrenalectomy in rats. Learn. Memory, 17, 241-245. Ryan, L. & Warden, D. (2003) Post concussion syndrome. Int. Rev. Psychiat, 15, 310-316. Barlow, K., Crawford, S., Stevenson, A., Sandhu, S., Belanger, F. & Dewey, D. (2010) Epidemiology of postconcussion syndrome in pediatric mild traumatic brain injury. Pediatrics, 126, e374-e381. Bell, H., Pellis, S. & Kolb, B. (2010) Juvenile peer play experience and the development of the orbitofrontal and medial prefrontal cortices. Behav. Brain Res., 207, 7-13. Griesbach, G., Hovda, D. & Gomez-Pinilla, F. (2009) Exercise-induced improvement in cognitive performance after traumatic brain injury in rats is dependent on BDNF activation. Brain Res., 1288, 105-115. Molteni, R., Barnard, R., Ying, Z., Roberts, C. & Gomez-Pinilla, F. (2002) A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience, 112, 803-814. Zhu, H., Fu, W. & Mattson, M. (2001) The catalytic subunit of telomerase protects neurons against amyloid B-peptide-induced apoptosis. J. Neurochem., 75, 117-124. Ji, L., Dickman, J., Kang, C. & Koenig, R. (2010) Exercise-induced hormesis may help healthy aging. Dose-Response, 8, 73-79. Mychasiuk, R., Farran, A., Angoa-Perez, M., Briggs, D., Kuhn, D. & Esser, M.J. (2014a) A novel model of mild traumatic brain injury for juvenile rats. J. Visual. Exp., 8, e51820. Liu, L., Lai, S., Andrews, L. & Tollefsbol, T. (2004) Genetic and epigenetic modultion of telomerase activity in development and disease. Gene, 340, 1-10. Bernardo, T.C., Marques-Aleixo, I., Beleza, J., Oliveira, P.J., Ascensao, A. & Magalhaes, J. (2016) Physical exercise and brain mitochondrial fitness: the possible role against alzheimer's disease. Brain Pathol. doi:10.1111/bpa.12403. [Epub ahead of print]. Blasco, M. (2005) Telomeres and human disease: ageing, cancer, and beyond. Nat. Rev. Genet., 6, 611-622. Colcombe, S. & Kramer, A. (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol. Sci., 14, 125-130. Mondon, C., Dolkas, C., Sims, C. & Reaven, G. (1985) Spontaneous running activity in male rats: effect of age. J. Appl. Physiol., 58, 1553-1557. Mattson, M. (2000) Emerging neuroprotective strategies for Alzheimer's disease: dietary restriction, telomerase activation, and stem cell therapy. Exp. Gerontol., 35, 489-502. Kang, H.J., Choi, Y., Hong, S., Kim, K., Woo, R., Won, S., Kim, E., Jeon, H. et al. (2004) Extopic expression of the catalytic subunit of telomerase protects against brain injury resulting from ischemia and NMDA-induced neurotoxicity. J. Neurosci., 24, 1280-1287. Mychasiuk, R., Farran, A. & Esser, M.J. (2014b) Assessment of an experimental rodent model of pediatric mild traumatic brain injury. J. Neurotraum., 31, 1-9. Panossian, L., Porter, V.R., Valenzuela, H., Zhu, X., Reback, E., Masterman, D., Cummings, J.L. & Effros, R. (2003) Telomere shortening in T cells correlates with Alzheimer's disease status. Neurobiol. Aging, 24, 77-84. Pfaffl, M. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res., 29, e45. Ozdemir, D., Baykara, B., Aksu, I., Kiray, M., Riza Sisman, A., Cetin, F., Dayi, A., Gurpinar, T. et al. (2012) Relationship between circulating IGF-1 levels and traumatic brain injury-induced hippocampal damage and cognitive dysfunction. Neurosci. Lett., 507, 84-89. Seifert, T. (2013) Sports concussion and associated post-traumatic headache. Headache, 53, 726-736. Pellis, S. & McKenna, M. (1992) Intrinsic and extrinsic influences on play fighting in rats - effects of dominance, partner's playfulness, temperment, and neonatal expsosure to testosterone proprionate. Behav. Brain Res., 50, 135-145. Nelson, L., Tarima, S., LaRoche, A., Hammeke, T., Barr, W., Guskiewicz, K., Randolph, C. & McCrea, M. (2016) Preinjury somatization symptoms contribute to clinical recovery after sports-related concussion. Neurology, 86, 1856-1863. Mangiola, A., Vigo, V., Anile, C., De Bonis, P., Marziali, G. & Lofrese, G. (2015) Role and importance of IGF-1 in traumatic brain injury. BioMed Res. Int., 2015, 736104. Mychasiuk, R., Hehar, H., Ma, I., Candy, S. & Esser, M.J. (2016) The direction of the acceleration and rotational forces associated with mild traumatic brain injury in rodents effect behavioural and molecular outcomes. J. Neurosci. Meth., 257, 168-178. Saatman, K., Contreras, P., Smith, D., Raghupathi, R., McDermott, K., Fernandez, S., Sanderson, K., Voddi, M. et al. (1997) Insulin-like growth factor-1 (IGF-1) improves both neurological motor and cognitive outcome following experimental brain injury. Exp. Neurol., 147, 418-427. Baek, S., Bu, Y., Kim, H. & Kim, H. (2004) Telomerase induction in astrocytes of Sprague Dawley rats after ishemic brain injury. Neurosci. Lett., 363, 94-96. Hamilton, M., Khan, M., Clark, R., Williams, G. & Bryant, A. (2016) Predictors of physical activity levels of individuals following traumatic brain injury remain unclear: a systematic review. Brain Injury, 30, 819-828. Dishman, R., Berthoud, H., Booth, F., Cotman, C., Edgerton, R., Fleshner, M., Gandevia, S., Gomez-Pinilla, F. et al. (2006) Neurobiology of exercise. Obes. Res., 14, 345-356. Cawthorn, R. (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res., 30, e47. Feng, J., Zhou, Y., Campbell, S., Le, T., Li, E., Sweat, D., Silva, A. & Fan, G. (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat. Neurosci., 13, 423-430. Zhang, L., Hu, X., Luo, J., Li, L., Chen, X., Huang, R. & Pei, Z. (2013) Physical exercise improves functional recovery through mitigation of autophagy, attenuation of apoptosis and enhancement of neurogenesis after MCAO in rats. BMC Neurosci., 14, 1-8. Hehar, H. & Mychasiu 2004; 123 2004; 363 2015; 37 2009; 43 2010; 13 2010; 17 2004; 24 2002; 112 2003; 14 2016; 30 2003; 15 2014; 29 2007; 30 2009; 1288 1992; 50 2010; 67 1997; 147 2013; 14 2013; 54 2013; 53 2016; 87 2016; 86 2008; 62 2007; 24 2001; 896 2014a; 8 2010; 8 1985; 58 2016; 44 2001; 122 2015; 15 2004; 340 2013; 47 2009; 21 2009; 64 2002; 30 2010; 207 2010; 126 2006; 14 2012; 507 2011; 30 2001; 29 2002 2014b; 31 2004; 19 2000; 35 2013; 30 2002; 22 2015; 2015 2003; 24 2005; 51 2005; 6 2016 2005; 3 2016; 257 2016; 174 2001; 75 2014; 31 27455446 - Eur J Neurosci. 2016 Oct;44(7):2405-2406 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Uryu K. (e_1_2_7_55_1) 2002; 22 Schallert T. (e_1_2_7_50_1) 2002 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 Mondon C. (e_1_2_7_36_1) 1985; 58 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Mychasiuk R. (e_1_2_7_38_1) 2014; 8 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_59_1 |
References_xml | – volume: 53 start-page: 726 year: 2013 end-page: 736 article-title: Sports concussion and associated post‐traumatic headache publication-title: Headache – volume: 86 start-page: 1856 year: 2016 end-page: 1863 article-title: Preinjury somatization symptoms contribute to clinical recovery after sports‐related concussion publication-title: Neurology – volume: 257 start-page: 168 year: 2016 end-page: 178 article-title: The direction of the acceleration and rotational forces associated with mild traumatic brain injury in rodents effect behavioural and molecular outcomes publication-title: J. Neurosci. Meth. – volume: 8 start-page: 73 year: 2010 end-page: 79 article-title: Exercise‐induced hormesis may help healthy aging publication-title: Dose‐Response – volume: 29 start-page: e45 year: 2001 article-title: A new mathematical model for relative quantification in real‐time RT‐PCR publication-title: Nucleic Acids Res. – volume: 112 start-page: 803 year: 2002 end-page: 814 article-title: A high‐fat, refined sugar diet reduces hippocampal brain‐derived neurotrophic factor, neuronal plasticity, and learning publication-title: Neuroscience – volume: 123 start-page: 429 year: 2004 end-page: 440 article-title: Exercise reverses the harmful effects of consumption of a high‐fat diet on synaptic and behavioral plasticity associated with the action of brain‐derived neurotrophic factor publication-title: Neuroscience – volume: 75 start-page: 117 year: 2001 end-page: 124 article-title: The catalytic subunit of telomerase protects neurons against amyloid B‐peptide‐induced apoptosis publication-title: J. Neurochem. – volume: 15 start-page: 589 year: 2015 end-page: 598 article-title: Predictors of postconcussion syndrome after sports‐related concussion in young athletes: a matched case‐control study publication-title: J. Neuros. Pediatr. – volume: 30 start-page: 33 year: 2011 end-page: 48 article-title: The molecular pathophysiology of concussive brain injury publication-title: Clin. Sport. Med. – volume: 207 start-page: 7 year: 2010 end-page: 13 article-title: Juvenile peer play experience and the development of the orbitofrontal and medial prefrontal cortices publication-title: Behav. Brain Res. – volume: 62 start-page: 302 year: 2008 end-page: 309 article-title: Reference genes for normalization: a study of rat brain tissue publication-title: Synapse – volume: 507 start-page: 84 year: 2012 end-page: 89 article-title: Relationship between circulating IGF‐1 levels and traumatic brain injury‐induced hippocampal damage and cognitive dysfunction publication-title: Neurosci. Lett. – volume: 363 start-page: 94 year: 2004 end-page: 96 article-title: Telomerase induction in astrocytes of Sprague Dawley rats after ishemic brain injury publication-title: Neurosci. Lett. – volume: 3 start-page: 227 year: 2005 end-page: 233 article-title: Conditional DNMT1 deletion in the dorsal forebrain disrupts development of somatosensory barrel cortex and thalamocortical long‐term potentiation publication-title: Thalamus Relat. Syst. – volume: 30 start-page: 819 year: 2016 end-page: 828 article-title: Predictors of physical activity levels of individuals following traumatic brain injury remain unclear: a systematic review publication-title: Brain Injury – volume: 340 start-page: 1 year: 2004 end-page: 10 article-title: Genetic and epigenetic modultion of telomerase activity in development and disease publication-title: Gene – volume: 35 start-page: 489 year: 2000 end-page: 502 article-title: Emerging neuroprotective strategies for Alzheimer's disease: dietary restriction, telomerase activation, and stem cell therapy publication-title: Exp. Gerontol. – volume: 51 start-page: 71 year: 2005 end-page: 85 article-title: Effectiveness of exercise therapy: a best‐evidence summay of systematic reviews publication-title: Aust. J. Physiother. – volume: 50 start-page: 135 year: 1992 end-page: 145 article-title: Intrinsic and extrinsic influences on play fighting in rats – effects of dominance, partner's playfulness, temperment, and neonatal expsosure to testosterone proprionate publication-title: Behav. Brain Res. – year: 2016 article-title: Physical exercise and brain mitochondrial fitness: the possible role against alzheimer's disease publication-title: Brain Pathol. – volume: 29 start-page: 186 year: 2014 end-page: 193 article-title: Perception of recovery after pediatric mild traumatic brain injury is influenced by the “good old days” bias: tangible implications for clinical practice and outcomes research publication-title: Arch. Clin. Neuropsych. – volume: 15 start-page: 310 year: 2003 end-page: 316 article-title: Post concussion syndrome publication-title: Int. Rev. Psychiat – volume: 14 start-page: 125 year: 2003 end-page: 130 article-title: Fitness effects on the cognitive function of older adults: a meta‐analytic study publication-title: Psychol. Sci. – volume: 17 start-page: 241 year: 2010 end-page: 245 article-title: Object/context‐specific memory deficits associated with loss of hippocampal granule cells after adrenalectomy in rats publication-title: Learn. Memory – volume: 1288 start-page: 105 year: 2009 end-page: 115 article-title: Exercise‐induced improvement in cognitive performance after traumatic brain injury in rats is dependent on BDNF activation publication-title: Brain Res. – volume: 147 start-page: 418 year: 1997 end-page: 427 article-title: Insulin‐like growth factor‐1 (IGF‐1) improves both neurological motor and cognitive outcome following experimental brain injury publication-title: Exp. Neurol. – volume: 2015 start-page: 736104 year: 2015 article-title: Role and importance of IGF‐1 in traumatic brain injury publication-title: BioMed Res. Int. – volume: 30 start-page: 281 year: 2013 end-page: 291 article-title: Temperature and heart rate responses to exercise following mild traumatic brain injury publication-title: J. Neurotraum. – volume: 30 start-page: 464 year: 2007 end-page: 472 article-title: Exercise builds brain health: key roles of growth factor cascades and inflammation publication-title: Trends Neurosci. – volume: 126 start-page: e374 year: 2010 end-page: e381 article-title: Epidemiology of postconcussion syndrome in pediatric mild traumatic brain injury publication-title: Pediatrics – volume: 14 start-page: 1 year: 2013 end-page: 8 article-title: Physical exercise improves functional recovery through mitigation of autophagy, attenuation of apoptosis and enhancement of neurogenesis after MCAO in rats publication-title: BMC Neurosci. – volume: 30 start-page: e47 year: 2002 article-title: Telomere measurement by quantitative PCR publication-title: Nucleic Acids Res. – volume: 30 start-page: 75 year: 2002 end-page: 79 article-title: Exercise enhances and protects brain function publication-title: Exercise Sport Sci. R. – volume: 13 start-page: 423 year: 2010 end-page: 430 article-title: Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons publication-title: Nat. Neurosci. – volume: 64 start-page: 1162 year: 2009 end-page: 1173 article-title: Concussion in professional football: animal model of brain injury – Part 15 publication-title: Neurosurgery – volume: 122 start-page: 695 year: 2001 end-page: 712 article-title: Telomere biology in human aging and aging syndromes publication-title: Mech. Ageing Dev. – volume: 24 start-page: 1280 year: 2004 end-page: 1287 article-title: Extopic expression of the catalytic subunit of telomerase protects against brain injury resulting from ischemia and NMDA‐induced neurotoxicity publication-title: J. Neurosci. – volume: 14 start-page: 345 year: 2006 end-page: 356 article-title: Neurobiology of exercise publication-title: Obes. Res. – volume: 174 start-page: 33 year: 2016 end-page: 38e.32 article-title: Specific factors influence post‐concussion symptom duration among youth referred to a sports concussion clinic publication-title: J. Pediatr. – volume: 22 start-page: 446 year: 2002 end-page: 454 article-title: Repetitive mild brain trauma accelerates AB deposition, lipid peroxidation, and cognitive impairment in a transgenic mouse model of Alzheimer amyloidosis publication-title: J. Neurosci. – volume: 87 start-page: 11 year: 2016 end-page: 18 article-title: The use of telomere length as a predictive biomarker for injury prognosis in juvenile rats folowing a concussion/mild traumatic brain injury publication-title: Neurobiol. Dis. – volume: 43 start-page: i51 year: 2009 end-page: i55 article-title: What are the most appropriate return to play guidelines for concussed child athletes publication-title: Brit. J. Sport. Med. – volume: 31 start-page: 1 year: 2014b end-page: 9 article-title: Assessment of an experimental rodent model of pediatric mild traumatic brain injury publication-title: J. Neurotraum. – volume: 44 start-page: 14 year: 2016 end-page: 19 article-title: Depression as a modifying factor in sports‐related concussion: a critical review of the literature publication-title: Physician Sports Med. – volume: 31 start-page: 674 year: 2014 end-page: 682 article-title: Recovery of stress response coincides with responsiveness to voluntary exercise after traumatic brain injury publication-title: J. Neurotraum. – volume: 47 start-page: 250 year: 2013 end-page: 258 article-title: Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport held in Zurich, November 2012 publication-title: Brit. J. Sport. Med. – volume: 24 start-page: 77 year: 2003 end-page: 84 article-title: Telomere shortening in T cells correlates with Alzheimer's disease status publication-title: Neurobiol. Aging – volume: 37 start-page: 1107 year: 2015 end-page: 1112 article-title: Post‐concussion return to play and return to school guidelines for children and youth: a scoping methodology publication-title: Disabil. Rehabil. – volume: 19 start-page: 1699 year: 2004 end-page: 1707 article-title: The interplay between oxidative stress and brain‐derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition publication-title: Eur. J. Neurosci. – volume: 58 start-page: 1553 year: 1985 end-page: 1557 article-title: Spontaneous running activity in male rats: effect of age publication-title: J. Appl. Physiol. – volume: 24 start-page: 1161 year: 2007 end-page: 1171 article-title: Time window for voluntary exercise‐induced inreases in hippocampal neuroplasticity molecules after tramatic brain injury is severity dependent publication-title: J. Neurotraum. – volume: 896 start-page: 43 year: 2001 end-page: 47 article-title: Limbic dopaminergic adaptation to a stressful stimulus in a rat model of depressino publication-title: Brain Res. – volume: 21 start-page: 36 year: 2009 end-page: 46 article-title: Consensus statement on concussion in sport – the 3rd International Conference on Concussion in Sport held in Zurich, November 2008 publication-title: S. Afr. J. Sports Med. – volume: 8 start-page: e51820 year: 2014a article-title: A novel model of mild traumatic brain injury for juvenile rats publication-title: J. Visual. Exp. – start-page: 201 year: 2002 end-page: 216 – volume: 67 start-page: 71 year: 2010 end-page: 79 article-title: Effects of aerobic exercise on mild cognitive impairment: a controlled trial publication-title: Arch. Neurol. – volume: 54 start-page: 252 year: 2013 end-page: 263 article-title: Late exercise reduces neuroinflamation and cognitive dysfunction after traumatic brain injury publication-title: Neurobiol. Dis. – volume: 6 start-page: 611 year: 2005 end-page: 622 article-title: Telomeres and human disease: ageing, cancer, and beyond publication-title: Nat. Rev. Genet. – ident: e_1_2_7_16_1 doi: 10.1038/oby.2006.46 – ident: e_1_2_7_2_1 doi: 10.1016/j.neulet.2004.03.059 – ident: e_1_2_7_30_1 doi: 10.1155/2015/736104 – ident: e_1_2_7_28_1 doi: 10.1016/S0047-6374(01)00223-8 – ident: e_1_2_7_23_1 doi: 10.3109/02699052.2016.1146962 – ident: e_1_2_7_27_1 doi: 10.1523/JNEUROSCI.4082-03.2004 – ident: e_1_2_7_43_1 doi: 10.1016/S0197-4580(02)00043-X – ident: e_1_2_7_53_1 doi: 10.1080/00913847.2016.1121091 – ident: e_1_2_7_11_1 doi: 10.1093/nar/30.10.e47 – ident: e_1_2_7_19_1 doi: 10.1089/neu.2006.0255 – volume: 8 start-page: e51820 year: 2014 ident: e_1_2_7_38_1 article-title: A novel model of mild traumatic brain injury for juvenile rats publication-title: J. Visual. Exp. contributor: fullname: Mychasiuk R. – ident: e_1_2_7_10_1 doi: 10.1093/arclin/act083 – ident: e_1_2_7_57_1 doi: 10.1111/j.1460-9568.2004.03246.x – ident: e_1_2_7_35_1 doi: 10.1016/j.neuroscience.2003.09.020 – start-page: 201 volume-title: Pharmacology of Cerebral Ischemia year: 2002 ident: e_1_2_7_50_1 contributor: fullname: Schallert T. – ident: e_1_2_7_15_1 doi: 10.3109/09638288.2014.952452 – ident: e_1_2_7_26_1 doi: 10.2203/dose-response.09-048.Ji – ident: e_1_2_7_47_1 doi: 10.1136/bjsm.2009.058214 – ident: e_1_2_7_40_1 doi: 10.1016/j.jneumeth.2015.10.002 – volume: 22 start-page: 446 year: 2002 ident: e_1_2_7_55_1 article-title: Repetitive mild brain trauma accelerates AB deposition, lipid peroxidation, and cognitive impairment in a transgenic mouse model of Alzheimer amyloidosis publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-02-00446.2002 contributor: fullname: Uryu K. – ident: e_1_2_7_34_1 doi: 10.1016/S0306-4522(02)00123-9 – ident: e_1_2_7_59_1 doi: 10.1186/1471-2202-14-46 – ident: e_1_2_7_18_1 doi: 10.1017/S1472928807000222 – ident: e_1_2_7_33_1 doi: 10.1136/bjsports-2013-092313 – ident: e_1_2_7_22_1 doi: 10.1089/neu.2013.3151 – ident: e_1_2_7_37_1 doi: 10.3171/2014.10.PEDS14356 – ident: e_1_2_7_29_1 doi: 10.1016/j.gene.2004.06.011 – ident: e_1_2_7_20_1 doi: 10.1016/j.brainres.2009.06.045 – ident: e_1_2_7_31_1 doi: 10.1016/S0531-5565(00)00115-7 – ident: e_1_2_7_42_1 doi: 10.1016/j.neulet.2011.11.059 – ident: e_1_2_7_14_1 doi: 10.1016/j.tins.2007.06.011 – ident: e_1_2_7_9_1 doi: 10.1002/syn.20496 – ident: e_1_2_7_3_1 doi: 10.1001/archneurol.2009.307 – ident: e_1_2_7_6_1 doi: 10.1016/j.bbr.2009.09.029 – ident: e_1_2_7_7_1 doi: 10.1111/bpa.12403 – ident: e_1_2_7_49_1 doi: 10.1006/exnr.1997.6629 – ident: e_1_2_7_39_1 doi: 10.1089/neu.2013.3132 – ident: e_1_2_7_44_1 doi: 10.1016/S0166-4328(05)80295-5 – ident: e_1_2_7_13_1 doi: 10.1097/00003677-200204000-00006 – ident: e_1_2_7_48_1 doi: 10.1080/09540260310001606692 – ident: e_1_2_7_54_1 doi: 10.1101/lm.1746710 – ident: e_1_2_7_21_1 doi: 10.1089/neu.2012.2616 – ident: e_1_2_7_41_1 doi: 10.1212/WNL.0000000000002679 – ident: e_1_2_7_52_1 doi: 10.1016/S0004-9514(05)70036-2 – ident: e_1_2_7_4_1 doi: 10.1016/j.csm.2010.09.001 – ident: e_1_2_7_8_1 doi: 10.1038/nrg1656 – ident: e_1_2_7_24_1 doi: 10.1016/j.nbd.2015.12.007 – ident: e_1_2_7_17_1 doi: 10.1038/nn.2514 – ident: e_1_2_7_12_1 doi: 10.1111/1467-9280.t01-1-01430 – ident: e_1_2_7_45_1 doi: 10.1093/nar/29.9.e45 – ident: e_1_2_7_5_1 doi: 10.1542/peds.2009-0925 – ident: e_1_2_7_58_1 doi: 10.1016/S0006-8993(00)03248-0 – ident: e_1_2_7_56_1 doi: 10.1227/01.NEU.0000345863.99099.C7 – ident: e_1_2_7_32_1 doi: 10.17159/2413-3108/2009/v21i2a296 – ident: e_1_2_7_46_1 doi: 10.1016/j.nbd.2012.12.017 – volume: 58 start-page: 1553 year: 1985 ident: e_1_2_7_36_1 article-title: Spontaneous running activity in male rats: effect of age publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1985.58.5.1553 contributor: fullname: Mondon C. – ident: e_1_2_7_25_1 doi: 10.1016/j.jpeds.2016.03.014 – ident: e_1_2_7_51_1 doi: 10.1111/head.12087 – ident: e_1_2_7_60_1 doi: 10.1046/j.1471-4159.2000.0750117.x |
SSID | ssj0008645 |
Score | 2.4782972 |
Snippet | Despite the most common form of brain injury, there has been little progress in the prognosis and treatment of concussion/mild traumatic brain injury (mTBI).... Abstract Despite the most common form of brain injury, there has been little progress in the prognosis and treatment of concussion/mild traumatic brain injury... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2407 |
SubjectTerms | Animals Behavior, Animal - physiology Brain Concussion - metabolism Female Gene Expression - physiology hippocampus Male Memory, Short-Term - physiology mild traumatic brain injury Physical Conditioning, Animal prefrontal cortex Rats, Sprague-Dawley rodent models telomere length Time Perception - physiology |
Title | Reducing the time interval between concussion and voluntary exercise restores motor impairment, short-term memory, and alterations to gene expression |
URI | https://api.istex.fr/ark:/67375/WNG-NBTF6BNS-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.13360 https://www.ncbi.nlm.nih.gov/pubmed/27521273 https://search.proquest.com/docview/1827909607 https://search.proquest.com/docview/1835376432 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbhMxFLWqsoANhZZHeMkgVLHoRHj8isWqLQ1VJWZRWpEFkuUZO6JUdarJRKKs-AR2_B9fwr2emUARIMQuC8dxPPfa53iOzyXkKew4XAcn0flYZiJULDNe6IwFI5wwSrtkx_C6UPvH4mAiJyvkRX8XpvWHWB64YWak9RoT3JXzn5I8fIhDIFgK-TrjGuVcLw9_WEeNVCpQjHZq2YipSecqhCqe5Tcv7UVXcFo__g5oXsataeMZr5F3_ZBbvcnpcNGUw-rTL26O__mfbpDrHSCl220E3SQrIa6Tje0IZPzsgm7SJBFNZ-_r5OpuXx5ug3w9RNNX2PgoQEiKJerpSdJPQmed-IsC164WKLON1EVPcSWMDYyO9oWeaJ0K24Q5hYiZ1RTvbJ7UeGC5RefvgRl8-_wF9w56hoLgi63UTXrB3x400mZGIQMCdNgJeuMtcjzeO9rdz7oqD1kF4OV5VjElmZ6KYEY5K30Q3imAsSZongdYL3SFFnilyL2uWPCIL5icIpXSfgr8i98mq3EWw11CNXeKl8YD5kV7U-7ykslKGZmP5NTLfECe9M_bnrdmHrYnQTD1Nk39gGymSFi2cPUpqt-0tG-LV7bYORqrneKNNQPyuA8VC3OPL1pcDLPF3AJn0wa5of5bG45OOoLDqO60cbb8xVzjjWrNB-RZipY_D9buHRTpw71_b3qfXAPUp1pF4gOy2tSL8BCQVVM-Sin0HaL-IBo |
link.rule.ids | 315,783,787,1378,27937,27938,46307,46731 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5V7aFcoLQ80hZYEKo41BH2vmKJS1saQml9KKnIBa382IhSdVM5jtRy4idw4__xS5hZ24EiQIhbDpvNZj2zM9_4228AnmLE4dqmkpSPZSBsHgZxIXQQ2likIlY69XIMR4kanIiDkRwtwIv2LkytDzEvuJFn-POaHJwK0j95uf3ouoiwFAL2JXR3Tm758viHeFRP-RbFJKgW9EI1anSFiMcz_-q1aLREG3v5u1TzeubqQ0__FrxvF10zTs66syrr5p9-0XP833-1AjebnJTt1EZ0GxasW4W1HYd4_PyKbTHPEvXl91VY3ms7xK3B12PSfcXYxzCLZNSlnp16CiVO1vC_GMLtfEZMW8dSVzA6DF2Fy2NtrydW-t42dsrQaCYlo2ubpyXVLLfZ9AOCg2-fv1D4YOfECb7a9tP4d_x1rZFVE4ZOYHHChtPr7sBJf3-4NwiaRg9BjvnL8yAPlQz1WNi4F4VZYUWRKsxkY6t5ZPHI0Dmp4GUiKnQe2oJSjFCOCU3pYowQjN-FRTdx9j4wzVPFs7jAtJcUTnkaZaHMVSyjnhwXMurAk_aBm4taz8O0OAi33vit78CWN4X5iLQ8IwKcluZd8soku8O-2k3emrgDj1tbMbj39K4ldXYymxqEbTomeKj_NoaTmI7guKp7taHNfzHSdKla8w488-by58Wa_YPEf1j_96GPYHkwPDo0h6-TNxtwA5NAVRMUN2GxKmf2ASZaVfbQ-9N3fP0kMw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL2qWgnY8Gh5DE-DUMWiGZHEj4m6akuHUiBCpRWzQLKS2FEfqqfKZCTaVT-hO_6PL-FeJxkoAoTYzcLj8Tj32uc4x-cCPMcdJ1Y2E-R8LAJuizBIDFdBaBOe8USqzNsxvE_l1h7fHonRHKx2d2Eaf4jZgRtlhl-vKcFPTPlTkttD10eCJZGvL3CJoUqIaOeHd9RA-grF5KcWDEI5am2FSMYz--qlzWiB5vXL75DmZeDqd57hDfjcjbkRnBz1p3XeL85-sXP8zz91E663iJStNSF0C-asW4SlNYds_PiULTOvEfWH74twdaOrD7cEX3fI9RV3PoYYklGNenbgBZTYWav-Yki2iynpbB3LnGG0FLoaR8e6Sk-s8pVt7IRhyIwrRpc2Dyo6sVxhk32kBt_OL2jzYMekCD5d8d34N_zNSSOrxwxTwGKHraLX3Ya94ebuxlbQlnkICkQvL4MilCJUJbfJIApzY7nJJOLYxKo4srhgqII88HIeGVWE1hDACEVJXEqZEglYfAfm3djZe8BUnMk4TwyCXvI3jbMoD0UhExENRGlE1INn3fPWJ42bh-5YEE699lPfg2UfCbMWWXVE8jcl9Kf0tU7Xd4dyPf2okx487UJF49zTm5bM2fF0opG0qYTIofpbm5isdHiMo7rbxNnsFyNFV6pV3IMXPlr-PFi9uZ36D_f_vekTuPLh1VC_e5O-fQDXEAHKRp34EObramofIcqq88c-m74D_Qwi4g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reducing+the+time+interval+between+concussion+and+voluntary+exercise+restores+motor+impairment%2C+short-term+memory%2C+and+alterations+to+gene+expression&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Mychasiuk%2C+Richelle&rft.au=Hehar%2C+Harleen&rft.au=Ma%2C+Irene&rft.au=Candy%2C+Sydney&rft.date=2016-10-01&rft.eissn=1460-9568&rft.volume=44&rft.issue=7&rft.spage=2407&rft_id=info:doi/10.1111%2Fejn.13360&rft_id=info%3Apmid%2F27521273&rft.externalDocID=27521273 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |