Reducing the time interval between concussion and voluntary exercise restores motor impairment, short-term memory, and alterations to gene expression

Despite the most common form of brain injury, there has been little progress in the prognosis and treatment of concussion/mild traumatic brain injury (mTBI). Current ‘return‐to‐play’ guidelines are conservative, deterring the initiation of physical and social activity until patients are asymptomatic...

Full description

Saved in:
Bibliographic Details
Published inThe European journal of neuroscience Vol. 44; no. 7; pp. 2407 - 2417
Main Authors Mychasiuk, Richelle, Hehar, Harleen, Ma, Irene, Candy, Sydney, Esser, Michael J.
Format Journal Article
LanguageEnglish
Published France Blackwell Publishing Ltd 01.10.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite the most common form of brain injury, there has been little progress in the prognosis and treatment of concussion/mild traumatic brain injury (mTBI). Current ‘return‐to‐play’ guidelines are conservative, deterring the initiation of physical and social activity until patients are asymptomatic; but the effects of post‐injury exercise have not been adequately investigated. Therefore, this study examined the effects of voluntary exercise on concussion recovery. Using a translational rodent model of concussion, we examined the influence of exercise on injury‐associated behaviours that comprise post‐concussive syndrome (PCS) and gene expression changes (bdnf, dnmt1, Igf‐1, pgc1‐a, Tert) in prefrontal cortex and hippocampus. In addition, as we have previously demonstrated telomere length (TL) to be a reliable predictor of mTBI prognosis, TL was also examined. The results suggest that exercise initiated within 1–3 days post‐concussion significantly improved motor and cognitive functioning, but had limited efficacy treating emotional impairments. What is more, when deprived of social interaction and exercise, a combination similar to clinical recommendations for rest until symptom resolution, animals did not recover and exhibited impairments similar to typical mTBI animals. Exercise aided in restoration of mTBI‐induced modifications to gene expression in both brain regions. An inverse relationship between the exercise return interval and TL was identified, indicating greater recovery with acute exercise reinstatement. Although additional strategies may need to be employed for emotional functioning, these findings support re‐evaluation of ‘return‐to‐play’ guidelines, suggesting that exercise is valuable for the treatment of concussion. This study was designed to examine concussion outcomes following different ‘return‐to‐exercise’ time intervals, in order to elucidate optimal times to resume physical activity. Using behavioural, molecular, and genomic measures, we found that implementation of exercise within 1–3 days post‐injuy was beneficial, and actually ameliorated some of the negative consequences associated with mTBI.
AbstractList Despite the most common form of brain injury, there has been little progress in the prognosis and treatment of concussion/mild traumatic brain injury (mTBI). Current ‘return‐to‐play’ guidelines are conservative, deterring the initiation of physical and social activity until patients are asymptomatic; but the effects of post‐injury exercise have not been adequately investigated. Therefore, this study examined the effects of voluntary exercise on concussion recovery. Using a translational rodent model of concussion, we examined the influence of exercise on injury‐associated behaviours that comprise post‐concussive syndrome (PCS) and gene expression changes (bdnf, dnmt1, Igf‐1, pgc1‐a, Tert) in prefrontal cortex and hippocampus. In addition, as we have previously demonstrated telomere length (TL) to be a reliable predictor of mTBI prognosis, TL was also examined. The results suggest that exercise initiated within 1–3 days post‐concussion significantly improved motor and cognitive functioning, but had limited efficacy treating emotional impairments. What is more, when deprived of social interaction and exercise, a combination similar to clinical recommendations for rest until symptom resolution, animals did not recover and exhibited impairments similar to typical mTBI animals. Exercise aided in restoration of mTBI‐induced modifications to gene expression in both brain regions. An inverse relationship between the exercise return interval and TL was identified, indicating greater recovery with acute exercise reinstatement. Although additional strategies may need to be employed for emotional functioning, these findings support re‐evaluation of ‘return‐to‐play’ guidelines, suggesting that exercise is valuable for the treatment of concussion. This study was designed to examine concussion outcomes following different ‘return‐to‐exercise’ time intervals, in order to elucidate optimal times to resume physical activity. Using behavioural, molecular, and genomic measures, we found that implementation of exercise within 1–3 days post‐injuy was beneficial, and actually ameliorated some of the negative consequences associated with mTBI.
Despite the most common form of brain injury, there has been little progress in the prognosis and treatment of concussion/mild traumatic brain injury (mTBI). Current 'return-to-play' guidelines are conservative, deterring the initiation of physical and social activity until patients are asymptomatic; but the effects of post-injury exercise have not been adequately investigated. Therefore, this study examined the effects of voluntary exercise on concussion recovery. Using a translational rodent model of concussion, we examined the influence of exercise on injury-associated behaviours that comprise post-concussive syndrome (PCS) and gene expression changes (bdnf, dnmt1, Igf-1, pgc1-a, Tert) in prefrontal cortex and hippocampus. In addition, as we have previously demonstrated telomere length (TL) to be a reliable predictor of mTBI prognosis, TL was also examined. The results suggest that exercise initiated within 1-3 days post-concussion significantly improved motor and cognitive functioning, but had limited efficacy treating emotional impairments. What is more, when deprived of social interaction and exercise, a combination similar to clinical recommendations for rest until symptom resolution, animals did not recover and exhibited impairments similar to typical mTBI animals. Exercise aided in restoration of mTBI-induced modifications to gene expression in both brain regions. An inverse relationship between the exercise return interval and TL was identified, indicating greater recovery with acute exercise reinstatement. Although additional strategies may need to be employed for emotional functioning, these findings support re-evaluation of 'return-to-play' guidelines, suggesting that exercise is valuable for the treatment of concussion. This study was designed to examine concussion outcomes following different 'return-to-exercise' time intervals, in order to elucidate optimal times to resume physical activity. Using behavioural, molecular, and genomic measures, we found that implementation of exercise within 1-3 days post-injuy was beneficial, and actually ameliorated some of the negative consequences associated with mTBI.
Despite the most common form of brain injury, there has been little progress in the prognosis and treatment of concussion/mild traumatic brain injury (mTBI). Current 'return-to-play' guidelines are conservative, deterring the initiation of physical and social activity until patients are asymptomatic; but the effects of post-injury exercise have not been adequately investigated. Therefore, this study examined the effects of voluntary exercise on concussion recovery. Using a translational rodent model of concussion, we examined the influence of exercise on injury-associated behaviours that comprise post-concussive syndrome (PCS) and gene expression changes (bdnf, dnmt1, Igf-1, pgc1-a, Tert) in prefrontal cortex and hippocampus. In addition, as we have previously demonstrated telomere length (TL) to be a reliable predictor of mTBI prognosis, TL was also examined. The results suggest that exercise initiated within 1-3 days post-concussion significantly improved motor and cognitive functioning, but had limited efficacy treating emotional impairments. What is more, when deprived of social interaction and exercise, a combination similar to clinical recommendations for rest until symptom resolution, animals did not recover and exhibited impairments similar to typical mTBI animals. Exercise aided in restoration of mTBI-induced modifications to gene expression in both brain regions. An inverse relationship between the exercise return interval and TL was identified, indicating greater recovery with acute exercise reinstatement. Although additional strategies may need to be employed for emotional functioning, these findings support re-evaluation of 'return-to-play' guidelines, suggesting that exercise is valuable for the treatment of concussion.
Abstract Despite the most common form of brain injury, there has been little progress in the prognosis and treatment of concussion/mild traumatic brain injury (mTBI). Current ‘return‐to‐play’ guidelines are conservative, deterring the initiation of physical and social activity until patients are asymptomatic; but the effects of post‐injury exercise have not been adequately investigated. Therefore, this study examined the effects of voluntary exercise on concussion recovery. Using a translational rodent model of concussion, we examined the influence of exercise on injury‐associated behaviours that comprise post‐concussive syndrome (PCS) and gene expression changes ( bdnf , dnmt1 , Igf‐1 , pgc1‐a , Tert ) in prefrontal cortex and hippocampus. In addition, as we have previously demonstrated telomere length (TL) to be a reliable predictor of mTBI prognosis, TL was also examined. The results suggest that exercise initiated within 1–3 days post‐concussion significantly improved motor and cognitive functioning, but had limited efficacy treating emotional impairments. What is more, when deprived of social interaction and exercise, a combination similar to clinical recommendations for rest until symptom resolution, animals did not recover and exhibited impairments similar to typical mTBI animals. Exercise aided in restoration of mTBI‐induced modifications to gene expression in both brain regions. An inverse relationship between the exercise return interval and TL was identified, indicating greater recovery with acute exercise reinstatement. Although additional strategies may need to be employed for emotional functioning, these findings support re‐evaluation of ‘return‐to‐play’ guidelines, suggesting that exercise is valuable for the treatment of concussion.
Author Candy, Sydney
Mychasiuk, Richelle
Hehar, Harleen
Ma, Irene
Esser, Michael J.
Author_xml – sequence: 1
  givenname: Richelle
  surname: Mychasiuk
  fullname: Mychasiuk, Richelle
  email: rmmychas@ucalgary.ca, : Richelle Mychasiuk, as above., rmmychas@ucalgary.ca
  organization: Alberta Children's Hospital Research Institute, Department of Psychology, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive NW, AB, T2N 1N4, Calgary, Canada
– sequence: 2
  givenname: Harleen
  surname: Hehar
  fullname: Hehar, Harleen
  organization: Alberta Children's Hospital Research Institute, Department of Psychology, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive NW, AB, T2N 1N4, Calgary, Canada
– sequence: 3
  givenname: Irene
  surname: Ma
  fullname: Ma, Irene
  organization: Alberta Children's Hospital Research Institute, Department of Psychology, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive NW, AB, T2N 1N4, Calgary, Canada
– sequence: 4
  givenname: Sydney
  surname: Candy
  fullname: Candy, Sydney
  organization: Alberta Children's Hospital Research Institute, Faculty of Medicine, University of Calgary, AB, Calgary, Canada
– sequence: 5
  givenname: Michael J.
  surname: Esser
  fullname: Esser, Michael J.
  organization: Alberta Children's Hospital Research Institute, Faculty of Medicine, University of Calgary, AB, Calgary, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27521273$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9OHSEUh0ljU6_aRV_AsGwTR_kzAzPLatS2MbeJtWl3hMucUXSAKzDqfZC-b9Gr7pqUBSeB73wn8NtCGz54QOgDJfu0rAO49vuUc0HeoBmtBam6RrQbaEa6hlctFb830VZK14SQVtTNO7TJZMMok3yG_pxDPxnrL3G-ApytA2x9hninR7yAfA_gsQneTCnZ4LH2Pb4L4-SzjisMDxCNTYAjpBzKhl0oFVu31DY68HkPp6sQc1WMDjtwIa72niR6LEc6F2fCOeBL8FB0y-J4nLOD3g56TPD-uW6jnyfHF0dfqrPvp1-PPp9VpuaUVIaKhsqhhq5ldNFD3WtBWtKB5AwIldIIIumiZr00FHraNpw2A2Hlph86Qfg2-rj2LmO4ncojlLPJwDhqD2FKira84VLUnP0HymRHilQW9NMaNTGkFGFQy2hd-TBFiXoMTJXA1FNghd191k4LB_0r-ZJQAQ7WwL0dYfVvkzr-Nn9RVusOmzI8vHboeKOE5LJRv-anan54cSIO5z9Ux_8C636y2g
CitedBy_id crossref_primary_10_1089_neu_2018_5744
crossref_primary_10_1177_2059700220975609
crossref_primary_10_1016_j_neuroscience_2019_06_022
crossref_primary_10_1080_02699052_2017_1346294
crossref_primary_10_3138_ptc_2019_0048
crossref_primary_10_3389_fneur_2020_616661
crossref_primary_10_1123_jsr_2017_0159
crossref_primary_10_1016_j_nicl_2018_01_033
crossref_primary_10_1097_JSM_0000000000000720
crossref_primary_10_3928_19382359_20170320_02
crossref_primary_10_1097_HTR_0000000000000930
crossref_primary_10_1177_0271678X241234770
crossref_primary_10_1016_j_brainres_2024_148908
crossref_primary_10_1136_bjsports_2022_106676
crossref_primary_10_1016_j_expneurol_2019_01_007
crossref_primary_10_3390_jcm10122598
crossref_primary_10_1101_cshperspect_a029736
crossref_primary_10_1177_0883073819877790
crossref_primary_10_1177_0271678X231212377
crossref_primary_10_1016_j_arr_2021_101411
crossref_primary_10_1177_10738584211012264
crossref_primary_10_3389_fneur_2021_685822
crossref_primary_10_1016_j_expneurol_2021_113958
crossref_primary_10_1007_s00381_017_3537_4
crossref_primary_10_1002_jnr_24472
crossref_primary_10_1016_j_cct_2022_106965
crossref_primary_10_1089_neu_2020_7389
crossref_primary_10_1123_jsr_2019_0070
crossref_primary_10_1016_j_apmr_2017_09_108
crossref_primary_10_1177_0363546518757984
crossref_primary_10_1371_journal_pone_0251315
crossref_primary_10_5483_BMBRep_2022_55_10_097
crossref_primary_10_1097_JSM_0000000000000663
crossref_primary_10_1016_j_jsams_2019_06_007
crossref_primary_10_1093_braincomms_fcaa042
crossref_primary_10_1136_bjsports_2018_100338
crossref_primary_10_3389_fnmol_2022_937350
crossref_primary_10_1186_s13102_024_00900_x
crossref_primary_10_1123_pes_2017_0286
crossref_primary_10_1038_s41598_019_51267_w
crossref_primary_10_1016_j_nbd_2020_105143
crossref_primary_10_3390_brainsci10050258
crossref_primary_10_1097_WNP_0000000000000931
crossref_primary_10_1249_JSR_0000000000000505
crossref_primary_10_55275_JPOSNA_2021_320
crossref_primary_10_1016_j_neuron_2017_05_003
crossref_primary_10_1089_neu_2019_6656
crossref_primary_10_1016_j_bbr_2020_113048
crossref_primary_10_1093_texcom_tgaa002
crossref_primary_10_3389_fneur_2019_00481
Cites_doi 10.1038/oby.2006.46
10.1016/j.neulet.2004.03.059
10.1155/2015/736104
10.1016/S0047-6374(01)00223-8
10.3109/02699052.2016.1146962
10.1523/JNEUROSCI.4082-03.2004
10.1016/S0197-4580(02)00043-X
10.1080/00913847.2016.1121091
10.1093/nar/30.10.e47
10.1089/neu.2006.0255
10.1093/arclin/act083
10.1111/j.1460-9568.2004.03246.x
10.1016/j.neuroscience.2003.09.020
10.3109/09638288.2014.952452
10.2203/dose-response.09-048.Ji
10.1136/bjsm.2009.058214
10.1016/j.jneumeth.2015.10.002
10.1523/JNEUROSCI.22-02-00446.2002
10.1016/S0306-4522(02)00123-9
10.1186/1471-2202-14-46
10.1017/S1472928807000222
10.1136/bjsports-2013-092313
10.1089/neu.2013.3151
10.3171/2014.10.PEDS14356
10.1016/j.gene.2004.06.011
10.1016/j.brainres.2009.06.045
10.1016/S0531-5565(00)00115-7
10.1016/j.neulet.2011.11.059
10.1016/j.tins.2007.06.011
10.1002/syn.20496
10.1001/archneurol.2009.307
10.1016/j.bbr.2009.09.029
10.1111/bpa.12403
10.1006/exnr.1997.6629
10.1089/neu.2013.3132
10.1016/S0166-4328(05)80295-5
10.1097/00003677-200204000-00006
10.1080/09540260310001606692
10.1101/lm.1746710
10.1089/neu.2012.2616
10.1212/WNL.0000000000002679
10.1016/S0004-9514(05)70036-2
10.1016/j.csm.2010.09.001
10.1038/nrg1656
10.1016/j.nbd.2015.12.007
10.1038/nn.2514
10.1111/1467-9280.t01-1-01430
10.1093/nar/29.9.e45
10.1542/peds.2009-0925
10.1016/S0006-8993(00)03248-0
10.1227/01.NEU.0000345863.99099.C7
10.17159/2413-3108/2009/v21i2a296
10.1016/j.nbd.2012.12.017
10.1152/jappl.1985.58.5.1553
10.1016/j.jpeds.2016.03.014
10.1111/head.12087
10.1046/j.1471-4159.2000.0750117.x
ContentType Journal Article
Copyright 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Copyright_xml – notice: 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
– notice: 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
DOI 10.1111/ejn.13360
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
Neurosciences Abstracts
MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1460-9568
Editor Foxe, John
Editor_xml – sequence: 1
  givenname: John
  surname: Foxe
  fullname: Foxe, John
– sequence: 6
  givenname: John
  surname: Foxe
  fullname: Foxe, John
EndPage 2417
ExternalDocumentID 10_1111_ejn_13360
27521273
EJN13360
ark_67375_WNG_NBTF6BNS_9
Genre regionalReview
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Canadian Institute for Health Research (CIHR)
– fundername: Alberta Children's Hospital Research Institute (ACHRI)
– fundername: Alberta Children's Hospital Foundation (ACHF)
– fundername: CIHR
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHG
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
XG1
YFH
ZGI
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
ID FETCH-LOGICAL-c4310-c16517f4e9821bde4da60809e732e0177c6071b42d7c1ed185315f02177df9603
IEDL.DBID DR2
ISSN 0953-816X
IngestDate Fri Aug 16 05:22:38 EDT 2024
Fri Aug 16 00:49:14 EDT 2024
Fri Aug 23 01:14:07 EDT 2024
Wed Oct 16 01:00:16 EDT 2024
Sat Aug 24 00:55:23 EDT 2024
Wed Oct 30 09:52:12 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords hippocampus
mild traumatic brain injury
prefrontal cortex
telomere length
rodent models
Language English
License 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4310-c16517f4e9821bde4da60809e732e0177c6071b42d7c1ed185315f02177df9603
Notes Alberta Children's Hospital Research Institute (ACHRI)
istex:EA487E8A0463107E15F9DF8DEB1749E0F1052C7A
ark:/67375/WNG-NBTF6BNS-9
Alberta Children's Hospital Foundation (ACHF)
Canadian Institute for Health Research (CIHR)
ArticleID:EJN13360
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ejn.13360
PMID 27521273
PQID 1827909607
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_1835376432
proquest_miscellaneous_1827909607
crossref_primary_10_1111_ejn_13360
pubmed_primary_27521273
wiley_primary_10_1111_ejn_13360_EJN13360
istex_primary_ark_67375_WNG_NBTF6BNS_9
PublicationCentury 2000
PublicationDate 2016-10
October 2016
2016-10-00
20161001
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10
PublicationDecade 2010
PublicationPlace France
PublicationPlace_xml – name: France
PublicationTitle The European journal of neuroscience
PublicationTitleAlternate Eur J Neurosci
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Brooks, B., Kadoura, B., Turley, B., Crawford, S., Mikrogianakis, A. & Barlow, K. (2014) Perception of recovery after pediatric mild traumatic brain injury is influenced by the "good old days" bias: tangible implications for clinical practice and outcomes research. Arch. Clin. Neuropsych., 29, 186-193.
Viano, D., Hamberger, A., Bolouri, A. & Saljo, A. (2009) Concussion in professional football: animal model of brain injury - Part 15. Neurosurgery, 64, 1162-1173.
Griesbach, G., Tio, D., Nair, S. & Hovda, D. (2013) Temperature and heart rate responses to exercise following mild traumatic brain injury. J. Neurotraum., 30, 281-291.
Cotman, C., Berchtold, N. & Christie, L. (2007) Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci., 30, 464-472.
Baker, L., Frank, L., Foster-Schubert, K., Green, P., Wilkinson, C., McTiernan, A., Plymate, S., Fishel, M. et al. (2010) Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch. Neurol., 67, 71-79.
Wu, A., Ying, Z. & Gomez-Pinilla, F. (2004) The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur. J. Neurosci., 19, 1699-1707.
Bonefeld, B., Elfving, B. & Wegener, G. (2008) Reference genes for normalization: a study of rat brain tissue. Synapse, 62, 302-309.
Morgan, C., Zuckerman, S., Lee, Y., King, L., Beaird, S., Sils, A. & Solomon, G. (2015) Predictors of postconcussion syndrome after sports-related concussion in young athletes: a matched case-control study. J. Neuros. Pediatr., 15, 589-598.
Uryu, K., Laurer, H., McIntosh, T.K., Pratico, D., Martinez, D., Leight, S., Lee, V. & Trojanowski, J. (2002) Repetitive mild brain trauma accelerates AB deposition, lipid peroxidation, and cognitive impairment in a transgenic mouse model of Alzheimer amyloidosis. J. Neurosci., 22, 446-454.
McCrory, P., Meeuwisse, W., Aubry, M., Cantu, B., Dvorak, J., Echemendia, R., Engebretsen, L., Benson, B. et al. (2013) Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport held in Zurich, November 2012. Brit. J. Sport. Med., 47, 250-258.
Cotman, C. & Engesser-Cesar, C. (2002) Exercise enhances and protects brain function. Exercise Sport Sci. R., 30, 75-79.
Griesbach, G., Gomez-Pinilla, F. & Hovda, D. (2007) Time window for voluntary exercise-induced inreases in hippocampal neuroplasticity molecules after tramatic brain injury is severity dependent. J. Neurotraum., 24, 1161-1171.
Solomon, G., Kuhn, A. & Zuckerman, S. (2016) Depression as a modifying factor in sports-related concussion: a critical review of the literature. Physician Sports Med., 44, 14-19.
Piao, C., Stoica, B., Wu, J., Sabirzhanov, B., Zhao, Z., Cabatbat, R., Loane, D. & Faden, A.L. (2013) Late exercise reduces neuroinflamation and cognitive dysfunction after traumatic brain injury. Neurobiol. Dis., 54, 252-263.
Yadid, G., Overstreet, D. & Zangen, A. (2001) Limbic dopaminergic adaptation to a stressful stimulus in a rat model of depressino. Brain Res., 896, 43-47.
DeMatteo, C., McCauley, D., Stazyk, K., Harper, J., Adamich, J., Randall, S. & Missiuna, C. (2015) Post-concussion return to play and return to school guidelines for children and youth: a scoping methodology. Disabil. Rehabil., 37, 1107-1112.
Purcell, L. (2009) What are the most appropriate return to play guidelines for concussed child athletes. Brit. J. Sport. Med., 43, i51-i55.
Barkhoudarian, G., Hovda, D. & Giza, C.C. (2011) The molecular pathophysiology of concussive brain injury. Clin. Sport. Med., 30, 33-48.
Griesbach, G., Tio, D., Nair, S. & Hovda, D. (2014) Recovery of stress response coincides with responsiveness to voluntary exercise after traumatic brain injury. J. Neurotraum., 31, 674-682.
McCrory, P., Meeuwisse, W., Johnston, K., Dvorak, J., Aubry, M., Molloy, M. & Cantu, R. (2009) Consensus statement on concussion in sport - the 3rd International Conference on Concussion in Sport held in Zurich, November 2008. S. Afr. J. Sports Med., 21, 36-46.
Spanswick, S. & Sutherland, R. (2010) Object/context-specific memory deficits associated with loss of hippocampal granule cells after adrenalectomy in rats. Learn. Memory, 17, 241-245.
Ryan, L. & Warden, D. (2003) Post concussion syndrome. Int. Rev. Psychiat, 15, 310-316.
Barlow, K., Crawford, S., Stevenson, A., Sandhu, S., Belanger, F. & Dewey, D. (2010) Epidemiology of postconcussion syndrome in pediatric mild traumatic brain injury. Pediatrics, 126, e374-e381.
Bell, H., Pellis, S. & Kolb, B. (2010) Juvenile peer play experience and the development of the orbitofrontal and medial prefrontal cortices. Behav. Brain Res., 207, 7-13.
Griesbach, G., Hovda, D. & Gomez-Pinilla, F. (2009) Exercise-induced improvement in cognitive performance after traumatic brain injury in rats is dependent on BDNF activation. Brain Res., 1288, 105-115.
Molteni, R., Barnard, R., Ying, Z., Roberts, C. & Gomez-Pinilla, F. (2002) A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience, 112, 803-814.
Zhu, H., Fu, W. & Mattson, M. (2001) The catalytic subunit of telomerase protects neurons against amyloid B-peptide-induced apoptosis. J. Neurochem., 75, 117-124.
Ji, L., Dickman, J., Kang, C. & Koenig, R. (2010) Exercise-induced hormesis may help healthy aging. Dose-Response, 8, 73-79.
Mychasiuk, R., Farran, A., Angoa-Perez, M., Briggs, D., Kuhn, D. & Esser, M.J. (2014a) A novel model of mild traumatic brain injury for juvenile rats. J. Visual. Exp., 8, e51820.
Liu, L., Lai, S., Andrews, L. & Tollefsbol, T. (2004) Genetic and epigenetic modultion of telomerase activity in development and disease. Gene, 340, 1-10.
Bernardo, T.C., Marques-Aleixo, I., Beleza, J., Oliveira, P.J., Ascensao, A. & Magalhaes, J. (2016) Physical exercise and brain mitochondrial fitness: the possible role against alzheimer's disease. Brain Pathol. doi:10.1111/bpa.12403. [Epub ahead of print].
Blasco, M. (2005) Telomeres and human disease: ageing, cancer, and beyond. Nat. Rev. Genet., 6, 611-622.
Colcombe, S. & Kramer, A. (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol. Sci., 14, 125-130.
Mondon, C., Dolkas, C., Sims, C. & Reaven, G. (1985) Spontaneous running activity in male rats: effect of age. J. Appl. Physiol., 58, 1553-1557.
Mattson, M. (2000) Emerging neuroprotective strategies for Alzheimer's disease: dietary restriction, telomerase activation, and stem cell therapy. Exp. Gerontol., 35, 489-502.
Kang, H.J., Choi, Y., Hong, S., Kim, K., Woo, R., Won, S., Kim, E., Jeon, H. et al. (2004) Extopic expression of the catalytic subunit of telomerase protects against brain injury resulting from ischemia and NMDA-induced neurotoxicity. J. Neurosci., 24, 1280-1287.
Mychasiuk, R., Farran, A. & Esser, M.J. (2014b) Assessment of an experimental rodent model of pediatric mild traumatic brain injury. J. Neurotraum., 31, 1-9.
Panossian, L., Porter, V.R., Valenzuela, H., Zhu, X., Reback, E., Masterman, D., Cummings, J.L. & Effros, R. (2003) Telomere shortening in T cells correlates with Alzheimer's disease status. Neurobiol. Aging, 24, 77-84.
Pfaffl, M. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res., 29, e45.
Ozdemir, D., Baykara, B., Aksu, I., Kiray, M., Riza Sisman, A., Cetin, F., Dayi, A., Gurpinar, T. et al. (2012) Relationship between circulating IGF-1 levels and traumatic brain injury-induced hippocampal damage and cognitive dysfunction. Neurosci. Lett., 507, 84-89.
Seifert, T. (2013) Sports concussion and associated post-traumatic headache. Headache, 53, 726-736.
Pellis, S. & McKenna, M. (1992) Intrinsic and extrinsic influences on play fighting in rats - effects of dominance, partner's playfulness, temperment, and neonatal expsosure to testosterone proprionate. Behav. Brain Res., 50, 135-145.
Nelson, L., Tarima, S., LaRoche, A., Hammeke, T., Barr, W., Guskiewicz, K., Randolph, C. & McCrea, M. (2016) Preinjury somatization symptoms contribute to clinical recovery after sports-related concussion. Neurology, 86, 1856-1863.
Mangiola, A., Vigo, V., Anile, C., De Bonis, P., Marziali, G. & Lofrese, G. (2015) Role and importance of IGF-1 in traumatic brain injury. BioMed Res. Int., 2015, 736104.
Mychasiuk, R., Hehar, H., Ma, I., Candy, S. & Esser, M.J. (2016) The direction of the acceleration and rotational forces associated with mild traumatic brain injury in rodents effect behavioural and molecular outcomes. J. Neurosci. Meth., 257, 168-178.
Saatman, K., Contreras, P., Smith, D., Raghupathi, R., McDermott, K., Fernandez, S., Sanderson, K., Voddi, M. et al. (1997) Insulin-like growth factor-1 (IGF-1) improves both neurological motor and cognitive outcome following experimental brain injury. Exp. Neurol., 147, 418-427.
Baek, S., Bu, Y., Kim, H. & Kim, H. (2004) Telomerase induction in astrocytes of Sprague Dawley rats after ishemic brain injury. Neurosci. Lett., 363, 94-96.
Hamilton, M., Khan, M., Clark, R., Williams, G. & Bryant, A. (2016) Predictors of physical activity levels of individuals following traumatic brain injury remain unclear: a systematic review. Brain Injury, 30, 819-828.
Dishman, R., Berthoud, H., Booth, F., Cotman, C., Edgerton, R., Fleshner, M., Gandevia, S., Gomez-Pinilla, F. et al. (2006) Neurobiology of exercise. Obes. Res., 14, 345-356.
Cawthorn, R. (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res., 30, e47.
Feng, J., Zhou, Y., Campbell, S., Le, T., Li, E., Sweat, D., Silva, A. & Fan, G. (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat. Neurosci., 13, 423-430.
Zhang, L., Hu, X., Luo, J., Li, L., Chen, X., Huang, R. & Pei, Z. (2013) Physical exercise improves functional recovery through mitigation of autophagy, attenuation of apoptosis and enhancement of neurogenesis after MCAO in rats. BMC Neurosci., 14, 1-8.
Hehar, H. & Mychasiu
2004; 123
2004; 363
2015; 37
2009; 43
2010; 13
2010; 17
2004; 24
2002; 112
2003; 14
2016; 30
2003; 15
2014; 29
2007; 30
2009; 1288
1992; 50
2010; 67
1997; 147
2013; 14
2013; 54
2013; 53
2016; 87
2016; 86
2008; 62
2007; 24
2001; 896
2014a; 8
2010; 8
1985; 58
2016; 44
2001; 122
2015; 15
2004; 340
2013; 47
2009; 21
2009; 64
2002; 30
2010; 207
2010; 126
2006; 14
2012; 507
2011; 30
2001; 29
2002
2014b; 31
2004; 19
2000; 35
2013; 30
2002; 22
2015; 2015
2003; 24
2005; 51
2005; 6
2016
2005; 3
2016; 257
2016; 174
2001; 75
2014; 31
27455446 - Eur J Neurosci. 2016 Oct;44(7):2405-2406
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Uryu K. (e_1_2_7_55_1) 2002; 22
Schallert T. (e_1_2_7_50_1) 2002
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
Mondon C. (e_1_2_7_36_1) 1985; 58
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Mychasiuk R. (e_1_2_7_38_1) 2014; 8
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_59_1
References_xml – volume: 53
  start-page: 726
  year: 2013
  end-page: 736
  article-title: Sports concussion and associated post‐traumatic headache
  publication-title: Headache
– volume: 86
  start-page: 1856
  year: 2016
  end-page: 1863
  article-title: Preinjury somatization symptoms contribute to clinical recovery after sports‐related concussion
  publication-title: Neurology
– volume: 257
  start-page: 168
  year: 2016
  end-page: 178
  article-title: The direction of the acceleration and rotational forces associated with mild traumatic brain injury in rodents effect behavioural and molecular outcomes
  publication-title: J. Neurosci. Meth.
– volume: 8
  start-page: 73
  year: 2010
  end-page: 79
  article-title: Exercise‐induced hormesis may help healthy aging
  publication-title: Dose‐Response
– volume: 29
  start-page: e45
  year: 2001
  article-title: A new mathematical model for relative quantification in real‐time RT‐PCR
  publication-title: Nucleic Acids Res.
– volume: 112
  start-page: 803
  year: 2002
  end-page: 814
  article-title: A high‐fat, refined sugar diet reduces hippocampal brain‐derived neurotrophic factor, neuronal plasticity, and learning
  publication-title: Neuroscience
– volume: 123
  start-page: 429
  year: 2004
  end-page: 440
  article-title: Exercise reverses the harmful effects of consumption of a high‐fat diet on synaptic and behavioral plasticity associated with the action of brain‐derived neurotrophic factor
  publication-title: Neuroscience
– volume: 75
  start-page: 117
  year: 2001
  end-page: 124
  article-title: The catalytic subunit of telomerase protects neurons against amyloid B‐peptide‐induced apoptosis
  publication-title: J. Neurochem.
– volume: 15
  start-page: 589
  year: 2015
  end-page: 598
  article-title: Predictors of postconcussion syndrome after sports‐related concussion in young athletes: a matched case‐control study
  publication-title: J. Neuros. Pediatr.
– volume: 30
  start-page: 33
  year: 2011
  end-page: 48
  article-title: The molecular pathophysiology of concussive brain injury
  publication-title: Clin. Sport. Med.
– volume: 207
  start-page: 7
  year: 2010
  end-page: 13
  article-title: Juvenile peer play experience and the development of the orbitofrontal and medial prefrontal cortices
  publication-title: Behav. Brain Res.
– volume: 62
  start-page: 302
  year: 2008
  end-page: 309
  article-title: Reference genes for normalization: a study of rat brain tissue
  publication-title: Synapse
– volume: 507
  start-page: 84
  year: 2012
  end-page: 89
  article-title: Relationship between circulating IGF‐1 levels and traumatic brain injury‐induced hippocampal damage and cognitive dysfunction
  publication-title: Neurosci. Lett.
– volume: 363
  start-page: 94
  year: 2004
  end-page: 96
  article-title: Telomerase induction in astrocytes of Sprague Dawley rats after ishemic brain injury
  publication-title: Neurosci. Lett.
– volume: 3
  start-page: 227
  year: 2005
  end-page: 233
  article-title: Conditional DNMT1 deletion in the dorsal forebrain disrupts development of somatosensory barrel cortex and thalamocortical long‐term potentiation
  publication-title: Thalamus Relat. Syst.
– volume: 30
  start-page: 819
  year: 2016
  end-page: 828
  article-title: Predictors of physical activity levels of individuals following traumatic brain injury remain unclear: a systematic review
  publication-title: Brain Injury
– volume: 340
  start-page: 1
  year: 2004
  end-page: 10
  article-title: Genetic and epigenetic modultion of telomerase activity in development and disease
  publication-title: Gene
– volume: 35
  start-page: 489
  year: 2000
  end-page: 502
  article-title: Emerging neuroprotective strategies for Alzheimer's disease: dietary restriction, telomerase activation, and stem cell therapy
  publication-title: Exp. Gerontol.
– volume: 51
  start-page: 71
  year: 2005
  end-page: 85
  article-title: Effectiveness of exercise therapy: a best‐evidence summay of systematic reviews
  publication-title: Aust. J. Physiother.
– volume: 50
  start-page: 135
  year: 1992
  end-page: 145
  article-title: Intrinsic and extrinsic influences on play fighting in rats – effects of dominance, partner's playfulness, temperment, and neonatal expsosure to testosterone proprionate
  publication-title: Behav. Brain Res.
– year: 2016
  article-title: Physical exercise and brain mitochondrial fitness: the possible role against alzheimer's disease
  publication-title: Brain Pathol.
– volume: 29
  start-page: 186
  year: 2014
  end-page: 193
  article-title: Perception of recovery after pediatric mild traumatic brain injury is influenced by the “good old days” bias: tangible implications for clinical practice and outcomes research
  publication-title: Arch. Clin. Neuropsych.
– volume: 15
  start-page: 310
  year: 2003
  end-page: 316
  article-title: Post concussion syndrome
  publication-title: Int. Rev. Psychiat
– volume: 14
  start-page: 125
  year: 2003
  end-page: 130
  article-title: Fitness effects on the cognitive function of older adults: a meta‐analytic study
  publication-title: Psychol. Sci.
– volume: 17
  start-page: 241
  year: 2010
  end-page: 245
  article-title: Object/context‐specific memory deficits associated with loss of hippocampal granule cells after adrenalectomy in rats
  publication-title: Learn. Memory
– volume: 1288
  start-page: 105
  year: 2009
  end-page: 115
  article-title: Exercise‐induced improvement in cognitive performance after traumatic brain injury in rats is dependent on BDNF activation
  publication-title: Brain Res.
– volume: 147
  start-page: 418
  year: 1997
  end-page: 427
  article-title: Insulin‐like growth factor‐1 (IGF‐1) improves both neurological motor and cognitive outcome following experimental brain injury
  publication-title: Exp. Neurol.
– volume: 2015
  start-page: 736104
  year: 2015
  article-title: Role and importance of IGF‐1 in traumatic brain injury
  publication-title: BioMed Res. Int.
– volume: 30
  start-page: 281
  year: 2013
  end-page: 291
  article-title: Temperature and heart rate responses to exercise following mild traumatic brain injury
  publication-title: J. Neurotraum.
– volume: 30
  start-page: 464
  year: 2007
  end-page: 472
  article-title: Exercise builds brain health: key roles of growth factor cascades and inflammation
  publication-title: Trends Neurosci.
– volume: 126
  start-page: e374
  year: 2010
  end-page: e381
  article-title: Epidemiology of postconcussion syndrome in pediatric mild traumatic brain injury
  publication-title: Pediatrics
– volume: 14
  start-page: 1
  year: 2013
  end-page: 8
  article-title: Physical exercise improves functional recovery through mitigation of autophagy, attenuation of apoptosis and enhancement of neurogenesis after MCAO in rats
  publication-title: BMC Neurosci.
– volume: 30
  start-page: e47
  year: 2002
  article-title: Telomere measurement by quantitative PCR
  publication-title: Nucleic Acids Res.
– volume: 30
  start-page: 75
  year: 2002
  end-page: 79
  article-title: Exercise enhances and protects brain function
  publication-title: Exercise Sport Sci. R.
– volume: 13
  start-page: 423
  year: 2010
  end-page: 430
  article-title: Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons
  publication-title: Nat. Neurosci.
– volume: 64
  start-page: 1162
  year: 2009
  end-page: 1173
  article-title: Concussion in professional football: animal model of brain injury – Part 15
  publication-title: Neurosurgery
– volume: 122
  start-page: 695
  year: 2001
  end-page: 712
  article-title: Telomere biology in human aging and aging syndromes
  publication-title: Mech. Ageing Dev.
– volume: 24
  start-page: 1280
  year: 2004
  end-page: 1287
  article-title: Extopic expression of the catalytic subunit of telomerase protects against brain injury resulting from ischemia and NMDA‐induced neurotoxicity
  publication-title: J. Neurosci.
– volume: 14
  start-page: 345
  year: 2006
  end-page: 356
  article-title: Neurobiology of exercise
  publication-title: Obes. Res.
– volume: 174
  start-page: 33
  year: 2016
  end-page: 38e.32
  article-title: Specific factors influence post‐concussion symptom duration among youth referred to a sports concussion clinic
  publication-title: J. Pediatr.
– volume: 22
  start-page: 446
  year: 2002
  end-page: 454
  article-title: Repetitive mild brain trauma accelerates AB deposition, lipid peroxidation, and cognitive impairment in a transgenic mouse model of Alzheimer amyloidosis
  publication-title: J. Neurosci.
– volume: 87
  start-page: 11
  year: 2016
  end-page: 18
  article-title: The use of telomere length as a predictive biomarker for injury prognosis in juvenile rats folowing a concussion/mild traumatic brain injury
  publication-title: Neurobiol. Dis.
– volume: 43
  start-page: i51
  year: 2009
  end-page: i55
  article-title: What are the most appropriate return to play guidelines for concussed child athletes
  publication-title: Brit. J. Sport. Med.
– volume: 31
  start-page: 1
  year: 2014b
  end-page: 9
  article-title: Assessment of an experimental rodent model of pediatric mild traumatic brain injury
  publication-title: J. Neurotraum.
– volume: 44
  start-page: 14
  year: 2016
  end-page: 19
  article-title: Depression as a modifying factor in sports‐related concussion: a critical review of the literature
  publication-title: Physician Sports Med.
– volume: 31
  start-page: 674
  year: 2014
  end-page: 682
  article-title: Recovery of stress response coincides with responsiveness to voluntary exercise after traumatic brain injury
  publication-title: J. Neurotraum.
– volume: 47
  start-page: 250
  year: 2013
  end-page: 258
  article-title: Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport held in Zurich, November 2012
  publication-title: Brit. J. Sport. Med.
– volume: 24
  start-page: 77
  year: 2003
  end-page: 84
  article-title: Telomere shortening in T cells correlates with Alzheimer's disease status
  publication-title: Neurobiol. Aging
– volume: 37
  start-page: 1107
  year: 2015
  end-page: 1112
  article-title: Post‐concussion return to play and return to school guidelines for children and youth: a scoping methodology
  publication-title: Disabil. Rehabil.
– volume: 19
  start-page: 1699
  year: 2004
  end-page: 1707
  article-title: The interplay between oxidative stress and brain‐derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition
  publication-title: Eur. J. Neurosci.
– volume: 58
  start-page: 1553
  year: 1985
  end-page: 1557
  article-title: Spontaneous running activity in male rats: effect of age
  publication-title: J. Appl. Physiol.
– volume: 24
  start-page: 1161
  year: 2007
  end-page: 1171
  article-title: Time window for voluntary exercise‐induced inreases in hippocampal neuroplasticity molecules after tramatic brain injury is severity dependent
  publication-title: J. Neurotraum.
– volume: 896
  start-page: 43
  year: 2001
  end-page: 47
  article-title: Limbic dopaminergic adaptation to a stressful stimulus in a rat model of depressino
  publication-title: Brain Res.
– volume: 21
  start-page: 36
  year: 2009
  end-page: 46
  article-title: Consensus statement on concussion in sport – the 3rd International Conference on Concussion in Sport held in Zurich, November 2008
  publication-title: S. Afr. J. Sports Med.
– volume: 8
  start-page: e51820
  year: 2014a
  article-title: A novel model of mild traumatic brain injury for juvenile rats
  publication-title: J. Visual. Exp.
– start-page: 201
  year: 2002
  end-page: 216
– volume: 67
  start-page: 71
  year: 2010
  end-page: 79
  article-title: Effects of aerobic exercise on mild cognitive impairment: a controlled trial
  publication-title: Arch. Neurol.
– volume: 54
  start-page: 252
  year: 2013
  end-page: 263
  article-title: Late exercise reduces neuroinflamation and cognitive dysfunction after traumatic brain injury
  publication-title: Neurobiol. Dis.
– volume: 6
  start-page: 611
  year: 2005
  end-page: 622
  article-title: Telomeres and human disease: ageing, cancer, and beyond
  publication-title: Nat. Rev. Genet.
– ident: e_1_2_7_16_1
  doi: 10.1038/oby.2006.46
– ident: e_1_2_7_2_1
  doi: 10.1016/j.neulet.2004.03.059
– ident: e_1_2_7_30_1
  doi: 10.1155/2015/736104
– ident: e_1_2_7_28_1
  doi: 10.1016/S0047-6374(01)00223-8
– ident: e_1_2_7_23_1
  doi: 10.3109/02699052.2016.1146962
– ident: e_1_2_7_27_1
  doi: 10.1523/JNEUROSCI.4082-03.2004
– ident: e_1_2_7_43_1
  doi: 10.1016/S0197-4580(02)00043-X
– ident: e_1_2_7_53_1
  doi: 10.1080/00913847.2016.1121091
– ident: e_1_2_7_11_1
  doi: 10.1093/nar/30.10.e47
– ident: e_1_2_7_19_1
  doi: 10.1089/neu.2006.0255
– volume: 8
  start-page: e51820
  year: 2014
  ident: e_1_2_7_38_1
  article-title: A novel model of mild traumatic brain injury for juvenile rats
  publication-title: J. Visual. Exp.
  contributor:
    fullname: Mychasiuk R.
– ident: e_1_2_7_10_1
  doi: 10.1093/arclin/act083
– ident: e_1_2_7_57_1
  doi: 10.1111/j.1460-9568.2004.03246.x
– ident: e_1_2_7_35_1
  doi: 10.1016/j.neuroscience.2003.09.020
– start-page: 201
  volume-title: Pharmacology of Cerebral Ischemia
  year: 2002
  ident: e_1_2_7_50_1
  contributor:
    fullname: Schallert T.
– ident: e_1_2_7_15_1
  doi: 10.3109/09638288.2014.952452
– ident: e_1_2_7_26_1
  doi: 10.2203/dose-response.09-048.Ji
– ident: e_1_2_7_47_1
  doi: 10.1136/bjsm.2009.058214
– ident: e_1_2_7_40_1
  doi: 10.1016/j.jneumeth.2015.10.002
– volume: 22
  start-page: 446
  year: 2002
  ident: e_1_2_7_55_1
  article-title: Repetitive mild brain trauma accelerates AB deposition, lipid peroxidation, and cognitive impairment in a transgenic mouse model of Alzheimer amyloidosis
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-02-00446.2002
  contributor:
    fullname: Uryu K.
– ident: e_1_2_7_34_1
  doi: 10.1016/S0306-4522(02)00123-9
– ident: e_1_2_7_59_1
  doi: 10.1186/1471-2202-14-46
– ident: e_1_2_7_18_1
  doi: 10.1017/S1472928807000222
– ident: e_1_2_7_33_1
  doi: 10.1136/bjsports-2013-092313
– ident: e_1_2_7_22_1
  doi: 10.1089/neu.2013.3151
– ident: e_1_2_7_37_1
  doi: 10.3171/2014.10.PEDS14356
– ident: e_1_2_7_29_1
  doi: 10.1016/j.gene.2004.06.011
– ident: e_1_2_7_20_1
  doi: 10.1016/j.brainres.2009.06.045
– ident: e_1_2_7_31_1
  doi: 10.1016/S0531-5565(00)00115-7
– ident: e_1_2_7_42_1
  doi: 10.1016/j.neulet.2011.11.059
– ident: e_1_2_7_14_1
  doi: 10.1016/j.tins.2007.06.011
– ident: e_1_2_7_9_1
  doi: 10.1002/syn.20496
– ident: e_1_2_7_3_1
  doi: 10.1001/archneurol.2009.307
– ident: e_1_2_7_6_1
  doi: 10.1016/j.bbr.2009.09.029
– ident: e_1_2_7_7_1
  doi: 10.1111/bpa.12403
– ident: e_1_2_7_49_1
  doi: 10.1006/exnr.1997.6629
– ident: e_1_2_7_39_1
  doi: 10.1089/neu.2013.3132
– ident: e_1_2_7_44_1
  doi: 10.1016/S0166-4328(05)80295-5
– ident: e_1_2_7_13_1
  doi: 10.1097/00003677-200204000-00006
– ident: e_1_2_7_48_1
  doi: 10.1080/09540260310001606692
– ident: e_1_2_7_54_1
  doi: 10.1101/lm.1746710
– ident: e_1_2_7_21_1
  doi: 10.1089/neu.2012.2616
– ident: e_1_2_7_41_1
  doi: 10.1212/WNL.0000000000002679
– ident: e_1_2_7_52_1
  doi: 10.1016/S0004-9514(05)70036-2
– ident: e_1_2_7_4_1
  doi: 10.1016/j.csm.2010.09.001
– ident: e_1_2_7_8_1
  doi: 10.1038/nrg1656
– ident: e_1_2_7_24_1
  doi: 10.1016/j.nbd.2015.12.007
– ident: e_1_2_7_17_1
  doi: 10.1038/nn.2514
– ident: e_1_2_7_12_1
  doi: 10.1111/1467-9280.t01-1-01430
– ident: e_1_2_7_45_1
  doi: 10.1093/nar/29.9.e45
– ident: e_1_2_7_5_1
  doi: 10.1542/peds.2009-0925
– ident: e_1_2_7_58_1
  doi: 10.1016/S0006-8993(00)03248-0
– ident: e_1_2_7_56_1
  doi: 10.1227/01.NEU.0000345863.99099.C7
– ident: e_1_2_7_32_1
  doi: 10.17159/2413-3108/2009/v21i2a296
– ident: e_1_2_7_46_1
  doi: 10.1016/j.nbd.2012.12.017
– volume: 58
  start-page: 1553
  year: 1985
  ident: e_1_2_7_36_1
  article-title: Spontaneous running activity in male rats: effect of age
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1985.58.5.1553
  contributor:
    fullname: Mondon C.
– ident: e_1_2_7_25_1
  doi: 10.1016/j.jpeds.2016.03.014
– ident: e_1_2_7_51_1
  doi: 10.1111/head.12087
– ident: e_1_2_7_60_1
  doi: 10.1046/j.1471-4159.2000.0750117.x
SSID ssj0008645
Score 2.4782972
Snippet Despite the most common form of brain injury, there has been little progress in the prognosis and treatment of concussion/mild traumatic brain injury (mTBI)....
Abstract Despite the most common form of brain injury, there has been little progress in the prognosis and treatment of concussion/mild traumatic brain injury...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 2407
SubjectTerms Animals
Behavior, Animal - physiology
Brain Concussion - metabolism
Female
Gene Expression - physiology
hippocampus
Male
Memory, Short-Term - physiology
mild traumatic brain injury
Physical Conditioning, Animal
prefrontal cortex
Rats, Sprague-Dawley
rodent models
telomere length
Time Perception - physiology
Title Reducing the time interval between concussion and voluntary exercise restores motor impairment, short-term memory, and alterations to gene expression
URI https://api.istex.fr/ark:/67375/WNG-NBTF6BNS-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.13360
https://www.ncbi.nlm.nih.gov/pubmed/27521273
https://search.proquest.com/docview/1827909607
https://search.proquest.com/docview/1835376432
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbhMxFLWqsoANhZZHeMkgVLHoRHj8isWqLQ1VJWZRWpEFkuUZO6JUdarJRKKs-AR2_B9fwr2emUARIMQuC8dxPPfa53iOzyXkKew4XAcn0flYZiJULDNe6IwFI5wwSrtkx_C6UPvH4mAiJyvkRX8XpvWHWB64YWak9RoT3JXzn5I8fIhDIFgK-TrjGuVcLw9_WEeNVCpQjHZq2YipSecqhCqe5Tcv7UVXcFo__g5oXsataeMZr5F3_ZBbvcnpcNGUw-rTL26O__mfbpDrHSCl220E3SQrIa6Tje0IZPzsgm7SJBFNZ-_r5OpuXx5ug3w9RNNX2PgoQEiKJerpSdJPQmed-IsC164WKLON1EVPcSWMDYyO9oWeaJ0K24Q5hYiZ1RTvbJ7UeGC5RefvgRl8-_wF9w56hoLgi63UTXrB3x400mZGIQMCdNgJeuMtcjzeO9rdz7oqD1kF4OV5VjElmZ6KYEY5K30Q3imAsSZongdYL3SFFnilyL2uWPCIL5icIpXSfgr8i98mq3EWw11CNXeKl8YD5kV7U-7ykslKGZmP5NTLfECe9M_bnrdmHrYnQTD1Nk39gGymSFi2cPUpqt-0tG-LV7bYORqrneKNNQPyuA8VC3OPL1pcDLPF3AJn0wa5of5bG45OOoLDqO60cbb8xVzjjWrNB-RZipY_D9buHRTpw71_b3qfXAPUp1pF4gOy2tSL8BCQVVM-Sin0HaL-IBo
link.rule.ids 315,783,787,1378,27937,27938,46307,46731
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5V7aFcoLQ80hZYEKo41BH2vmKJS1saQml9KKnIBa382IhSdVM5jtRy4idw4__xS5hZ24EiQIhbDpvNZj2zM9_4228AnmLE4dqmkpSPZSBsHgZxIXQQ2likIlY69XIMR4kanIiDkRwtwIv2LkytDzEvuJFn-POaHJwK0j95uf3ouoiwFAL2JXR3Tm758viHeFRP-RbFJKgW9EI1anSFiMcz_-q1aLREG3v5u1TzeubqQ0__FrxvF10zTs66syrr5p9-0XP833-1AjebnJTt1EZ0GxasW4W1HYd4_PyKbTHPEvXl91VY3ms7xK3B12PSfcXYxzCLZNSlnp16CiVO1vC_GMLtfEZMW8dSVzA6DF2Fy2NtrydW-t42dsrQaCYlo2ubpyXVLLfZ9AOCg2-fv1D4YOfECb7a9tP4d_x1rZFVE4ZOYHHChtPr7sBJf3-4NwiaRg9BjvnL8yAPlQz1WNi4F4VZYUWRKsxkY6t5ZPHI0Dmp4GUiKnQe2oJSjFCOCU3pYowQjN-FRTdx9j4wzVPFs7jAtJcUTnkaZaHMVSyjnhwXMurAk_aBm4taz8O0OAi33vit78CWN4X5iLQ8IwKcluZd8soku8O-2k3emrgDj1tbMbj39K4ldXYymxqEbTomeKj_NoaTmI7guKp7taHNfzHSdKla8w488-by58Wa_YPEf1j_96GPYHkwPDo0h6-TNxtwA5NAVRMUN2GxKmf2ASZaVfbQ-9N3fP0kMw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL2qWgnY8Gh5DE-DUMWiGZHEj4m6akuHUiBCpRWzQLKS2FEfqqfKZCTaVT-hO_6PL-FeJxkoAoTYzcLj8Tj32uc4x-cCPMcdJ1Y2E-R8LAJuizBIDFdBaBOe8USqzNsxvE_l1h7fHonRHKx2d2Eaf4jZgRtlhl-vKcFPTPlTkttD10eCJZGvL3CJoUqIaOeHd9RA-grF5KcWDEI5am2FSMYz--qlzWiB5vXL75DmZeDqd57hDfjcjbkRnBz1p3XeL85-sXP8zz91E663iJStNSF0C-asW4SlNYds_PiULTOvEfWH74twdaOrD7cEX3fI9RV3PoYYklGNenbgBZTYWav-Yki2iynpbB3LnGG0FLoaR8e6Sk-s8pVt7IRhyIwrRpc2Dyo6sVxhk32kBt_OL2jzYMekCD5d8d34N_zNSSOrxwxTwGKHraLX3Ya94ebuxlbQlnkICkQvL4MilCJUJbfJIApzY7nJJOLYxKo4srhgqII88HIeGVWE1hDACEVJXEqZEglYfAfm3djZe8BUnMk4TwyCXvI3jbMoD0UhExENRGlE1INn3fPWJ42bh-5YEE699lPfg2UfCbMWWXVE8jcl9Kf0tU7Xd4dyPf2okx487UJF49zTm5bM2fF0opG0qYTIofpbm5isdHiMo7rbxNnsFyNFV6pV3IMXPlr-PFi9uZ36D_f_vekTuPLh1VC_e5O-fQDXEAHKRp34EObramofIcqq88c-m74D_Qwi4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reducing+the+time+interval+between+concussion+and+voluntary+exercise+restores+motor+impairment%2C+short-term+memory%2C+and+alterations+to+gene+expression&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Mychasiuk%2C+Richelle&rft.au=Hehar%2C+Harleen&rft.au=Ma%2C+Irene&rft.au=Candy%2C+Sydney&rft.date=2016-10-01&rft.eissn=1460-9568&rft.volume=44&rft.issue=7&rft.spage=2407&rft_id=info:doi/10.1111%2Fejn.13360&rft_id=info%3Apmid%2F27521273&rft.externalDocID=27521273
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon