Phosphorous runoff risk assessment and its potential management using wollastonite according to geochemical modeling
Loss of phosphorus from agricultural land through water runoff causes serious detrimental effects on the environment and on water quality. Phosphorous runoff from excessive use of fertilizers can cause algal blooms to grow in nearby water systems, producing toxins that contaminate drinking water sou...
Saved in:
Published in | Open agriculture Vol. 4; no. 1; pp. 787 - 794 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
De Gruyter
31.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Loss of phosphorus from agricultural land through water runoff causes serious detrimental effects on the environment and on water quality. Phosphorous runoff from excessive use of fertilizers can cause algal blooms to grow in nearby water systems, producing toxins that contaminate drinking water sources and recreational water. In this study, a risk analysis of the algal toxin micro-cystin-LR and the mitigation of phosphorus from agriculture runoff is discussed. A risk analysis was performed on the algal bloom toxin microcystin-LR considering the Lake Erie algal bloom event of 2011 as a case study. Toxicity risk analysis results show that relatively low concentrations of microcystin-LR compared to recent case studies pose an acute health risk to both children and adults, and a significant increase in the risk of developing cancer is suggested but subject to further study given the assumptions made. This study investigated the potential of using wollastonite to mitigate phosphorus pollution, considering thermodynamic conditions of a constructed wetland receiving influent water from agriculture runoff, by using geochemical modelling. Geochemical modelling results show that wollastonite can react with phosphorus and capture it in the stable mineral form of hydroxyapatite, offering a possible strategy for risk mitigation of phosphorous runoff. A removal efficiency of 77% of phosphorus using wollastonite is calculated with the help of geochemical modelling. |
---|---|
AbstractList | Loss of phosphorus from agricultural land through water runoff causes serious detrimental effects on the environment and on water quality. Phosphorous runoff from excessive use of fertilizers can cause algal blooms to grow in nearby water systems, producing toxins that contaminate drinking water sources and recreational water. In this study, a risk analysis of the algal toxin micro-cystin-LR and the mitigation of phosphorus from agriculture runoff is discussed. A risk analysis was performed on the algal bloom toxin microcystin-LR considering the Lake Erie algal bloom event of 2011 as a case study. Toxicity risk analysis results show that relatively low concentrations of microcystin-LR compared to recent case studies pose an acute health risk to both children and adults, and a significant increase in the risk of developing cancer is suggested but subject to further study given the assumptions made. This study investigated the potential of using wollastonite to mitigate phosphorus pollution, considering thermodynamic conditions of a constructed wetland receiving influent water from agriculture runoff, by using geochemical modelling. Geochemical modelling results show that wollastonite can react with phosphorus and capture it in the stable mineral form of hydroxyapatite, offering a possible strategy for risk mitigation of phosphorous runoff. A removal efficiency of 77% of phosphorus using wollastonite is calculated with the help of geochemical modelling. |
Author | Santos, Rafael M. Chiang, Yi Wai Hayder, Aneela Vanderburgt, Stephen |
Author_xml | – sequence: 1 givenname: Aneela surname: Hayder fullname: Hayder, Aneela organization: School of Engineering, University of Guelph, Guelph, Ontario, Canada – sequence: 2 givenname: Stephen surname: Vanderburgt fullname: Vanderburgt, Stephen organization: School of Engineering, University of Guelph, Guelph, Ontario, Canada – sequence: 3 givenname: Rafael M. surname: Santos fullname: Santos, Rafael M. organization: School of Engineering, University of Guelph, Guelph, Ontario, Canada – sequence: 4 givenname: Yi Wai surname: Chiang fullname: Chiang, Yi Wai email: chiange@uoguelph.ca organization: School of Engineering, University of Guelph, Guelph, Ontario, Canada |
BookMark | eNp1kUFv1DAQhSNUJErplbOPXFLsOIljcUIVlEqV4ABna9aeZL0knsV2VPXf1-mCVCH15PHzfE_jeW-rs0ABq-q94FeiE91HOsJUN1zomnPVvarOG6lFrTspzp7Vb6rLlA6cc9EroYfmvMo_9pSOe4q0JhbXQOPIok-_GaSEKS0YMoPgmM-JHSmXq4eZLRBgwqfHNfkwsXuaZ0iZgs_IwFqKbpMzsQnJ7nHxdsPI4Vz0d9XrEeaEl3_Pi-rX1y8_r7_Vd99vbq8_39W2lTzXY8-7XlneOEC0uBu0G1S7U73jSms7onBq18selIah7ZXGfmwbWRrROhxBXlS3J19HcDDH6BeID4bAmyeB4mQgZm9nNI3VsudysHqA1mqlR95qpzvXCNx1zhavDyevY6Q_K6ZsFp8slm8HLLszTSu1VEOjmtLanlptpJQijsb6DNlTyBH8bAQ3W2Zmy8xsmZkts4Jd_Yf9m_hF4NMJuIc5Y3Q4xfWhFOZAawxlsS-ArVCDko99gbLV |
CitedBy_id | crossref_primary_10_1007_s10653_021_00862_w crossref_primary_10_1016_j_ecoleng_2020_105725 crossref_primary_10_1016_j_apgeochem_2022_105511 crossref_primary_10_1016_j_seppur_2024_128668 crossref_primary_10_3390_min11121378 |
Cites_doi | 10.1016/j.yrtph.2015.12.007 10.1007/s10661-014-3710-0 10.1016/j.egypro.2014.11.404 10.1007/s11273-007-9037-7 10.1021/nn405246h 10.4319/lo.1982.27.6.1101 10.1016/j.chemgeo.2009.05.003 10.1557/JMR.1998.0015 10.1016/j.apgeochem.2009.09.020 10.1016/S0925-8574(02)00014-9 10.15666/aeer/1403_695710 10.3390/w10111619 10.1016/j.marpolbul.2015.01.001 10.3390/ijerph121214969 10.1093/plankt/8.4.597 10.3390/ma9040287 10.1002/(SICI)1522-7278(2000)15:2<120::AID-TOX8>3.0.CO;2-X 10.3390/ijerph2005010043 10.1007/BF01629424 10.1016/j.watres.2003.08.025 10.1016/S0925-8574(99)00056-7 10.1016/j.cej.2016.09.029 10.1016/j.envpol.2010.09.019 10.1080/07438141.2011.557765 10.1139/f87-073 10.1016/j.mehy.2008.11.041 10.1073/pnas.1216006110 10.1016/j.apgeochem.2018.01.014 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1515/opag-2019-0075 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2391-9531 |
EndPage | 794 |
ExternalDocumentID | oai_doaj_org_article_2c936038c98a4c979f049d95d21eb5dc 10_1515_opag_2019_0075 10_1515_opag_2019_007541787 |
GeographicLocations | Lake Erie |
GeographicLocations_xml | – name: Lake Erie |
GroupedDBID | AAFWJ AAHBH ABFKT ACGFS ADBBV AFBDD AFPKN AHGSO ALMA_UNASSIGNED_HOLDINGS BCNDV EBS ECGQY GROUPED_DOAJ KQ8 M~E OK1 QD8 AAYXX CITATION EJD 7S9 L.6 |
ID | FETCH-LOGICAL-c430t-f60567c02daeeceb89d874b76d0799cfe1d7b636a79a84679e6f423eb8ecdefa3 |
IEDL.DBID | DOA |
ISSN | 2391-9531 |
IngestDate | Wed Aug 27 01:31:21 EDT 2025 Fri Jul 11 01:42:15 EDT 2025 Tue Jul 01 03:00:09 EDT 2025 Thu Apr 24 23:00:18 EDT 2025 Thu Jul 10 10:38:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 Public License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c430t-f60567c02daeeceb89d874b76d0799cfe1d7b636a79a84679e6f423eb8ecdefa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/2c936038c98a4c979f049d95d21eb5dc |
PQID | 2439378272 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2c936038c98a4c979f049d95d21eb5dc proquest_miscellaneous_2439378272 crossref_citationtrail_10_1515_opag_2019_0075 crossref_primary_10_1515_opag_2019_0075 walterdegruyter_journals_10_1515_opag_2019_007541787 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-31 |
PublicationDateYYYYMMDD | 2019-12-31 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-31 day: 31 |
PublicationDecade | 2010 |
PublicationTitle | Open agriculture |
PublicationYear | 2019 |
Publisher | De Gruyter |
Publisher_xml | – name: De Gruyter |
References | 2022042708363751671_j_opag-2019-0075_ref_017_w2aab3b7c75b1b6b1ab1ac17Aa 2022042708363751671_j_opag-2019-0075_ref_026_w2aab3b7c75b1b6b1ab1ac26Aa 2022042708363751671_j_opag-2019-0075_ref_004_w2aab3b7c75b1b6b1ab1ab4Aa 2022042708363751671_j_opag-2019-0075_ref_013_w2aab3b7c75b1b6b1ab1ac13Aa 2022042708363751671_j_opag-2019-0075_ref_022_w2aab3b7c75b1b6b1ab1ac22Aa 2022042708363751671_j_opag-2019-0075_ref_008_w2aab3b7c75b1b6b1ab1ab8Aa 2022042708363751671_j_opag-2019-0075_ref_001_w2aab3b7c75b1b6b1ab1ab1Aa 2022042708363751671_j_opag-2019-0075_ref_025_w2aab3b7c75b1b6b1ab1ac25Aa 2022042708363751671_j_opag-2019-0075_ref_003_w2aab3b7c75b1b6b1ab1ab3Aa 2022042708363751671_j_opag-2019-0075_ref_016_w2aab3b7c75b1b6b1ab1ac16Aa 2022042708363751671_j_opag-2019-0075_ref_012_w2aab3b7c75b1b6b1ab1ac12Aa 2022042708363751671_j_opag-2019-0075_ref_021_w2aab3b7c75b1b6b1ab1ac21Aa 2022042708363751671_j_opag-2019-0075_ref_030_w2aab3b7c75b1b6b1ab1ac30Aa 2022042708363751671_j_opag-2019-0075_ref_029_w2aab3b7c75b1b6b1ab1ac29Aa 2022042708363751671_j_opag-2019-0075_ref_007_w2aab3b7c75b1b6b1ab1ab7Aa 2022042708363751671_j_opag-2019-0075_ref_015_w2aab3b7c75b1b6b1ab1ac15Aa 2022042708363751671_j_opag-2019-0075_ref_024_w2aab3b7c75b1b6b1ab1ac24Aa 2022042708363751671_j_opag-2019-0075_ref_011_w2aab3b7c75b1b6b1ab1ac11Aa 2022042708363751671_j_opag-2019-0075_ref_020_w2aab3b7c75b1b6b1ab1ac20Aa 2022042708363751671_j_opag-2019-0075_ref_010_w2aab3b7c75b1b6b1ab1ac10Aa 2022042708363751671_j_opag-2019-0075_ref_006_w2aab3b7c75b1b6b1ab1ab6Aa 2022042708363751671_j_opag-2019-0075_ref_019_w2aab3b7c75b1b6b1ab1ac19Aa 2022042708363751671_j_opag-2019-0075_ref_028_w2aab3b7c75b1b6b1ab1ac28Aa 2022042708363751671_j_opag-2019-0075_ref_014_w2aab3b7c75b1b6b1ab1ac14Aa 2022042708363751671_j_opag-2019-0075_ref_027_w2aab3b7c75b1b6b1ab1ac27Aa 2022042708363751671_j_opag-2019-0075_ref_005_w2aab3b7c75b1b6b1ab1ab5Aa 2022042708363751671_j_opag-2019-0075_ref_023_w2aab3b7c75b1b6b1ab1ac23Aa 2022042708363751671_j_opag-2019-0075_ref_009_w2aab3b7c75b1b6b1ab1ab9Aa 2022042708363751671_j_opag-2019-0075_ref_018_w2aab3b7c75b1b6b1ab1ac18Aa 2022042708363751671_j_opag-2019-0075_ref_002_w2aab3b7c75b1b6b1ab1ab2Aa |
References_xml | – ident: 2022042708363751671_j_opag-2019-0075_ref_002_w2aab3b7c75b1b6b1ab1ab2Aa doi: 10.1016/j.yrtph.2015.12.007 – ident: 2022042708363751671_j_opag-2019-0075_ref_015_w2aab3b7c75b1b6b1ab1ac15Aa doi: 10.1007/s10661-014-3710-0 – ident: 2022042708363751671_j_opag-2019-0075_ref_023_w2aab3b7c75b1b6b1ab1ac23Aa doi: 10.1016/j.egypro.2014.11.404 – ident: 2022042708363751671_j_opag-2019-0075_ref_006_w2aab3b7c75b1b6b1ab1ab6Aa doi: 10.1007/s11273-007-9037-7 – ident: 2022042708363751671_j_opag-2019-0075_ref_014_w2aab3b7c75b1b6b1ab1ac14Aa doi: 10.1021/nn405246h – ident: 2022042708363751671_j_opag-2019-0075_ref_025_w2aab3b7c75b1b6b1ab1ac25Aa doi: 10.4319/lo.1982.27.6.1101 – ident: 2022042708363751671_j_opag-2019-0075_ref_010_w2aab3b7c75b1b6b1ab1ac10Aa doi: 10.1016/j.chemgeo.2009.05.003 – ident: 2022042708363751671_j_opag-2019-0075_ref_026_w2aab3b7c75b1b6b1ab1ac26Aa doi: 10.1557/JMR.1998.0015 – ident: 2022042708363751671_j_opag-2019-0075_ref_009_w2aab3b7c75b1b6b1ab1ab9Aa doi: 10.1016/j.apgeochem.2009.09.020 – ident: 2022042708363751671_j_opag-2019-0075_ref_003_w2aab3b7c75b1b6b1ab1ab3Aa doi: 10.1016/S0925-8574(02)00014-9 – ident: 2022042708363751671_j_opag-2019-0075_ref_021_w2aab3b7c75b1b6b1ab1ac21Aa doi: 10.15666/aeer/1403_695710 – ident: 2022042708363751671_j_opag-2019-0075_ref_008_w2aab3b7c75b1b6b1ab1ab8Aa doi: 10.3390/w10111619 – ident: 2022042708363751671_j_opag-2019-0075_ref_017_w2aab3b7c75b1b6b1ab1ac17Aa doi: 10.1016/j.marpolbul.2015.01.001 – ident: 2022042708363751671_j_opag-2019-0075_ref_016_w2aab3b7c75b1b6b1ab1ac16Aa doi: 10.3390/ijerph121214969 – ident: 2022042708363751671_j_opag-2019-0075_ref_018_w2aab3b7c75b1b6b1ab1ac18Aa doi: 10.1093/plankt/8.4.597 – ident: 2022042708363751671_j_opag-2019-0075_ref_027_w2aab3b7c75b1b6b1ab1ac27Aa doi: 10.3390/ma9040287 – ident: 2022042708363751671_j_opag-2019-0075_ref_012_w2aab3b7c75b1b6b1ab1ac12Aa doi: 10.1002/(SICI)1522-7278(2000)15:2<120::AID-TOX8>3.0.CO;2-X – ident: 2022042708363751671_j_opag-2019-0075_ref_011_w2aab3b7c75b1b6b1ab1ac11Aa doi: 10.3390/ijerph2005010043 – ident: 2022042708363751671_j_opag-2019-0075_ref_022_w2aab3b7c75b1b6b1ab1ac22Aa doi: 10.1007/BF01629424 – ident: 2022042708363751671_j_opag-2019-0075_ref_005_w2aab3b7c75b1b6b1ab1ab5Aa doi: 10.1016/j.watres.2003.08.025 – ident: 2022042708363751671_j_opag-2019-0075_ref_004_w2aab3b7c75b1b6b1ab1ab4Aa doi: 10.1016/S0925-8574(99)00056-7 – ident: 2022042708363751671_j_opag-2019-0075_ref_028_w2aab3b7c75b1b6b1ab1ac28Aa doi: 10.1016/j.cej.2016.09.029 – ident: 2022042708363751671_j_opag-2019-0075_ref_030_w2aab3b7c75b1b6b1ab1ac30Aa doi: 10.1016/j.envpol.2010.09.019 – ident: 2022042708363751671_j_opag-2019-0075_ref_029_w2aab3b7c75b1b6b1ab1ac29Aa doi: 10.1080/07438141.2011.557765 – ident: 2022042708363751671_j_opag-2019-0075_ref_001_w2aab3b7c75b1b6b1ab1ab1Aa – ident: 2022042708363751671_j_opag-2019-0075_ref_019_w2aab3b7c75b1b6b1ab1ac19Aa doi: 10.1139/f87-073 – ident: 2022042708363751671_j_opag-2019-0075_ref_013_w2aab3b7c75b1b6b1ab1ac13Aa doi: 10.1016/j.mehy.2008.11.041 – ident: 2022042708363751671_j_opag-2019-0075_ref_007_w2aab3b7c75b1b6b1ab1ab7Aa – ident: 2022042708363751671_j_opag-2019-0075_ref_020_w2aab3b7c75b1b6b1ab1ac20Aa doi: 10.1073/pnas.1216006110 – ident: 2022042708363751671_j_opag-2019-0075_ref_024_w2aab3b7c75b1b6b1ab1ac24Aa doi: 10.1016/j.apgeochem.2018.01.014 |
SSID | ssj0001671982 |
Score | 2.1285377 |
Snippet | Loss of phosphorus from agricultural land through water runoff causes serious detrimental effects on the environment and on water quality. Phosphorous runoff... |
SourceID | doaj proquest crossref walterdegruyter |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 787 |
SubjectTerms | adults agricultural land algae algal blooms Algal toxin calcium silicate case studies children Constructed wetland constructed wetlands drinking water fertilizers Geochemical modeling hydroxyapatite Lake Erie microcystin-LR neoplasms phosphorus Phosphorus runoff pollution pollution control risk Risk assessment risk reduction runoff thermodynamics toxicity water quality |
Title | Phosphorous runoff risk assessment and its potential management using wollastonite according to geochemical modeling |
URI | https://www.degruyter.com/doi/10.1515/opag-2019-0075 https://www.proquest.com/docview/2439378272 https://doaj.org/article/2c936038c98a4c979f049d95d21eb5dc |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_QQ8mjp5oUChZ5MbVlrWcckJIRCQg8N5Cb0GDmF1l68XkL-fWa03mUbCLn0KgYj9I3m4Rl9w9hXV1dlFW2RTX2QmfTBZbaIMbPeUlEuCh_ocfLtXXVzL388TB82Rn1RT9iSHnh5cN-F12WVl7XXtZVeKx0xpg16GkQBbho8WV_0eRvJVPq7UinMpsXI0og-m1LQBlWCnuzk1FS44YUSWf8_EebOU6pVB2j6xfOwqo0ml3O9y3bGWJGfL_e4xz5Au88-njf9yJcBB2z4-djNZ49djwk87xdtFyOnbnFu14yb3LaB_x7mfNYN1BqEX_y77nnh1Pfe8CfSBgoDMQDl1lNGSstDxxugkVqJU4CnqTm4_ondX1_9urzJxkEKmZdlPmQRc5ZK-VwEC-DB1TrUSjpVhVxp7SMUQTnEzCptKR7RUEUMs1AQfIBoy89sq-1a-MI42gNAG5ljGiIk2nmrvCoEANTo6F3hJixbHazxI8s4Dbv4YyjbQCAMAWEICENATNi3tfxsya_xpuQF4bSWIl7stIDaYkZtMe9py4SdrVA2eI-oOGJbQIiMkEQNWAslJky-gt-M93r-xtZkgWbv8H_s74htJx1NTJLHbGvoF3CCUc_gTpOCvwAV5gTQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVgewAOFZ9i-TQSEqeoieON4-OCKAu0BYlW6s1y7HEWqU1WWa8q_j0z2TS0oF64WuPIyrNn5tnjZ8beVmWRF8Fmycx5mUjnq8RmISTWWTqUC8J5upx8eFQsTuSX09nplbswVFbpoe42v-JWIXXPt25DG2Wj1gBGYCKUNQJMF3Aw5u0t4_nZbbZTYPZfTtjOfPHpx7c_Oy2FQmYtBsXGf3tfi0i9cP-1bHP3oj-3Hgd1Jfzs32e7Q97I51ugH7Bb0Dxk9-Z1N2hnwCMWvy_b9WrZdkjmebdp2hA4VY5zO6pvctt4_jOu-aqNVCaEXzwf61841cDX_IJmBqWEmIxy64idUnNseQ30vFavL8D7F3Sw_TE72f94_GGRDI8qJE7maUwC8pdCuVR4C-CgKrUvlaxU4VOltQuQeVUhflZpS7mJhiJgyoWG4DwEmz9hk6Zt4Cnj6BsA_WWKlERI9PlWOZUJACgx6FdZNWXJ5Y81blAcp4cvzgwxDwTCEBCGgDAExJS9G-1XW62NGy3fE06jFWlk9w1tV5thyRnhdF6keel0aaXTSgdkQ17PvMigmnk3ZW8uUTa4puigxDaAEBkhSSawFEpMmfwLfjOs8fUNQ5MZusBn_9ftNbuzOD48MAefj74-Z3f7GdprSr5gk9ht4CXmP7F6NUzw3yoXCEo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgKyE4VDzVbXkYCYlT1MTx2vFxeSzLq1SCStwsxx6nSJCssllV_HtmstlAQb1wtcaRlc-emc8ef2bsWVmoXEWXJTMfZCJ9KBOXxZg47-hQLgof6HLyxxO1PJPvvs521YTroawyQNVufnZbhdTj0PgNbZSNWgMYgYlQVggwXcDBmHe8CvE621PK5HLC9ubLN58__d5oURqJtRgEG__tfCkg9br9l5LN_Yv-2Hoc0x_RZ3Gb7Q9pI59vcb7DrkF9l92aV-0gnQH3WHd63qxX502LXJ63m7qJkVPhOHej-CZ3deDfujVfNR1VCeEXf4zlL5xK4Ct-QRODMkLMRbnzRE6puWt4BfS6Vi8vwPsHdLD9PjtbvP7ycpkMbyokXuZpl0SkL0r7VAQH4KEsTCi0LLUKqTbGR8iCLhE-p42j1MSAiphxoSH4ANHlD9ikbmo4YBxdA6C7TJGRCIku32mvMwEABcb8MiunLNn9WOsHwXF69-K7JeKBQFgCwhIQloCYsuej_WortXGl5QvCabQiiey-oWkrO6w4K7zJVZoX3hROeqNNRDIUzCyIDMpZ8FP2dIeyxSVF5ySuBoTICkkqgYXQYsrkX_DbYYmvrxiazNADHv5ftyfsxumrhf3w9uT9EbvZT9BeUfIhm3TtBh5h9tOVj4f5_QuGCwdw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorous+runoff+risk+assessment+and+its+potential+management+using+wollastonite+according+to+geochemical+modeling&rft.jtitle=Open+agriculture&rft.au=Hayder%2C+Aneela&rft.au=Vanderburgt%2C+Stephen&rft.au=Santos%2C+Rafael+M&rft.au=Chiang%2C+Yi+Wai&rft.date=2019-12-31&rft.issn=2391-9531&rft.eissn=2391-9531&rft.volume=4&rft.issue=1+p.787-794&rft.spage=787&rft.epage=794&rft_id=info:doi/10.1515%2Fopag-2019-0075&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2391-9531&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2391-9531&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2391-9531&client=summon |