Parallel Resampling in the Particle Filter
Modern parallel computing devices, such as the graphics processing unit (GPU), have gained significant traction in scientific and statistical computing. They are particularly well-suited to data-parallel algorithms such as the particle filter, or more generally sequential Monte Carlo (SMC), which ar...
Saved in:
Published in | Journal of computational and graphical statistics Vol. 25; no. 3; pp. 789 - 805 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Alexandria
Taylor & Francis
02.07.2016
American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1061-8600 1537-2715 |
DOI | 10.1080/10618600.2015.1062015 |
Cover
Loading…
Abstract | Modern parallel computing devices, such as the graphics processing unit (GPU), have gained significant traction in scientific and statistical computing. They are particularly well-suited to data-parallel algorithms such as the particle filter, or more generally sequential Monte Carlo (SMC), which are increasingly used in statistical inference. SMC methods carry a set of weighted particles through repeated propagation, weighting, and resampling steps. The propagation and weighting steps are straightforward to parallelize, as they require only independent operations on each particle. The resampling step is more difficult, as standard schemes require a collective operation, such as a sum, across particle weights. Focusing on this resampling step, we analyze two alternative schemes that do not involve a collective operation (Metropolis and rejection resamplers), and compare them to standard schemes (multinomial, stratified, and systematic resamplers). We find that, in certain circumstances, the alternative resamplers can perform significantly faster on a GPU, and to a lesser extent on a CPU, than the standard approaches. Moreover, in single precision, the standard approaches are numerically biased for upward of hundreds of thousands of particles, while the alternatives are not. This is particularly important given greater single- than double-precision throughput on modern devices, and the consequent temptation to use single precision with a greater number of particles. Finally, we provide auxiliary functions useful for implementation, such as for the permutation of ancestry vectors to enable in-place propagation. Supplementary materials are available online. |
---|---|
AbstractList | Modern parallel computing devices, such as the graphics processing unit (GPU), have gained significant traction in scientific and statistical computing. They are particularly well-suited to data-parallel algorithms such as the particle filter, or more generally sequential Monte Carlo (SMC), which are increasingly used in statistical inference. SMC methods carry a set of weighted particles through repeated propagation, weighting, and resampling steps. The propagation and weighting steps are straightforward to parallelize, as they require only independent operations on each particle. The resampling step is more difficult, as standard schemes require a collective operation, such as a sum, across particle weights. Focusing on this resampling step, we analyze two alternative schemes that do not involve a collective operation (Metropolis and rejection resamplers), and compare them to standard schemes (multinomial, stratified, and systematic resamplers). We find that, in certain circumstances, the alternative resamplers can perform significantly faster on a GPU, and to a lesser extent on a CPU, than the standard approaches. Moreover, in single precision, the standard approaches are numerically biased for upward of hundreds of thousands of particles, while the alternatives are not. This is particularly important given greater single- than double-precision throughput on modern devices, and the consequent temptation to use single precision with a greater number of particles. Finally, we provide auxiliary functions useful for implementation, such as for the permutation of ancestry vectors to enable in-place propagation. Modern parallel computing devices, such as the graphics processing unit (GPU), have gained significant traction in scientific and statistical computing. They are particularly well-suited to data-parallel algorithms such as the particle filter, or more generally sequential Monte Carlo (SMC), which are increasingly used in statistical inference. SMC methods carry a set of weighted particles through repeated propagation, weighting, and resampling steps. The propagation and weighting steps are straightforward to parallelize, as they require only independent operations on each particle. The resampling step is more difficult, as standard schemes require a collective operation, such as a sum, across particle weights. Focusing on this resampling step, we analyze two alternative schemes that do not involve a collective operation (Metropolis and rejection resamplers), and compare them to standard schemes (multinomial, stratified, and systematic resamplers). We find that, in certain circumstances, the alternative resamplers can perform significantly faster on a GPU, and to a lesser extent on a CPU, than the standard approaches. Moreover, in single precision, the standard approaches are numerically biased for upward of hundreds of thousands of particles, while the alternatives are not. This is particularly important given greater single- than double-precision throughput on modern devices, and the consequent temptation to use single precision with a greater number of particles. Finally, we provide auxiliary functions useful for implementation, such as for the permutation of ancestry vectors to enable in-place propagation. Supplementary materials are available online. |
Author | Jacob, Pierre E. Lee, Anthony Murray, Lawrence M. |
Author_xml | – sequence: 1 givenname: Lawrence M. surname: Murray fullname: Murray, Lawrence M. – sequence: 2 givenname: Anthony surname: Lee fullname: Lee, Anthony – sequence: 3 givenname: Pierre E. surname: Jacob fullname: Jacob, Pierre E. |
BookMark | eNqFkEFLAzEQhYNUsK3-hMKCN2FrstlsdvGiFKtCQRE9h-wm0ZQ0qUmK9N-bZasHD3qaYeZ784Y3ASPrrARghuAcwRpeIlihuoJwXkBE0qjq6xEYI4JpXlBERqlPTN5DJ2ASwhpCiKqGjsHFE_fcGGmyZxn4Zmu0fcu0zeK7zNIq6s7IbKlNlP4UHCtugjw71Cl4Xd6-LO7z1ePdw-JmlXclhjFXuJYdVrSFZctRUeCmpW1LBFJUqKapJcGkFaSBXJUQi5oSwmXqOCWqEkrgKTgf7m69-9jJENna7bxNlgzVqKhwmZ5PFBmozrsQvFRs6_WG-z1DkPWxsO9YWB8HO8SSdFe_dJ2OPGpno-fa_KueDep1iM7_WJZlneim_-p62GurnN_wT-eNYJHvjfPKc9vpwPDfFl8jLYTJ |
CitedBy_id | crossref_primary_10_1016_j_jocs_2020_101125 crossref_primary_10_1214_18_EJS1433 crossref_primary_10_1186_s13634_017_0505_9 crossref_primary_10_1007_s11071_021_06913_2 crossref_primary_10_1016_j_csda_2017_02_003 crossref_primary_10_1155_2021_1999154 crossref_primary_10_1109_TSIPN_2022_3146051 crossref_primary_10_1007_s11227_024_05984_3 crossref_primary_10_1080_15376494_2024_2355371 crossref_primary_10_1109_TAES_2023_3345825 crossref_primary_10_1007_s11222_020_09969_z crossref_primary_10_1142_S0219477523500372 crossref_primary_10_1007_s11222_018_9809_3 crossref_primary_10_1007_s11222_017_9783_1 crossref_primary_10_1080_01621459_2022_2087659 crossref_primary_10_1016_j_csda_2020_107151 crossref_primary_10_3390_app7111152 crossref_primary_10_3390_a14120342 crossref_primary_10_1109_ACCESS_2019_2897321 crossref_primary_10_1214_20_BA1222 crossref_primary_10_1016_j_parco_2022_102994 crossref_primary_10_3390_s22166276 crossref_primary_10_1007_s11265_017_1254_6 crossref_primary_10_1002_sim_9351 crossref_primary_10_1080_01621459_2018_1505625 crossref_primary_10_1029_2022EF003050 crossref_primary_10_1111_sjos_12408 crossref_primary_10_1017_dce_2021_6 crossref_primary_10_1152_jn_00684_2017 crossref_primary_10_1016_j_knosys_2020_105486 crossref_primary_10_1016_j_jedc_2020_103851 crossref_primary_10_1080_10618600_2023_2231514 crossref_primary_10_1109_ACCESS_2021_3094962 crossref_primary_10_1016_j_neucom_2019_06_003 crossref_primary_10_1016_j_epidem_2019_100363 crossref_primary_10_3390_a18010014 crossref_primary_10_1109_JSEN_2022_3208013 crossref_primary_10_1093_biomet_asac015 crossref_primary_10_1093_jrsssb_qkac007 crossref_primary_10_1016_j_dsp_2021_103261 crossref_primary_10_1063_5_0058367 crossref_primary_10_2139_ssrn_2602418 crossref_primary_10_1016_j_micpro_2022_104576 crossref_primary_10_1103_PRXQuantum_2_040343 crossref_primary_10_3390_app142311466 crossref_primary_10_1016_j_ecoinf_2024_102486 crossref_primary_10_1080_01621459_2018_1518237 crossref_primary_10_1177_01423312241267042 crossref_primary_10_1109_ACCESS_2019_2910163 crossref_primary_10_1214_21_BA1265 crossref_primary_10_1016_j_epidem_2019_100383 crossref_primary_10_1038_s41467_022_28153_7 crossref_primary_10_1016_j_measurement_2022_110836 crossref_primary_10_1109_ACCESS_2024_3360883 crossref_primary_10_1109_JSEN_2022_3222639 crossref_primary_10_3390_app11156891 crossref_primary_10_1109_LSP_2020_3014035 crossref_primary_10_1109_TIM_2020_3041077 crossref_primary_10_1080_01621459_2018_1548856 crossref_primary_10_3390_app10217622 crossref_primary_10_1214_19_AOAS1305 crossref_primary_10_1080_10618600_2020_1840998 crossref_primary_10_1214_22_AOS2222 |
Cites_doi | 10.1063/1.1699114 10.1109/ISPA.2005.195385 10.1109/IPDPSW.2012.184 10.1080/10618600.2015.1060885 10.18637/jss.v067.i10 10.1007/BF00162521 10.1006/jpdc.2002.1843 10.1109/NSSPW.2006.4378818 10.1007/978-1-4684-9393-1 10.1080/01621459.1995.10476549 10.1080/01621459.1998.10473764 10.1145/1572769.1572792 10.1007/s10463-014-0446-0 10.1214/aos/1033066201 10.1109/TPDS.2011.61 10.1109/SIPS.2010.5624805 10.1093/biomet/89.3.539 10.1016/j.spl.2007.05.011 10.1109/TSP.2005.849185 10.1198/jcgs.2010.10039 10.1080/10618600.1996.10474692 10.1111/j.1467-9868.2009.00736.x 10.1007/s11222-011-9231-6 10.1007/978-1-4757-3437-9 10.1115/1.3662552 10.1093/sysbio/syr131 10.1007/s11222-011-9299-z |
ContentType | Journal Article |
Copyright | 2016 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2016 2016 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America Copyright American Statistical Association 2016 |
Copyright_xml | – notice: 2016 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2016 – notice: 2016 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America – notice: Copyright American Statistical Association 2016 |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1080/10618600.2015.1062015 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1537-2715 |
EndPage | 805 |
ExternalDocumentID | 4152876131 10_1080_10618600_2015_1062015 44861891 1062015 |
Genre | Article Feature |
GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 2AX 30N 4.4 5GY AAENE AAJMT AAKYL AALDU AAMIU AAPUL AAQRR ABBHK ABCCY ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABQDR ABTAI ABXSQ ABXUL ABXYU ABYWD ACDIW ACGFO ACGFS ACIWK ACMTB ACTIO ACTMH ADCVX ADGTB ADODI ADULT AEGXH AELLO AENEX AEOZL AEPSL AEUPB AEYOC AFVYC AGDLA AGMYJ AHDZW AIAGR AIJEM AKBRZ AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AQRUH ARCSS AVBZW AWYRJ BHOJU BLEHA CCCUG CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P GTTXZ H13 HF~ HQ6 HZ~ H~P IAO IEA IGG IGS IOF IPNFZ IPSME J.P JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ RWL RXW S-T SA0 SNACF TAE TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS UT5 UU3 WZA XWC ZGOLN ~S~ AAGDL AAHIA AAWIL ABAWQ ACHJO ADXHL ADYSH AFRVT AGLNM AIHAF AMPGV AMVHM AAYXX CITATION JQ2 TASJS |
ID | FETCH-LOGICAL-c430t-f38ec3f7b04ba12239b7bb5d1f7df998e535bd590af403d8755ae403a75f6dfd3 |
ISSN | 1061-8600 |
IngestDate | Wed Aug 13 04:43:41 EDT 2025 Thu Apr 24 23:04:30 EDT 2025 Tue Jul 01 02:05:28 EDT 2025 Thu May 29 13:20:42 EDT 2025 Wed Dec 25 09:02:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c430t-f38ec3f7b04ba12239b7bb5d1f7df998e535bd590af403d8755ae403a75f6dfd3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 1812634001 |
PQPubID | 29738 |
PageCount | 17 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_10618600_2015_1062015 proquest_journals_1812634001 crossref_primary_10_1080_10618600_2015_1062015 crossref_citationtrail_10_1080_10618600_2015_1062015 jstor_primary_44861891 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-07-02 |
PublicationDateYYYYMMDD | 2016-07-02 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Alexandria |
PublicationPlace_xml | – name: Alexandria |
PublicationTitle | Journal of computational and graphical statistics |
PublicationYear | 2016 |
Publisher | Taylor & Francis American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America – name: Taylor & Francis Ltd |
References | Aila T. (cit0001) 2009 Moral P. (cit0011) 2006; 68 cit0033 cit0012 cit0010 cit0032 Gordon N. (cit0016) 1993; 140 Hendeby G. (cit0018) 2010; 2010 Mingas G. (cit0030) 2012 cit0019 Harris M. (cit0017) 2007 cit0015 cit0038 cit0013 cit0035 cit0014 cit0036 cit0023 cit0020 cit0021 Chopin N. (cit0009) 2010 Naesseth C.A. (cit0034) 2014 Murray L.M. (cit0031) 2011 Whiteley N. (cit0037) 2016; 22 cit0008 cit0006 cit0028 cit0007 Klaas M. (cit0022) 2006 cit0029 cit0004 cit0026 cit0005 cit0027 cit0002 cit0024 cit0003 cit0025 |
References_xml | – volume-title: GPU Gems 3 year: 2007 ident: cit0017 – ident: cit0029 doi: 10.1063/1.1699114 – ident: cit0012 doi: 10.1109/ISPA.2005.195385 – ident: cit0036 – ident: cit0015 doi: 10.1109/IPDPSW.2012.184 – start-page: 91 year: 2010 ident: cit0009 publication-title: Bayesian Statistics 9: Proceedings of the Ninth Valencia International Meeting – ident: cit0038 doi: 10.1080/10618600.2015.1060885 – ident: cit0033 doi: 10.18637/jss.v067.i10 – year: 2006 ident: cit0022 publication-title: Proceedings of the 23rd International Conference on Machine Learning – ident: cit0024 doi: 10.1007/BF00162521 – ident: cit0005 doi: 10.1006/jpdc.2002.1843 – ident: cit0027 doi: 10.1109/NSSPW.2006.4378818 – ident: cit0010 doi: 10.1007/978-1-4684-9393-1 – ident: cit0025 doi: 10.1080/01621459.1995.10476549 – volume: 2010 start-page: 1 year: 2010 ident: cit0018 publication-title: EURASIP Journal on Advances in Signal Processing – ident: cit0026 doi: 10.1080/01621459.1998.10473764 – start-page: 145 year: 2009 ident: cit0001 publication-title: Proceedings of High-Performance Graphics 2009 doi: 10.1145/1572769.1572792 – year: 2011 ident: cit0031 publication-title: DMMD: Distributed Machine Learning and Sparse Representation With Massive Data Sets – volume: 68 start-page: 441 year: 2006 ident: cit0011 publication-title: Journal of the Royal Statistical Society – ident: cit0021 doi: 10.1007/s10463-014-0446-0 – ident: cit0028 doi: 10.1214/aos/1033066201 – ident: cit0032 doi: 10.1109/TPDS.2011.61 – ident: cit0007 doi: 10.1109/SIPS.2010.5624805 – ident: cit0008 doi: 10.1093/biomet/89.3.539 – ident: cit0014 doi: 10.1016/j.spl.2007.05.011 – ident: cit0003 doi: 10.1109/TSP.2005.849185 – ident: cit0023 doi: 10.1198/jcgs.2010.10039 – ident: cit0020 doi: 10.1080/10618600.1996.10474692 – ident: cit0002 doi: 10.1111/j.1467-9868.2009.00736.x – volume: 140 start-page: 107 year: 1993 ident: cit0016 publication-title: IEE Proceedings-F – volume: 22 year: 2016 ident: cit0037 publication-title: Bernoulli Society for Mathematical Statistics and Probability – start-page: 1862 year: 2014 ident: cit0034 publication-title: Advances in Neural Information Processing Systems – ident: cit0006 doi: 10.1007/s11222-011-9231-6 – ident: cit0013 doi: 10.1007/978-1-4757-3437-9 – ident: cit0019 doi: 10.1115/1.3662552 – year: 2012 ident: cit0030 publication-title: IEEE 20th International Symposium on Field-Programmable Custom Computing Machines – ident: cit0004 doi: 10.1093/sysbio/syr131 – ident: cit0035 doi: 10.1007/s11222-011-9299-z |
SSID | ssj0001697 |
Score | 2.493251 |
Snippet | Modern parallel computing devices, such as the graphics processing unit (GPU), have gained significant traction in scientific and statistical computing. They... |
SourceID | proquest crossref jstor informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 789 |
SubjectTerms | Algorithms Central processing units CPUs Graphics processing unit Monte Carlo simulation Parallel computing Parallel processing Particle methods Propagation Sequential Monte Carlo Statistical Computing Statistical inference Studies |
Title | Parallel Resampling in the Particle Filter |
URI | https://www.tandfonline.com/doi/abs/10.1080/10618600.2015.1062015 https://www.jstor.org/stable/44861891 https://www.proquest.com/docview/1812634001 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-0vtSHotXi1Sp58MmSc3O7m00eRVqKcOXAFvoW9hMK5ZS7iOBf78x-5NJesdaXXFj2I5ffZGd2d-Y3hHyQ2mhOTVtyVcEChStWNm3tyta6dlZZqazA2OH5eX12yb9eiavNCX6ILun11Py-N67kf1CFMsAVo2QfgezQKRTAPeALV0AYrv-E8UKtMBUK0uOvFbqGx_gUtCUXqfrx6fVN9sDdtkFNyOmQ9wNxDz0QWMdQSSwPLM4jUFYq7nCrX5Gddj6949GTyAgGxxyYcMOJzwLU78odn0zH2wxVHVxSRzuPuHQsm5rGQxSXZ0tZzmSMx8zTaYxjTmLDRnOjjLmCspoN0dbbM3h0ecTRcDD0vRNQWOPvRmXlY_o7mmzwL6wS8WnupsPmXermKXk2gzUF5vlg9HxQ21XKxJP_Zw73auine5_mliFzi-Y2u7Zuqfdgs1y8IHsJ6OJzFIWX5Ilb7pPn84Gpd71Pdr8NML8iH7NAFRuBKq6XBdQvskAVUaBek8vTk4svZ2VKplEazmhfetY4w7zUlGtVgVHYaqm1sJWX1sOa2wkmtBUtVZ5TZmEZK5SDOyWFr6237IDsLL8v3RtSOIYsPsq0tTLcUaG5osb7pob2SEA4ITy_mc4kpnlMeHLT_RWXCZkOzX5EqpWHGrTj1971YY_Lx4Q0HXug7UHAaBiJ8waqtdWEHGXQuvSprzs0g2sG6q46fOxDviW7m8_piOz0q5_uHdixvX4f5O8PnDiOcQ |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50PagH3-L67MGT0LU1j26OIi7rYxcRBW8hT1mUKm734q8308fiA_HgqSVkGjKdTmbSL98AHGbaaJoYEVOVhgSFKhJ3BXexsE6cpDZTluHZ4cGQ9-_p5QN7-HQWBmGVmEP7iiii9NX4ceNmdAOJO8Y0phtWakRmsdDE8ToLc0zwDMs3kGQ49cZpXWAliMQo05zi-e0xX9anL-ylDWLxh9cul6LeMphmEhUC5akzKXTHvH_jd_zfLFdgqY5Uo9PKtFZhxuVrsDiY0ryO12ABQ9WK6Xkdjm7UGxZmeY5u3VghUD1_jEZ5FPpHN7WBRr0R_p3fgPve-d1ZP64rMcSGkqSIPek6Q3ymE6pVGiIKoTOtmU19Zn1I2BwjTFsmEuVpQmzIgZhy4U5lzHPrLdmEVv6Suy2IHEEKGGUEV4a6hGmqEuN9lwd5ZK9rA230L01NU47VMp5lWrOZNnqRqA9Z66UNnanYa8XT8ZeA-PxyZVFukPiqmokkf8hulpYwHSnkuKGbSNuw25iGrH3BWGIMxUnwlen2P8Y8gPn-3eBaXl8Mr3ZgITTxEjV8sgut4m3i9kJsVOj90vg_AME5-7s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7xkBAcaHlEDaXFB05IDjb7cPaISqO0hShCIHFb7bOKGrmIOBd-PTv2OiIgxIGTrdWOVzsez86sv_0G4LjQRtPMiJSqPCQoVJG0L7hLhXXiLLeFsgzPDl-N-PCW_r5jLZpwFmGVmEP7hiii9tX4cd9b3yLiTjGL6YeFGoFZLDRxvK7COg_hCRo2yUYLZ5zH-ipBJEWZ9hDPW49ZWp6WyEtbwOIrp12vRINPoNs5NACUf715pXvm8QW944cm-Rm2Y5yanDeGtQMrrtyFrasFyetsFzYxUG14nvfgZKwesCzLNLl2M4Uw9fJvMimT0D8ZR_NMBhP8N78Pt4OfNz-GaazDkBpKsir1pO8M8YXOqFZ5iCeELrRmNveF9SFdc4wwbZnIlKcZsSEDYsqFO1Uwz623pANr5f_SfYHEESSAUUZwZajLmKYqM973eZBH7rou0Fb90kSScqyVMZV55DJt9SJRHzLqpQu9hdh9w9LxnoB4_m5lVW-P-KaWiSTvyHZqQ1iMFDLc0E3kXThsLUNGTzCTGEFxEjxlfvCBMY9gY3wxkJe_Rn--wmZo4TVk-OwQ1qqHufsWAqNKf69N_wmxJ_po |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Resampling+in+the+Particle+Filter&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Murray%2C+Lawrence+M.&rft.au=Lee%2C+Anthony&rft.au=Jacob%2C+Pierre+E.&rft.date=2016-07-02&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=25&rft.issue=3&rft.spage=789&rft.epage=805&rft_id=info:doi/10.1080%2F10618600.2015.1062015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10618600_2015_1062015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon |