Parallel Resampling in the Particle Filter

Modern parallel computing devices, such as the graphics processing unit (GPU), have gained significant traction in scientific and statistical computing. They are particularly well-suited to data-parallel algorithms such as the particle filter, or more generally sequential Monte Carlo (SMC), which ar...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and graphical statistics Vol. 25; no. 3; pp. 789 - 805
Main Authors Murray, Lawrence M., Lee, Anthony, Jacob, Pierre E.
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 02.07.2016
American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1061-8600
1537-2715
DOI10.1080/10618600.2015.1062015

Cover

Loading…
Abstract Modern parallel computing devices, such as the graphics processing unit (GPU), have gained significant traction in scientific and statistical computing. They are particularly well-suited to data-parallel algorithms such as the particle filter, or more generally sequential Monte Carlo (SMC), which are increasingly used in statistical inference. SMC methods carry a set of weighted particles through repeated propagation, weighting, and resampling steps. The propagation and weighting steps are straightforward to parallelize, as they require only independent operations on each particle. The resampling step is more difficult, as standard schemes require a collective operation, such as a sum, across particle weights. Focusing on this resampling step, we analyze two alternative schemes that do not involve a collective operation (Metropolis and rejection resamplers), and compare them to standard schemes (multinomial, stratified, and systematic resamplers). We find that, in certain circumstances, the alternative resamplers can perform significantly faster on a GPU, and to a lesser extent on a CPU, than the standard approaches. Moreover, in single precision, the standard approaches are numerically biased for upward of hundreds of thousands of particles, while the alternatives are not. This is particularly important given greater single- than double-precision throughput on modern devices, and the consequent temptation to use single precision with a greater number of particles. Finally, we provide auxiliary functions useful for implementation, such as for the permutation of ancestry vectors to enable in-place propagation. Supplementary materials are available online.
AbstractList Modern parallel computing devices, such as the graphics processing unit (GPU), have gained significant traction in scientific and statistical computing. They are particularly well-suited to data-parallel algorithms such as the particle filter, or more generally sequential Monte Carlo (SMC), which are increasingly used in statistical inference. SMC methods carry a set of weighted particles through repeated propagation, weighting, and resampling steps. The propagation and weighting steps are straightforward to parallelize, as they require only independent operations on each particle. The resampling step is more difficult, as standard schemes require a collective operation, such as a sum, across particle weights. Focusing on this resampling step, we analyze two alternative schemes that do not involve a collective operation (Metropolis and rejection resamplers), and compare them to standard schemes (multinomial, stratified, and systematic resamplers). We find that, in certain circumstances, the alternative resamplers can perform significantly faster on a GPU, and to a lesser extent on a CPU, than the standard approaches. Moreover, in single precision, the standard approaches are numerically biased for upward of hundreds of thousands of particles, while the alternatives are not. This is particularly important given greater single- than double-precision throughput on modern devices, and the consequent temptation to use single precision with a greater number of particles. Finally, we provide auxiliary functions useful for implementation, such as for the permutation of ancestry vectors to enable in-place propagation.
Modern parallel computing devices, such as the graphics processing unit (GPU), have gained significant traction in scientific and statistical computing. They are particularly well-suited to data-parallel algorithms such as the particle filter, or more generally sequential Monte Carlo (SMC), which are increasingly used in statistical inference. SMC methods carry a set of weighted particles through repeated propagation, weighting, and resampling steps. The propagation and weighting steps are straightforward to parallelize, as they require only independent operations on each particle. The resampling step is more difficult, as standard schemes require a collective operation, such as a sum, across particle weights. Focusing on this resampling step, we analyze two alternative schemes that do not involve a collective operation (Metropolis and rejection resamplers), and compare them to standard schemes (multinomial, stratified, and systematic resamplers). We find that, in certain circumstances, the alternative resamplers can perform significantly faster on a GPU, and to a lesser extent on a CPU, than the standard approaches. Moreover, in single precision, the standard approaches are numerically biased for upward of hundreds of thousands of particles, while the alternatives are not. This is particularly important given greater single- than double-precision throughput on modern devices, and the consequent temptation to use single precision with a greater number of particles. Finally, we provide auxiliary functions useful for implementation, such as for the permutation of ancestry vectors to enable in-place propagation. Supplementary materials are available online.
Author Jacob, Pierre E.
Lee, Anthony
Murray, Lawrence M.
Author_xml – sequence: 1
  givenname: Lawrence M.
  surname: Murray
  fullname: Murray, Lawrence M.
– sequence: 2
  givenname: Anthony
  surname: Lee
  fullname: Lee, Anthony
– sequence: 3
  givenname: Pierre E.
  surname: Jacob
  fullname: Jacob, Pierre E.
BookMark eNqFkEFLAzEQhYNUsK3-hMKCN2FrstlsdvGiFKtCQRE9h-wm0ZQ0qUmK9N-bZasHD3qaYeZ784Y3ASPrrARghuAcwRpeIlihuoJwXkBE0qjq6xEYI4JpXlBERqlPTN5DJ2ASwhpCiKqGjsHFE_fcGGmyZxn4Zmu0fcu0zeK7zNIq6s7IbKlNlP4UHCtugjw71Cl4Xd6-LO7z1ePdw-JmlXclhjFXuJYdVrSFZctRUeCmpW1LBFJUqKapJcGkFaSBXJUQi5oSwmXqOCWqEkrgKTgf7m69-9jJENna7bxNlgzVqKhwmZ5PFBmozrsQvFRs6_WG-z1DkPWxsO9YWB8HO8SSdFe_dJ2OPGpno-fa_KueDep1iM7_WJZlneim_-p62GurnN_wT-eNYJHvjfPKc9vpwPDfFl8jLYTJ
CitedBy_id crossref_primary_10_1016_j_jocs_2020_101125
crossref_primary_10_1214_18_EJS1433
crossref_primary_10_1186_s13634_017_0505_9
crossref_primary_10_1007_s11071_021_06913_2
crossref_primary_10_1016_j_csda_2017_02_003
crossref_primary_10_1155_2021_1999154
crossref_primary_10_1109_TSIPN_2022_3146051
crossref_primary_10_1007_s11227_024_05984_3
crossref_primary_10_1080_15376494_2024_2355371
crossref_primary_10_1109_TAES_2023_3345825
crossref_primary_10_1007_s11222_020_09969_z
crossref_primary_10_1142_S0219477523500372
crossref_primary_10_1007_s11222_018_9809_3
crossref_primary_10_1007_s11222_017_9783_1
crossref_primary_10_1080_01621459_2022_2087659
crossref_primary_10_1016_j_csda_2020_107151
crossref_primary_10_3390_app7111152
crossref_primary_10_3390_a14120342
crossref_primary_10_1109_ACCESS_2019_2897321
crossref_primary_10_1214_20_BA1222
crossref_primary_10_1016_j_parco_2022_102994
crossref_primary_10_3390_s22166276
crossref_primary_10_1007_s11265_017_1254_6
crossref_primary_10_1002_sim_9351
crossref_primary_10_1080_01621459_2018_1505625
crossref_primary_10_1029_2022EF003050
crossref_primary_10_1111_sjos_12408
crossref_primary_10_1017_dce_2021_6
crossref_primary_10_1152_jn_00684_2017
crossref_primary_10_1016_j_knosys_2020_105486
crossref_primary_10_1016_j_jedc_2020_103851
crossref_primary_10_1080_10618600_2023_2231514
crossref_primary_10_1109_ACCESS_2021_3094962
crossref_primary_10_1016_j_neucom_2019_06_003
crossref_primary_10_1016_j_epidem_2019_100363
crossref_primary_10_3390_a18010014
crossref_primary_10_1109_JSEN_2022_3208013
crossref_primary_10_1093_biomet_asac015
crossref_primary_10_1093_jrsssb_qkac007
crossref_primary_10_1016_j_dsp_2021_103261
crossref_primary_10_1063_5_0058367
crossref_primary_10_2139_ssrn_2602418
crossref_primary_10_1016_j_micpro_2022_104576
crossref_primary_10_1103_PRXQuantum_2_040343
crossref_primary_10_3390_app142311466
crossref_primary_10_1016_j_ecoinf_2024_102486
crossref_primary_10_1080_01621459_2018_1518237
crossref_primary_10_1177_01423312241267042
crossref_primary_10_1109_ACCESS_2019_2910163
crossref_primary_10_1214_21_BA1265
crossref_primary_10_1016_j_epidem_2019_100383
crossref_primary_10_1038_s41467_022_28153_7
crossref_primary_10_1016_j_measurement_2022_110836
crossref_primary_10_1109_ACCESS_2024_3360883
crossref_primary_10_1109_JSEN_2022_3222639
crossref_primary_10_3390_app11156891
crossref_primary_10_1109_LSP_2020_3014035
crossref_primary_10_1109_TIM_2020_3041077
crossref_primary_10_1080_01621459_2018_1548856
crossref_primary_10_3390_app10217622
crossref_primary_10_1214_19_AOAS1305
crossref_primary_10_1080_10618600_2020_1840998
crossref_primary_10_1214_22_AOS2222
Cites_doi 10.1063/1.1699114
10.1109/ISPA.2005.195385
10.1109/IPDPSW.2012.184
10.1080/10618600.2015.1060885
10.18637/jss.v067.i10
10.1007/BF00162521
10.1006/jpdc.2002.1843
10.1109/NSSPW.2006.4378818
10.1007/978-1-4684-9393-1
10.1080/01621459.1995.10476549
10.1080/01621459.1998.10473764
10.1145/1572769.1572792
10.1007/s10463-014-0446-0
10.1214/aos/1033066201
10.1109/TPDS.2011.61
10.1109/SIPS.2010.5624805
10.1093/biomet/89.3.539
10.1016/j.spl.2007.05.011
10.1109/TSP.2005.849185
10.1198/jcgs.2010.10039
10.1080/10618600.1996.10474692
10.1111/j.1467-9868.2009.00736.x
10.1007/s11222-011-9231-6
10.1007/978-1-4757-3437-9
10.1115/1.3662552
10.1093/sysbio/syr131
10.1007/s11222-011-9299-z
ContentType Journal Article
Copyright 2016 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2016
2016 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America
Copyright American Statistical Association 2016
Copyright_xml – notice: 2016 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2016
– notice: 2016 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America
– notice: Copyright American Statistical Association 2016
DBID AAYXX
CITATION
JQ2
DOI 10.1080/10618600.2015.1062015
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-2715
EndPage 805
ExternalDocumentID 4152876131
10_1080_10618600_2015_1062015
44861891
1062015
Genre Article
Feature
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
2AX
30N
4.4
5GY
AAENE
AAJMT
AAKYL
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABCCY
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABQDR
ABTAI
ABXSQ
ABXUL
ABXYU
ABYWD
ACDIW
ACGFO
ACGFS
ACIWK
ACMTB
ACTIO
ACTMH
ADCVX
ADGTB
ADODI
ADULT
AEGXH
AELLO
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFVYC
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AQRUH
ARCSS
AVBZW
AWYRJ
BHOJU
BLEHA
CCCUG
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HQ6
HZ~
H~P
IAO
IEA
IGG
IGS
IOF
IPNFZ
IPSME
J.P
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
UT5
UU3
WZA
XWC
ZGOLN
~S~
AAGDL
AAHIA
AAWIL
ABAWQ
ACHJO
ADXHL
ADYSH
AFRVT
AGLNM
AIHAF
AMPGV
AMVHM
AAYXX
CITATION
JQ2
TASJS
ID FETCH-LOGICAL-c430t-f38ec3f7b04ba12239b7bb5d1f7df998e535bd590af403d8755ae403a75f6dfd3
ISSN 1061-8600
IngestDate Wed Aug 13 04:43:41 EDT 2025
Thu Apr 24 23:04:30 EDT 2025
Tue Jul 01 02:05:28 EDT 2025
Thu May 29 13:20:42 EDT 2025
Wed Dec 25 09:02:44 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c430t-f38ec3f7b04ba12239b7bb5d1f7df998e535bd590af403d8755ae403a75f6dfd3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1812634001
PQPubID 29738
PageCount 17
ParticipantIDs informaworld_taylorfrancis_310_1080_10618600_2015_1062015
proquest_journals_1812634001
crossref_primary_10_1080_10618600_2015_1062015
crossref_citationtrail_10_1080_10618600_2015_1062015
jstor_primary_44861891
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-02
PublicationDateYYYYMMDD 2016-07-02
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-02
  day: 02
PublicationDecade 2010
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of computational and graphical statistics
PublicationYear 2016
Publisher Taylor & Francis
American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
– name: Taylor & Francis Ltd
References Aila T. (cit0001) 2009
Moral P. (cit0011) 2006; 68
cit0033
cit0012
cit0010
cit0032
Gordon N. (cit0016) 1993; 140
Hendeby G. (cit0018) 2010; 2010
Mingas G. (cit0030) 2012
cit0019
Harris M. (cit0017) 2007
cit0015
cit0038
cit0013
cit0035
cit0014
cit0036
cit0023
cit0020
cit0021
Chopin N. (cit0009) 2010
Naesseth C.A. (cit0034) 2014
Murray L.M. (cit0031) 2011
Whiteley N. (cit0037) 2016; 22
cit0008
cit0006
cit0028
cit0007
Klaas M. (cit0022) 2006
cit0029
cit0004
cit0026
cit0005
cit0027
cit0002
cit0024
cit0003
cit0025
References_xml – volume-title: GPU Gems 3
  year: 2007
  ident: cit0017
– ident: cit0029
  doi: 10.1063/1.1699114
– ident: cit0012
  doi: 10.1109/ISPA.2005.195385
– ident: cit0036
– ident: cit0015
  doi: 10.1109/IPDPSW.2012.184
– start-page: 91
  year: 2010
  ident: cit0009
  publication-title: Bayesian Statistics 9: Proceedings of the Ninth Valencia International Meeting
– ident: cit0038
  doi: 10.1080/10618600.2015.1060885
– ident: cit0033
  doi: 10.18637/jss.v067.i10
– year: 2006
  ident: cit0022
  publication-title: Proceedings of the 23rd International Conference on Machine Learning
– ident: cit0024
  doi: 10.1007/BF00162521
– ident: cit0005
  doi: 10.1006/jpdc.2002.1843
– ident: cit0027
  doi: 10.1109/NSSPW.2006.4378818
– ident: cit0010
  doi: 10.1007/978-1-4684-9393-1
– ident: cit0025
  doi: 10.1080/01621459.1995.10476549
– volume: 2010
  start-page: 1
  year: 2010
  ident: cit0018
  publication-title: EURASIP Journal on Advances in Signal Processing
– ident: cit0026
  doi: 10.1080/01621459.1998.10473764
– start-page: 145
  year: 2009
  ident: cit0001
  publication-title: Proceedings of High-Performance Graphics 2009
  doi: 10.1145/1572769.1572792
– year: 2011
  ident: cit0031
  publication-title: DMMD: Distributed Machine Learning and Sparse Representation With Massive Data Sets
– volume: 68
  start-page: 441
  year: 2006
  ident: cit0011
  publication-title: Journal of the Royal Statistical Society
– ident: cit0021
  doi: 10.1007/s10463-014-0446-0
– ident: cit0028
  doi: 10.1214/aos/1033066201
– ident: cit0032
  doi: 10.1109/TPDS.2011.61
– ident: cit0007
  doi: 10.1109/SIPS.2010.5624805
– ident: cit0008
  doi: 10.1093/biomet/89.3.539
– ident: cit0014
  doi: 10.1016/j.spl.2007.05.011
– ident: cit0003
  doi: 10.1109/TSP.2005.849185
– ident: cit0023
  doi: 10.1198/jcgs.2010.10039
– ident: cit0020
  doi: 10.1080/10618600.1996.10474692
– ident: cit0002
  doi: 10.1111/j.1467-9868.2009.00736.x
– volume: 140
  start-page: 107
  year: 1993
  ident: cit0016
  publication-title: IEE Proceedings-F
– volume: 22
  year: 2016
  ident: cit0037
  publication-title: Bernoulli Society for Mathematical Statistics and Probability
– start-page: 1862
  year: 2014
  ident: cit0034
  publication-title: Advances in Neural Information Processing Systems
– ident: cit0006
  doi: 10.1007/s11222-011-9231-6
– ident: cit0013
  doi: 10.1007/978-1-4757-3437-9
– ident: cit0019
  doi: 10.1115/1.3662552
– year: 2012
  ident: cit0030
  publication-title: IEEE 20th International Symposium on Field-Programmable Custom Computing Machines
– ident: cit0004
  doi: 10.1093/sysbio/syr131
– ident: cit0035
  doi: 10.1007/s11222-011-9299-z
SSID ssj0001697
Score 2.493251
Snippet Modern parallel computing devices, such as the graphics processing unit (GPU), have gained significant traction in scientific and statistical computing. They...
SourceID proquest
crossref
jstor
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 789
SubjectTerms Algorithms
Central processing units
CPUs
Graphics processing unit
Monte Carlo simulation
Parallel computing
Parallel processing
Particle methods
Propagation
Sequential Monte Carlo
Statistical Computing
Statistical inference
Studies
Title Parallel Resampling in the Particle Filter
URI https://www.tandfonline.com/doi/abs/10.1080/10618600.2015.1062015
https://www.jstor.org/stable/44861891
https://www.proquest.com/docview/1812634001
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-0vtSHotXi1Sp58MmSc3O7m00eRVqKcOXAFvoW9hMK5ZS7iOBf78x-5NJesdaXXFj2I5ffZGd2d-Y3hHyQ2mhOTVtyVcEChStWNm3tyta6dlZZqazA2OH5eX12yb9eiavNCX6ILun11Py-N67kf1CFMsAVo2QfgezQKRTAPeALV0AYrv-E8UKtMBUK0uOvFbqGx_gUtCUXqfrx6fVN9sDdtkFNyOmQ9wNxDz0QWMdQSSwPLM4jUFYq7nCrX5Gddj6949GTyAgGxxyYcMOJzwLU78odn0zH2wxVHVxSRzuPuHQsm5rGQxSXZ0tZzmSMx8zTaYxjTmLDRnOjjLmCspoN0dbbM3h0ecTRcDD0vRNQWOPvRmXlY_o7mmzwL6wS8WnupsPmXermKXk2gzUF5vlg9HxQ21XKxJP_Zw73auine5_mliFzi-Y2u7Zuqfdgs1y8IHsJ6OJzFIWX5Ilb7pPn84Gpd71Pdr8NML8iH7NAFRuBKq6XBdQvskAVUaBek8vTk4svZ2VKplEazmhfetY4w7zUlGtVgVHYaqm1sJWX1sOa2wkmtBUtVZ5TZmEZK5SDOyWFr6237IDsLL8v3RtSOIYsPsq0tTLcUaG5osb7pob2SEA4ITy_mc4kpnlMeHLT_RWXCZkOzX5EqpWHGrTj1971YY_Lx4Q0HXug7UHAaBiJ8waqtdWEHGXQuvSprzs0g2sG6q46fOxDviW7m8_piOz0q5_uHdixvX4f5O8PnDiOcQ
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50PagH3-L67MGT0LU1j26OIi7rYxcRBW8hT1mUKm734q8308fiA_HgqSVkGjKdTmbSL98AHGbaaJoYEVOVhgSFKhJ3BXexsE6cpDZTluHZ4cGQ9-_p5QN7-HQWBmGVmEP7iiii9NX4ceNmdAOJO8Y0phtWakRmsdDE8ToLc0zwDMs3kGQ49cZpXWAliMQo05zi-e0xX9anL-ylDWLxh9cul6LeMphmEhUC5akzKXTHvH_jd_zfLFdgqY5Uo9PKtFZhxuVrsDiY0ryO12ABQ9WK6Xkdjm7UGxZmeY5u3VghUD1_jEZ5FPpHN7WBRr0R_p3fgPve-d1ZP64rMcSGkqSIPek6Q3ymE6pVGiIKoTOtmU19Zn1I2BwjTFsmEuVpQmzIgZhy4U5lzHPrLdmEVv6Suy2IHEEKGGUEV4a6hGmqEuN9lwd5ZK9rA230L01NU47VMp5lWrOZNnqRqA9Z66UNnanYa8XT8ZeA-PxyZVFukPiqmokkf8hulpYwHSnkuKGbSNuw25iGrH3BWGIMxUnwlen2P8Y8gPn-3eBaXl8Mr3ZgITTxEjV8sgut4m3i9kJsVOj90vg_AME5-7s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7xkBAcaHlEDaXFB05IDjb7cPaISqO0hShCIHFb7bOKGrmIOBd-PTv2OiIgxIGTrdWOVzsez86sv_0G4LjQRtPMiJSqPCQoVJG0L7hLhXXiLLeFsgzPDl-N-PCW_r5jLZpwFmGVmEP7hiii9tX4cd9b3yLiTjGL6YeFGoFZLDRxvK7COg_hCRo2yUYLZ5zH-ipBJEWZ9hDPW49ZWp6WyEtbwOIrp12vRINPoNs5NACUf715pXvm8QW944cm-Rm2Y5yanDeGtQMrrtyFrasFyetsFzYxUG14nvfgZKwesCzLNLl2M4Uw9fJvMimT0D8ZR_NMBhP8N78Pt4OfNz-GaazDkBpKsir1pO8M8YXOqFZ5iCeELrRmNveF9SFdc4wwbZnIlKcZsSEDYsqFO1Uwz623pANr5f_SfYHEESSAUUZwZajLmKYqM973eZBH7rou0Fb90kSScqyVMZV55DJt9SJRHzLqpQu9hdh9w9LxnoB4_m5lVW-P-KaWiSTvyHZqQ1iMFDLc0E3kXThsLUNGTzCTGEFxEjxlfvCBMY9gY3wxkJe_Rn--wmZo4TVk-OwQ1qqHufsWAqNKf69N_wmxJ_po
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Resampling+in+the+Particle+Filter&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Murray%2C+Lawrence+M.&rft.au=Lee%2C+Anthony&rft.au=Jacob%2C+Pierre+E.&rft.date=2016-07-02&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=25&rft.issue=3&rft.spage=789&rft.epage=805&rft_id=info:doi/10.1080%2F10618600.2015.1062015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10618600_2015_1062015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon