A Novel Mesoscale Eddy Identification Method Using Enhanced Interpolation and A Posteriori Guidance

Mesoscale eddies are pivotal oceanographic phenomena affecting marine environments. Accurate and stable identification of these eddies is essential for advancing research on their dynamics and effects. Current methods primarily focus on identifying Cyclonic and Anticyclonic eddies (CE, AE), with ano...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 2; p. 457
Main Authors Zhang, Lei, Ma, Xiaodong, Xu, Weishuai, Wan, Xiang, Chen, Qiyun
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 14.01.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mesoscale eddies are pivotal oceanographic phenomena affecting marine environments. Accurate and stable identification of these eddies is essential for advancing research on their dynamics and effects. Current methods primarily focus on identifying Cyclonic and Anticyclonic eddies (CE, AE), with anomalous eddy identification often requiring secondary analyses of sea surface height anomalies and eddy center properties, leading to segmented data interpretations. This study introduces a deep learning model integrating multi-source fusion data with a Squeeze-and-Excitation (SE) attention mechanism to enhance the identification accuracy for both normal and anomalous eddies. Comparative ablation experiments validate the model’s effectiveness, demonstrating its potential for more nuanced, multi-source, and multi-class mesoscale eddy identification. This approach offers a promising framework for advancing mesoscale eddy identification through deep learning.
AbstractList Mesoscale eddies are pivotal oceanographic phenomena affecting marine environments. Accurate and stable identification of these eddies is essential for advancing research on their dynamics and effects. Current methods primarily focus on identifying Cyclonic and Anticyclonic eddies (CE, AE), with anomalous eddy identification often requiring secondary analyses of sea surface height anomalies and eddy center properties, leading to segmented data interpretations. This study introduces a deep learning model integrating multi-source fusion data with a Squeeze-and-Excitation (SE) attention mechanism to enhance the identification accuracy for both normal and anomalous eddies. Comparative ablation experiments validate the model’s effectiveness, demonstrating its potential for more nuanced, multi-source, and multi-class mesoscale eddy identification. This approach offers a promising framework for advancing mesoscale eddy identification through deep learning.
Mesoscale eddies are pivotal oceanographic phenomena affecting marine environments. Accurate and stable identification of these eddies is essential for advancing research on their dynamics and effects. Current methods primarily focus on identifying Cyclonic and Anticyclonic eddies (CE, AE), with anomalous eddy identification often requiring secondary analyses of sea surface height anomalies and eddy center properties, leading to segmented data interpretations. This study introduces a deep learning model integrating multi-source fusion data with a Squeeze-and-Excitation (SE) attention mechanism to enhance the identification accuracy for both normal and anomalous eddies. Comparative ablation experiments validate the model's effectiveness, demonstrating its potential for more nuanced, multi-source, and multi-class mesoscale eddy identification. This approach offers a promising framework for advancing mesoscale eddy identification through deep learning.Mesoscale eddies are pivotal oceanographic phenomena affecting marine environments. Accurate and stable identification of these eddies is essential for advancing research on their dynamics and effects. Current methods primarily focus on identifying Cyclonic and Anticyclonic eddies (CE, AE), with anomalous eddy identification often requiring secondary analyses of sea surface height anomalies and eddy center properties, leading to segmented data interpretations. This study introduces a deep learning model integrating multi-source fusion data with a Squeeze-and-Excitation (SE) attention mechanism to enhance the identification accuracy for both normal and anomalous eddies. Comparative ablation experiments validate the model's effectiveness, demonstrating its potential for more nuanced, multi-source, and multi-class mesoscale eddy identification. This approach offers a promising framework for advancing mesoscale eddy identification through deep learning.
Author Ma, Xiaodong
Wan, Xiang
Zhang, Lei
Chen, Qiyun
Xu, Weishuai
AuthorAffiliation 2 Dalian Naval Academy Cadet Brigade, Dalian 116000, China; 17640339665@163.com (X.M.); xuweishuai2022@163.com (W.X.); wan759189627@163.com (X.W.); 18940890078@163.com (Q.C.)
1 Department of Military and Marine Mapping, Dalian Naval Academy, Dalian 116021, China
AuthorAffiliation_xml – name: 2 Dalian Naval Academy Cadet Brigade, Dalian 116000, China; 17640339665@163.com (X.M.); xuweishuai2022@163.com (W.X.); wan759189627@163.com (X.W.); 18940890078@163.com (Q.C.)
– name: 1 Department of Military and Marine Mapping, Dalian Naval Academy, Dalian 116021, China
Author_xml – sequence: 1
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
– sequence: 2
  givenname: Xiaodong
  surname: Ma
  fullname: Ma, Xiaodong
– sequence: 3
  givenname: Weishuai
  orcidid: 0009-0003-0061-888X
  surname: Xu
  fullname: Xu, Weishuai
– sequence: 4
  givenname: Xiang
  surname: Wan
  fullname: Wan, Xiang
– sequence: 5
  givenname: Qiyun
  surname: Chen
  fullname: Chen, Qiyun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39860829$$D View this record in MEDLINE/PubMed
BookMark eNpdkktvWyEQRlGVqnm0i_6BCqmbduEWGC5cVpUVuaml9LFo1gjzsLGuwYV7I-Xfl8SplXQF-uZwNBrmHJ2knDxCbyn5BKDI58o6wgjv5At0Rjnjs54xcvLkforOa90SwgCgf4VOQfWC9EydITvHP_KtH_B3X3O1ZvB44dwdXjqfxhiiNWPMqVXHTXb4psa0xou0Mcl6h5dp9GWfhwNjksNz_CvXFsZcIr6aorsHX6OXwQzVv3k8L9DN18Xvy2-z659Xy8v59cxyIOMssM70nVKMSy9UMMIbJqyQkhOyCr0KHbGckwDAiCRuBSwIRyTtLQUQ1MEFWh68Lput3pe4M-VOZxP1Q5DLWpsyRjt4zZlqzxwY6y0Xzqy8aMoWsr75PTTXl4NrP6123tk2jWKGZ9LnlRQ3ep1vNaVSKCZkM3x4NJT8Z_J11LtYrR8Gk3yeqgbaqZ6ABNbQ9_-h2zyV1Gb1QAmqQPJGvXva0rGXf5_ZgI8HwJZca_HhiFCi7xdFHxcF_gJH7a3c
Cites_doi 10.1029/2021GL094772
10.1016/j.asr.2018.07.017
10.1016/0011-7471(70)90059-8
10.32388/E9Y7XI
10.1016/S0097-8493(00)00029-7
10.1016/j.dynatmoce.2010.04.002
10.1016/j.jmarsys.2005.09.016
10.1017/S0022112095000462
10.1002/grl.50736
10.1007/s11433-016-0022-6
10.3390/rs11161921
10.1016/j.cmpb.2020.105489
10.1016/j.inffus.2018.09.006
10.1007/s10872-023-00686-5
10.1109/ACCESS.2019.2931781
10.1146/annurev-marine-022521-102008
10.5194/os-11-67-2015
10.1145/321607.321609
10.1038/ngeo1906
10.1038/ncomms4294
10.1109/IGARSS.2018.8518411
10.1098/rspa.2016.0117
10.1175/2009JTECHO725.1
10.1139/tcsme-1987-0004
10.5670/oceanog.2000.33
10.3389/fmars.2024.1471670
10.5670/oceanog.2009.36
10.1038/sdata.2015.28
10.34133/olar.0051
10.1063/1.857730
10.3390/rs11111349
10.1109/JSTARS.2024.3468457
10.1029/98JC00456
10.1016/j.pocean.2011.01.002
10.1016/0167-2789(91)90088-Q
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25020457
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ - The Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_4298c1d3acec46dabe670d29828f33e3
PMC11769267
39860829
10_3390_s25020457
Genre Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c430t-f25a8599247e69fa6ea26c677400bf89f50c440f332070db32f6d0718c13361d3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:28:07 EDT 2025
Thu Aug 21 18:40:27 EDT 2025
Fri Jul 11 10:52:32 EDT 2025
Fri Jul 25 22:25:18 EDT 2025
Wed Feb 19 02:12:06 EST 2025
Tue Jul 01 02:10:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords YOLO
deep learning
identification method
mesoscale eddy
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-f25a8599247e69fa6ea26c677400bf89f50c440f332070db32f6d0718c13361d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0003-0061-888X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25020457
PMID 39860829
PQID 3159619374
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_4298c1d3acec46dabe670d29828f33e3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11769267
proquest_miscellaneous_3159803732
proquest_journals_3159619374
pubmed_primary_39860829
crossref_primary_10_3390_s25020457
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250114
PublicationDateYYYYMMDD 2025-01-14
PublicationDate_xml – month: 1
  year: 2025
  text: 20250114
  day: 14
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Sadarjoen (ref_14) 2000; 24
Bai (ref_21) 2019; 7
Roemmich (ref_30) 2009; 22
ref_36
ref_13
ref_35
Chelton (ref_1) 2011; 91
Weiss (ref_8) 1991; 48
ref_33
ref_10
Xie (ref_23) 2024; 17
ref_19
Chong (ref_11) 1990; 2
ref_18
ref_17
ref_16
ref_37
Akima (ref_32) 1970; 17
Hunt (ref_9) 1987; 11
Ablain (ref_5) 2015; 11
Jeong (ref_12) 1995; 285
Adamec (ref_4) 1998; 103
Johnson (ref_31) 2022; 14
ref_25
Zhang (ref_34) 2013; 40
Nencioli (ref_15) 2010; 27
ref_24
Metzger (ref_27) 2010; 50
ref_20
Trott (ref_28) 2023; 79
Chassignet (ref_26) 2007; 65
Roemmich (ref_29) 2000; 13
ref_3
Cazenave (ref_6) 2018; 62
Du (ref_22) 2019; 49
Chelton (ref_2) 2013; 6
ref_7
References_xml – ident: ref_24
  doi: 10.1029/2021GL094772
– volume: 62
  start-page: 1639
  year: 2018
  ident: ref_6
  article-title: Contemporary sea level changes from satellite altimetry: What have we learned? What are the new challenges?
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2018.07.017
– ident: ref_7
  doi: 10.1016/0011-7471(70)90059-8
– ident: ref_35
  doi: 10.32388/E9Y7XI
– volume: 24
  start-page: 333
  year: 2000
  ident: ref_14
  article-title: Detection, quantification, and tracking of vortices using streamline geometry
  publication-title: Comput. Graph.
  doi: 10.1016/S0097-8493(00)00029-7
– volume: 50
  start-page: 275
  year: 2010
  ident: ref_27
  article-title: Simulated and observed circulation in the Indonesian Seas: 1/12 global HYCOM and the INSTANT observations
  publication-title: Dyn. Atmos. Ocean.
  doi: 10.1016/j.dynatmoce.2010.04.002
– volume: 65
  start-page: 60
  year: 2007
  ident: ref_26
  article-title: The HYCOM (hybrid coordinate ocean model) data assimilative system
  publication-title: J. Mar. Syst.
  doi: 10.1016/j.jmarsys.2005.09.016
– volume: 285
  start-page: 69
  year: 1995
  ident: ref_12
  article-title: On the identification of a vortex
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112095000462
– volume: 40
  start-page: 3677
  year: 2013
  ident: ref_34
  article-title: Universal structure of mesoscale eddies in the ocean
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/grl.50736
– ident: ref_10
  doi: 10.1007/s11433-016-0022-6
– ident: ref_19
  doi: 10.3390/rs11161921
– ident: ref_37
  doi: 10.1016/j.cmpb.2020.105489
– volume: 49
  start-page: 89
  year: 2019
  ident: ref_22
  article-title: Deep learning with multi-scale feature fusion in remote sensing for automatic oceanic eddy detection
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.09.006
– volume: 79
  start-page: 423
  year: 2023
  ident: ref_28
  article-title: Luzon strait mesoscale eddy characteristics in HYCOM reanalysis, simulation, and forecasts
  publication-title: J. Oceanogr.
  doi: 10.1007/s10872-023-00686-5
– volume: 7
  start-page: 106336
  year: 2019
  ident: ref_21
  article-title: A streampath-based RCNN approach to ocean eddy detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2931781
– volume: 14
  start-page: 379
  year: 2022
  ident: ref_31
  article-title: Argo—Two decades: Global oceanography, revolutionized
  publication-title: Annu. Rev. Mar. Sci.
  doi: 10.1146/annurev-marine-022521-102008
– volume: 11
  start-page: 67
  year: 2015
  ident: ref_5
  article-title: Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project
  publication-title: Ocean Sci.
  doi: 10.5194/os-11-67-2015
– volume: 17
  start-page: 589
  year: 1970
  ident: ref_32
  article-title: A new method of interpolation and smooth curve fitting based on local procedures
  publication-title: J. ACM
  doi: 10.1145/321607.321609
– volume: 6
  start-page: 594
  year: 2013
  ident: ref_2
  article-title: Mesoscale eddy effects
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1906
– ident: ref_16
  doi: 10.1038/ncomms4294
– ident: ref_18
  doi: 10.1109/IGARSS.2018.8518411
– ident: ref_13
  doi: 10.1098/rspa.2016.0117
– volume: 27
  start-page: 564
  year: 2010
  ident: ref_15
  article-title: A vector geometry–based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/2009JTECHO725.1
– ident: ref_25
– volume: 11
  start-page: 21
  year: 1987
  ident: ref_9
  article-title: Vorticity and vortex dynamics in complex turbulent flows
  publication-title: Trans. Can. Soc. Mech. Eng.
  doi: 10.1139/tcsme-1987-0004
– volume: 13
  start-page: 45
  year: 2000
  ident: ref_29
  article-title: The Argo project: Global ocean observations for understanding and prediction of climate variability
  publication-title: Oceanogr.-Wash. DC-Oceanogr. Soc.
  doi: 10.5670/oceanog.2000.33
– ident: ref_33
  doi: 10.3389/fmars.2024.1471670
– volume: 22
  start-page: 34
  year: 2009
  ident: ref_30
  article-title: The Argo Program: Observing the global ocean with profiling floats
  publication-title: Oceanography
  doi: 10.5670/oceanog.2009.36
– ident: ref_17
  doi: 10.1038/sdata.2015.28
– ident: ref_3
  doi: 10.34133/olar.0051
– volume: 2
  start-page: 765
  year: 1990
  ident: ref_11
  article-title: A general classification of three-dimensional flow fields
  publication-title: Phys. Fluids A Fluid Dyn.
  doi: 10.1063/1.857730
– ident: ref_20
  doi: 10.3390/rs11111349
– volume: 17
  start-page: 18351
  year: 2024
  ident: ref_23
  article-title: Deep Learning for Mesoscale Eddy Detection with Feature Fusion of Multi-Satellite Observations
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2024.3468457
– ident: ref_36
– volume: 103
  start-page: 10209
  year: 1998
  ident: ref_4
  article-title: Modulation of the seasonal signal of the Kuroshio Extension during 1994 from satellite data
  publication-title: J. Geophys. Res. Ocean.
  doi: 10.1029/98JC00456
– volume: 91
  start-page: 167
  year: 2011
  ident: ref_1
  article-title: Global observations of nonlinear mesoscale eddies
  publication-title: Prog. Oceanogr.
  doi: 10.1016/j.pocean.2011.01.002
– volume: 48
  start-page: 273
  year: 1991
  ident: ref_8
  article-title: The dynamics of enstrophy transfer in two-dimensional hydrodynamics
  publication-title: Phys. D Nonlinear Phenom.
  doi: 10.1016/0167-2789(91)90088-Q
SSID ssj0023338
Score 2.4432454
Snippet Mesoscale eddies are pivotal oceanographic phenomena affecting marine environments. Accurate and stable identification of these eddies is essential for...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 457
SubjectTerms Accuracy
Algorithms
Datasets
Deep learning
Identification
identification method
mesoscale eddy
Methods
Ocean circulation
Salinity
Satellites
Temperature
Vortices
YOLO
SummonAdditionalLinks – databaseName: DOAJ - The Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB7Ekx7Et_VFFK_FNEmT9LjKqgh6UvBW2jxwQVpxdwX_vZOmu-yK4MVrE0r6TZKZr5l8A3BhK4ZboFBIcrxLBat1ijzEppWmzAqMUbkKl5MfHuXds7h_yV8WSn2FnLAoDxyBu8T9UpvM8so4I6StaicVtfiQac-563Q-0efNyFRPtTgyr6gjxJHUX47R0QfddbXkfTqR_t8iy58Jkgse52YTNvpQkQziELdgxTXbsL4gILgDZkAe20_3Rh7cuB0j3I4Mrf0i8fqt7__HYWsoE0269AAybF67U38S8w3bmAxHqsaSAQm1e_Hd7ceI3E5HNnTcheeb4dP1XdqXTUgNgjtJPcsrnRdIrJSTha-kQ3sYiXEepbXXhc-pEYIiegzXu60589JipIEwcy4R6j1YbdrGHQBRxgmvTeGywgtPC41ohojP4Raa2ZwmcD6Ds3yP6hglsoqAeTnHPIGrAPS8QxC07h6gmcvezOVfZk7geGamsl9l45JjLIYEkCuRwNm8GddHOPSoGtdOYx9NueIsgf1o1flIeKFluFucgF6y99JQl1ua0WunwZ1lShY4zQ__4-OOYI2FssI0SzNxDKuTj6k7wVhnUp920_obibj8rw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VeimHij5JoZWLeo1wbMd2TtW22u2qEpxA2luU-FGQUAJktxL_npkku7Co6jW2ksmM5_HZ4xmAb74SaAKVQZATQ6pEbVPEIT6tLBdeYYwqDV1OPj3T8wv1e5Evxg23bkyrXNvE3lD71tEe-YlEv4vBvjTq-81tSl2j6HR1bKGxAy-pdBmldJnFI-CSiL-GakISof1Jh-6eqq-bLR_Ul-r_V3z5PE3yid-Z7cPrMWBkk0HCb-BFaN7C3pMygu_ATdhZ-zdcs9PQtR0yPbCp9_dsuIQbx105HKVm0axPEmDT5rI_-2dD1mE7pMSxqvFswqiDL74bf5_9Wl15mvgeLmbT85_zdGyekDpk8TKNIq9sXiC8MkEXsdIBpeI0Rnuc19EWMedOKR6lFKj1vpYiao_xhnWIWnXm5QfYbdomHAAzLqhoXRGyIqrIC4vcpLgvoCHNfM4TOF6zs7wZamSUiC2I5-WG5wn8IEZvJlBZ6_5Be_enHLWkROeI3_eycsEp7as6aKQNHwqLhAaZwNFaTOWoa135uDIS-LoZRi2ho4-qCe1qmGO5NFIk8HGQ6oYSWVhNN4wTsFvy3iJ1e6S5uuwrcWeZ0QUu9k__p-sQXglqG8yzNFNHsLu8W4XPGMss6y_9gn0A5Qjzvg
  priority: 102
  providerName: ProQuest
Title A Novel Mesoscale Eddy Identification Method Using Enhanced Interpolation and A Posteriori Guidance
URI https://www.ncbi.nlm.nih.gov/pubmed/39860829
https://www.proquest.com/docview/3159619374
https://www.proquest.com/docview/3159803732
https://pubmed.ncbi.nlm.nih.gov/PMC11769267
https://doaj.org/article/4298c1d3acec46dabe670d29828f33e3
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1La9wwEB7ygJIcQt9xmi5q6dWtLcmSfChlU3YTCruU0oW9GVuPZiHYyT5K8-878ou4pBcfJCEPMxrNfNJoBuCDySlugVwiyHE25LRQIeIQE-Yqooajj8qkf5w8m4urBf-2TJZ70NXYbBm4eRTa-XpSi_XNxz93919Q4T97xImQ_dMGzbjPqi734RANkvT6OeP9ZQJlCMOapELD4UfwhKVK-NelA6tUJ-9_zOP8N3DygSWaPoWT1oUk40bmz2DPls_h-EFiwRegx2Re_bY3ZGY31QbFYMnEmHvSPMt17Tkd9vry0aQOGyCT8rqOBiBNHGLVBMmRvDRkTHxNX5y7Wq_I5W5l_MCXsJhOfn69CttyCqFGpm9DR5NcJSkCLmlF6nJhUU5aoP8XRYVTqUsizXnkGKO4D5iCUScMeiBKI44VsWGv4KCsSnsKRGrLndKpjVPHXZQqZKz3BC1urbFJogDed-zMbpusGRmiDc_-rGd_ABee0f0An-i6bqjWv7JWbzI0l_h_w3JtNRcmL6xA2rCRKiTUsgDOOzFl3eLJGPpoCAyZ5AG867tRb_xlSF7aateMURGTjAbwupFqT0m3KgJQA3kPSB32lKvrOjd3HEuR4vI_---kb-CI-hrCURzG_BwOtuudfYuOzbYYwb5cSvyq6eUIDi8m8-8_RvUhwahe0H8BdtT5XQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKATggniWlgEFwjOrYjmMfEFpgy5Z299RKewuJH7QSStpmF9Sf4hsZ57HtIsStV9uyR_PwzNjzAHhrC4ZXoMjQyfEuFqxUMfohNi4UZVagjcqzkJw8ncnJsfg6T-cb8HvIhQlhlcOd2F7UtjbhjXyXo95FY59n4sPZeRy6RoXf1aGFRscWB-7yF7pszfv9z0jfd4ztjY8-TeK-q0Bs8OxF7FlaqFSj35E5qX0hHYJrJJpBlJZeaZ9SIwT1nDMUB1ty5qVFRawMunMysRz3vQW3UfHSIFHZ_MrB4-jvddWLONd0t0HzIlR7z9Z0Xtsa4F_27N9hmdf03N4DuN8bqGTUcdRD2HDVI7h3rWzhYzAjMqt_uh9k6pq6QSI7Mrb2knRJv75_BcTZ0JyatEEJZFydtLEGpItyrLsQPFJUloxI6BiMeyO6yZflqQ0Ln8DxjaD1KWxWdeWeAcmME14Z7RLthadaITaDnenw4k5sSiN4M6AzP-tqcuToywSc5yucR_AxIHq1IJTRbgfqi-95L5U5KmM83_LCOCOkLUonETYcZAoBdTyCnYFMeS_bTX7FiRG8Xk2jVIavlqJy9bJboyjPOItgq6PqChKulQwZzRGoNXqvgbo-U52etJW_kySTGoVr-_9wvYI7k6PpYX64Pzt4DndZaFlMkzgRO7C5uFi6F2hHLcqXLfMS-HbT0vIHr_UuiA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKhOCAeJaUAgbBMVrHdmzngNBCd2kpXXGg0t5C4gethJK22QX11_g6xnlsuwhx69W2nNG8J54HwGtbMFSBQmGQ410sWKljjENsXGjKrEAflatQnHw4k3tH4tM8nW_A76EWJqRVDjqxVdS2NuEf-Yij3UVnnysx8n1axJfd6bvTszhMkAovrcM4jY5FDtzFLwzfmrf7u0jrN4xNJ18_7MX9hIHYIByL2LO00GmGMYhyMvOFdAi6kegSUVp6nfmUGiGo55yhaNiSMy8tGmVtMLSTieV47w24qXiaBBlT88tgj2Ps13Uy4jyjowZdjdD5Xa3Zv3ZMwL98279TNK_YvOk9uNs7q2Tccdd92HDVA7hzpYXhQzBjMqt_uh_k0DV1gwR3ZGLtBekKgH3_RxB3w6Bq0iYokEl13OYdkC7jse7S8UhRWTImYXow3o3oJh-XJzYcfARH14LWx7BZ1ZV7AkQZJ7w2mUsyLzzNNGIz-JwOlXhiUxrBqwGd-WnXnyPHuCbgPF_hPIL3AdGrA6GldrtQn3_PewnN0TDj9y0vjDNC2qJ0EmHDRaYRUMcj2BnIlPdy3uSXXBnBy9U2Smh4dikqVy-7M5pyxVkEWx1VV5DwTMtQ3RyBXqP3GqjrO9XJcdsFPEmUzFDQtv8P1wu4hXKSf96fHTyF2yxML6ZJnIgd2FycL90zdKkW5fOWdwl8u25h-QOxrTK-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Mesoscale+Eddy+Identification+Method+Using+Enhanced+Interpolation+and+A+Posteriori+Guidance&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Lei&rft.au=Ma%2C+Xiaodong&rft.au=Xu%2C+Weishuai&rft.au=Wan%2C+Xiang&rft.date=2025-01-14&rft.eissn=1424-8220&rft.volume=25&rft.issue=2&rft_id=info:doi/10.3390%2Fs25020457&rft_id=info%3Apmid%2F39860829&rft.externalDocID=39860829
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon