A Novel Mesoscale Eddy Identification Method Using Enhanced Interpolation and A Posteriori Guidance
Mesoscale eddies are pivotal oceanographic phenomena affecting marine environments. Accurate and stable identification of these eddies is essential for advancing research on their dynamics and effects. Current methods primarily focus on identifying Cyclonic and Anticyclonic eddies (CE, AE), with ano...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 2; p. 457 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
14.01.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mesoscale eddies are pivotal oceanographic phenomena affecting marine environments. Accurate and stable identification of these eddies is essential for advancing research on their dynamics and effects. Current methods primarily focus on identifying Cyclonic and Anticyclonic eddies (CE, AE), with anomalous eddy identification often requiring secondary analyses of sea surface height anomalies and eddy center properties, leading to segmented data interpretations. This study introduces a deep learning model integrating multi-source fusion data with a Squeeze-and-Excitation (SE) attention mechanism to enhance the identification accuracy for both normal and anomalous eddies. Comparative ablation experiments validate the model’s effectiveness, demonstrating its potential for more nuanced, multi-source, and multi-class mesoscale eddy identification. This approach offers a promising framework for advancing mesoscale eddy identification through deep learning. |
---|---|
AbstractList | Mesoscale eddies are pivotal oceanographic phenomena affecting marine environments. Accurate and stable identification of these eddies is essential for advancing research on their dynamics and effects. Current methods primarily focus on identifying Cyclonic and Anticyclonic eddies (CE, AE), with anomalous eddy identification often requiring secondary analyses of sea surface height anomalies and eddy center properties, leading to segmented data interpretations. This study introduces a deep learning model integrating multi-source fusion data with a Squeeze-and-Excitation (SE) attention mechanism to enhance the identification accuracy for both normal and anomalous eddies. Comparative ablation experiments validate the model’s effectiveness, demonstrating its potential for more nuanced, multi-source, and multi-class mesoscale eddy identification. This approach offers a promising framework for advancing mesoscale eddy identification through deep learning. Mesoscale eddies are pivotal oceanographic phenomena affecting marine environments. Accurate and stable identification of these eddies is essential for advancing research on their dynamics and effects. Current methods primarily focus on identifying Cyclonic and Anticyclonic eddies (CE, AE), with anomalous eddy identification often requiring secondary analyses of sea surface height anomalies and eddy center properties, leading to segmented data interpretations. This study introduces a deep learning model integrating multi-source fusion data with a Squeeze-and-Excitation (SE) attention mechanism to enhance the identification accuracy for both normal and anomalous eddies. Comparative ablation experiments validate the model's effectiveness, demonstrating its potential for more nuanced, multi-source, and multi-class mesoscale eddy identification. This approach offers a promising framework for advancing mesoscale eddy identification through deep learning.Mesoscale eddies are pivotal oceanographic phenomena affecting marine environments. Accurate and stable identification of these eddies is essential for advancing research on their dynamics and effects. Current methods primarily focus on identifying Cyclonic and Anticyclonic eddies (CE, AE), with anomalous eddy identification often requiring secondary analyses of sea surface height anomalies and eddy center properties, leading to segmented data interpretations. This study introduces a deep learning model integrating multi-source fusion data with a Squeeze-and-Excitation (SE) attention mechanism to enhance the identification accuracy for both normal and anomalous eddies. Comparative ablation experiments validate the model's effectiveness, demonstrating its potential for more nuanced, multi-source, and multi-class mesoscale eddy identification. This approach offers a promising framework for advancing mesoscale eddy identification through deep learning. |
Author | Ma, Xiaodong Wan, Xiang Zhang, Lei Chen, Qiyun Xu, Weishuai |
AuthorAffiliation | 2 Dalian Naval Academy Cadet Brigade, Dalian 116000, China; 17640339665@163.com (X.M.); xuweishuai2022@163.com (W.X.); wan759189627@163.com (X.W.); 18940890078@163.com (Q.C.) 1 Department of Military and Marine Mapping, Dalian Naval Academy, Dalian 116021, China |
AuthorAffiliation_xml | – name: 2 Dalian Naval Academy Cadet Brigade, Dalian 116000, China; 17640339665@163.com (X.M.); xuweishuai2022@163.com (W.X.); wan759189627@163.com (X.W.); 18940890078@163.com (Q.C.) – name: 1 Department of Military and Marine Mapping, Dalian Naval Academy, Dalian 116021, China |
Author_xml | – sequence: 1 givenname: Lei surname: Zhang fullname: Zhang, Lei – sequence: 2 givenname: Xiaodong surname: Ma fullname: Ma, Xiaodong – sequence: 3 givenname: Weishuai orcidid: 0009-0003-0061-888X surname: Xu fullname: Xu, Weishuai – sequence: 4 givenname: Xiang surname: Wan fullname: Wan, Xiang – sequence: 5 givenname: Qiyun surname: Chen fullname: Chen, Qiyun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39860829$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkktvWyEQRlGVqnm0i_6BCqmbduEWGC5cVpUVuaml9LFo1gjzsLGuwYV7I-Xfl8SplXQF-uZwNBrmHJ2knDxCbyn5BKDI58o6wgjv5At0Rjnjs54xcvLkforOa90SwgCgf4VOQfWC9EydITvHP_KtH_B3X3O1ZvB44dwdXjqfxhiiNWPMqVXHTXb4psa0xou0Mcl6h5dp9GWfhwNjksNz_CvXFsZcIr6aorsHX6OXwQzVv3k8L9DN18Xvy2-z659Xy8v59cxyIOMssM70nVKMSy9UMMIbJqyQkhOyCr0KHbGckwDAiCRuBSwIRyTtLQUQ1MEFWh68Lput3pe4M-VOZxP1Q5DLWpsyRjt4zZlqzxwY6y0Xzqy8aMoWsr75PTTXl4NrP6123tk2jWKGZ9LnlRQ3ep1vNaVSKCZkM3x4NJT8Z_J11LtYrR8Gk3yeqgbaqZ6ABNbQ9_-h2zyV1Gb1QAmqQPJGvXva0rGXf5_ZgI8HwJZca_HhiFCi7xdFHxcF_gJH7a3c |
Cites_doi | 10.1029/2021GL094772 10.1016/j.asr.2018.07.017 10.1016/0011-7471(70)90059-8 10.32388/E9Y7XI 10.1016/S0097-8493(00)00029-7 10.1016/j.dynatmoce.2010.04.002 10.1016/j.jmarsys.2005.09.016 10.1017/S0022112095000462 10.1002/grl.50736 10.1007/s11433-016-0022-6 10.3390/rs11161921 10.1016/j.cmpb.2020.105489 10.1016/j.inffus.2018.09.006 10.1007/s10872-023-00686-5 10.1109/ACCESS.2019.2931781 10.1146/annurev-marine-022521-102008 10.5194/os-11-67-2015 10.1145/321607.321609 10.1038/ngeo1906 10.1038/ncomms4294 10.1109/IGARSS.2018.8518411 10.1098/rspa.2016.0117 10.1175/2009JTECHO725.1 10.1139/tcsme-1987-0004 10.5670/oceanog.2000.33 10.3389/fmars.2024.1471670 10.5670/oceanog.2009.36 10.1038/sdata.2015.28 10.34133/olar.0051 10.1063/1.857730 10.3390/rs11111349 10.1109/JSTARS.2024.3468457 10.1029/98JC00456 10.1016/j.pocean.2011.01.002 10.1016/0167-2789(91)90088-Q |
ContentType | Journal Article |
Copyright | 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s25020457 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ - The Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_4298c1d3acec46dabe670d29828f33e3 PMC11769267 39860829 10_3390_s25020457 |
Genre | Journal Article |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c430t-f25a8599247e69fa6ea26c677400bf89f50c440f332070db32f6d0718c13361d3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:28:07 EDT 2025 Thu Aug 21 18:40:27 EDT 2025 Fri Jul 11 10:52:32 EDT 2025 Fri Jul 25 22:25:18 EDT 2025 Wed Feb 19 02:12:06 EST 2025 Tue Jul 01 02:10:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | YOLO deep learning identification method mesoscale eddy |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c430t-f25a8599247e69fa6ea26c677400bf89f50c440f332070db32f6d0718c13361d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0003-0061-888X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25020457 |
PMID | 39860829 |
PQID | 3159619374 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4298c1d3acec46dabe670d29828f33e3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11769267 proquest_miscellaneous_3159803732 proquest_journals_3159619374 pubmed_primary_39860829 crossref_primary_10_3390_s25020457 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250114 |
PublicationDateYYYYMMDD | 2025-01-14 |
PublicationDate_xml | – month: 1 year: 2025 text: 20250114 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Sadarjoen (ref_14) 2000; 24 Bai (ref_21) 2019; 7 Roemmich (ref_30) 2009; 22 ref_36 ref_13 ref_35 Chelton (ref_1) 2011; 91 Weiss (ref_8) 1991; 48 ref_33 ref_10 Xie (ref_23) 2024; 17 ref_19 Chong (ref_11) 1990; 2 ref_18 ref_17 ref_16 ref_37 Akima (ref_32) 1970; 17 Hunt (ref_9) 1987; 11 Ablain (ref_5) 2015; 11 Jeong (ref_12) 1995; 285 Adamec (ref_4) 1998; 103 Johnson (ref_31) 2022; 14 ref_25 Zhang (ref_34) 2013; 40 Nencioli (ref_15) 2010; 27 ref_24 Metzger (ref_27) 2010; 50 ref_20 Trott (ref_28) 2023; 79 Chassignet (ref_26) 2007; 65 Roemmich (ref_29) 2000; 13 ref_3 Cazenave (ref_6) 2018; 62 Du (ref_22) 2019; 49 Chelton (ref_2) 2013; 6 ref_7 |
References_xml | – ident: ref_24 doi: 10.1029/2021GL094772 – volume: 62 start-page: 1639 year: 2018 ident: ref_6 article-title: Contemporary sea level changes from satellite altimetry: What have we learned? What are the new challenges? publication-title: Adv. Space Res. doi: 10.1016/j.asr.2018.07.017 – ident: ref_7 doi: 10.1016/0011-7471(70)90059-8 – ident: ref_35 doi: 10.32388/E9Y7XI – volume: 24 start-page: 333 year: 2000 ident: ref_14 article-title: Detection, quantification, and tracking of vortices using streamline geometry publication-title: Comput. Graph. doi: 10.1016/S0097-8493(00)00029-7 – volume: 50 start-page: 275 year: 2010 ident: ref_27 article-title: Simulated and observed circulation in the Indonesian Seas: 1/12 global HYCOM and the INSTANT observations publication-title: Dyn. Atmos. Ocean. doi: 10.1016/j.dynatmoce.2010.04.002 – volume: 65 start-page: 60 year: 2007 ident: ref_26 article-title: The HYCOM (hybrid coordinate ocean model) data assimilative system publication-title: J. Mar. Syst. doi: 10.1016/j.jmarsys.2005.09.016 – volume: 285 start-page: 69 year: 1995 ident: ref_12 article-title: On the identification of a vortex publication-title: J. Fluid Mech. doi: 10.1017/S0022112095000462 – volume: 40 start-page: 3677 year: 2013 ident: ref_34 article-title: Universal structure of mesoscale eddies in the ocean publication-title: Geophys. Res. Lett. doi: 10.1002/grl.50736 – ident: ref_10 doi: 10.1007/s11433-016-0022-6 – ident: ref_19 doi: 10.3390/rs11161921 – ident: ref_37 doi: 10.1016/j.cmpb.2020.105489 – volume: 49 start-page: 89 year: 2019 ident: ref_22 article-title: Deep learning with multi-scale feature fusion in remote sensing for automatic oceanic eddy detection publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.09.006 – volume: 79 start-page: 423 year: 2023 ident: ref_28 article-title: Luzon strait mesoscale eddy characteristics in HYCOM reanalysis, simulation, and forecasts publication-title: J. Oceanogr. doi: 10.1007/s10872-023-00686-5 – volume: 7 start-page: 106336 year: 2019 ident: ref_21 article-title: A streampath-based RCNN approach to ocean eddy detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2931781 – volume: 14 start-page: 379 year: 2022 ident: ref_31 article-title: Argo—Two decades: Global oceanography, revolutionized publication-title: Annu. Rev. Mar. Sci. doi: 10.1146/annurev-marine-022521-102008 – volume: 11 start-page: 67 year: 2015 ident: ref_5 article-title: Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project publication-title: Ocean Sci. doi: 10.5194/os-11-67-2015 – volume: 17 start-page: 589 year: 1970 ident: ref_32 article-title: A new method of interpolation and smooth curve fitting based on local procedures publication-title: J. ACM doi: 10.1145/321607.321609 – volume: 6 start-page: 594 year: 2013 ident: ref_2 article-title: Mesoscale eddy effects publication-title: Nat. Geosci. doi: 10.1038/ngeo1906 – ident: ref_16 doi: 10.1038/ncomms4294 – ident: ref_18 doi: 10.1109/IGARSS.2018.8518411 – ident: ref_13 doi: 10.1098/rspa.2016.0117 – volume: 27 start-page: 564 year: 2010 ident: ref_15 article-title: A vector geometry–based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/2009JTECHO725.1 – ident: ref_25 – volume: 11 start-page: 21 year: 1987 ident: ref_9 article-title: Vorticity and vortex dynamics in complex turbulent flows publication-title: Trans. Can. Soc. Mech. Eng. doi: 10.1139/tcsme-1987-0004 – volume: 13 start-page: 45 year: 2000 ident: ref_29 article-title: The Argo project: Global ocean observations for understanding and prediction of climate variability publication-title: Oceanogr.-Wash. DC-Oceanogr. Soc. doi: 10.5670/oceanog.2000.33 – ident: ref_33 doi: 10.3389/fmars.2024.1471670 – volume: 22 start-page: 34 year: 2009 ident: ref_30 article-title: The Argo Program: Observing the global ocean with profiling floats publication-title: Oceanography doi: 10.5670/oceanog.2009.36 – ident: ref_17 doi: 10.1038/sdata.2015.28 – ident: ref_3 doi: 10.34133/olar.0051 – volume: 2 start-page: 765 year: 1990 ident: ref_11 article-title: A general classification of three-dimensional flow fields publication-title: Phys. Fluids A Fluid Dyn. doi: 10.1063/1.857730 – ident: ref_20 doi: 10.3390/rs11111349 – volume: 17 start-page: 18351 year: 2024 ident: ref_23 article-title: Deep Learning for Mesoscale Eddy Detection with Feature Fusion of Multi-Satellite Observations publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2024.3468457 – ident: ref_36 – volume: 103 start-page: 10209 year: 1998 ident: ref_4 article-title: Modulation of the seasonal signal of the Kuroshio Extension during 1994 from satellite data publication-title: J. Geophys. Res. Ocean. doi: 10.1029/98JC00456 – volume: 91 start-page: 167 year: 2011 ident: ref_1 article-title: Global observations of nonlinear mesoscale eddies publication-title: Prog. Oceanogr. doi: 10.1016/j.pocean.2011.01.002 – volume: 48 start-page: 273 year: 1991 ident: ref_8 article-title: The dynamics of enstrophy transfer in two-dimensional hydrodynamics publication-title: Phys. D Nonlinear Phenom. doi: 10.1016/0167-2789(91)90088-Q |
SSID | ssj0023338 |
Score | 2.4432454 |
Snippet | Mesoscale eddies are pivotal oceanographic phenomena affecting marine environments. Accurate and stable identification of these eddies is essential for... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 457 |
SubjectTerms | Accuracy Algorithms Datasets Deep learning Identification identification method mesoscale eddy Methods Ocean circulation Salinity Satellites Temperature Vortices YOLO |
SummonAdditionalLinks | – databaseName: DOAJ - The Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB7Ekx7Et_VFFK_FNEmT9LjKqgh6UvBW2jxwQVpxdwX_vZOmu-yK4MVrE0r6TZKZr5l8A3BhK4ZboFBIcrxLBat1ijzEppWmzAqMUbkKl5MfHuXds7h_yV8WSn2FnLAoDxyBu8T9UpvM8so4I6StaicVtfiQac-563Q-0efNyFRPtTgyr6gjxJHUX47R0QfddbXkfTqR_t8iy58Jkgse52YTNvpQkQziELdgxTXbsL4gILgDZkAe20_3Rh7cuB0j3I4Mrf0i8fqt7__HYWsoE0269AAybF67U38S8w3bmAxHqsaSAQm1e_Hd7ceI3E5HNnTcheeb4dP1XdqXTUgNgjtJPcsrnRdIrJSTha-kQ3sYiXEepbXXhc-pEYIiegzXu60589JipIEwcy4R6j1YbdrGHQBRxgmvTeGywgtPC41ohojP4Raa2ZwmcD6Ds3yP6hglsoqAeTnHPIGrAPS8QxC07h6gmcvezOVfZk7geGamsl9l45JjLIYEkCuRwNm8GddHOPSoGtdOYx9NueIsgf1o1flIeKFluFucgF6y99JQl1ua0WunwZ1lShY4zQ__4-OOYI2FssI0SzNxDKuTj6k7wVhnUp920_obibj8rw priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VeimHij5JoZWLeo1wbMd2TtW22u2qEpxA2luU-FGQUAJktxL_npkku7Co6jW2ksmM5_HZ4xmAb74SaAKVQZATQ6pEbVPEIT6tLBdeYYwqDV1OPj3T8wv1e5Evxg23bkyrXNvE3lD71tEe-YlEv4vBvjTq-81tSl2j6HR1bKGxAy-pdBmldJnFI-CSiL-GakISof1Jh-6eqq-bLR_Ul-r_V3z5PE3yid-Z7cPrMWBkk0HCb-BFaN7C3pMygu_ATdhZ-zdcs9PQtR0yPbCp9_dsuIQbx105HKVm0axPEmDT5rI_-2dD1mE7pMSxqvFswqiDL74bf5_9Wl15mvgeLmbT85_zdGyekDpk8TKNIq9sXiC8MkEXsdIBpeI0Rnuc19EWMedOKR6lFKj1vpYiao_xhnWIWnXm5QfYbdomHAAzLqhoXRGyIqrIC4vcpLgvoCHNfM4TOF6zs7wZamSUiC2I5-WG5wn8IEZvJlBZ6_5Be_enHLWkROeI3_eycsEp7as6aKQNHwqLhAaZwNFaTOWoa135uDIS-LoZRi2ho4-qCe1qmGO5NFIk8HGQ6oYSWVhNN4wTsFvy3iJ1e6S5uuwrcWeZ0QUu9k__p-sQXglqG8yzNFNHsLu8W4XPGMss6y_9gn0A5Qjzvg priority: 102 providerName: ProQuest |
Title | A Novel Mesoscale Eddy Identification Method Using Enhanced Interpolation and A Posteriori Guidance |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39860829 https://www.proquest.com/docview/3159619374 https://www.proquest.com/docview/3159803732 https://pubmed.ncbi.nlm.nih.gov/PMC11769267 https://doaj.org/article/4298c1d3acec46dabe670d29828f33e3 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1La9wwEB7ygJIcQt9xmi5q6dWtLcmSfChlU3YTCruU0oW9GVuPZiHYyT5K8-878ou4pBcfJCEPMxrNfNJoBuCDySlugVwiyHE25LRQIeIQE-Yqooajj8qkf5w8m4urBf-2TJZ70NXYbBm4eRTa-XpSi_XNxz93919Q4T97xImQ_dMGzbjPqi734RANkvT6OeP9ZQJlCMOapELD4UfwhKVK-NelA6tUJ-9_zOP8N3DygSWaPoWT1oUk40bmz2DPls_h-EFiwRegx2Re_bY3ZGY31QbFYMnEmHvSPMt17Tkd9vry0aQOGyCT8rqOBiBNHGLVBMmRvDRkTHxNX5y7Wq_I5W5l_MCXsJhOfn69CttyCqFGpm9DR5NcJSkCLmlF6nJhUU5aoP8XRYVTqUsizXnkGKO4D5iCUScMeiBKI44VsWGv4KCsSnsKRGrLndKpjVPHXZQqZKz3BC1urbFJogDed-zMbpusGRmiDc_-rGd_ABee0f0An-i6bqjWv7JWbzI0l_h_w3JtNRcmL6xA2rCRKiTUsgDOOzFl3eLJGPpoCAyZ5AG867tRb_xlSF7aateMURGTjAbwupFqT0m3KgJQA3kPSB32lKvrOjd3HEuR4vI_---kb-CI-hrCURzG_BwOtuudfYuOzbYYwb5cSvyq6eUIDi8m8-8_RvUhwahe0H8BdtT5XQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKATggniWlgEFwjOrYjmMfEFpgy5Z299RKewuJH7QSStpmF9Sf4hsZ57HtIsStV9uyR_PwzNjzAHhrC4ZXoMjQyfEuFqxUMfohNi4UZVagjcqzkJw8ncnJsfg6T-cb8HvIhQlhlcOd2F7UtjbhjXyXo95FY59n4sPZeRy6RoXf1aGFRscWB-7yF7pszfv9z0jfd4ztjY8-TeK-q0Bs8OxF7FlaqFSj35E5qX0hHYJrJJpBlJZeaZ9SIwT1nDMUB1ty5qVFRawMunMysRz3vQW3UfHSIFHZ_MrB4-jvddWLONd0t0HzIlR7z9Z0Xtsa4F_27N9hmdf03N4DuN8bqGTUcdRD2HDVI7h3rWzhYzAjMqt_uh9k6pq6QSI7Mrb2knRJv75_BcTZ0JyatEEJZFydtLEGpItyrLsQPFJUloxI6BiMeyO6yZflqQ0Ln8DxjaD1KWxWdeWeAcmME14Z7RLthadaITaDnenw4k5sSiN4M6AzP-tqcuToywSc5yucR_AxIHq1IJTRbgfqi-95L5U5KmM83_LCOCOkLUonETYcZAoBdTyCnYFMeS_bTX7FiRG8Xk2jVIavlqJy9bJboyjPOItgq6PqChKulQwZzRGoNXqvgbo-U52etJW_kySTGoVr-_9wvYI7k6PpYX64Pzt4DndZaFlMkzgRO7C5uFi6F2hHLcqXLfMS-HbT0vIHr_UuiA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKhOCAeJaUAgbBMVrHdmzngNBCd2kpXXGg0t5C4gethJK22QX11_g6xnlsuwhx69W2nNG8J54HwGtbMFSBQmGQ410sWKljjENsXGjKrEAflatQnHw4k3tH4tM8nW_A76EWJqRVDjqxVdS2NuEf-Yij3UVnnysx8n1axJfd6bvTszhMkAovrcM4jY5FDtzFLwzfmrf7u0jrN4xNJ18_7MX9hIHYIByL2LO00GmGMYhyMvOFdAi6kegSUVp6nfmUGiGo55yhaNiSMy8tGmVtMLSTieV47w24qXiaBBlT88tgj2Ps13Uy4jyjowZdjdD5Xa3Zv3ZMwL98279TNK_YvOk9uNs7q2Tccdd92HDVA7hzpYXhQzBjMqt_uh_k0DV1gwR3ZGLtBekKgH3_RxB3w6Bq0iYokEl13OYdkC7jse7S8UhRWTImYXow3o3oJh-XJzYcfARH14LWx7BZ1ZV7AkQZJ7w2mUsyLzzNNGIz-JwOlXhiUxrBqwGd-WnXnyPHuCbgPF_hPIL3AdGrA6GldrtQn3_PewnN0TDj9y0vjDNC2qJ0EmHDRaYRUMcj2BnIlPdy3uSXXBnBy9U2Smh4dikqVy-7M5pyxVkEWx1VV5DwTMtQ3RyBXqP3GqjrO9XJcdsFPEmUzFDQtv8P1wu4hXKSf96fHTyF2yxML6ZJnIgd2FycL90zdKkW5fOWdwl8u25h-QOxrTK- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Mesoscale+Eddy+Identification+Method+Using+Enhanced+Interpolation+and+A+Posteriori+Guidance&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Lei&rft.au=Ma%2C+Xiaodong&rft.au=Xu%2C+Weishuai&rft.au=Wan%2C+Xiang&rft.date=2025-01-14&rft.eissn=1424-8220&rft.volume=25&rft.issue=2&rft_id=info:doi/10.3390%2Fs25020457&rft_id=info%3Apmid%2F39860829&rft.externalDocID=39860829 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |