Improved fatigue strength of additively manufactured Ti6Al4V by surface post processing
•Surface post processes are needed for PBF Ti6Al4V to achieve high fatigue strength.•Centrifugal finishing of L-PBF Ti6Al4V gave the highest fatigue strength.•Laser polished material had reduced fatigue strength although low surface roughness. A major challenge for additively manufactured structural...
Saved in:
Published in | International journal of fatigue Vol. 134; pp. 105497 - 12 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.05.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Surface post processes are needed for PBF Ti6Al4V to achieve high fatigue strength.•Centrifugal finishing of L-PBF Ti6Al4V gave the highest fatigue strength.•Laser polished material had reduced fatigue strength although low surface roughness.
A major challenge for additively manufactured structural parts is the low fatigue strength connected to rough as-built surfaces. In this study, Ti6Al4V manufactured with laser powder bed fusion (L-PBF) and electron beam powder bed fusion (E-PBF) have been subjected to five surface processing methods, shot peening, laser shock peening, centrifugal finishing, laser polishing and linishing, in order to increase the fatigue strength. Shot peened and centrifugal finished L-PBF material achieved comparable fatigue strength to machined material. Moreover, the surface roughness alone was found to be an insufficient indicator on the fatigue strength since subsurface defects were hidden below smooth surfaces. |
---|---|
AbstractList | A major challenge for additively manufactured structural parts is the low fatigue strength connected to rough as-built surfaces. In this study, Ti6Al4V manufactured with laser powder bed fusion (L-PBF) and electron beam powder bed fusion (E-PBF) have been subjected to five surface processing methods, shot peening, laser shock peening, centrifugal finishing, laser polishing and linishing, in order to increase the fatigue strength. Shot peened and centrifugal finished L-PBF material achieved comparable fatigue strength to machined material. Moreover, the surface roughness alone was found to be an insufficient indicator on the fatigue strength since subsurface defects were hidden below smooth surfaces. •Surface post processes are needed for PBF Ti6Al4V to achieve high fatigue strength.•Centrifugal finishing of L-PBF Ti6Al4V gave the highest fatigue strength.•Laser polished material had reduced fatigue strength although low surface roughness. A major challenge for additively manufactured structural parts is the low fatigue strength connected to rough as-built surfaces. In this study, Ti6Al4V manufactured with laser powder bed fusion (L-PBF) and electron beam powder bed fusion (E-PBF) have been subjected to five surface processing methods, shot peening, laser shock peening, centrifugal finishing, laser polishing and linishing, in order to increase the fatigue strength. Shot peened and centrifugal finished L-PBF material achieved comparable fatigue strength to machined material. Moreover, the surface roughness alone was found to be an insufficient indicator on the fatigue strength since subsurface defects were hidden below smooth surfaces. |
ArticleNumber | 105497 |
Author | Ansell, H. Newton, L. Basu, D. Moverare, J.J. Kahlin, M. Kerwin, A. Smith, B. |
Author_xml | – sequence: 1 givenname: M. surname: Kahlin fullname: Kahlin, M. email: magnus.kahlin@saabgroup.com organization: Saab AB, Aeronautics, SE-58188 Linköping, Sweden – sequence: 2 givenname: H. surname: Ansell fullname: Ansell, H. organization: Saab AB, Aeronautics, SE-58188 Linköping, Sweden – sequence: 3 givenname: D. surname: Basu fullname: Basu, D. organization: Manufacturing Technology Centre, Coventry CV7 9JU, UK – sequence: 4 givenname: A. surname: Kerwin fullname: Kerwin, A. organization: Manufacturing Technology Centre, Coventry CV7 9JU, UK – sequence: 5 givenname: L. surname: Newton fullname: Newton, L. organization: Manufacturing Metrology Team, University of Nottingham, Nottingham NG7 2RD, UK – sequence: 6 givenname: B. surname: Smith fullname: Smith, B. organization: Manufacturing Technology Centre, Coventry CV7 9JU, UK – sequence: 7 givenname: J.J. surname: Moverare fullname: Moverare, J.J. organization: Division of Engineering Materials, Linköping University, SE-581 83 Linköping, Sweden |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-164853$$DView record from Swedish Publication Index |
BookMark | eNqFkE1r3DAURUVJoZO0v6GCrD3Vl2150cWQpG0gkE2SLoUsPU1lPNZEkqfMv68GJ11kk5Xg6dzL5ZyjsylMgNBXStaU0ObbsPaD09lvZ1gzwk7XWnTtB7Sisu0qLmp2hlaEClZRyvgndJ7SQAjpSFuv0O_b3T6GA1j80oFTjjBt8x8cHNbW-uwPMB7xTk-z0ybPsbAPvtmM4gn3R5zmWM6A9yFlXKoMpOSn7Wf00ekxwZeX9wI9_rh5uPpV3d3_vL3a3FVGcJIr61pjqZCUGU5Ea2XdM6Nlbxtpe8E5OCp4Y6WwvWsod66VraDWAZWNLP_8AlVLb_oL-7lX--h3Oh5V0F5d-6eNCnGrRj8r2ghZn_jLhS9Tn2dIWQ1hjlOZqJjgXScpZ6RQ3xfKxJBSBKeMz8VPmHLUflSUqJN7Naj_7tXJvVrcl3z7Jv-66_3kZklCkXbwEFUyHiYD1kcwWdng3-34Bw5PpqY |
CitedBy_id | crossref_primary_10_1016_j_actbio_2022_06_002 crossref_primary_10_3390_ma17184548 crossref_primary_10_29109_gujsc_1130098 crossref_primary_10_1007_s12206_022_2105_3 crossref_primary_10_1088_2053_1591_abcc5d crossref_primary_10_1016_j_bprint_2021_e00180 crossref_primary_10_1557_jmr_2020_305 crossref_primary_10_1007_s10853_022_07019_9 crossref_primary_10_1111_ffe_14184 crossref_primary_10_3390_met14121350 crossref_primary_10_2139_ssrn_4065466 crossref_primary_10_1016_j_mtcomm_2024_108979 crossref_primary_10_3390_mi14071480 crossref_primary_10_1007_s00170_023_11964_3 crossref_primary_10_1520_MPC20220088 crossref_primary_10_1016_j_ijfatigue_2023_107673 crossref_primary_10_1016_j_jmatprotec_2021_117264 crossref_primary_10_1016_j_ijmecsci_2021_106757 crossref_primary_10_1016_j_msea_2022_144050 crossref_primary_10_1016_j_ijfatigue_2024_108365 crossref_primary_10_1080_00218464_2024_2441886 crossref_primary_10_1089_3dp_2021_0067 crossref_primary_10_1016_j_ijmecsci_2024_109520 crossref_primary_10_1016_j_cossms_2021_100974 crossref_primary_10_1088_1742_6596_2459_1_012059 crossref_primary_10_1016_j_optlastec_2023_109588 crossref_primary_10_1016_j_ijfatigue_2021_106239 crossref_primary_10_3390_jmmp8040144 crossref_primary_10_1016_j_engfailanal_2020_104784 crossref_primary_10_1007_s12540_022_01378_3 crossref_primary_10_1016_j_ijfatigue_2024_108516 crossref_primary_10_1016_j_tafmec_2024_104281 crossref_primary_10_1016_j_ijplas_2021_103172 crossref_primary_10_1080_10408436_2022_2041396 crossref_primary_10_1016_j_ijfatigue_2024_108354 crossref_primary_10_1016_j_engfailanal_2023_107265 crossref_primary_10_1007_s00170_021_06855_4 crossref_primary_10_1016_j_addma_2021_102147 crossref_primary_10_1016_j_msea_2021_142041 crossref_primary_10_3390_ma17081929 crossref_primary_10_1016_j_msea_2023_145915 crossref_primary_10_3390_cryst12030374 crossref_primary_10_1016_j_addma_2020_101619 crossref_primary_10_1016_j_engfailanal_2025_109403 crossref_primary_10_2320_matertrans_MT_H2024001 crossref_primary_10_1016_j_ijfatigue_2022_107134 crossref_primary_10_1016_j_ijfatigue_2024_108426 crossref_primary_10_1080_17452759_2023_2276247 crossref_primary_10_1088_1742_6596_2686_1_012010 crossref_primary_10_1088_2051_672X_acf67c crossref_primary_10_1016_j_ijplas_2023_103784 crossref_primary_10_1016_j_prostr_2022_05_037 crossref_primary_10_2472_jsms_71_711 crossref_primary_10_1007_s11665_023_08051_9 crossref_primary_10_3390_jmmp7030115 crossref_primary_10_1016_j_matchar_2022_112281 crossref_primary_10_1016_j_procir_2024_08_289 crossref_primary_10_1016_j_msea_2023_144657 crossref_primary_10_1016_j_ijmachtools_2021_103804 crossref_primary_10_1016_j_jmst_2021_01_056 crossref_primary_10_1016_j_measurement_2023_113169 crossref_primary_10_1016_j_jmapro_2023_10_018 crossref_primary_10_1016_j_ijfatigue_2021_106536 crossref_primary_10_3390_ma16083169 crossref_primary_10_1177_14644207231196266 crossref_primary_10_1080_02670844_2022_2072080 crossref_primary_10_1016_j_commatsci_2021_110716 crossref_primary_10_1016_j_ijfatigue_2020_105945 crossref_primary_10_1002_adem_202402882 crossref_primary_10_1080_21663831_2023_2275599 crossref_primary_10_1016_j_ijfatigue_2022_107129 crossref_primary_10_1016_j_ijfatigue_2024_108777 crossref_primary_10_1016_j_jmatprotec_2021_117475 crossref_primary_10_3390_app11052112 crossref_primary_10_1007_s40964_024_00885_6 crossref_primary_10_1108_RPJ_07_2023_0219 crossref_primary_10_1016_j_jmatprotec_2024_118425 crossref_primary_10_1016_j_msea_2021_141598 crossref_primary_10_1016_j_apsusc_2021_150758 crossref_primary_10_3390_ma16031084 crossref_primary_10_1016_j_msea_2023_145477 crossref_primary_10_1088_1361_6501_ad6896 crossref_primary_10_1016_j_engfailanal_2023_107208 crossref_primary_10_1016_j_ijfatigue_2023_107879 crossref_primary_10_1016_j_matchemphys_2021_125217 crossref_primary_10_1007_s00170_022_08840_x crossref_primary_10_1121_10_0006379 crossref_primary_10_1016_j_prostr_2024_02_031 crossref_primary_10_1016_j_triboint_2020_106806 crossref_primary_10_1016_j_jmatprotec_2022_117586 crossref_primary_10_1007_s40516_023_00217_6 crossref_primary_10_1016_j_addma_2021_102094 crossref_primary_10_1016_j_ijfatigue_2025_108843 crossref_primary_10_1016_j_prostr_2024_03_008 crossref_primary_10_1007_s40194_024_01704_w crossref_primary_10_1016_j_engfracmech_2021_107876 crossref_primary_10_3390_bioengineering11040393 crossref_primary_10_1016_j_rinma_2024_100579 crossref_primary_10_1111_ffe_14392 crossref_primary_10_1016_j_msea_2023_144599 crossref_primary_10_1007_s00170_022_09907_5 crossref_primary_10_1007_s40964_024_00763_1 crossref_primary_10_3390_ma13102216 crossref_primary_10_1016_j_addma_2020_101428 crossref_primary_10_1016_j_matdes_2021_109469 crossref_primary_10_1111_ffe_13461 crossref_primary_10_1089_3dp_2023_0028 crossref_primary_10_1016_j_jmbbm_2021_105042 crossref_primary_10_1016_j_addma_2024_104263 crossref_primary_10_1016_j_ijfatigue_2024_108558 crossref_primary_10_3390_app13116702 crossref_primary_10_1016_j_ijfatigue_2021_106270 crossref_primary_10_1016_j_matchar_2021_110935 crossref_primary_10_1108_RPJ_01_2020_0009 crossref_primary_10_3390_met11040609 crossref_primary_10_1080_17452759_2024_2302556 crossref_primary_10_3390_machines10121151 crossref_primary_10_1007_s00170_023_12552_1 crossref_primary_10_3390_coatings14091174 crossref_primary_10_1016_j_addlet_2022_100049 crossref_primary_10_1016_j_jallcom_2024_173664 crossref_primary_10_1016_j_matpr_2021_01_354 crossref_primary_10_1016_j_ijfatigue_2022_106920 crossref_primary_10_1016_j_ijfatigue_2023_107850 crossref_primary_10_1016_j_ijfatigue_2024_108348 crossref_primary_10_1016_j_jallcom_2024_174875 crossref_primary_10_1016_j_jmatprotec_2021_117321 crossref_primary_10_1016_j_ijfatigue_2024_108621 crossref_primary_10_2320_matertrans_MT_MF2022028 crossref_primary_10_1016_j_ijfatigue_2022_107171 crossref_primary_10_1007_s00170_023_10814_6 crossref_primary_10_4028_www_scientific_net_MSF_1051_137 crossref_primary_10_1007_s11665_021_06021_7 crossref_primary_10_1016_j_msea_2022_143745 crossref_primary_10_1016_j_ijmachtools_2022_103908 crossref_primary_10_1016_j_ijmachtools_2023_104061 crossref_primary_10_1557_s43578_020_00087_0 crossref_primary_10_1007_s40684_023_00551_2 crossref_primary_10_1016_j_jmapro_2023_07_015 crossref_primary_10_1016_j_jmatprotec_2021_117279 crossref_primary_10_1016_j_jmapro_2023_04_078 crossref_primary_10_1016_j_matpr_2020_11_263 crossref_primary_10_1016_j_ijmecsci_2021_106547 crossref_primary_10_1016_j_jmrt_2025_02_121 crossref_primary_10_1016_j_msea_2024_146821 crossref_primary_10_3390_mi14010136 crossref_primary_10_1016_j_optlastec_2020_106639 crossref_primary_10_1177_09544062251319075 |
Cites_doi | 10.1016/j.actamat.2016.02.014 10.1016/j.ijfatigue.2012.11.011 10.1016/j.jmatprotec.2016.11.014 10.1016/j.ijfatigue.2016.05.018 10.1088/2051-672X/3/4/044006 10.1016/j.msea.2019.03.119 10.1142/S0217979209051978 10.1016/j.ijfatigue.2018.06.011 10.1016/j.ijfatigue.2016.05.001 10.1016/j.jmatprotec.2015.01.025 10.1201/9781315117294 10.1016/S0921-5093(97)00806-X 10.1177/0954410014568797 10.1016/j.prostr.2017.11.073 10.1016/j.phpro.2016.08.021 10.1016/B978-0-08-096532-1.00218-1 10.1007/s11665-018-3732-9 10.1016/j.ijfatigue.2017.06.023 10.1016/j.ijfatigue.2017.05.008 10.1016/j.optlaseng.2017.02.005 10.1007/978-4-431-54237-7 10.4028/www.scientific.net/AMR.816-817.134 10.1016/j.ijfatigue.2005.10.007 |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright Elsevier BV May 2020 |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright Elsevier BV May 2020 |
DBID | 6I. AAFTH AAYXX CITATION 7SR 8BQ 8FD JG9 ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
DOI | 10.1016/j.ijfatigue.2020.105497 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database SWEPUB Linköpings universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Linköpings universitet SwePub Articles full text |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3452 |
EndPage | 12 |
ExternalDocumentID | oai_DiVA_org_liu_164853 10_1016_j_ijfatigue_2020_105497 S0142112320300281 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6I. 6OB 7-5 71M 8P~ 9JN AABCJ AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 8BQ 8FD EFKBS JG9 ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
ID | FETCH-LOGICAL-c430t-df7cd14812c3047d85b2ca8bd68db433ef1436d84dbf613ff78741dfe18684333 |
IEDL.DBID | .~1 |
ISSN | 0142-1123 1879-3452 |
IngestDate | Thu Aug 21 06:50:50 EDT 2025 Fri Jul 25 02:34:29 EDT 2025 Thu Apr 24 23:11:31 EDT 2025 Tue Jul 01 01:54:34 EDT 2025 Fri Feb 23 02:48:59 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fatigue Surface roughness Additive manufacturing Ti6Al4V Post processes |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c430t-df7cd14812c3047d85b2ca8bd68db433ef1436d84dbf613ff78741dfe18684333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0142112320300281 |
PQID | 2439981320 |
PQPubID | 2045465 |
PageCount | 12 |
ParticipantIDs | swepub_primary_oai_DiVA_org_liu_164853 proquest_journals_2439981320 crossref_citationtrail_10_1016_j_ijfatigue_2020_105497 crossref_primary_10_1016_j_ijfatigue_2020_105497 elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2020_105497 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | International journal of fatigue |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Niinomi, Kuo, Ma (b0130) 1998; A Günther, Krewerth, Lippmann, Leuders, Tröster, Weidner (b0030) 2017; 94 Kasperovich, Hausmann (b0080) 2015; 220 Morrissey, Nicholas (b0125) 2006; 28 Wycisk, Emmelmann, Siddique, Walther (b0110) 2013; 816–817 Bolognesi Donato, Magnabosco (b0090) 2014; 2 Ma, Guan, Zhou (b0050) 2017; 93 Chan (b0005) 2015; 3 Persenot, Buffiere, Maire, Dendievel, Martin (b0115) 2017; 7 Noyan, Cohen (b0065) 1987 Iyakutti, Nirmala Louis, Anuratha, Mahalakshmi (b0145) 2009; 23 (accessed July 24, 2019). Campbell (b0100) 2012 Nicoletto, Konečná, Frkáň, Riva (b0010) 2018; 116 Bagehorn, Wehr, Maier (b0105) 2017; 102 Greitemeier, Palm, Syassen, Melz (b0025) 2017; 94 Military Handbook. Titanium and titanium alloys. Department of Defense; 1974. Denti, Bassoli, Gatto, Santecchia, Mengucci (b0095) 2019; 755 Uriondo, Esperon-Miguez, Perinpanayagam (b0015) 2015; 229 Boschetto, Bottini, Veniali (b0035) 2017 Gora, Tian, Cabo, Ardron, Maier, Prangnell (b0045) 2016; 83 Svensson M, Ackelid U, Ab A. Titanium alloys manufactured with electron beam melting mechanical and chemical properties. Med Device Mater V Proc from Mater Process Med Devices Conf 2009; 2009. p. 189–94. doi: 10.1007/978-4-431-54237-7. Kahlin, Ansell, Moverare (b0020) 2017 Witkin, Patel, Helvajian, Steffeney, Diaz (b0055) 2019; 28 Ramachandran M, editor. Basic orthopaedic sciences, 2nd ed.; 2018. doi: 10.1201/9781315117294. LSP Technologoes I. No Title; 2019. Urlea, Brailovski (b0040) 2017; 242 Leuders, Thöne, Riemer, Niendorf, Tröster, Richard (b0085) 2013; 48 Khairallah Saad, Anderson, Andrew, Rubenchik, Alexander, King W. Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 2016;108:36–45. doi: 10.1016/j.actamat.2016.02.014. Kahlin, Ansell, Moverare (b0075) 2017; 103 10.1016/j.ijfatigue.2020.105497_b0120 Noyan (10.1016/j.ijfatigue.2020.105497_b0065) 1987 Kahlin (10.1016/j.ijfatigue.2020.105497_b0075) 2017; 103 Leuders (10.1016/j.ijfatigue.2020.105497_b0085) 2013; 48 Morrissey (10.1016/j.ijfatigue.2020.105497_b0125) 2006; 28 Uriondo (10.1016/j.ijfatigue.2020.105497_b0015) 2015; 229 10.1016/j.ijfatigue.2020.105497_b0060 Ma (10.1016/j.ijfatigue.2020.105497_b0050) 2017; 93 Persenot (10.1016/j.ijfatigue.2020.105497_b0115) 2017; 7 10.1016/j.ijfatigue.2020.105497_b0140 Bolognesi Donato (10.1016/j.ijfatigue.2020.105497_b0090) 2014; 2 Iyakutti (10.1016/j.ijfatigue.2020.105497_b0145) 2009; 23 Wycisk (10.1016/j.ijfatigue.2020.105497_b0110) 2013; 816–817 Greitemeier (10.1016/j.ijfatigue.2020.105497_b0025) 2017; 94 Witkin (10.1016/j.ijfatigue.2020.105497_b0055) 2019; 28 Niinomi (10.1016/j.ijfatigue.2020.105497_b0130) 1998; A Boschetto (10.1016/j.ijfatigue.2020.105497_b0035) 2017 Chan (10.1016/j.ijfatigue.2020.105497_b0005) 2015; 3 Kasperovich (10.1016/j.ijfatigue.2020.105497_b0080) 2015; 220 10.1016/j.ijfatigue.2020.105497_b0135 Günther (10.1016/j.ijfatigue.2020.105497_b0030) 2017; 94 10.1016/j.ijfatigue.2020.105497_b0070 Bagehorn (10.1016/j.ijfatigue.2020.105497_b0105) 2017; 102 Kahlin (10.1016/j.ijfatigue.2020.105497_b0020) 2017 Urlea (10.1016/j.ijfatigue.2020.105497_b0040) 2017; 242 Gora (10.1016/j.ijfatigue.2020.105497_b0045) 2016; 83 Denti (10.1016/j.ijfatigue.2020.105497_b0095) 2019; 755 Nicoletto (10.1016/j.ijfatigue.2020.105497_b0010) 2018; 116 Campbell (10.1016/j.ijfatigue.2020.105497_b0100) 2012 |
References_xml | – reference: Military Handbook. Titanium and titanium alloys. Department of Defense; 1974. – reference: Ramachandran M, editor. Basic orthopaedic sciences, 2nd ed.; 2018. doi: 10.1201/9781315117294. – volume: 816–817 start-page: 134 year: 2013 end-page: 139 ident: b0110 article-title: High cycle fatigue (HCF) performance of Ti-6Al-4V alloy processed by selective laser melting publication-title: Adv Mater Res – volume: 3 start-page: 44006 year: 2015 ident: b0005 article-title: Characterization and analysis of surface notches on Ti-alloy plates fabricated by additive manufacturing techniques publication-title: Surf Topogr Metrol Prop – volume: 2 start-page: 219 year: 2014 end-page: 233 ident: b0090 article-title: Modeling and characterization of residual stresses in material processing publication-title: Compr Mater Process – volume: 103 start-page: 353 year: 2017 end-page: 362 ident: b0075 article-title: Fatigue behaviour of additive manufactured Ti6Al4V, with as-built surfaces, exposed to variable amplitude loading publication-title: Int J Fatigue – reference: > (accessed July 24, 2019). – year: 1987 ident: b0065 article-title: Residual stress: measurement by diffraction and interpretation – volume: 93 start-page: 171 year: 2017 end-page: 177 ident: b0050 article-title: Laser polishing of additive manufactured Ti alloys publication-title: Opt Lasers Eng – volume: 28 start-page: 1577 year: 2006 end-page: 1582 ident: b0125 article-title: Staircase testing of a titanium alloy in the gigacycle regime publication-title: Int J Fatigue – volume: 220 start-page: 202 year: 2015 end-page: 214 ident: b0080 article-title: Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting publication-title: J Mater Process Technol – volume: A start-page: 231 year: 1998 end-page: 236 ident: b0130 article-title: Mechanical properties of biomedical titanium alloys publication-title: Mater Sci Eng – start-page: 1 year: 2017 end-page: 18 ident: b0035 article-title: Surface roughness and radiusing of Ti6Al4V selective laser melting-manufactured parts conditioned by barrel finishing publication-title: Int J Adv Manuf Technol – volume: 94 start-page: 211 year: 2017 end-page: 217 ident: b0025 article-title: Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting publication-title: Int J Fatigue – reference: Khairallah Saad, Anderson, Andrew, Rubenchik, Alexander, King W. Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 2016;108:36–45. doi: 10.1016/j.actamat.2016.02.014. – reference: Svensson M, Ackelid U, Ab A. Titanium alloys manufactured with electron beam melting mechanical and chemical properties. Med Device Mater V Proc from Mater Process Med Devices Conf 2009; 2009. p. 189–94. doi: 10.1007/978-4-431-54237-7. – year: 2012 ident: b0100 article-title: Lightweight materials: understanding the basics publication-title: ASM International – volume: 755 start-page: 1 year: 2019 end-page: 9 ident: b0095 article-title: Fatigue life and microstructure of additive manufactured Ti6Al4V after different finishing processes publication-title: Mater Sci Eng A – volume: 7 start-page: 158 year: 2017 end-page: 165 ident: b0115 article-title: Fatigue properties of EBM as-built and chemically etched thin parts publication-title: Procedia Struct Integr – volume: 229 start-page: 2132 year: 2015 end-page: 2147 ident: b0015 article-title: The present and future of additive manufacturing in the aerospace sector: a review of important aspects publication-title: Proc Inst Mech Eng Part G J Aerosp Eng – volume: 28 start-page: 681 year: 2019 end-page: 692 ident: b0055 article-title: Surface treatment of powder-bed fusion additive manufactured metals for improved fatigue life publication-title: J Mater Eng Perform – year: 2017 ident: b0020 article-title: Fatigue behaviour of notched additive manufactured Ti6Al4V with as-built surfaces publication-title: Int J Fatigue – volume: 242 start-page: 1 year: 2017 end-page: 11 ident: b0040 article-title: Electropolishing and electropolishing-related allowances for powder bed selectively laser-melted Ti-6Al-4V alloy components publication-title: J Mater Process Technol – volume: 48 start-page: 300 year: 2013 end-page: 307 ident: b0085 article-title: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance publication-title: Int J Fatigue – volume: 102 start-page: 135 year: 2017 end-page: 142 ident: b0105 article-title: Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti-6Al-4V parts publication-title: Int J Fatigue – volume: 23 start-page: 723 year: 2009 end-page: 741 ident: b0145 article-title: Pressure-induced electronic phase transitions and superconductivity in titanium publication-title: Int J Mod Phys B – volume: 116 start-page: 140 year: 2018 end-page: 148 ident: b0010 article-title: Surface roughness and directional fatigue behavior of as-built EBM and DMLS Ti6Al4V publication-title: Int J Fatigue – volume: 83 start-page: 258 year: 2016 end-page: 263 ident: b0045 article-title: Enhancing surface finish of additively manufactured titanium and cobalt chrome elements using laser based finishing publication-title: Phys Procedia – volume: 94 start-page: 236 year: 2017 end-page: 245 ident: b0030 article-title: Fatigue life of additively manufactured Ti–6Al–4V in the very high cycle fatigue regime publication-title: Int J Fatigue – reference: LSP Technologoes I. No Title; 2019. < – ident: 10.1016/j.ijfatigue.2020.105497_b0135 doi: 10.1016/j.actamat.2016.02.014 – volume: 48 start-page: 300 year: 2013 ident: 10.1016/j.ijfatigue.2020.105497_b0085 article-title: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2012.11.011 – ident: 10.1016/j.ijfatigue.2020.105497_b0060 – volume: 242 start-page: 1 year: 2017 ident: 10.1016/j.ijfatigue.2020.105497_b0040 article-title: Electropolishing and electropolishing-related allowances for powder bed selectively laser-melted Ti-6Al-4V alloy components publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2016.11.014 – volume: 94 start-page: 236 year: 2017 ident: 10.1016/j.ijfatigue.2020.105497_b0030 article-title: Fatigue life of additively manufactured Ti–6Al–4V in the very high cycle fatigue regime publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2016.05.018 – volume: 3 start-page: 44006 year: 2015 ident: 10.1016/j.ijfatigue.2020.105497_b0005 article-title: Characterization and analysis of surface notches on Ti-alloy plates fabricated by additive manufacturing techniques publication-title: Surf Topogr Metrol Prop doi: 10.1088/2051-672X/3/4/044006 – volume: 755 start-page: 1 year: 2019 ident: 10.1016/j.ijfatigue.2020.105497_b0095 article-title: Fatigue life and microstructure of additive manufactured Ti6Al4V after different finishing processes publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2019.03.119 – volume: 23 start-page: 723 year: 2009 ident: 10.1016/j.ijfatigue.2020.105497_b0145 article-title: Pressure-induced electronic phase transitions and superconductivity in titanium publication-title: Int J Mod Phys B doi: 10.1142/S0217979209051978 – start-page: 1 year: 2017 ident: 10.1016/j.ijfatigue.2020.105497_b0035 article-title: Surface roughness and radiusing of Ti6Al4V selective laser melting-manufactured parts conditioned by barrel finishing publication-title: Int J Adv Manuf Technol – volume: 116 start-page: 140 year: 2018 ident: 10.1016/j.ijfatigue.2020.105497_b0010 article-title: Surface roughness and directional fatigue behavior of as-built EBM and DMLS Ti6Al4V publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2018.06.011 – volume: 94 start-page: 211 year: 2017 ident: 10.1016/j.ijfatigue.2020.105497_b0025 article-title: Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2016.05.001 – year: 2012 ident: 10.1016/j.ijfatigue.2020.105497_b0100 article-title: Lightweight materials: understanding the basics publication-title: ASM International – volume: 220 start-page: 202 year: 2015 ident: 10.1016/j.ijfatigue.2020.105497_b0080 article-title: Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2015.01.025 – ident: 10.1016/j.ijfatigue.2020.105497_b0140 doi: 10.1201/9781315117294 – volume: A start-page: 231 year: 1998 ident: 10.1016/j.ijfatigue.2020.105497_b0130 article-title: Mechanical properties of biomedical titanium alloys publication-title: Mater Sci Eng doi: 10.1016/S0921-5093(97)00806-X – volume: 229 start-page: 2132 year: 2015 ident: 10.1016/j.ijfatigue.2020.105497_b0015 article-title: The present and future of additive manufacturing in the aerospace sector: a review of important aspects publication-title: Proc Inst Mech Eng Part G J Aerosp Eng doi: 10.1177/0954410014568797 – volume: 7 start-page: 158 year: 2017 ident: 10.1016/j.ijfatigue.2020.105497_b0115 article-title: Fatigue properties of EBM as-built and chemically etched thin parts publication-title: Procedia Struct Integr doi: 10.1016/j.prostr.2017.11.073 – year: 2017 ident: 10.1016/j.ijfatigue.2020.105497_b0020 article-title: Fatigue behaviour of notched additive manufactured Ti6Al4V with as-built surfaces publication-title: Int J Fatigue – volume: 83 start-page: 258 year: 2016 ident: 10.1016/j.ijfatigue.2020.105497_b0045 article-title: Enhancing surface finish of additively manufactured titanium and cobalt chrome elements using laser based finishing publication-title: Phys Procedia doi: 10.1016/j.phpro.2016.08.021 – volume: 2 start-page: 219 year: 2014 ident: 10.1016/j.ijfatigue.2020.105497_b0090 article-title: Modeling and characterization of residual stresses in material processing publication-title: Compr Mater Process doi: 10.1016/B978-0-08-096532-1.00218-1 – volume: 28 start-page: 681 year: 2019 ident: 10.1016/j.ijfatigue.2020.105497_b0055 article-title: Surface treatment of powder-bed fusion additive manufactured metals for improved fatigue life publication-title: J Mater Eng Perform doi: 10.1007/s11665-018-3732-9 – volume: 103 start-page: 353 year: 2017 ident: 10.1016/j.ijfatigue.2020.105497_b0075 article-title: Fatigue behaviour of additive manufactured Ti6Al4V, with as-built surfaces, exposed to variable amplitude loading publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2017.06.023 – volume: 102 start-page: 135 year: 2017 ident: 10.1016/j.ijfatigue.2020.105497_b0105 article-title: Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti-6Al-4V parts publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2017.05.008 – volume: 93 start-page: 171 year: 2017 ident: 10.1016/j.ijfatigue.2020.105497_b0050 article-title: Laser polishing of additive manufactured Ti alloys publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2017.02.005 – ident: 10.1016/j.ijfatigue.2020.105497_b0070 doi: 10.1007/978-4-431-54237-7 – volume: 816–817 start-page: 134 year: 2013 ident: 10.1016/j.ijfatigue.2020.105497_b0110 article-title: High cycle fatigue (HCF) performance of Ti-6Al-4V alloy processed by selective laser melting publication-title: Adv Mater Res doi: 10.4028/www.scientific.net/AMR.816-817.134 – volume: 28 start-page: 1577 year: 2006 ident: 10.1016/j.ijfatigue.2020.105497_b0125 article-title: Staircase testing of a titanium alloy in the gigacycle regime publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2005.10.007 – ident: 10.1016/j.ijfatigue.2020.105497_b0120 – year: 1987 ident: 10.1016/j.ijfatigue.2020.105497_b0065 |
SSID | ssj0009075 |
Score | 2.6242175 |
Snippet | •Surface post processes are needed for PBF Ti6Al4V to achieve high fatigue strength.•Centrifugal finishing of L-PBF Ti6Al4V gave the highest fatigue... A major challenge for additively manufactured structural parts is the low fatigue strength connected to rough as-built surfaces. In this study, Ti6Al4V... |
SourceID | swepub proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105497 |
SubjectTerms | Additive manufacturing Electron beams Fatigue Fatigue strength Heat treating Laser beams Laser shock processing Lasers Materials fatigue Post processes Powder beds Rapid prototyping Shot peening Surface roughness Ti6Al4V Titanium base alloys |
Title | Improved fatigue strength of additively manufactured Ti6Al4V by surface post processing |
URI | https://dx.doi.org/10.1016/j.ijfatigue.2020.105497 https://www.proquest.com/docview/2439981320 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-164853 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqWGBAPEWhVB4QW2jauKnLVhVQAYmJRzfL8aOkKmnVJkMXfjt3cVJaCYmBMY6dOHfnezjfnQm51NZvRxB4eCxUymMdxbyoLX0PMYDNUErZ1TlA9jkcvLLHYXtYIf0yFwZhlYXudzo919ZFS6OgZmMWxw2EJUH0Ah4ByClYyTyDnXVQyq-_fmAeXVdsFzt72HsD4xWPLXw_bpG0wG3CM28ZVn_63UKte6DrVUVzS3S_T_YKF5L23CwPSMUkh2R3rbDgEXl3ewVG0-LNFHNCklH6QaeWIoYItdxkST9lkmFuQzaHvi9x2JuwNxot6SKbQ7Ohs-kipTOXTABPPiav93cv_YFXHKHgKRb4qadtR2mIeJothf_XNAfGKMkjHXIdsSAwFvylUHOmIwuG3VpYv6yprcEq-nA_OCFbyTQxp4QaxoDhgeTdpmEq7MqAc218eBaHIEjqKglLsglV1BfHYy4mogSSjcWK3gLpLRy9q8RfDZy5Eht_D7kp-SI2pEWAIfh7cK3kpCgW7EK0MC7jmE9eJVeOu6vJYAXu2_itJ6bzkZjEmYAQE7ycs_9M4pzs4JWDTtbIVjrPzAW4N2lUz-W3TrZ7D0-D52_id_uz |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOiKcaKOADcFuyD2frIPUQ0VYpLT2lpTfj9aNsFTZRsiuUC3-KP9iZ2JumElIPqFd77R3NzM7D-80Y4L1xca_AxCPiudYR39E8KnoqjggDmORKqb5ZAmRP8uEp_3reO9-Av20tDMEqg-33Nn1prcNIN3CzOy3LLsGSMHvBiAD1FL1kEpCVR3bxG_O2-e7hHgr5Q5oe7I--DKNwtUCkeRbXkXE72mAmkKSa_jsZgQRrJQqTC1PwLLMO44jcCG4Khw7POdRrnhhnqbs8zme47z24z9Fc0LUJn_5c40r6vrsvURcReTdAZeWlQ4bTmUyKcRpdssup3dS_XeJ6yLvexnTp-g6ewOMQs7KBZ8tT2LDVM3i01snwOXz3hxPWsPBmRkUo1UX9k00cI9ASmdXxgv1SVUPFFM0Mnx2V-WDMz1ixYPNmhsOWTSfzmk199QLu_AJO74SxL2GzmlR2C5jlHDUsU6KfWK7zvsqEMDbGvQRmXcp0IG_ZJnVoaE73aoxli1y7lCt-S-K39PzuQLxaOPU9PW5f8rmVi7yhnhI9z-2Lt1tJymAh5jKlRFBQAXsHPnrproihlt975dlATmYXclw2EnNaDKte_Q8R7-DBcPTtWB4fnhy9hoc043Gb27BZzxr7BmOruni71GUGP-7647kCcM43PA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+fatigue+strength+of+additively+manufactured+Ti6Al4V+by+surface+post+processing&rft.jtitle=International+journal+of+fatigue&rft.au=Kahlin%2C+M&rft.au=Ansell%2C+H&rft.au=Basu%2C+D&rft.au=Kerwin%2C+A&rft.date=2020-05-01&rft.pub=Elsevier+BV&rft.issn=0142-1123&rft.eissn=1879-3452&rft.volume=134&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1016%2Fj.ijfatigue.2020.105497&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon |