Improved fatigue strength of additively manufactured Ti6Al4V by surface post processing

•Surface post processes are needed for PBF Ti6Al4V to achieve high fatigue strength.•Centrifugal finishing of L-PBF Ti6Al4V gave the highest fatigue strength.•Laser polished material had reduced fatigue strength although low surface roughness. A major challenge for additively manufactured structural...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of fatigue Vol. 134; pp. 105497 - 12
Main Authors Kahlin, M., Ansell, H., Basu, D., Kerwin, A., Newton, L., Smith, B., Moverare, J.J.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.05.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Surface post processes are needed for PBF Ti6Al4V to achieve high fatigue strength.•Centrifugal finishing of L-PBF Ti6Al4V gave the highest fatigue strength.•Laser polished material had reduced fatigue strength although low surface roughness. A major challenge for additively manufactured structural parts is the low fatigue strength connected to rough as-built surfaces. In this study, Ti6Al4V manufactured with laser powder bed fusion (L-PBF) and electron beam powder bed fusion (E-PBF) have been subjected to five surface processing methods, shot peening, laser shock peening, centrifugal finishing, laser polishing and linishing, in order to increase the fatigue strength. Shot peened and centrifugal finished L-PBF material achieved comparable fatigue strength to machined material. Moreover, the surface roughness alone was found to be an insufficient indicator on the fatigue strength since subsurface defects were hidden below smooth surfaces.
AbstractList A major challenge for additively manufactured structural parts is the low fatigue strength connected to rough as-built surfaces. In this study, Ti6Al4V manufactured with laser powder bed fusion (L-PBF) and electron beam powder bed fusion (E-PBF) have been subjected to five surface processing methods, shot peening, laser shock peening, centrifugal finishing, laser polishing and linishing, in order to increase the fatigue strength. Shot peened and centrifugal finished L-PBF material achieved comparable fatigue strength to machined material. Moreover, the surface roughness alone was found to be an insufficient indicator on the fatigue strength since subsurface defects were hidden below smooth surfaces.
•Surface post processes are needed for PBF Ti6Al4V to achieve high fatigue strength.•Centrifugal finishing of L-PBF Ti6Al4V gave the highest fatigue strength.•Laser polished material had reduced fatigue strength although low surface roughness. A major challenge for additively manufactured structural parts is the low fatigue strength connected to rough as-built surfaces. In this study, Ti6Al4V manufactured with laser powder bed fusion (L-PBF) and electron beam powder bed fusion (E-PBF) have been subjected to five surface processing methods, shot peening, laser shock peening, centrifugal finishing, laser polishing and linishing, in order to increase the fatigue strength. Shot peened and centrifugal finished L-PBF material achieved comparable fatigue strength to machined material. Moreover, the surface roughness alone was found to be an insufficient indicator on the fatigue strength since subsurface defects were hidden below smooth surfaces.
ArticleNumber 105497
Author Ansell, H.
Newton, L.
Basu, D.
Moverare, J.J.
Kahlin, M.
Kerwin, A.
Smith, B.
Author_xml – sequence: 1
  givenname: M.
  surname: Kahlin
  fullname: Kahlin, M.
  email: magnus.kahlin@saabgroup.com
  organization: Saab AB, Aeronautics, SE-58188 Linköping, Sweden
– sequence: 2
  givenname: H.
  surname: Ansell
  fullname: Ansell, H.
  organization: Saab AB, Aeronautics, SE-58188 Linköping, Sweden
– sequence: 3
  givenname: D.
  surname: Basu
  fullname: Basu, D.
  organization: Manufacturing Technology Centre, Coventry CV7 9JU, UK
– sequence: 4
  givenname: A.
  surname: Kerwin
  fullname: Kerwin, A.
  organization: Manufacturing Technology Centre, Coventry CV7 9JU, UK
– sequence: 5
  givenname: L.
  surname: Newton
  fullname: Newton, L.
  organization: Manufacturing Metrology Team, University of Nottingham, Nottingham NG7 2RD, UK
– sequence: 6
  givenname: B.
  surname: Smith
  fullname: Smith, B.
  organization: Manufacturing Technology Centre, Coventry CV7 9JU, UK
– sequence: 7
  givenname: J.J.
  surname: Moverare
  fullname: Moverare, J.J.
  organization: Division of Engineering Materials, Linköping University, SE-581 83 Linköping, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-164853$$DView record from Swedish Publication Index
BookMark eNqFkE1r3DAURUVJoZO0v6GCrD3Vl2150cWQpG0gkE2SLoUsPU1lPNZEkqfMv68GJ11kk5Xg6dzL5ZyjsylMgNBXStaU0ObbsPaD09lvZ1gzwk7XWnTtB7Sisu0qLmp2hlaEClZRyvgndJ7SQAjpSFuv0O_b3T6GA1j80oFTjjBt8x8cHNbW-uwPMB7xTk-z0ybPsbAPvtmM4gn3R5zmWM6A9yFlXKoMpOSn7Wf00ekxwZeX9wI9_rh5uPpV3d3_vL3a3FVGcJIr61pjqZCUGU5Ea2XdM6Nlbxtpe8E5OCp4Y6WwvWsod66VraDWAZWNLP_8AlVLb_oL-7lX--h3Oh5V0F5d-6eNCnGrRj8r2ghZn_jLhS9Tn2dIWQ1hjlOZqJjgXScpZ6RQ3xfKxJBSBKeMz8VPmHLUflSUqJN7Naj_7tXJvVrcl3z7Jv-66_3kZklCkXbwEFUyHiYD1kcwWdng3-34Bw5PpqY
CitedBy_id crossref_primary_10_1016_j_actbio_2022_06_002
crossref_primary_10_3390_ma17184548
crossref_primary_10_29109_gujsc_1130098
crossref_primary_10_1007_s12206_022_2105_3
crossref_primary_10_1088_2053_1591_abcc5d
crossref_primary_10_1016_j_bprint_2021_e00180
crossref_primary_10_1557_jmr_2020_305
crossref_primary_10_1007_s10853_022_07019_9
crossref_primary_10_1111_ffe_14184
crossref_primary_10_3390_met14121350
crossref_primary_10_2139_ssrn_4065466
crossref_primary_10_1016_j_mtcomm_2024_108979
crossref_primary_10_3390_mi14071480
crossref_primary_10_1007_s00170_023_11964_3
crossref_primary_10_1520_MPC20220088
crossref_primary_10_1016_j_ijfatigue_2023_107673
crossref_primary_10_1016_j_jmatprotec_2021_117264
crossref_primary_10_1016_j_ijmecsci_2021_106757
crossref_primary_10_1016_j_msea_2022_144050
crossref_primary_10_1016_j_ijfatigue_2024_108365
crossref_primary_10_1080_00218464_2024_2441886
crossref_primary_10_1089_3dp_2021_0067
crossref_primary_10_1016_j_ijmecsci_2024_109520
crossref_primary_10_1016_j_cossms_2021_100974
crossref_primary_10_1088_1742_6596_2459_1_012059
crossref_primary_10_1016_j_optlastec_2023_109588
crossref_primary_10_1016_j_ijfatigue_2021_106239
crossref_primary_10_3390_jmmp8040144
crossref_primary_10_1016_j_engfailanal_2020_104784
crossref_primary_10_1007_s12540_022_01378_3
crossref_primary_10_1016_j_ijfatigue_2024_108516
crossref_primary_10_1016_j_tafmec_2024_104281
crossref_primary_10_1016_j_ijplas_2021_103172
crossref_primary_10_1080_10408436_2022_2041396
crossref_primary_10_1016_j_ijfatigue_2024_108354
crossref_primary_10_1016_j_engfailanal_2023_107265
crossref_primary_10_1007_s00170_021_06855_4
crossref_primary_10_1016_j_addma_2021_102147
crossref_primary_10_1016_j_msea_2021_142041
crossref_primary_10_3390_ma17081929
crossref_primary_10_1016_j_msea_2023_145915
crossref_primary_10_3390_cryst12030374
crossref_primary_10_1016_j_addma_2020_101619
crossref_primary_10_1016_j_engfailanal_2025_109403
crossref_primary_10_2320_matertrans_MT_H2024001
crossref_primary_10_1016_j_ijfatigue_2022_107134
crossref_primary_10_1016_j_ijfatigue_2024_108426
crossref_primary_10_1080_17452759_2023_2276247
crossref_primary_10_1088_1742_6596_2686_1_012010
crossref_primary_10_1088_2051_672X_acf67c
crossref_primary_10_1016_j_ijplas_2023_103784
crossref_primary_10_1016_j_prostr_2022_05_037
crossref_primary_10_2472_jsms_71_711
crossref_primary_10_1007_s11665_023_08051_9
crossref_primary_10_3390_jmmp7030115
crossref_primary_10_1016_j_matchar_2022_112281
crossref_primary_10_1016_j_procir_2024_08_289
crossref_primary_10_1016_j_msea_2023_144657
crossref_primary_10_1016_j_ijmachtools_2021_103804
crossref_primary_10_1016_j_jmst_2021_01_056
crossref_primary_10_1016_j_measurement_2023_113169
crossref_primary_10_1016_j_jmapro_2023_10_018
crossref_primary_10_1016_j_ijfatigue_2021_106536
crossref_primary_10_3390_ma16083169
crossref_primary_10_1177_14644207231196266
crossref_primary_10_1080_02670844_2022_2072080
crossref_primary_10_1016_j_commatsci_2021_110716
crossref_primary_10_1016_j_ijfatigue_2020_105945
crossref_primary_10_1002_adem_202402882
crossref_primary_10_1080_21663831_2023_2275599
crossref_primary_10_1016_j_ijfatigue_2022_107129
crossref_primary_10_1016_j_ijfatigue_2024_108777
crossref_primary_10_1016_j_jmatprotec_2021_117475
crossref_primary_10_3390_app11052112
crossref_primary_10_1007_s40964_024_00885_6
crossref_primary_10_1108_RPJ_07_2023_0219
crossref_primary_10_1016_j_jmatprotec_2024_118425
crossref_primary_10_1016_j_msea_2021_141598
crossref_primary_10_1016_j_apsusc_2021_150758
crossref_primary_10_3390_ma16031084
crossref_primary_10_1016_j_msea_2023_145477
crossref_primary_10_1088_1361_6501_ad6896
crossref_primary_10_1016_j_engfailanal_2023_107208
crossref_primary_10_1016_j_ijfatigue_2023_107879
crossref_primary_10_1016_j_matchemphys_2021_125217
crossref_primary_10_1007_s00170_022_08840_x
crossref_primary_10_1121_10_0006379
crossref_primary_10_1016_j_prostr_2024_02_031
crossref_primary_10_1016_j_triboint_2020_106806
crossref_primary_10_1016_j_jmatprotec_2022_117586
crossref_primary_10_1007_s40516_023_00217_6
crossref_primary_10_1016_j_addma_2021_102094
crossref_primary_10_1016_j_ijfatigue_2025_108843
crossref_primary_10_1016_j_prostr_2024_03_008
crossref_primary_10_1007_s40194_024_01704_w
crossref_primary_10_1016_j_engfracmech_2021_107876
crossref_primary_10_3390_bioengineering11040393
crossref_primary_10_1016_j_rinma_2024_100579
crossref_primary_10_1111_ffe_14392
crossref_primary_10_1016_j_msea_2023_144599
crossref_primary_10_1007_s00170_022_09907_5
crossref_primary_10_1007_s40964_024_00763_1
crossref_primary_10_3390_ma13102216
crossref_primary_10_1016_j_addma_2020_101428
crossref_primary_10_1016_j_matdes_2021_109469
crossref_primary_10_1111_ffe_13461
crossref_primary_10_1089_3dp_2023_0028
crossref_primary_10_1016_j_jmbbm_2021_105042
crossref_primary_10_1016_j_addma_2024_104263
crossref_primary_10_1016_j_ijfatigue_2024_108558
crossref_primary_10_3390_app13116702
crossref_primary_10_1016_j_ijfatigue_2021_106270
crossref_primary_10_1016_j_matchar_2021_110935
crossref_primary_10_1108_RPJ_01_2020_0009
crossref_primary_10_3390_met11040609
crossref_primary_10_1080_17452759_2024_2302556
crossref_primary_10_3390_machines10121151
crossref_primary_10_1007_s00170_023_12552_1
crossref_primary_10_3390_coatings14091174
crossref_primary_10_1016_j_addlet_2022_100049
crossref_primary_10_1016_j_jallcom_2024_173664
crossref_primary_10_1016_j_matpr_2021_01_354
crossref_primary_10_1016_j_ijfatigue_2022_106920
crossref_primary_10_1016_j_ijfatigue_2023_107850
crossref_primary_10_1016_j_ijfatigue_2024_108348
crossref_primary_10_1016_j_jallcom_2024_174875
crossref_primary_10_1016_j_jmatprotec_2021_117321
crossref_primary_10_1016_j_ijfatigue_2024_108621
crossref_primary_10_2320_matertrans_MT_MF2022028
crossref_primary_10_1016_j_ijfatigue_2022_107171
crossref_primary_10_1007_s00170_023_10814_6
crossref_primary_10_4028_www_scientific_net_MSF_1051_137
crossref_primary_10_1007_s11665_021_06021_7
crossref_primary_10_1016_j_msea_2022_143745
crossref_primary_10_1016_j_ijmachtools_2022_103908
crossref_primary_10_1016_j_ijmachtools_2023_104061
crossref_primary_10_1557_s43578_020_00087_0
crossref_primary_10_1007_s40684_023_00551_2
crossref_primary_10_1016_j_jmapro_2023_07_015
crossref_primary_10_1016_j_jmatprotec_2021_117279
crossref_primary_10_1016_j_jmapro_2023_04_078
crossref_primary_10_1016_j_matpr_2020_11_263
crossref_primary_10_1016_j_ijmecsci_2021_106547
crossref_primary_10_1016_j_jmrt_2025_02_121
crossref_primary_10_1016_j_msea_2024_146821
crossref_primary_10_3390_mi14010136
crossref_primary_10_1016_j_optlastec_2020_106639
crossref_primary_10_1177_09544062251319075
Cites_doi 10.1016/j.actamat.2016.02.014
10.1016/j.ijfatigue.2012.11.011
10.1016/j.jmatprotec.2016.11.014
10.1016/j.ijfatigue.2016.05.018
10.1088/2051-672X/3/4/044006
10.1016/j.msea.2019.03.119
10.1142/S0217979209051978
10.1016/j.ijfatigue.2018.06.011
10.1016/j.ijfatigue.2016.05.001
10.1016/j.jmatprotec.2015.01.025
10.1201/9781315117294
10.1016/S0921-5093(97)00806-X
10.1177/0954410014568797
10.1016/j.prostr.2017.11.073
10.1016/j.phpro.2016.08.021
10.1016/B978-0-08-096532-1.00218-1
10.1007/s11665-018-3732-9
10.1016/j.ijfatigue.2017.06.023
10.1016/j.ijfatigue.2017.05.008
10.1016/j.optlaseng.2017.02.005
10.1007/978-4-431-54237-7
10.4028/www.scientific.net/AMR.816-817.134
10.1016/j.ijfatigue.2005.10.007
ContentType Journal Article
Copyright 2020 The Authors
Copyright Elsevier BV May 2020
Copyright_xml – notice: 2020 The Authors
– notice: Copyright Elsevier BV May 2020
DBID 6I.
AAFTH
AAYXX
CITATION
7SR
8BQ
8FD
JG9
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
DOI 10.1016/j.ijfatigue.2020.105497
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
SWEPUB Linköpings universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Linköpings universitet
SwePub Articles full text
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3452
EndPage 12
ExternalDocumentID oai_DiVA_org_liu_164853
10_1016_j_ijfatigue_2020_105497
S0142112320300281
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
8P~
9JN
AABCJ
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
8BQ
8FD
EFKBS
JG9
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
ID FETCH-LOGICAL-c430t-df7cd14812c3047d85b2ca8bd68db433ef1436d84dbf613ff78741dfe18684333
IEDL.DBID .~1
ISSN 0142-1123
1879-3452
IngestDate Thu Aug 21 06:50:50 EDT 2025
Fri Jul 25 02:34:29 EDT 2025
Thu Apr 24 23:11:31 EDT 2025
Tue Jul 01 01:54:34 EDT 2025
Fri Feb 23 02:48:59 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Fatigue
Surface roughness
Additive manufacturing
Ti6Al4V
Post processes
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-df7cd14812c3047d85b2ca8bd68db433ef1436d84dbf613ff78741dfe18684333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0142112320300281
PQID 2439981320
PQPubID 2045465
PageCount 12
ParticipantIDs swepub_primary_oai_DiVA_org_liu_164853
proquest_journals_2439981320
crossref_citationtrail_10_1016_j_ijfatigue_2020_105497
crossref_primary_10_1016_j_ijfatigue_2020_105497
elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2020_105497
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International journal of fatigue
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Niinomi, Kuo, Ma (b0130) 1998; A
Günther, Krewerth, Lippmann, Leuders, Tröster, Weidner (b0030) 2017; 94
Kasperovich, Hausmann (b0080) 2015; 220
Morrissey, Nicholas (b0125) 2006; 28
Wycisk, Emmelmann, Siddique, Walther (b0110) 2013; 816–817
Bolognesi Donato, Magnabosco (b0090) 2014; 2
Ma, Guan, Zhou (b0050) 2017; 93
Chan (b0005) 2015; 3
Persenot, Buffiere, Maire, Dendievel, Martin (b0115) 2017; 7
Noyan, Cohen (b0065) 1987
Iyakutti, Nirmala Louis, Anuratha, Mahalakshmi (b0145) 2009; 23
(accessed July 24, 2019).
Campbell (b0100) 2012
Nicoletto, Konečná, Frkáň, Riva (b0010) 2018; 116
Bagehorn, Wehr, Maier (b0105) 2017; 102
Greitemeier, Palm, Syassen, Melz (b0025) 2017; 94
Military Handbook. Titanium and titanium alloys. Department of Defense; 1974.
Denti, Bassoli, Gatto, Santecchia, Mengucci (b0095) 2019; 755
Uriondo, Esperon-Miguez, Perinpanayagam (b0015) 2015; 229
Boschetto, Bottini, Veniali (b0035) 2017
Gora, Tian, Cabo, Ardron, Maier, Prangnell (b0045) 2016; 83
Svensson M, Ackelid U, Ab A. Titanium alloys manufactured with electron beam melting mechanical and chemical properties. Med Device Mater V Proc from Mater Process Med Devices Conf 2009; 2009. p. 189–94. doi: 10.1007/978-4-431-54237-7.
Kahlin, Ansell, Moverare (b0020) 2017
Witkin, Patel, Helvajian, Steffeney, Diaz (b0055) 2019; 28
Ramachandran M, editor. Basic orthopaedic sciences, 2nd ed.; 2018. doi: 10.1201/9781315117294.
LSP Technologoes I. No Title; 2019.
Urlea, Brailovski (b0040) 2017; 242
Leuders, Thöne, Riemer, Niendorf, Tröster, Richard (b0085) 2013; 48
Khairallah Saad, Anderson, Andrew, Rubenchik, Alexander, King W. Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 2016;108:36–45. doi: 10.1016/j.actamat.2016.02.014.
Kahlin, Ansell, Moverare (b0075) 2017; 103
10.1016/j.ijfatigue.2020.105497_b0120
Noyan (10.1016/j.ijfatigue.2020.105497_b0065) 1987
Kahlin (10.1016/j.ijfatigue.2020.105497_b0075) 2017; 103
Leuders (10.1016/j.ijfatigue.2020.105497_b0085) 2013; 48
Morrissey (10.1016/j.ijfatigue.2020.105497_b0125) 2006; 28
Uriondo (10.1016/j.ijfatigue.2020.105497_b0015) 2015; 229
10.1016/j.ijfatigue.2020.105497_b0060
Ma (10.1016/j.ijfatigue.2020.105497_b0050) 2017; 93
Persenot (10.1016/j.ijfatigue.2020.105497_b0115) 2017; 7
10.1016/j.ijfatigue.2020.105497_b0140
Bolognesi Donato (10.1016/j.ijfatigue.2020.105497_b0090) 2014; 2
Iyakutti (10.1016/j.ijfatigue.2020.105497_b0145) 2009; 23
Wycisk (10.1016/j.ijfatigue.2020.105497_b0110) 2013; 816–817
Greitemeier (10.1016/j.ijfatigue.2020.105497_b0025) 2017; 94
Witkin (10.1016/j.ijfatigue.2020.105497_b0055) 2019; 28
Niinomi (10.1016/j.ijfatigue.2020.105497_b0130) 1998; A
Boschetto (10.1016/j.ijfatigue.2020.105497_b0035) 2017
Chan (10.1016/j.ijfatigue.2020.105497_b0005) 2015; 3
Kasperovich (10.1016/j.ijfatigue.2020.105497_b0080) 2015; 220
10.1016/j.ijfatigue.2020.105497_b0135
Günther (10.1016/j.ijfatigue.2020.105497_b0030) 2017; 94
10.1016/j.ijfatigue.2020.105497_b0070
Bagehorn (10.1016/j.ijfatigue.2020.105497_b0105) 2017; 102
Kahlin (10.1016/j.ijfatigue.2020.105497_b0020) 2017
Urlea (10.1016/j.ijfatigue.2020.105497_b0040) 2017; 242
Gora (10.1016/j.ijfatigue.2020.105497_b0045) 2016; 83
Denti (10.1016/j.ijfatigue.2020.105497_b0095) 2019; 755
Nicoletto (10.1016/j.ijfatigue.2020.105497_b0010) 2018; 116
Campbell (10.1016/j.ijfatigue.2020.105497_b0100) 2012
References_xml – reference: Military Handbook. Titanium and titanium alloys. Department of Defense; 1974.
– reference: Ramachandran M, editor. Basic orthopaedic sciences, 2nd ed.; 2018. doi: 10.1201/9781315117294.
– volume: 816–817
  start-page: 134
  year: 2013
  end-page: 139
  ident: b0110
  article-title: High cycle fatigue (HCF) performance of Ti-6Al-4V alloy processed by selective laser melting
  publication-title: Adv Mater Res
– volume: 3
  start-page: 44006
  year: 2015
  ident: b0005
  article-title: Characterization and analysis of surface notches on Ti-alloy plates fabricated by additive manufacturing techniques
  publication-title: Surf Topogr Metrol Prop
– volume: 2
  start-page: 219
  year: 2014
  end-page: 233
  ident: b0090
  article-title: Modeling and characterization of residual stresses in material processing
  publication-title: Compr Mater Process
– volume: 103
  start-page: 353
  year: 2017
  end-page: 362
  ident: b0075
  article-title: Fatigue behaviour of additive manufactured Ti6Al4V, with as-built surfaces, exposed to variable amplitude loading
  publication-title: Int J Fatigue
– reference: > (accessed July 24, 2019).
– year: 1987
  ident: b0065
  article-title: Residual stress: measurement by diffraction and interpretation
– volume: 93
  start-page: 171
  year: 2017
  end-page: 177
  ident: b0050
  article-title: Laser polishing of additive manufactured Ti alloys
  publication-title: Opt Lasers Eng
– volume: 28
  start-page: 1577
  year: 2006
  end-page: 1582
  ident: b0125
  article-title: Staircase testing of a titanium alloy in the gigacycle regime
  publication-title: Int J Fatigue
– volume: 220
  start-page: 202
  year: 2015
  end-page: 214
  ident: b0080
  article-title: Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting
  publication-title: J Mater Process Technol
– volume: A
  start-page: 231
  year: 1998
  end-page: 236
  ident: b0130
  article-title: Mechanical properties of biomedical titanium alloys
  publication-title: Mater Sci Eng
– start-page: 1
  year: 2017
  end-page: 18
  ident: b0035
  article-title: Surface roughness and radiusing of Ti6Al4V selective laser melting-manufactured parts conditioned by barrel finishing
  publication-title: Int J Adv Manuf Technol
– volume: 94
  start-page: 211
  year: 2017
  end-page: 217
  ident: b0025
  article-title: Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting
  publication-title: Int J Fatigue
– reference: Khairallah Saad, Anderson, Andrew, Rubenchik, Alexander, King W. Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 2016;108:36–45. doi: 10.1016/j.actamat.2016.02.014.
– reference: Svensson M, Ackelid U, Ab A. Titanium alloys manufactured with electron beam melting mechanical and chemical properties. Med Device Mater V Proc from Mater Process Med Devices Conf 2009; 2009. p. 189–94. doi: 10.1007/978-4-431-54237-7.
– year: 2012
  ident: b0100
  article-title: Lightweight materials: understanding the basics
  publication-title: ASM International
– volume: 755
  start-page: 1
  year: 2019
  end-page: 9
  ident: b0095
  article-title: Fatigue life and microstructure of additive manufactured Ti6Al4V after different finishing processes
  publication-title: Mater Sci Eng A
– volume: 7
  start-page: 158
  year: 2017
  end-page: 165
  ident: b0115
  article-title: Fatigue properties of EBM as-built and chemically etched thin parts
  publication-title: Procedia Struct Integr
– volume: 229
  start-page: 2132
  year: 2015
  end-page: 2147
  ident: b0015
  article-title: The present and future of additive manufacturing in the aerospace sector: a review of important aspects
  publication-title: Proc Inst Mech Eng Part G J Aerosp Eng
– volume: 28
  start-page: 681
  year: 2019
  end-page: 692
  ident: b0055
  article-title: Surface treatment of powder-bed fusion additive manufactured metals for improved fatigue life
  publication-title: J Mater Eng Perform
– year: 2017
  ident: b0020
  article-title: Fatigue behaviour of notched additive manufactured Ti6Al4V with as-built surfaces
  publication-title: Int J Fatigue
– volume: 242
  start-page: 1
  year: 2017
  end-page: 11
  ident: b0040
  article-title: Electropolishing and electropolishing-related allowances for powder bed selectively laser-melted Ti-6Al-4V alloy components
  publication-title: J Mater Process Technol
– volume: 48
  start-page: 300
  year: 2013
  end-page: 307
  ident: b0085
  article-title: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance
  publication-title: Int J Fatigue
– volume: 102
  start-page: 135
  year: 2017
  end-page: 142
  ident: b0105
  article-title: Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti-6Al-4V parts
  publication-title: Int J Fatigue
– volume: 23
  start-page: 723
  year: 2009
  end-page: 741
  ident: b0145
  article-title: Pressure-induced electronic phase transitions and superconductivity in titanium
  publication-title: Int J Mod Phys B
– volume: 116
  start-page: 140
  year: 2018
  end-page: 148
  ident: b0010
  article-title: Surface roughness and directional fatigue behavior of as-built EBM and DMLS Ti6Al4V
  publication-title: Int J Fatigue
– volume: 83
  start-page: 258
  year: 2016
  end-page: 263
  ident: b0045
  article-title: Enhancing surface finish of additively manufactured titanium and cobalt chrome elements using laser based finishing
  publication-title: Phys Procedia
– volume: 94
  start-page: 236
  year: 2017
  end-page: 245
  ident: b0030
  article-title: Fatigue life of additively manufactured Ti–6Al–4V in the very high cycle fatigue regime
  publication-title: Int J Fatigue
– reference: LSP Technologoes I. No Title; 2019. <
– ident: 10.1016/j.ijfatigue.2020.105497_b0135
  doi: 10.1016/j.actamat.2016.02.014
– volume: 48
  start-page: 300
  year: 2013
  ident: 10.1016/j.ijfatigue.2020.105497_b0085
  article-title: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2012.11.011
– ident: 10.1016/j.ijfatigue.2020.105497_b0060
– volume: 242
  start-page: 1
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105497_b0040
  article-title: Electropolishing and electropolishing-related allowances for powder bed selectively laser-melted Ti-6Al-4V alloy components
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2016.11.014
– volume: 94
  start-page: 236
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105497_b0030
  article-title: Fatigue life of additively manufactured Ti–6Al–4V in the very high cycle fatigue regime
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2016.05.018
– volume: 3
  start-page: 44006
  year: 2015
  ident: 10.1016/j.ijfatigue.2020.105497_b0005
  article-title: Characterization and analysis of surface notches on Ti-alloy plates fabricated by additive manufacturing techniques
  publication-title: Surf Topogr Metrol Prop
  doi: 10.1088/2051-672X/3/4/044006
– volume: 755
  start-page: 1
  year: 2019
  ident: 10.1016/j.ijfatigue.2020.105497_b0095
  article-title: Fatigue life and microstructure of additive manufactured Ti6Al4V after different finishing processes
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2019.03.119
– volume: 23
  start-page: 723
  year: 2009
  ident: 10.1016/j.ijfatigue.2020.105497_b0145
  article-title: Pressure-induced electronic phase transitions and superconductivity in titanium
  publication-title: Int J Mod Phys B
  doi: 10.1142/S0217979209051978
– start-page: 1
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105497_b0035
  article-title: Surface roughness and radiusing of Ti6Al4V selective laser melting-manufactured parts conditioned by barrel finishing
  publication-title: Int J Adv Manuf Technol
– volume: 116
  start-page: 140
  year: 2018
  ident: 10.1016/j.ijfatigue.2020.105497_b0010
  article-title: Surface roughness and directional fatigue behavior of as-built EBM and DMLS Ti6Al4V
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2018.06.011
– volume: 94
  start-page: 211
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105497_b0025
  article-title: Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2016.05.001
– year: 2012
  ident: 10.1016/j.ijfatigue.2020.105497_b0100
  article-title: Lightweight materials: understanding the basics
  publication-title: ASM International
– volume: 220
  start-page: 202
  year: 2015
  ident: 10.1016/j.ijfatigue.2020.105497_b0080
  article-title: Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2015.01.025
– ident: 10.1016/j.ijfatigue.2020.105497_b0140
  doi: 10.1201/9781315117294
– volume: A
  start-page: 231
  year: 1998
  ident: 10.1016/j.ijfatigue.2020.105497_b0130
  article-title: Mechanical properties of biomedical titanium alloys
  publication-title: Mater Sci Eng
  doi: 10.1016/S0921-5093(97)00806-X
– volume: 229
  start-page: 2132
  year: 2015
  ident: 10.1016/j.ijfatigue.2020.105497_b0015
  article-title: The present and future of additive manufacturing in the aerospace sector: a review of important aspects
  publication-title: Proc Inst Mech Eng Part G J Aerosp Eng
  doi: 10.1177/0954410014568797
– volume: 7
  start-page: 158
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105497_b0115
  article-title: Fatigue properties of EBM as-built and chemically etched thin parts
  publication-title: Procedia Struct Integr
  doi: 10.1016/j.prostr.2017.11.073
– year: 2017
  ident: 10.1016/j.ijfatigue.2020.105497_b0020
  article-title: Fatigue behaviour of notched additive manufactured Ti6Al4V with as-built surfaces
  publication-title: Int J Fatigue
– volume: 83
  start-page: 258
  year: 2016
  ident: 10.1016/j.ijfatigue.2020.105497_b0045
  article-title: Enhancing surface finish of additively manufactured titanium and cobalt chrome elements using laser based finishing
  publication-title: Phys Procedia
  doi: 10.1016/j.phpro.2016.08.021
– volume: 2
  start-page: 219
  year: 2014
  ident: 10.1016/j.ijfatigue.2020.105497_b0090
  article-title: Modeling and characterization of residual stresses in material processing
  publication-title: Compr Mater Process
  doi: 10.1016/B978-0-08-096532-1.00218-1
– volume: 28
  start-page: 681
  year: 2019
  ident: 10.1016/j.ijfatigue.2020.105497_b0055
  article-title: Surface treatment of powder-bed fusion additive manufactured metals for improved fatigue life
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-018-3732-9
– volume: 103
  start-page: 353
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105497_b0075
  article-title: Fatigue behaviour of additive manufactured Ti6Al4V, with as-built surfaces, exposed to variable amplitude loading
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2017.06.023
– volume: 102
  start-page: 135
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105497_b0105
  article-title: Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti-6Al-4V parts
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2017.05.008
– volume: 93
  start-page: 171
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105497_b0050
  article-title: Laser polishing of additive manufactured Ti alloys
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2017.02.005
– ident: 10.1016/j.ijfatigue.2020.105497_b0070
  doi: 10.1007/978-4-431-54237-7
– volume: 816–817
  start-page: 134
  year: 2013
  ident: 10.1016/j.ijfatigue.2020.105497_b0110
  article-title: High cycle fatigue (HCF) performance of Ti-6Al-4V alloy processed by selective laser melting
  publication-title: Adv Mater Res
  doi: 10.4028/www.scientific.net/AMR.816-817.134
– volume: 28
  start-page: 1577
  year: 2006
  ident: 10.1016/j.ijfatigue.2020.105497_b0125
  article-title: Staircase testing of a titanium alloy in the gigacycle regime
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2005.10.007
– ident: 10.1016/j.ijfatigue.2020.105497_b0120
– year: 1987
  ident: 10.1016/j.ijfatigue.2020.105497_b0065
SSID ssj0009075
Score 2.6242175
Snippet •Surface post processes are needed for PBF Ti6Al4V to achieve high fatigue strength.•Centrifugal finishing of L-PBF Ti6Al4V gave the highest fatigue...
A major challenge for additively manufactured structural parts is the low fatigue strength connected to rough as-built surfaces. In this study, Ti6Al4V...
SourceID swepub
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105497
SubjectTerms Additive manufacturing
Electron beams
Fatigue
Fatigue strength
Heat treating
Laser beams
Laser shock processing
Lasers
Materials fatigue
Post processes
Powder beds
Rapid prototyping
Shot peening
Surface roughness
Ti6Al4V
Titanium base alloys
Title Improved fatigue strength of additively manufactured Ti6Al4V by surface post processing
URI https://dx.doi.org/10.1016/j.ijfatigue.2020.105497
https://www.proquest.com/docview/2439981320
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-164853
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqWGBAPEWhVB4QW2jauKnLVhVQAYmJRzfL8aOkKmnVJkMXfjt3cVJaCYmBMY6dOHfnezjfnQm51NZvRxB4eCxUymMdxbyoLX0PMYDNUErZ1TlA9jkcvLLHYXtYIf0yFwZhlYXudzo919ZFS6OgZmMWxw2EJUH0Ah4ByClYyTyDnXVQyq-_fmAeXVdsFzt72HsD4xWPLXw_bpG0wG3CM28ZVn_63UKte6DrVUVzS3S_T_YKF5L23CwPSMUkh2R3rbDgEXl3ewVG0-LNFHNCklH6QaeWIoYItdxkST9lkmFuQzaHvi9x2JuwNxot6SKbQ7Ohs-kipTOXTABPPiav93cv_YFXHKHgKRb4qadtR2mIeJothf_XNAfGKMkjHXIdsSAwFvylUHOmIwuG3VpYv6yprcEq-nA_OCFbyTQxp4QaxoDhgeTdpmEq7MqAc218eBaHIEjqKglLsglV1BfHYy4mogSSjcWK3gLpLRy9q8RfDZy5Eht_D7kp-SI2pEWAIfh7cK3kpCgW7EK0MC7jmE9eJVeOu6vJYAXu2_itJ6bzkZjEmYAQE7ycs_9M4pzs4JWDTtbIVjrPzAW4N2lUz-W3TrZ7D0-D52_id_uz
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOiKcaKOADcFuyD2frIPUQ0VYpLT2lpTfj9aNsFTZRsiuUC3-KP9iZ2JumElIPqFd77R3NzM7D-80Y4L1xca_AxCPiudYR39E8KnoqjggDmORKqb5ZAmRP8uEp_3reO9-Av20tDMEqg-33Nn1prcNIN3CzOy3LLsGSMHvBiAD1FL1kEpCVR3bxG_O2-e7hHgr5Q5oe7I--DKNwtUCkeRbXkXE72mAmkKSa_jsZgQRrJQqTC1PwLLMO44jcCG4Khw7POdRrnhhnqbs8zme47z24z9Fc0LUJn_5c40r6vrsvURcReTdAZeWlQ4bTmUyKcRpdssup3dS_XeJ6yLvexnTp-g6ewOMQs7KBZ8tT2LDVM3i01snwOXz3hxPWsPBmRkUo1UX9k00cI9ASmdXxgv1SVUPFFM0Mnx2V-WDMz1ixYPNmhsOWTSfzmk199QLu_AJO74SxL2GzmlR2C5jlHDUsU6KfWK7zvsqEMDbGvQRmXcp0IG_ZJnVoaE73aoxli1y7lCt-S-K39PzuQLxaOPU9PW5f8rmVi7yhnhI9z-2Lt1tJymAh5jKlRFBQAXsHPnrproihlt975dlATmYXclw2EnNaDKte_Q8R7-DBcPTtWB4fnhy9hoc043Gb27BZzxr7BmOruni71GUGP-7647kCcM43PA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+fatigue+strength+of+additively+manufactured+Ti6Al4V+by+surface+post+processing&rft.jtitle=International+journal+of+fatigue&rft.au=Kahlin%2C+M&rft.au=Ansell%2C+H&rft.au=Basu%2C+D&rft.au=Kerwin%2C+A&rft.date=2020-05-01&rft.pub=Elsevier+BV&rft.issn=0142-1123&rft.eissn=1879-3452&rft.volume=134&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1016%2Fj.ijfatigue.2020.105497&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon