Near-infrared (NIR) spectrometric technique for nondestructive determination of soluble solids content in processing tomatoes
A nondestructive method for measuring the soluble solids content (SSC) of individual processing tomatoes (Lycopersicon esculentum Mill.) was developed using NIR spectrometry. A diode array fiber optic spectrometer was used to measure NIR transmittance. Each fruit was scanned at two locations on oppo...
Saved in:
Published in | Journal of the American Society for Horticultural Science Vol. 123; no. 6; pp. 1089 - 1093 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.11.1998
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A nondestructive method for measuring the soluble solids content (SSC) of individual processing tomatoes (Lycopersicon esculentum Mill.) was developed using NIR spectrometry. A diode array fiber optic spectrometer was used to measure NIR transmittance. Each fruit was scanned at two locations on opposite sides midway along the proximal-distal axis. After scanning, each fruit was processed and pureed, and SSC was determined using a refractometer. Multiple linear regression (MLR), partial least squares (PLS) regression, and neural network (NN) calibration models were developed using the second derivatives of averaged spectra from 780 to 980 nm. The validation results showed that NN calibration was better than MLR or PLS calibrations. The NN calibration could estimate the processed SSC of individual unprocessed tomatoes with a standard error of prediction of 0.52% and could classify 72% of fruit in an independent population within +/- 0.5% of SSC |
---|---|
AbstractList | A nondestructive method for measuring the soluble solids content (SSC) of individual processing tomatoes (
Lycopersicon esculentum
Mill.) was developed using NIR spectrometry. A diode array fiber optic spectrometer was used to measure NIR transmittance. Each fruit was scanned at two locations on opposite sides midway along the proximal-distal axis. After scanning, each fruit was processed and pureed, and SSC was determined using a refractometer. Multiple linear regression (MLR), partial least squares (PLS) regression, and neural network (NN) calibration models were developed using the second derivatives of averaged spectra from 780 to 980 nm. The validation results showed that NN calibration was better than MLR or PLS calibrations. The NN calibration could estimate the processed SSC of individual unprocessed tomatoes with a standard error of prediction of 0.52% and could classify >72% of fruit in an independent population within ±0.5% of SSC. A nondestructive method for measuring the soluble solids content (SSC) of individual processing tomatoes (Lycopersicon esculentum Mill.) was developed using NIR spectrometry. A diode array fiber optic spectrometer was used to measure NIR transmittance. Each fruit was scanned at two locations on opposite sides midway along the proximal-distal axis. After scanning, each fruit was processed and pureed, and SSC was determined using a refractometer. Multiple linear regression (MLR), partial least squares (PLS) regression, and neural network (NN) calibration models were developed using the second derivatives of averaged spectra from 780 to 980 nm. The validation results showed that NN calibration was better than MLR or PLS calibrations. The NN calibration could estimate the processed SSC of individual unprocessed tomatoes with a standard error of prediction of 0.52% and could classify >72% of fruit in an independent population within +/- 0.5% of SSC. A nondestructive method for measuring the soluble solids content (SSC) of individual processing tomatoes (Lycopersicon esculentum Mill.) was developed using NIR spectrometry. A diode array fiber optic spectrometer was used to measure NIR transmittance. Each fruit was scanned at two locations on opposite sides midway along the proximal-distal axis. After scanning, each fruit was processed and pureed, and SSC was determined using a refractometer. Multiple linear regression (MLR), partial least squares (PLS) regression, and neural network (NN) calibration models were developed using the second derivatives of averaged spectra from 780 to 980 nm. The validation results showed that NN calibration was better than MLR or PLS calibrations. The NN calibration could estimate the processed SSC of individual unprocessed tomatoes with a standard error of prediction of 0.52% and could classify 72% of fruit in an independent population within +/- 0.5% of SSC |
Author | Leffler, R.G Peiris, K.H.S Kays, S.J Dull, G.G |
Author_xml | – sequence: 1 fullname: Peiris, K.H.S – sequence: 2 fullname: Dull, G.G – sequence: 3 fullname: Leffler, R.G – sequence: 4 fullname: Kays, S.J |
BookMark | eNplkEtLAzEUhYMoWB8_wIWYnbqYmkcnM1lK8YkoWF2HTOamE2mTmmQUF_53R-tGXB0OfOc-zg7a9MEDQgeUjBllFT970alLY8r4WIwpqeUGGjHOqkJWdb2JRoQQXlAi2DbaSellsGVZixH6vAcdC-dt1BFafHJ_83iK0wpMjmEJOTqDM5jOu9cesA0RD3tbSDn2Jrs3wC1kiEvndXbB42BxCou-WcC3ujZhE3wGn7HzeBWDgZScn-McljoHSHtoy-pFgv1f3UXPlxdP0-vi7uHqZnp-V5gJJ7lomRWcWzBgZGvJZMImXGtOm5LI2lRQNdBQyZtSail004AspRC65lpYYYfPdxFdzzUxpBTBqlV0Sx0_FCXqpz91ez67nqmhPyXUd39D5nid6dy8e3cRVBdidqZf5H4wf8ijNWl1UHoeXVLPM0YoJ6yWVUXrgTj8T1ApJSHDoRX_AgFpia0 |
CitedBy_id | crossref_primary_10_1016_j_compag_2022_106688 crossref_primary_10_1016_j_aca_2005_09_014 crossref_primary_10_1255_jnirs_419 crossref_primary_10_1094_CCHEM_11_16_0271_R crossref_primary_10_13080_z_a_2016_103_012 crossref_primary_10_1111_jfpe_13807 crossref_primary_10_1016_j_compag_2009_05_011 crossref_primary_10_1007_s11947_011_0697_1 crossref_primary_10_1111_j_1365_2621_2004_00800_x crossref_primary_10_1016_j_aiia_2021_01_005 crossref_primary_10_2503_jjshs_75_79 crossref_primary_10_1111_jfpe_13100 crossref_primary_10_1590_S0102_05362002000100007 crossref_primary_10_1016_j_plaphy_2013_05_019 crossref_primary_10_1016_S0963_9969_03_00070_X crossref_primary_10_1016_j_jfoodeng_2014_05_007 crossref_primary_10_1080_10408390600626453 crossref_primary_10_3390_foods9050558 crossref_primary_10_1016_j_microc_2003_10_015 crossref_primary_10_1016_S0963_9969_02_00068_6 crossref_primary_10_1016_j_foodchem_2009_12_043 crossref_primary_10_1016_j_postharvbio_2013_07_009 crossref_primary_10_1016_j_compag_2007_09_011 crossref_primary_10_1111_jfpe_13654 crossref_primary_10_1016_j_foodchem_2010_10_012 crossref_primary_10_1016_j_lwt_2020_109518 crossref_primary_10_1366_000370203321535033 crossref_primary_10_1016_j_jfoodeng_2006_12_026 crossref_primary_10_3182_20130828_2_SF_3019_00030 |
ContentType | Journal Article |
DBID | FBQ AAYXX CITATION |
DOI | 10.21273/jashs.123.6.1089 |
DatabaseName | AGRIS CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Botany |
EISSN | 2327-9788 |
EndPage | 1093 |
ExternalDocumentID | 10_21273_JASHS_123_6_1089 123_6_1089 US201302897718 US1999009667 |
GroupedDBID | ..I 18M 5GY 5VS ABCQX ABPTK ACBTR ACGFO ADBBV AENEX AFMIJ AGCDD AI. ALMA_UNASSIGNED_HOLDINGS BTFSW EBS EJD FBQ GROUPED_DOAJ HF~ KQ8 L7B OK1 P2P RHF RHI SJN THT UKR VH1 W8F WH7 XOL ~KM 08R AALRV ABFLS ADACO H13 KM AAHBH AAYXX CITATION |
ID | FETCH-LOGICAL-c430t-d2f633fecec9df044243aa31b5098c7e7beb193b59a96abbe95966a83a6f6f003 |
ISSN | 0003-1062 |
IngestDate | Fri Aug 23 01:49:28 EDT 2024 Fri Jan 15 01:59:05 EST 2021 Wed Dec 27 19:14:46 EST 2023 Wed Dec 27 18:55:45 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c430t-d2f633fecec9df044243aa31b5098c7e7beb193b59a96abbe95966a83a6f6f003 |
Notes | Q04 1999009667 |
OpenAccessLink | https://journals.ashs.org/downloadpdf/journals/jashs/123/6/article-p1089.pdf |
PageCount | 5 |
ParticipantIDs | crossref_primary_10_21273_JASHS_123_6_1089 highwire_horticulture_123_6_1089 fao_agris_US201302897718 fao_agris_US1999009667 |
PublicationCentury | 1900 |
PublicationDate | 1998-11-01 |
PublicationDateYYYYMMDD | 1998-11-01 |
PublicationDate_xml | – month: 11 year: 1998 text: 1998-11-01 day: 01 |
PublicationDecade | 1990 |
PublicationTitle | Journal of the American Society for Horticultural Science |
PublicationYear | 1998 |
SSID | ssj0005586 |
Score | 1.7351966 |
Snippet | A nondestructive method for measuring the soluble solids content (SSC) of individual processing tomatoes (Lycopersicon esculentum Mill.) was developed using... A nondestructive method for measuring the soluble solids content (SSC) of individual processing tomatoes ( Lycopersicon esculentum Mill.) was developed using... |
SourceID | crossref highwire fao |
SourceType | Aggregation Database Publisher |
StartPage | 1089 |
SubjectTerms | BRIX CHEMICAL COMPOSITION COMMINUTION COMPOSICION QUIMICA COMPOSITION CHIMIQUE CRUSHING DESMENUZAMIENTO ENSAYO ESPECTROMETRIA food processing FOOD TECHNOLOGY FORECASTING FRAGMENTATION nondestructive methods NONDESTRUCTIVE TESTING prediction SPECTROMETRIE SPECTROMETRY spectroscopy TECHNIQUE DE PREVISION TECHNOLOGIE ALIMENTAIRE TECNICAS DE PREDICCION TECNOLOGIA DE LOS ALIMENTOS TESTAGE TESTING TOMATE TOMATOES |
Title | Near-infrared (NIR) spectrometric technique for nondestructive determination of soluble solids content in processing tomatoes |
URI | http://journal.ashspublications.org/cgi/content/abstract/123/6/1089 |
Volume | 123 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2lhQd4QFCoGm7aB5BaUi-Ovb7xlkIhpFAJ0kiVELLW9i6NhOIoN6l8Ed_FlzCzXt-gSMCLE23i9eUcj2fsmTOEPHFCiBmk9CxXhhCgBFJZ4LVmVpSltsqkm0gtpP3-1B9O-OjcO-90fjSyltarhKXfrqwr-R9UYQxwxSrZf0C2mhQG4DvgC0tAGJZ_hfEp0NSCiRY6ixz76rz9iGG-Lp9EHQKU3-_VMq2YUgjhfiaNauwGi6ZMOkzpOeIeYzUVfE6zpU5lx3SBqU7lwpoCXV-Vg6ObQ4zde-odHS9Ql1k_8B-tv172UHIAkduwHtzWcbc47BSOzFmPc4-VTc1_94kbdS6zVkLpMF80VEKMQarN-nRRSCWcsCGrvNtX6-KVyhtW9Q97J5Uquz3XoyeiYPOYjeqHILoqsF89BCkNO6bYGcMu9Rj4igEQr-gaWBn7orrZsLppuvt20cvIuAEos3XVLQYV8V3d22B5sWQwHfNZvWpLuXsydvR74RB87H64Ra45YAzRCp98qBXtPU93I60OoHjzrrfy_NdttHynLSXyhqp1wys6u01uGejooODmHdKRsx1yc_BlYcCSO-T6UQ4ByOVd8r1FV7oPZD2gLarSiqoUQKdtqtIWVWmuqKEqLahKDVXpdEZrqtKKqvSTIeoLijSlSNNDumEUSEr3-cEhnTOK9Px8j0xeH5-9HFqmUYiVctdeWZmjfNdVMpVplCmbc4e7Qrj9BLzhMA1kkIBHErmJF4nIF0kiIw-ifBG6wle-gjO_S7bhkOQeoWnKUTKzL5xAcB5K4dhc2W6oYBYJoUiXPCshiOeFHkwMcbTGKx4NxsNxDHjFPgrvwp93AaRYwElfxpMxHhc-MvCDLtlr_tCkSZfQEtL4or62ZGPa-39e-wG5UV8eD8k2QCQfgde8Sh5r2v0EOVu5yg |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-infrared+%28NIR%29+spectrometric+technique+for+nondestructive+determination+of+soluble+solids+content+in+processing+tomatoes.+%5BErratum%3A+July+1999%2C+v.+124+%284%29%2C+p.+445.%5D&rft.jtitle=Journal+of+the+American+Society+for+Horticultural+Science&rft.au=Peiris%2C+K.H.S&rft.au=Dull%2C+G.G&rft.au=Leffler%2C+R.G&rft.au=Kays%2C+S.J&rft.date=1998-11-01&rft.issn=0003-1062&rft.eissn=2327-9788&rft.volume=123&rft.issue=6&rft.spage=1089&rft.epage=1093&rft_id=info:doi/10.21273%2Fjashs.123.6.1089&rft.externalDocID=US201302897718 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-1062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-1062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-1062&client=summon |