Near-infrared (NIR) spectrometric technique for nondestructive determination of soluble solids content in processing tomatoes

A nondestructive method for measuring the soluble solids content (SSC) of individual processing tomatoes (Lycopersicon esculentum Mill.) was developed using NIR spectrometry. A diode array fiber optic spectrometer was used to measure NIR transmittance. Each fruit was scanned at two locations on oppo...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Society for Horticultural Science Vol. 123; no. 6; pp. 1089 - 1093
Main Authors Peiris, K.H.S, Dull, G.G, Leffler, R.G, Kays, S.J
Format Journal Article
LanguageEnglish
Published 01.11.1998
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A nondestructive method for measuring the soluble solids content (SSC) of individual processing tomatoes (Lycopersicon esculentum Mill.) was developed using NIR spectrometry. A diode array fiber optic spectrometer was used to measure NIR transmittance. Each fruit was scanned at two locations on opposite sides midway along the proximal-distal axis. After scanning, each fruit was processed and pureed, and SSC was determined using a refractometer. Multiple linear regression (MLR), partial least squares (PLS) regression, and neural network (NN) calibration models were developed using the second derivatives of averaged spectra from 780 to 980 nm. The validation results showed that NN calibration was better than MLR or PLS calibrations. The NN calibration could estimate the processed SSC of individual unprocessed tomatoes with a standard error of prediction of 0.52% and could classify 72% of fruit in an independent population within +/- 0.5% of SSC
AbstractList A nondestructive method for measuring the soluble solids content (SSC) of individual processing tomatoes ( Lycopersicon esculentum Mill.) was developed using NIR spectrometry. A diode array fiber optic spectrometer was used to measure NIR transmittance. Each fruit was scanned at two locations on opposite sides midway along the proximal-distal axis. After scanning, each fruit was processed and pureed, and SSC was determined using a refractometer. Multiple linear regression (MLR), partial least squares (PLS) regression, and neural network (NN) calibration models were developed using the second derivatives of averaged spectra from 780 to 980 nm. The validation results showed that NN calibration was better than MLR or PLS calibrations. The NN calibration could estimate the processed SSC of individual unprocessed tomatoes with a standard error of prediction of 0.52% and could classify >72% of fruit in an independent population within ±0.5% of SSC.
A nondestructive method for measuring the soluble solids content (SSC) of individual processing tomatoes (Lycopersicon esculentum Mill.) was developed using NIR spectrometry. A diode array fiber optic spectrometer was used to measure NIR transmittance. Each fruit was scanned at two locations on opposite sides midway along the proximal-distal axis. After scanning, each fruit was processed and pureed, and SSC was determined using a refractometer. Multiple linear regression (MLR), partial least squares (PLS) regression, and neural network (NN) calibration models were developed using the second derivatives of averaged spectra from 780 to 980 nm. The validation results showed that NN calibration was better than MLR or PLS calibrations. The NN calibration could estimate the processed SSC of individual unprocessed tomatoes with a standard error of prediction of 0.52% and could classify >72% of fruit in an independent population within +/- 0.5% of SSC.
A nondestructive method for measuring the soluble solids content (SSC) of individual processing tomatoes (Lycopersicon esculentum Mill.) was developed using NIR spectrometry. A diode array fiber optic spectrometer was used to measure NIR transmittance. Each fruit was scanned at two locations on opposite sides midway along the proximal-distal axis. After scanning, each fruit was processed and pureed, and SSC was determined using a refractometer. Multiple linear regression (MLR), partial least squares (PLS) regression, and neural network (NN) calibration models were developed using the second derivatives of averaged spectra from 780 to 980 nm. The validation results showed that NN calibration was better than MLR or PLS calibrations. The NN calibration could estimate the processed SSC of individual unprocessed tomatoes with a standard error of prediction of 0.52% and could classify 72% of fruit in an independent population within +/- 0.5% of SSC
Author Leffler, R.G
Peiris, K.H.S
Kays, S.J
Dull, G.G
Author_xml – sequence: 1
  fullname: Peiris, K.H.S
– sequence: 2
  fullname: Dull, G.G
– sequence: 3
  fullname: Leffler, R.G
– sequence: 4
  fullname: Kays, S.J
BookMark eNplkEtLAzEUhYMoWB8_wIWYnbqYmkcnM1lK8YkoWF2HTOamE2mTmmQUF_53R-tGXB0OfOc-zg7a9MEDQgeUjBllFT970alLY8r4WIwpqeUGGjHOqkJWdb2JRoQQXlAi2DbaSellsGVZixH6vAcdC-dt1BFafHJ_83iK0wpMjmEJOTqDM5jOu9cesA0RD3tbSDn2Jrs3wC1kiEvndXbB42BxCou-WcC3ujZhE3wGn7HzeBWDgZScn-McljoHSHtoy-pFgv1f3UXPlxdP0-vi7uHqZnp-V5gJJ7lomRWcWzBgZGvJZMImXGtOm5LI2lRQNdBQyZtSail004AspRC65lpYYYfPdxFdzzUxpBTBqlV0Sx0_FCXqpz91ez67nqmhPyXUd39D5nid6dy8e3cRVBdidqZf5H4wf8ijNWl1UHoeXVLPM0YoJ6yWVUXrgTj8T1ApJSHDoRX_AgFpia0
CitedBy_id crossref_primary_10_1016_j_compag_2022_106688
crossref_primary_10_1016_j_aca_2005_09_014
crossref_primary_10_1255_jnirs_419
crossref_primary_10_1094_CCHEM_11_16_0271_R
crossref_primary_10_13080_z_a_2016_103_012
crossref_primary_10_1111_jfpe_13807
crossref_primary_10_1016_j_compag_2009_05_011
crossref_primary_10_1007_s11947_011_0697_1
crossref_primary_10_1111_j_1365_2621_2004_00800_x
crossref_primary_10_1016_j_aiia_2021_01_005
crossref_primary_10_2503_jjshs_75_79
crossref_primary_10_1111_jfpe_13100
crossref_primary_10_1590_S0102_05362002000100007
crossref_primary_10_1016_j_plaphy_2013_05_019
crossref_primary_10_1016_S0963_9969_03_00070_X
crossref_primary_10_1016_j_jfoodeng_2014_05_007
crossref_primary_10_1080_10408390600626453
crossref_primary_10_3390_foods9050558
crossref_primary_10_1016_j_microc_2003_10_015
crossref_primary_10_1016_S0963_9969_02_00068_6
crossref_primary_10_1016_j_foodchem_2009_12_043
crossref_primary_10_1016_j_postharvbio_2013_07_009
crossref_primary_10_1016_j_compag_2007_09_011
crossref_primary_10_1111_jfpe_13654
crossref_primary_10_1016_j_foodchem_2010_10_012
crossref_primary_10_1016_j_lwt_2020_109518
crossref_primary_10_1366_000370203321535033
crossref_primary_10_1016_j_jfoodeng_2006_12_026
crossref_primary_10_3182_20130828_2_SF_3019_00030
ContentType Journal Article
DBID FBQ
AAYXX
CITATION
DOI 10.21273/jashs.123.6.1089
DatabaseName AGRIS
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Botany
EISSN 2327-9788
EndPage 1093
ExternalDocumentID 10_21273_JASHS_123_6_1089
123_6_1089
US201302897718
US1999009667
GroupedDBID ..I
18M
5GY
5VS
ABCQX
ABPTK
ACBTR
ACGFO
ADBBV
AENEX
AFMIJ
AGCDD
AI.
ALMA_UNASSIGNED_HOLDINGS
BTFSW
EBS
EJD
FBQ
GROUPED_DOAJ
HF~
KQ8
L7B
OK1
P2P
RHF
RHI
SJN
THT
UKR
VH1
W8F
WH7
XOL
~KM
08R
AALRV
ABFLS
ADACO
H13
KM
AAHBH
AAYXX
CITATION
ID FETCH-LOGICAL-c430t-d2f633fecec9df044243aa31b5098c7e7beb193b59a96abbe95966a83a6f6f003
ISSN 0003-1062
IngestDate Fri Aug 23 01:49:28 EDT 2024
Fri Jan 15 01:59:05 EST 2021
Wed Dec 27 19:14:46 EST 2023
Wed Dec 27 18:55:45 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c430t-d2f633fecec9df044243aa31b5098c7e7beb193b59a96abbe95966a83a6f6f003
Notes Q04
1999009667
OpenAccessLink https://journals.ashs.org/downloadpdf/journals/jashs/123/6/article-p1089.pdf
PageCount 5
ParticipantIDs crossref_primary_10_21273_JASHS_123_6_1089
highwire_horticulture_123_6_1089
fao_agris_US201302897718
fao_agris_US1999009667
PublicationCentury 1900
PublicationDate 1998-11-01
PublicationDateYYYYMMDD 1998-11-01
PublicationDate_xml – month: 11
  year: 1998
  text: 1998-11-01
  day: 01
PublicationDecade 1990
PublicationTitle Journal of the American Society for Horticultural Science
PublicationYear 1998
SSID ssj0005586
Score 1.7351966
Snippet A nondestructive method for measuring the soluble solids content (SSC) of individual processing tomatoes (Lycopersicon esculentum Mill.) was developed using...
A nondestructive method for measuring the soluble solids content (SSC) of individual processing tomatoes ( Lycopersicon esculentum Mill.) was developed using...
SourceID crossref
highwire
fao
SourceType Aggregation Database
Publisher
StartPage 1089
SubjectTerms BRIX
CHEMICAL COMPOSITION
COMMINUTION
COMPOSICION QUIMICA
COMPOSITION CHIMIQUE
CRUSHING
DESMENUZAMIENTO
ENSAYO
ESPECTROMETRIA
food processing
FOOD TECHNOLOGY
FORECASTING
FRAGMENTATION
nondestructive methods
NONDESTRUCTIVE TESTING
prediction
SPECTROMETRIE
SPECTROMETRY
spectroscopy
TECHNIQUE DE PREVISION
TECHNOLOGIE ALIMENTAIRE
TECNICAS DE PREDICCION
TECNOLOGIA DE LOS ALIMENTOS
TESTAGE
TESTING
TOMATE
TOMATOES
Title Near-infrared (NIR) spectrometric technique for nondestructive determination of soluble solids content in processing tomatoes
URI http://journal.ashspublications.org/cgi/content/abstract/123/6/1089
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2lhQd4QFCoGm7aB5BaUi-Ovb7xlkIhpFAJ0kiVELLW9i6NhOIoN6l8Ed_FlzCzXt-gSMCLE23i9eUcj2fsmTOEPHFCiBmk9CxXhhCgBFJZ4LVmVpSltsqkm0gtpP3-1B9O-OjcO-90fjSyltarhKXfrqwr-R9UYQxwxSrZf0C2mhQG4DvgC0tAGJZ_hfEp0NSCiRY6ixz76rz9iGG-Lp9EHQKU3-_VMq2YUgjhfiaNauwGi6ZMOkzpOeIeYzUVfE6zpU5lx3SBqU7lwpoCXV-Vg6ObQ4zde-odHS9Ql1k_8B-tv172UHIAkduwHtzWcbc47BSOzFmPc4-VTc1_94kbdS6zVkLpMF80VEKMQarN-nRRSCWcsCGrvNtX6-KVyhtW9Q97J5Uquz3XoyeiYPOYjeqHILoqsF89BCkNO6bYGcMu9Rj4igEQr-gaWBn7orrZsLppuvt20cvIuAEos3XVLQYV8V3d22B5sWQwHfNZvWpLuXsydvR74RB87H64Ra45YAzRCp98qBXtPU93I60OoHjzrrfy_NdttHynLSXyhqp1wys6u01uGejooODmHdKRsx1yc_BlYcCSO-T6UQ4ByOVd8r1FV7oPZD2gLarSiqoUQKdtqtIWVWmuqKEqLahKDVXpdEZrqtKKqvSTIeoLijSlSNNDumEUSEr3-cEhnTOK9Px8j0xeH5-9HFqmUYiVctdeWZmjfNdVMpVplCmbc4e7Qrj9BLzhMA1kkIBHErmJF4nIF0kiIw-ifBG6wle-gjO_S7bhkOQeoWnKUTKzL5xAcB5K4dhc2W6oYBYJoUiXPCshiOeFHkwMcbTGKx4NxsNxDHjFPgrvwp93AaRYwElfxpMxHhc-MvCDLtlr_tCkSZfQEtL4or62ZGPa-39e-wG5UV8eD8k2QCQfgde8Sh5r2v0EOVu5yg
link.rule.ids 315,783,787,27936,27937
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-infrared+%28NIR%29+spectrometric+technique+for+nondestructive+determination+of+soluble+solids+content+in+processing+tomatoes.+%5BErratum%3A+July+1999%2C+v.+124+%284%29%2C+p.+445.%5D&rft.jtitle=Journal+of+the+American+Society+for+Horticultural+Science&rft.au=Peiris%2C+K.H.S&rft.au=Dull%2C+G.G&rft.au=Leffler%2C+R.G&rft.au=Kays%2C+S.J&rft.date=1998-11-01&rft.issn=0003-1062&rft.eissn=2327-9788&rft.volume=123&rft.issue=6&rft.spage=1089&rft.epage=1093&rft_id=info:doi/10.21273%2Fjashs.123.6.1089&rft.externalDocID=US201302897718
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-1062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-1062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-1062&client=summon