Study on fault identification of mechanical dynamic nonlinear transmission system
To solve the problems of large mechanical powertrain such as complex structure, serious accident, strong nonlinear characteristics of running state, bad operating environment, non-Gaussian noise, and various uncertain factors, it is difficult to make an accurate fault diagnosis. This paper proposes...
Saved in:
Published in | Nonlinear engineering Vol. 10; no. 1; pp. 518 - 525 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin
De Gruyter
01.01.2021
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To solve the problems of large mechanical powertrain such as complex structure, serious accident, strong nonlinear characteristics of running state, bad operating environment, non-Gaussian noise, and various uncertain factors, it is difficult to make an accurate fault diagnosis. This paper proposes a method for dealing with nonlinear characteristics using nuclear waves, as well as a system, deeply conducted nuclear base fault feature extraction, classification, and decision making, such as nuclear base state trend prediction technology research, focusing on exploring and improving the accuracy of fault diagnosis under nonlinear conditions, technical method, and way to state prediction accuracy. It offers effective technical assistance for the advancement and use of mechanical power train monitoring and diagnosis technology. A fault detection method based on kernel method is proposed. Based on the characteristics of this method in dealing with nonlinear problems, the research on kernel feature extraction, kernel fault classification and decision making, and kernel state trend prediction are carried out systematically. The experimental results show that the simulation analysis of typical chaotic time series prediction and the application of the operation state prediction of a certain ship main steam turbine unit have achieved good results, among which the average relative error of the single-step prediction of the unit state is 1.7881%, and the average relative error of the 30-step prediction is 3.3983%. Proved that the nuclear methods systematically applied to mechanical power transmission system fault diagnosis and state prediction, effectively enhancing some traditional methods and techniques dealing with nonlinear feature extraction, the nonlinear prediction capability for fault identification, and nonlinear state, to deal with nonlinear fault diagnosis problems of engineering practice, a large number of explored effective solution. |
---|---|
AbstractList | To solve the problems of large mechanical powertrain such as complex structure, serious accident, strong nonlinear characteristics of running state, bad operating environment, non-Gaussian noise, and various uncertain factors, it is difficult to make an accurate fault diagnosis. This paper proposes a method for dealing with nonlinear characteristics using nuclear waves, as well as a system, deeply conducted nuclear base fault feature extraction, classification, and decision making, such as nuclear base state trend prediction technology research, focusing on exploring and improving the accuracy of fault diagnosis under nonlinear conditions, technical method, and way to state prediction accuracy. It offers effective technical assistance for the advancement and use of mechanical power train monitoring and diagnosis technology. A fault detection method based on kernel method is proposed. Based on the characteristics of this method in dealing with nonlinear problems, the research on kernel feature extraction, kernel fault classification and decision making, and kernel state trend prediction are carried out systematically. The experimental results show that the simulation analysis of typical chaotic time series prediction and the application of the operation state prediction of a certain ship main steam turbine unit have achieved good results, among which the average relative error of the single-step prediction of the unit state is 1.7881%, and the average relative error of the 30-step prediction is 3.3983%. Proved that the nuclear methods systematically applied to mechanical power transmission system fault diagnosis and state prediction, effectively enhancing some traditional methods and techniques dealing with nonlinear feature extraction, the nonlinear prediction capability for fault identification, and nonlinear state, to deal with nonlinear fault diagnosis problems of engineering practice, a large number of explored effective solution. |
Author | Guo, Erfu Jagota, Vishal Makhatha, Mamookho Elizabeth Kumar, Pawan |
Author_xml | – sequence: 1 givenname: Erfu surname: Guo fullname: Guo, Erfu organization: Shijiazhuang University of Applied Technology, Hebei, Shijiazhuang, 050081, China – sequence: 2 givenname: Vishal surname: Jagota fullname: Jagota, Vishal email: vishaljagota@mits.ac.in organization: Department of Mechanical Engineering, Madanapalle Institute of Technology and Science, Madanapalle, AP, India – sequence: 3 givenname: Mamookho Elizabeth surname: Makhatha fullname: Makhatha, Mamookho Elizabeth organization: Department of Engineering Metallurgy, University of Johannesburg, South Africa – sequence: 4 givenname: Pawan surname: Kumar fullname: Kumar, Pawan organization: Department of Engineering Metallurgy, University of Johannesburg, South Africa |
BookMark | eNp1UU1r3DAUFCWFpmnOuRp6dvP0afnQQwn9CARKaXMWWul5q8WWU0mm-N9X3k1aKOSkYTTz3vDmNTmLc0RCrii8o5LK6zhi3LcMGG0BBHtBzhntWauB9Wd_MYVX5DLnAwBQrqgAfU6-fS-LX5s5NoNdxtIEj7GEIThbQiXnoZnQ_bSxEmPj12in4Jq6fAwRbWpKsjFPIedNnNdccHpDXg52zHj5-F6Q-08ff9x8ae--fr69-XDXOsGhtM73nQbkTCrZD1TpXY9SaNe5Dew6Jxz0SljFpVBeOV8_dowzzSTjCiS_ILenuX62B_OQwmTTamYbzJGY097YVIIb0XTgpEKN1vpOUAsad06i7foeNHNqqLPenmY9pPnXgrmYw7ykWOMbppiQgkoOVSVPKpfmnBMOxoVyvFM9QxgNBbOVYY5lmK0Ms5VRfdf_-Z7SPu94f3L8tmPB5HGflrWCf7GecVKorOZ_AFQCo10 |
CitedBy_id | crossref_primary_10_1155_2022_4299756 crossref_primary_10_1080_10447318_2023_2189816 crossref_primary_10_1155_2022_5869037 crossref_primary_10_1155_2022_9385451 crossref_primary_10_3390_su142416505 crossref_primary_10_1155_2022_7769653 crossref_primary_10_4018_IJIIT_354071 crossref_primary_10_1155_2022_5127989 crossref_primary_10_1155_2022_7432750 crossref_primary_10_1016_j_isatra_2024_05_019 crossref_primary_10_1155_2022_3167958 crossref_primary_10_1155_2022_8106516 crossref_primary_10_1155_2022_9328038 crossref_primary_10_1155_2022_6050284 crossref_primary_10_1155_2022_2422030 crossref_primary_10_1155_2022_9022128 crossref_primary_10_1155_2022_5316228 crossref_primary_10_1155_2022_5684178 crossref_primary_10_1155_2022_5707210 crossref_primary_10_1155_2022_9697545 crossref_primary_10_1155_2022_6127388 crossref_primary_10_1155_2022_1086210 crossref_primary_10_1155_2022_3379843 crossref_primary_10_2478_amns_2023_1_00448 crossref_primary_10_1155_2022_8963756 crossref_primary_10_1155_2022_5603355 crossref_primary_10_1155_2022_9734633 crossref_primary_10_21595_jve_2024_23595 crossref_primary_10_1155_2022_3040713 crossref_primary_10_1155_2022_5608054 crossref_primary_10_1016_j_procir_2024_10_264 crossref_primary_10_1155_2022_2301322 crossref_primary_10_1155_2022_3935143 crossref_primary_10_1515_nleng_2022_0222 crossref_primary_10_1155_2022_7090309 crossref_primary_10_1155_2022_6216423 crossref_primary_10_1155_2022_3462644 crossref_primary_10_1515_econ_2022_0099 crossref_primary_10_1145_3554733 crossref_primary_10_1155_2022_4602187 crossref_primary_10_1155_2022_9655452 crossref_primary_10_1155_2022_1831581 crossref_primary_10_1155_2022_9641328 crossref_primary_10_2174_2352096515666220518121454 crossref_primary_10_1155_2022_2417826 crossref_primary_10_1155_2022_4962753 crossref_primary_10_1155_2022_5741114 crossref_primary_10_1155_2022_1393024 crossref_primary_10_1155_2022_6000375 crossref_primary_10_1155_2022_8337805 |
Cites_doi | 10.1016/j.ijfatigue.2019.105387 10.1155/2021/5561065 10.1016/j.ymssp.2020.106620 10.1016/j.ymssp.2017.05.024 10.1109/TEMC.2018.2811645 10.1155/2021/3688881 10.1017/S026646661700024X 10.1364/PRJ.6.001102 10.1142/S0218348X19500750 10.1016/j.egyr.2021.02.010 10.1007/s10010-017-0241-1 10.1109/TIA.2018.2861385 10.1016/j.jsv.2019.114861 10.1007/s11071-021-06364-9 10.1016/j.mechmachtheory.2008.05.008 10.5194/ms-10-187-2019 10.1016/j.ifacol.2018.09.711 10.1136/bmjopen-2019-030913 10.1155/2021/5760660 10.1016/j.ymssp.2018.08.033 10.1049/iet-gtd.2018.6334 10.1016/j.mechatronics.2006.11.002 10.1016/j.mechmachtheory.2016.10.020 10.21595/jve.2021.21828 10.1016/j.jfranklin.2018.12.017 10.1016/j.measurement.2012.05.028 10.1371/journal.pntd.0007669 10.1155/2021/8880851 10.1109/TTHZ.2020.2979125 10.15282/jmes.14.2.2020.19.0531 |
ContentType | Journal Article |
Copyright | This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7TB 8FD FR3 KR7 DOA |
DOI | 10.1515/nleng-2021-0042 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2192-8029 |
EndPage | 525 |
ExternalDocumentID | oai_doaj_org_article_70c56e8eaad741a08ebc5ea799082c6f 10_1515_nleng_2021_0042 10_1515_nleng_2021_0042101518 |
GroupedDBID | 0R~ 0~D 4.4 8FE 8FG AAFPC AAFWJ AAQCX AASOL AASQH AAWFC ABAOT ABAQN ABFKT ABIQR ABSOE ABUVI ABXMZ ACGFS ACIWK ACZBO ADBBV ADGQD ADGYE ADJVZ ADMLS ADOZN AEJTT AEQDQ AEXIE AFBAA AFBDD AFCXV AFPKN AFQUK AHGSO AIERV AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS BAKPI BBCWN BCNDV BENPR BFBNB BGLVJ CFGNV EBS GROUPED_DOAJ HZ~ IY9 L6V M48 O9- OK1 QD8 SA. SLJYH AAYXX ABJCF CITATION 7TB 8FD FR3 KR7 |
ID | FETCH-LOGICAL-c430t-cd9780e325659f168b9e548c7cb9e5b7c4c0964a63546d6cd7cbb232825236053 |
IEDL.DBID | DOA |
ISSN | 2192-8010 |
IngestDate | Wed Aug 27 01:30:43 EDT 2025 Mon Jun 30 09:55:22 EDT 2025 Thu Apr 24 23:11:44 EDT 2025 Tue Jul 01 02:46:38 EDT 2025 Thu Jul 10 10:35:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c430t-cd9780e325659f168b9e548c7cb9e5b7c4c0964a63546d6cd7cbb232825236053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/70c56e8eaad741a08ebc5ea799082c6f |
PQID | 2624541530 |
PQPubID | 2038883 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_70c56e8eaad741a08ebc5ea799082c6f proquest_journals_2624541530 crossref_citationtrail_10_1515_nleng_2021_0042 crossref_primary_10_1515_nleng_2021_0042 walterdegruyter_journals_10_1515_nleng_2021_0042101518 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Nonlinear engineering |
PublicationYear | 2021 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2022020207034926981_j_nleng-2021-0042_ref_001 2022020207034926981_j_nleng-2021-0042_ref_023 2022020207034926981_j_nleng-2021-0042_ref_002 2022020207034926981_j_nleng-2021-0042_ref_024 2022020207034926981_j_nleng-2021-0042_ref_003 2022020207034926981_j_nleng-2021-0042_ref_025 2022020207034926981_j_nleng-2021-0042_ref_004 2022020207034926981_j_nleng-2021-0042_ref_026 2022020207034926981_j_nleng-2021-0042_ref_005 2022020207034926981_j_nleng-2021-0042_ref_027 2022020207034926981_j_nleng-2021-0042_ref_006 2022020207034926981_j_nleng-2021-0042_ref_028 2022020207034926981_j_nleng-2021-0042_ref_007 2022020207034926981_j_nleng-2021-0042_ref_029 2022020207034926981_j_nleng-2021-0042_ref_008 2022020207034926981_j_nleng-2021-0042_ref_009 2022020207034926981_j_nleng-2021-0042_ref_020 2022020207034926981_j_nleng-2021-0042_ref_021 2022020207034926981_j_nleng-2021-0042_ref_022 2022020207034926981_j_nleng-2021-0042_ref_012 2022020207034926981_j_nleng-2021-0042_ref_013 2022020207034926981_j_nleng-2021-0042_ref_014 2022020207034926981_j_nleng-2021-0042_ref_015 2022020207034926981_j_nleng-2021-0042_ref_016 2022020207034926981_j_nleng-2021-0042_ref_017 2022020207034926981_j_nleng-2021-0042_ref_018 2022020207034926981_j_nleng-2021-0042_ref_019 2022020207034926981_j_nleng-2021-0042_ref_030 2022020207034926981_j_nleng-2021-0042_ref_031 2022020207034926981_j_nleng-2021-0042_ref_010 2022020207034926981_j_nleng-2021-0042_ref_011 |
References_xml | – ident: 2022020207034926981_j_nleng-2021-0042_ref_023 doi: 10.1016/j.ijfatigue.2019.105387 – ident: 2022020207034926981_j_nleng-2021-0042_ref_015 doi: 10.1155/2021/5561065 – ident: 2022020207034926981_j_nleng-2021-0042_ref_029 doi: 10.1016/j.ymssp.2020.106620 – ident: 2022020207034926981_j_nleng-2021-0042_ref_019 doi: 10.1016/j.ymssp.2017.05.024 – ident: 2022020207034926981_j_nleng-2021-0042_ref_018 doi: 10.1109/TEMC.2018.2811645 – ident: 2022020207034926981_j_nleng-2021-0042_ref_010 doi: 10.1155/2021/3688881 – ident: 2022020207034926981_j_nleng-2021-0042_ref_007 doi: 10.1017/S026646661700024X – ident: 2022020207034926981_j_nleng-2021-0042_ref_006 doi: 10.1364/PRJ.6.001102 – ident: 2022020207034926981_j_nleng-2021-0042_ref_004 – ident: 2022020207034926981_j_nleng-2021-0042_ref_026 doi: 10.1142/S0218348X19500750 – ident: 2022020207034926981_j_nleng-2021-0042_ref_031 doi: 10.1016/j.egyr.2021.02.010 – ident: 2022020207034926981_j_nleng-2021-0042_ref_016 doi: 10.1007/s10010-017-0241-1 – ident: 2022020207034926981_j_nleng-2021-0042_ref_011 doi: 10.1109/TIA.2018.2861385 – ident: 2022020207034926981_j_nleng-2021-0042_ref_005 doi: 10.1016/j.jsv.2019.114861 – ident: 2022020207034926981_j_nleng-2021-0042_ref_025 doi: 10.1007/s11071-021-06364-9 – ident: 2022020207034926981_j_nleng-2021-0042_ref_021 doi: 10.1016/j.mechmachtheory.2008.05.008 – ident: 2022020207034926981_j_nleng-2021-0042_ref_009 doi: 10.5194/ms-10-187-2019 – ident: 2022020207034926981_j_nleng-2021-0042_ref_022 doi: 10.1016/j.ifacol.2018.09.711 – ident: 2022020207034926981_j_nleng-2021-0042_ref_028 doi: 10.1136/bmjopen-2019-030913 – ident: 2022020207034926981_j_nleng-2021-0042_ref_014 doi: 10.1155/2021/5760660 – ident: 2022020207034926981_j_nleng-2021-0042_ref_024 doi: 10.1016/j.ymssp.2018.08.033 – ident: 2022020207034926981_j_nleng-2021-0042_ref_030 doi: 10.1049/iet-gtd.2018.6334 – ident: 2022020207034926981_j_nleng-2021-0042_ref_013 doi: 10.1016/j.mechatronics.2006.11.002 – ident: 2022020207034926981_j_nleng-2021-0042_ref_002 doi: 10.1016/j.mechmachtheory.2016.10.020 – ident: 2022020207034926981_j_nleng-2021-0042_ref_008 doi: 10.21595/jve.2021.21828 – ident: 2022020207034926981_j_nleng-2021-0042_ref_003 doi: 10.1016/j.jfranklin.2018.12.017 – ident: 2022020207034926981_j_nleng-2021-0042_ref_012 doi: 10.1016/j.measurement.2012.05.028 – ident: 2022020207034926981_j_nleng-2021-0042_ref_027 doi: 10.1371/journal.pntd.0007669 – ident: 2022020207034926981_j_nleng-2021-0042_ref_017 doi: 10.1155/2021/8880851 – ident: 2022020207034926981_j_nleng-2021-0042_ref_001 doi: 10.1109/TTHZ.2020.2979125 – ident: 2022020207034926981_j_nleng-2021-0042_ref_020 doi: 10.15282/jmes.14.2.2020.19.0531 |
SSID | ssj0001361408 |
Score | 2.4033659 |
Snippet | To solve the problems of large mechanical powertrain such as complex structure, serious accident, strong nonlinear characteristics of running state, bad... |
SourceID | doaj proquest crossref walterdegruyter |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 518 |
SubjectTerms | Classification Decision making Fault detection Fault diagnosis Fault identification Feature extraction Kernels Mechanical drives Mechanical power transmission system nonlinear dynamics Power transmission Powertrain Random noise Steam turbines |
Title | Study on fault identification of mechanical dynamic nonlinear transmission system |
URI | https://www.degruyter.com/doi/10.1515/nleng-2021-0042 https://www.proquest.com/docview/2624541530 https://doaj.org/article/70c56e8eaad741a08ebc5ea799082c6f |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3qSQ-Ln1hdlxw8eKm2SZq2RxXXRVAQFLyFNB8iaFfWLrL_3pmmq6sgXoQeSpvS8GaaeZOkbwg5zJnzifU2ZqXnsZBVGVcSzlIrWJUJ45nG-Y7rGzm6F1cP2cNCqS_cExbkgQNwJ3liMukKp7WF4KeTwlUmczovsVa3kR5HX4h5C8lUO7vCIeyEcnRAYXAYTjpdH4jfJzUWKQH_YJBJJ4J9C0mtcv83utl7bxeurXucTGfNfKG0jT_DddLriCM9DR3eIEuu3iRrC3KCW-QWNwXO6LimXk-fG_pku61ALfp07OmLwx990S7UhlL0tA5aGXpCGwxbYHacP6NB4Xmb3A8v7s5HcVcyITaCJ01sLCoKOQ5EJit9KouqdJCTmNzgSZUbYSBnERpohpBWGgs3KiBVkCcyDpkN3yEr8F63S6jxPLWANvdpKVIDY3pitbeZS53wzJiIHM9RU6bTE8eyFs8K8wqAWbUwK4RZIcwROfp84DVIafze9AzN8NkMNbDbC-AZqvMM9ZdnRKQ_N6LqPsw3xSQTGZAWnkRE_jDsV6tfugXDV5YWe__RuX2yGvwPjz5ZaSZTdwD0pqkGZLkYXg5af_4Aj2r5rw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5dD2gKAPdXn60EMv6SaO4yRHioAtr6oqSNwsZ2xDpWW3WrJC_PvOJNkFKrhUysFK7MSasT3fTOxvAD7n0ofYBRfJMqSR0lUZVZpKiVOyyhQGaTnecXqmhxfq6DK7XIK9-VkY3lbp_NV0dl-3DKkDN8EZB8oWXANkgQdjTjNCGpbkC9OwG1zXN6NXsKwJ_hc9WN4dHv768RBqSckGtbnpCM_wmhx3JD_PvOqJfWpo_J9gz5W75i_2oouPjNHBKqx0KFLstmpfgyU_fgdvH3ELvoefvEPwXkzGItjZqBa_XbcvqFGFmARx4_nULytJuDYvvRi3xBl2Kmq2YTQGOJgmWrrnD3BxsH--N4y6_AkRqjSuI3RML-RTQjVZGRJdVKUnBwVz5EKVo0JyYJQlzKG00-joQUUIi5xGmZKbk36EHn3XfwKBIU1cQY53SEqVIC3wsbPBZT7xKkjEPnydS81gRy7OOS5Ghp0MErNpxGxYzIbF3IcviwZ_Wl6Nl6t-YzUsqjEhdnNjMr0y3fwyeYyZ9oW31hFGsjH1FTNv85JTuqMOfdicK9F0s_TWSC1VRggmjfug_1HsQ60XukVrWZYU6__bcAdeD89PT8zJ97PjDXjTjj--NqFXT2d-i7BOXW13Y_kv5oD8JQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3RRarKAUE_xAItPvTQS7qJ7TibI23ZLrSlrVokbpYzthES7KJtVhX_npkkLEtVLkg5WImdWDO2583EfgPwtpAhpj76RJZRJdpUZVIZKmVeyyrXGKXjeMe3YzM-0Uen-enSWRjeVunD2Wx-XbcMqQM_xTkHyhZcA2SBBxNOM0IaluQL07AbXPn4BFaNKZXuwer--POv73eRFkUmqE1NR3CGl-S04_j5z5vumaeGxf8e9Fz_2_zEXvRwyRaNNmC9A5Fiv9X6JqyEyXNYW6IWfAE_eYPgtZhORHTzi1qc-25bUKMJMY3iMvChX9aR8G1aejFpeTPcTNRswmgIcCxNtGzPL-FkdPD74zjp0ickqFVaJ-iZXSgoAjV5GTMzrMpA_gkWyIWqQI3kv2hHkEMbb9DTg4oAFvmMUpGXo15Bj74btkBgVJkfkt8ds1JnSOt76l30eciCjhKxD-9vpWax4xbnFBcXln0MErNtxGxZzJbF3Id3iwZXLa3Gw1U_sBoW1ZgPu7kxnZ3ZbnrZIsXchGFwzhNEcin1FfPgipIzuqOJfdi9VaLtJukfK43UOQEYlfbB_KPYu1oPdIuWsjwbbj-24R48_fFpZL8eHn_ZgWft8ONrF3r1bB5eE9KpqzfdUL4BWTf7Sw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+fault+identification+of+mechanical+dynamic+nonlinear+transmission+system&rft.jtitle=Nonlinear+engineering&rft.au=Guo%2C+Erfu&rft.au=Jagota%2C+Vishal&rft.au=Makhatha%2C+Mamookho+Elizabeth&rft.au=Kumar%2C+Pawan&rft.date=2021-01-01&rft.pub=De+Gruyter&rft.issn=2192-8010&rft.eissn=2192-8029&rft.volume=10&rft.issue=1&rft.spage=518&rft.epage=525&rft_id=info:doi/10.1515%2Fnleng-2021-0042&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_nleng_2021_0042101518 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8010&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8010&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8010&client=summon |