Study on fault identification of mechanical dynamic nonlinear transmission system

To solve the problems of large mechanical powertrain such as complex structure, serious accident, strong nonlinear characteristics of running state, bad operating environment, non-Gaussian noise, and various uncertain factors, it is difficult to make an accurate fault diagnosis. This paper proposes...

Full description

Saved in:
Bibliographic Details
Published inNonlinear engineering Vol. 10; no. 1; pp. 518 - 525
Main Authors Guo, Erfu, Jagota, Vishal, Makhatha, Mamookho Elizabeth, Kumar, Pawan
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 01.01.2021
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To solve the problems of large mechanical powertrain such as complex structure, serious accident, strong nonlinear characteristics of running state, bad operating environment, non-Gaussian noise, and various uncertain factors, it is difficult to make an accurate fault diagnosis. This paper proposes a method for dealing with nonlinear characteristics using nuclear waves, as well as a system, deeply conducted nuclear base fault feature extraction, classification, and decision making, such as nuclear base state trend prediction technology research, focusing on exploring and improving the accuracy of fault diagnosis under nonlinear conditions, technical method, and way to state prediction accuracy. It offers effective technical assistance for the advancement and use of mechanical power train monitoring and diagnosis technology. A fault detection method based on kernel method is proposed. Based on the characteristics of this method in dealing with nonlinear problems, the research on kernel feature extraction, kernel fault classification and decision making, and kernel state trend prediction are carried out systematically. The experimental results show that the simulation analysis of typical chaotic time series prediction and the application of the operation state prediction of a certain ship main steam turbine unit have achieved good results, among which the average relative error of the single-step prediction of the unit state is 1.7881%, and the average relative error of the 30-step prediction is 3.3983%. Proved that the nuclear methods systematically applied to mechanical power transmission system fault diagnosis and state prediction, effectively enhancing some traditional methods and techniques dealing with nonlinear feature extraction, the nonlinear prediction capability for fault identification, and nonlinear state, to deal with nonlinear fault diagnosis problems of engineering practice, a large number of explored effective solution.
AbstractList To solve the problems of large mechanical powertrain such as complex structure, serious accident, strong nonlinear characteristics of running state, bad operating environment, non-Gaussian noise, and various uncertain factors, it is difficult to make an accurate fault diagnosis. This paper proposes a method for dealing with nonlinear characteristics using nuclear waves, as well as a system, deeply conducted nuclear base fault feature extraction, classification, and decision making, such as nuclear base state trend prediction technology research, focusing on exploring and improving the accuracy of fault diagnosis under nonlinear conditions, technical method, and way to state prediction accuracy. It offers effective technical assistance for the advancement and use of mechanical power train monitoring and diagnosis technology. A fault detection method based on kernel method is proposed. Based on the characteristics of this method in dealing with nonlinear problems, the research on kernel feature extraction, kernel fault classification and decision making, and kernel state trend prediction are carried out systematically. The experimental results show that the simulation analysis of typical chaotic time series prediction and the application of the operation state prediction of a certain ship main steam turbine unit have achieved good results, among which the average relative error of the single-step prediction of the unit state is 1.7881%, and the average relative error of the 30-step prediction is 3.3983%. Proved that the nuclear methods systematically applied to mechanical power transmission system fault diagnosis and state prediction, effectively enhancing some traditional methods and techniques dealing with nonlinear feature extraction, the nonlinear prediction capability for fault identification, and nonlinear state, to deal with nonlinear fault diagnosis problems of engineering practice, a large number of explored effective solution.
Author Guo, Erfu
Jagota, Vishal
Makhatha, Mamookho Elizabeth
Kumar, Pawan
Author_xml – sequence: 1
  givenname: Erfu
  surname: Guo
  fullname: Guo, Erfu
  organization: Shijiazhuang University of Applied Technology, Hebei, Shijiazhuang, 050081, China
– sequence: 2
  givenname: Vishal
  surname: Jagota
  fullname: Jagota, Vishal
  email: vishaljagota@mits.ac.in
  organization: Department of Mechanical Engineering, Madanapalle Institute of Technology and Science, Madanapalle, AP, India
– sequence: 3
  givenname: Mamookho Elizabeth
  surname: Makhatha
  fullname: Makhatha, Mamookho Elizabeth
  organization: Department of Engineering Metallurgy, University of Johannesburg, South Africa
– sequence: 4
  givenname: Pawan
  surname: Kumar
  fullname: Kumar, Pawan
  organization: Department of Engineering Metallurgy, University of Johannesburg, South Africa
BookMark eNp1UU1r3DAUFCWFpmnOuRp6dvP0afnQQwn9CARKaXMWWul5q8WWU0mm-N9X3k1aKOSkYTTz3vDmNTmLc0RCrii8o5LK6zhi3LcMGG0BBHtBzhntWauB9Wd_MYVX5DLnAwBQrqgAfU6-fS-LX5s5NoNdxtIEj7GEIThbQiXnoZnQ_bSxEmPj12in4Jq6fAwRbWpKsjFPIedNnNdccHpDXg52zHj5-F6Q-08ff9x8ae--fr69-XDXOsGhtM73nQbkTCrZD1TpXY9SaNe5Dew6Jxz0SljFpVBeOV8_dowzzSTjCiS_ILenuX62B_OQwmTTamYbzJGY097YVIIb0XTgpEKN1vpOUAsad06i7foeNHNqqLPenmY9pPnXgrmYw7ykWOMbppiQgkoOVSVPKpfmnBMOxoVyvFM9QxgNBbOVYY5lmK0Ms5VRfdf_-Z7SPu94f3L8tmPB5HGflrWCf7GecVKorOZ_AFQCo10
CitedBy_id crossref_primary_10_1155_2022_4299756
crossref_primary_10_1080_10447318_2023_2189816
crossref_primary_10_1155_2022_5869037
crossref_primary_10_1155_2022_9385451
crossref_primary_10_3390_su142416505
crossref_primary_10_1155_2022_7769653
crossref_primary_10_4018_IJIIT_354071
crossref_primary_10_1155_2022_5127989
crossref_primary_10_1155_2022_7432750
crossref_primary_10_1016_j_isatra_2024_05_019
crossref_primary_10_1155_2022_3167958
crossref_primary_10_1155_2022_8106516
crossref_primary_10_1155_2022_9328038
crossref_primary_10_1155_2022_6050284
crossref_primary_10_1155_2022_2422030
crossref_primary_10_1155_2022_9022128
crossref_primary_10_1155_2022_5316228
crossref_primary_10_1155_2022_5684178
crossref_primary_10_1155_2022_5707210
crossref_primary_10_1155_2022_9697545
crossref_primary_10_1155_2022_6127388
crossref_primary_10_1155_2022_1086210
crossref_primary_10_1155_2022_3379843
crossref_primary_10_2478_amns_2023_1_00448
crossref_primary_10_1155_2022_8963756
crossref_primary_10_1155_2022_5603355
crossref_primary_10_1155_2022_9734633
crossref_primary_10_21595_jve_2024_23595
crossref_primary_10_1155_2022_3040713
crossref_primary_10_1155_2022_5608054
crossref_primary_10_1016_j_procir_2024_10_264
crossref_primary_10_1155_2022_2301322
crossref_primary_10_1155_2022_3935143
crossref_primary_10_1515_nleng_2022_0222
crossref_primary_10_1155_2022_7090309
crossref_primary_10_1155_2022_6216423
crossref_primary_10_1155_2022_3462644
crossref_primary_10_1515_econ_2022_0099
crossref_primary_10_1145_3554733
crossref_primary_10_1155_2022_4602187
crossref_primary_10_1155_2022_9655452
crossref_primary_10_1155_2022_1831581
crossref_primary_10_1155_2022_9641328
crossref_primary_10_2174_2352096515666220518121454
crossref_primary_10_1155_2022_2417826
crossref_primary_10_1155_2022_4962753
crossref_primary_10_1155_2022_5741114
crossref_primary_10_1155_2022_1393024
crossref_primary_10_1155_2022_6000375
crossref_primary_10_1155_2022_8337805
Cites_doi 10.1016/j.ijfatigue.2019.105387
10.1155/2021/5561065
10.1016/j.ymssp.2020.106620
10.1016/j.ymssp.2017.05.024
10.1109/TEMC.2018.2811645
10.1155/2021/3688881
10.1017/S026646661700024X
10.1364/PRJ.6.001102
10.1142/S0218348X19500750
10.1016/j.egyr.2021.02.010
10.1007/s10010-017-0241-1
10.1109/TIA.2018.2861385
10.1016/j.jsv.2019.114861
10.1007/s11071-021-06364-9
10.1016/j.mechmachtheory.2008.05.008
10.5194/ms-10-187-2019
10.1016/j.ifacol.2018.09.711
10.1136/bmjopen-2019-030913
10.1155/2021/5760660
10.1016/j.ymssp.2018.08.033
10.1049/iet-gtd.2018.6334
10.1016/j.mechatronics.2006.11.002
10.1016/j.mechmachtheory.2016.10.020
10.21595/jve.2021.21828
10.1016/j.jfranklin.2018.12.017
10.1016/j.measurement.2012.05.028
10.1371/journal.pntd.0007669
10.1155/2021/8880851
10.1109/TTHZ.2020.2979125
10.15282/jmes.14.2.2020.19.0531
ContentType Journal Article
Copyright This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOA
DOI 10.1515/nleng-2021-0042
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList

Civil Engineering Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2192-8029
EndPage 525
ExternalDocumentID oai_doaj_org_article_70c56e8eaad741a08ebc5ea799082c6f
10_1515_nleng_2021_0042
10_1515_nleng_2021_0042101518
GroupedDBID 0R~
0~D
4.4
8FE
8FG
AAFPC
AAFWJ
AAQCX
AASOL
AASQH
AAWFC
ABAOT
ABAQN
ABFKT
ABIQR
ABSOE
ABUVI
ABXMZ
ACGFS
ACIWK
ACZBO
ADBBV
ADGQD
ADGYE
ADJVZ
ADMLS
ADOZN
AEJTT
AEQDQ
AEXIE
AFBAA
AFBDD
AFCXV
AFPKN
AFQUK
AHGSO
AIERV
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
BAKPI
BBCWN
BCNDV
BENPR
BFBNB
BGLVJ
CFGNV
EBS
GROUPED_DOAJ
HZ~
IY9
L6V
M48
O9-
OK1
QD8
SA.
SLJYH
AAYXX
ABJCF
CITATION
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c430t-cd9780e325659f168b9e548c7cb9e5b7c4c0964a63546d6cd7cbb232825236053
IEDL.DBID DOA
ISSN 2192-8010
IngestDate Wed Aug 27 01:30:43 EDT 2025
Mon Jun 30 09:55:22 EDT 2025
Thu Apr 24 23:11:44 EDT 2025
Tue Jul 01 02:46:38 EDT 2025
Thu Jul 10 10:35:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-cd9780e325659f168b9e548c7cb9e5b7c4c0964a63546d6cd7cbb232825236053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/70c56e8eaad741a08ebc5ea799082c6f
PQID 2624541530
PQPubID 2038883
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_70c56e8eaad741a08ebc5ea799082c6f
proquest_journals_2624541530
crossref_citationtrail_10_1515_nleng_2021_0042
crossref_primary_10_1515_nleng_2021_0042
walterdegruyter_journals_10_1515_nleng_2021_0042101518
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Nonlinear engineering
PublicationYear 2021
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2022020207034926981_j_nleng-2021-0042_ref_001
2022020207034926981_j_nleng-2021-0042_ref_023
2022020207034926981_j_nleng-2021-0042_ref_002
2022020207034926981_j_nleng-2021-0042_ref_024
2022020207034926981_j_nleng-2021-0042_ref_003
2022020207034926981_j_nleng-2021-0042_ref_025
2022020207034926981_j_nleng-2021-0042_ref_004
2022020207034926981_j_nleng-2021-0042_ref_026
2022020207034926981_j_nleng-2021-0042_ref_005
2022020207034926981_j_nleng-2021-0042_ref_027
2022020207034926981_j_nleng-2021-0042_ref_006
2022020207034926981_j_nleng-2021-0042_ref_028
2022020207034926981_j_nleng-2021-0042_ref_007
2022020207034926981_j_nleng-2021-0042_ref_029
2022020207034926981_j_nleng-2021-0042_ref_008
2022020207034926981_j_nleng-2021-0042_ref_009
2022020207034926981_j_nleng-2021-0042_ref_020
2022020207034926981_j_nleng-2021-0042_ref_021
2022020207034926981_j_nleng-2021-0042_ref_022
2022020207034926981_j_nleng-2021-0042_ref_012
2022020207034926981_j_nleng-2021-0042_ref_013
2022020207034926981_j_nleng-2021-0042_ref_014
2022020207034926981_j_nleng-2021-0042_ref_015
2022020207034926981_j_nleng-2021-0042_ref_016
2022020207034926981_j_nleng-2021-0042_ref_017
2022020207034926981_j_nleng-2021-0042_ref_018
2022020207034926981_j_nleng-2021-0042_ref_019
2022020207034926981_j_nleng-2021-0042_ref_030
2022020207034926981_j_nleng-2021-0042_ref_031
2022020207034926981_j_nleng-2021-0042_ref_010
2022020207034926981_j_nleng-2021-0042_ref_011
References_xml – ident: 2022020207034926981_j_nleng-2021-0042_ref_023
  doi: 10.1016/j.ijfatigue.2019.105387
– ident: 2022020207034926981_j_nleng-2021-0042_ref_015
  doi: 10.1155/2021/5561065
– ident: 2022020207034926981_j_nleng-2021-0042_ref_029
  doi: 10.1016/j.ymssp.2020.106620
– ident: 2022020207034926981_j_nleng-2021-0042_ref_019
  doi: 10.1016/j.ymssp.2017.05.024
– ident: 2022020207034926981_j_nleng-2021-0042_ref_018
  doi: 10.1109/TEMC.2018.2811645
– ident: 2022020207034926981_j_nleng-2021-0042_ref_010
  doi: 10.1155/2021/3688881
– ident: 2022020207034926981_j_nleng-2021-0042_ref_007
  doi: 10.1017/S026646661700024X
– ident: 2022020207034926981_j_nleng-2021-0042_ref_006
  doi: 10.1364/PRJ.6.001102
– ident: 2022020207034926981_j_nleng-2021-0042_ref_004
– ident: 2022020207034926981_j_nleng-2021-0042_ref_026
  doi: 10.1142/S0218348X19500750
– ident: 2022020207034926981_j_nleng-2021-0042_ref_031
  doi: 10.1016/j.egyr.2021.02.010
– ident: 2022020207034926981_j_nleng-2021-0042_ref_016
  doi: 10.1007/s10010-017-0241-1
– ident: 2022020207034926981_j_nleng-2021-0042_ref_011
  doi: 10.1109/TIA.2018.2861385
– ident: 2022020207034926981_j_nleng-2021-0042_ref_005
  doi: 10.1016/j.jsv.2019.114861
– ident: 2022020207034926981_j_nleng-2021-0042_ref_025
  doi: 10.1007/s11071-021-06364-9
– ident: 2022020207034926981_j_nleng-2021-0042_ref_021
  doi: 10.1016/j.mechmachtheory.2008.05.008
– ident: 2022020207034926981_j_nleng-2021-0042_ref_009
  doi: 10.5194/ms-10-187-2019
– ident: 2022020207034926981_j_nleng-2021-0042_ref_022
  doi: 10.1016/j.ifacol.2018.09.711
– ident: 2022020207034926981_j_nleng-2021-0042_ref_028
  doi: 10.1136/bmjopen-2019-030913
– ident: 2022020207034926981_j_nleng-2021-0042_ref_014
  doi: 10.1155/2021/5760660
– ident: 2022020207034926981_j_nleng-2021-0042_ref_024
  doi: 10.1016/j.ymssp.2018.08.033
– ident: 2022020207034926981_j_nleng-2021-0042_ref_030
  doi: 10.1049/iet-gtd.2018.6334
– ident: 2022020207034926981_j_nleng-2021-0042_ref_013
  doi: 10.1016/j.mechatronics.2006.11.002
– ident: 2022020207034926981_j_nleng-2021-0042_ref_002
  doi: 10.1016/j.mechmachtheory.2016.10.020
– ident: 2022020207034926981_j_nleng-2021-0042_ref_008
  doi: 10.21595/jve.2021.21828
– ident: 2022020207034926981_j_nleng-2021-0042_ref_003
  doi: 10.1016/j.jfranklin.2018.12.017
– ident: 2022020207034926981_j_nleng-2021-0042_ref_012
  doi: 10.1016/j.measurement.2012.05.028
– ident: 2022020207034926981_j_nleng-2021-0042_ref_027
  doi: 10.1371/journal.pntd.0007669
– ident: 2022020207034926981_j_nleng-2021-0042_ref_017
  doi: 10.1155/2021/8880851
– ident: 2022020207034926981_j_nleng-2021-0042_ref_001
  doi: 10.1109/TTHZ.2020.2979125
– ident: 2022020207034926981_j_nleng-2021-0042_ref_020
  doi: 10.15282/jmes.14.2.2020.19.0531
SSID ssj0001361408
Score 2.4033659
Snippet To solve the problems of large mechanical powertrain such as complex structure, serious accident, strong nonlinear characteristics of running state, bad...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 518
SubjectTerms Classification
Decision making
Fault detection
Fault diagnosis
Fault identification
Feature extraction
Kernels
Mechanical drives
Mechanical power transmission system
nonlinear dynamics
Power transmission
Powertrain
Random noise
Steam turbines
Title Study on fault identification of mechanical dynamic nonlinear transmission system
URI https://www.degruyter.com/doi/10.1515/nleng-2021-0042
https://www.proquest.com/docview/2624541530
https://doaj.org/article/70c56e8eaad741a08ebc5ea799082c6f
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3qSQ-Ln1hdlxw8eKm2SZq2RxXXRVAQFLyFNB8iaFfWLrL_3pmmq6sgXoQeSpvS8GaaeZOkbwg5zJnzifU2ZqXnsZBVGVcSzlIrWJUJ45nG-Y7rGzm6F1cP2cNCqS_cExbkgQNwJ3liMukKp7WF4KeTwlUmczovsVa3kR5HX4h5C8lUO7vCIeyEcnRAYXAYTjpdH4jfJzUWKQH_YJBJJ4J9C0mtcv83utl7bxeurXucTGfNfKG0jT_DddLriCM9DR3eIEuu3iRrC3KCW-QWNwXO6LimXk-fG_pku61ALfp07OmLwx990S7UhlL0tA5aGXpCGwxbYHacP6NB4Xmb3A8v7s5HcVcyITaCJ01sLCoKOQ5EJit9KouqdJCTmNzgSZUbYSBnERpohpBWGgs3KiBVkCcyDpkN3yEr8F63S6jxPLWANvdpKVIDY3pitbeZS53wzJiIHM9RU6bTE8eyFs8K8wqAWbUwK4RZIcwROfp84DVIafze9AzN8NkMNbDbC-AZqvMM9ZdnRKQ_N6LqPsw3xSQTGZAWnkRE_jDsV6tfugXDV5YWe__RuX2yGvwPjz5ZaSZTdwD0pqkGZLkYXg5af_4Aj2r5rw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5dD2gKAPdXn60EMv6SaO4yRHioAtr6oqSNwsZ2xDpWW3WrJC_PvOJNkFKrhUysFK7MSasT3fTOxvAD7n0ofYBRfJMqSR0lUZVZpKiVOyyhQGaTnecXqmhxfq6DK7XIK9-VkY3lbp_NV0dl-3DKkDN8EZB8oWXANkgQdjTjNCGpbkC9OwG1zXN6NXsKwJ_hc9WN4dHv768RBqSckGtbnpCM_wmhx3JD_PvOqJfWpo_J9gz5W75i_2oouPjNHBKqx0KFLstmpfgyU_fgdvH3ELvoefvEPwXkzGItjZqBa_XbcvqFGFmARx4_nULytJuDYvvRi3xBl2Kmq2YTQGOJgmWrrnD3BxsH--N4y6_AkRqjSuI3RML-RTQjVZGRJdVKUnBwVz5EKVo0JyYJQlzKG00-joQUUIi5xGmZKbk36EHn3XfwKBIU1cQY53SEqVIC3wsbPBZT7xKkjEPnydS81gRy7OOS5Ghp0MErNpxGxYzIbF3IcviwZ_Wl6Nl6t-YzUsqjEhdnNjMr0y3fwyeYyZ9oW31hFGsjH1FTNv85JTuqMOfdicK9F0s_TWSC1VRggmjfug_1HsQ60XukVrWZYU6__bcAdeD89PT8zJ97PjDXjTjj--NqFXT2d-i7BOXW13Y_kv5oD8JQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3RRarKAUE_xAItPvTQS7qJ7TibI23ZLrSlrVokbpYzthES7KJtVhX_npkkLEtVLkg5WImdWDO2583EfgPwtpAhpj76RJZRJdpUZVIZKmVeyyrXGKXjeMe3YzM-0Uen-enSWRjeVunD2Wx-XbcMqQM_xTkHyhZcA2SBBxNOM0IaluQL07AbXPn4BFaNKZXuwer--POv73eRFkUmqE1NR3CGl-S04_j5z5vumaeGxf8e9Fz_2_zEXvRwyRaNNmC9A5Fiv9X6JqyEyXNYW6IWfAE_eYPgtZhORHTzi1qc-25bUKMJMY3iMvChX9aR8G1aejFpeTPcTNRswmgIcCxNtGzPL-FkdPD74zjp0ickqFVaJ-iZXSgoAjV5GTMzrMpA_gkWyIWqQI3kv2hHkEMbb9DTg4oAFvmMUpGXo15Bj74btkBgVJkfkt8ds1JnSOt76l30eciCjhKxD-9vpWax4xbnFBcXln0MErNtxGxZzJbF3Id3iwZXLa3Gw1U_sBoW1ZgPu7kxnZ3ZbnrZIsXchGFwzhNEcin1FfPgipIzuqOJfdi9VaLtJukfK43UOQEYlfbB_KPYu1oPdIuWsjwbbj-24R48_fFpZL8eHn_ZgWft8ONrF3r1bB5eE9KpqzfdUL4BWTf7Sw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+fault+identification+of+mechanical+dynamic+nonlinear+transmission+system&rft.jtitle=Nonlinear+engineering&rft.au=Guo%2C+Erfu&rft.au=Jagota%2C+Vishal&rft.au=Makhatha%2C+Mamookho+Elizabeth&rft.au=Kumar%2C+Pawan&rft.date=2021-01-01&rft.pub=De+Gruyter&rft.issn=2192-8010&rft.eissn=2192-8029&rft.volume=10&rft.issue=1&rft.spage=518&rft.epage=525&rft_id=info:doi/10.1515%2Fnleng-2021-0042&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_nleng_2021_0042101518
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8010&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8010&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8010&client=summon