Artificial Intelligence and Machine Learning Based Intervention in Medical Infrastructure: A Review and Future Trends
People in the life sciences who work with Artificial Intelligence (AI) and Machine Learning (ML) are under increased pressure to develop algorithms faster than ever. The possibility of revealing innovative insights and speeding breakthroughs lies in using large datasets integrated on several levels....
Saved in:
Published in | Healthcare (Basel) Vol. 11; no. 2; p. 207 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
10.01.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | People in the life sciences who work with Artificial Intelligence (AI) and Machine Learning (ML) are under increased pressure to develop algorithms faster than ever. The possibility of revealing innovative insights and speeding breakthroughs lies in using large datasets integrated on several levels. However, even if there is more data at our disposal than ever, only a meager portion is being filtered, interpreted, integrated, and analyzed. The subject of this technology is the study of how computers may learn from data and imitate human mental processes. Both an increase in the learning capacity and the provision of a decision support system at a size that is redefining the future of healthcare are enabled by AI and ML. This article offers a survey of the uses of AI and ML in the healthcare industry, with a particular emphasis on clinical, developmental, administrative, and global health implementations to support the healthcare infrastructure as a whole, along with the impact and expectations of each component of healthcare. Additionally, possible future trends and scopes of the utilization of this technology in medical infrastructure have also been discussed. |
---|---|
AbstractList | People in the life sciences who work with Artificial Intelligence (AI) and Machine Learning (ML) are under increased pressure to develop algorithms faster than ever. The possibility of revealing innovative insights and speeding breakthroughs lies in using large datasets integrated on several levels. However, even if there is more data at our disposal than ever, only a meager portion is being filtered, interpreted, integrated, and analyzed. The subject of this technology is the study of how computers may learn from data and imitate human mental processes. Both an increase in the learning capacity and the provision of a decision support system at a size that is redefining the future of healthcare are enabled by AI and ML. This article offers a survey of the uses of AI and ML in the healthcare industry, with a particular emphasis on clinical, developmental, administrative, and global health implementations to support the healthcare infrastructure as a whole, along with the impact and expectations of each component of healthcare. Additionally, possible future trends and scopes of the utilization of this technology in medical infrastructure have also been discussed. People in the life sciences who work with Artificial Intelligence (AI) and Machine Learning (ML) are under increased pressure to develop algorithms faster than ever. The possibility of revealing innovative insights and speeding breakthroughs lies in using large datasets integrated on several levels. However, even if there is more data at our disposal than ever, only a meager portion is being filtered, interpreted, integrated, and analyzed. The subject of this technology is the study of how computers may learn from data and imitate human mental processes. Both an increase in the learning capacity and the provision of a decision support system at a size that is redefining the future of healthcare are enabled by AI and ML. This article offers a survey of the uses of AI and ML in the healthcare industry, with a particular emphasis on clinical, developmental, administrative, and global health implementations to support the healthcare infrastructure as a whole, along with the impact and expectations of each component of healthcare. Additionally, possible future trends and scopes of the utilization of this technology in medical infrastructure have also been discussed.People in the life sciences who work with Artificial Intelligence (AI) and Machine Learning (ML) are under increased pressure to develop algorithms faster than ever. The possibility of revealing innovative insights and speeding breakthroughs lies in using large datasets integrated on several levels. However, even if there is more data at our disposal than ever, only a meager portion is being filtered, interpreted, integrated, and analyzed. The subject of this technology is the study of how computers may learn from data and imitate human mental processes. Both an increase in the learning capacity and the provision of a decision support system at a size that is redefining the future of healthcare are enabled by AI and ML. This article offers a survey of the uses of AI and ML in the healthcare industry, with a particular emphasis on clinical, developmental, administrative, and global health implementations to support the healthcare infrastructure as a whole, along with the impact and expectations of each component of healthcare. Additionally, possible future trends and scopes of the utilization of this technology in medical infrastructure have also been discussed. |
Author | Muresan, Vlad Deb, Dipankar Kumar, Kamlesh Kumar, Prince Unguresan, Mihaela-Ligia |
AuthorAffiliation | 3 Department of Automation, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania 1 Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research And Management, Ahmedabad 380026, India 2 Department of Chemistry, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania |
AuthorAffiliation_xml | – name: 1 Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research And Management, Ahmedabad 380026, India – name: 2 Department of Chemistry, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania – name: 3 Department of Automation, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania |
Author_xml | – sequence: 1 givenname: Kamlesh orcidid: 0000-0002-6869-8260 surname: Kumar fullname: Kumar, Kamlesh – sequence: 2 givenname: Prince orcidid: 0000-0002-6661-6022 surname: Kumar fullname: Kumar, Prince – sequence: 3 givenname: Dipankar orcidid: 0000-0003-4419-4516 surname: Deb fullname: Deb, Dipankar – sequence: 4 givenname: Mihaela-Ligia orcidid: 0000-0001-9193-6741 surname: Unguresan fullname: Unguresan, Mihaela-Ligia – sequence: 5 givenname: Vlad surname: Muresan fullname: Muresan, Vlad |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36673575$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV1rFDEUhoNU7If9A15IwBtvtk6-JokXwlr6BVsEqdfDmcyZ3ZTZTE0yK_77Zre11AomFzkkz_tyTt5DshfGgIS8Y9WJELb6tEIY8spBRMYqXrZ-RQ4453pmK8H3ntX75Dil26osy4QR6g3ZF3WthdLqgEzzmH3vnYeBXoWMw-CXGBxSCB29BrfyAekCIQYflvQrJOx2XNxgyH4M1Ad6jZ13O30fIeU4uTxF_Ezn9DtuPP7aeZ1P20t6EzF06S153cOQ8PjxPCI_zs9uTi9ni28XV6fzxcxJUeWZM4Ir2QKi5JZjZy1oK5zVxkqpsFLa9crUWLe8VSihV10tsau5lAYMtOKIfHnwvZvaNXau9BxhaO6iX0P83Yzgm79fgl81y3HTWKMss6YYfHw0iOPPCVNu1j658ksQcJxSw3VtuFS6FgX98AK9HacYynhbSnPGpGKFev-8o6dW_iRSAP4AuDimFLF_QljVbJNv_k2-iMwLkfMZtvmUqfzwP-k9haS3rA |
CitedBy_id | crossref_primary_10_1016_j_dajour_2023_100301 crossref_primary_10_1371_journal_pone_0302238 crossref_primary_10_17925_USOR_2023_17_2_1 crossref_primary_10_4103_jrcr_jrcr_7_24 crossref_primary_10_4103_ACCJ_ACCJ_20_23 crossref_primary_10_4108_eetpht_9_4197 crossref_primary_10_3390_healthcare11182497 crossref_primary_10_21015_vtse_v12i1_1760 crossref_primary_10_3390_app15010296 crossref_primary_10_36074_grail_of_science_06_09_2024_024 crossref_primary_10_3390_clinpract15010017 crossref_primary_10_1007_s00500_023_08622_x crossref_primary_10_1109_ACCESS_2024_3418974 crossref_primary_10_18787_jr_2024_00032 crossref_primary_10_3389_fcvm_2023_1127716 crossref_primary_10_3390_ijerph21121694 crossref_primary_10_7759_cureus_54467 crossref_primary_10_7180_kmj_24_140 crossref_primary_10_1007_s12597_024_00865_y crossref_primary_10_3390_bdcc7030147 crossref_primary_10_3390_bioengineering10030386 crossref_primary_10_34133_jbioxresearch_0016 crossref_primary_10_1080_03007995_2024_2423737 crossref_primary_10_1016_j_glmedi_2024_100137 crossref_primary_10_1177_08953996241300018 crossref_primary_10_3390_diagnostics14141472 crossref_primary_10_6087_kcse_323 crossref_primary_10_1111_inr_13084 |
Cites_doi | 10.2196/21476 10.1021/acs.chemrestox.9b00238 10.1109/CVPR.2016.90 10.1016/j.jaci.2019.12.897 10.1016/j.eururo.2011.11.042 10.1080/13645706.2019.1575882 10.1109/ACPR.2015.7486599 10.1053/j.gastro.2018.04.003 10.1002/adtp.201900114 10.3390/healthcare10040608 10.15265/IY-2015-016 10.3390/healthcare10122493 10.1109/ICOMET.2018.8346384 10.1007/s12553-017-0179-1 10.1111/bju.12404 10.1109/ICPR.2018.8545174 10.1093/biostatistics/kxx069 10.3390/healthcare10030509 10.1016/j.suronc.2009.02.007 10.1038/s41591-018-0300-7 10.1109/ACCESS.2020.3031384 10.3390/healthcare10112188 10.1109/EE-RDS53766.2021.9708588 10.1038/s41592-019-0687-1 10.1136/jamia.1994.95236146 10.1038/s41746-022-00589-7 10.1038/srep46226 10.1016/j.dsx.2020.04.012 10.3390/healthcare10112313 10.1145/2733373.2806217 10.1038/s41395-018-0268-4 10.1111/bjh.14538 10.1016/j.suronc.2019.11.002 10.1016/B978-0-12-821353-7.00014-4 10.1016/j.eswa.2015.10.015 10.1371/journal.pone.0254950 10.2196/jmir.9268 10.1038/s41467-020-19950-z 10.1016/j.eururo.2012.02.029 10.12720/joace.3.2.137-140 10.1016/j.ygyno.2010.12.342 10.1038/srep26094 10.1021/acs.jcim.0c00517 10.1016/j.urology.2007.12.023 10.4103/0972-9941.147690 10.1021/acsomega.0c00522 10.1016/j.gie.2020.03.3759 10.1016/0010-4825(78)90011-2 10.1109/TKDE.2015.2399298 10.1136/bmjresp-2017-000234 10.1016/j.eururo.2005.12.054 10.1002/ima.22255 10.1016/j.ipm.2015.04.006 10.1111/bcp.13281 10.1016/j.joim.2020.02.005 10.1016/j.artmed.2017.12.001 10.1145/3065386 10.1080/07391102.2020.1835725 10.1109/ISSPA.2012.6310676 10.3390/healthcare10122497 10.15439/2019F197 10.1162/neco.1989.1.4.541 10.1016/j.jpsychires.2022.04.009 10.1016/j.cgh.2013.11.025 10.1038/s41573-019-0050-3 10.1007/s00464-013-3306-8 10.1016/0010-4809(75)90009-9 10.1016/j.eururo.2012.07.007 10.1021/acs.jcim.0c00318 10.1007/s00401-017-1785-8 10.1109/CVPR.2015.7298594 10.3390/healthcare10101997 10.1155/2022/2399428 10.1055/s-0039-1677895 10.1038/s41551-022-00867-5 10.1038/srep24454 10.1016/j.micpro.2020.103754 10.1007/s11030-020-10161-8 10.1016/j.bioorg.2020.103576 10.1007/s00464-009-0578-0 10.1007/s11042-017-4480-9 10.1002/cpt.1795 10.1016/j.jep.2019.112413 10.1186/s13321-020-00471-2 10.1109/ICCSNT.2012.6526151 10.3390/healthcare10101940 10.1109/TMI.2005.852048 10.1007/s11517-018-1841-0 10.1016/j.lfs.2020.117912 10.1080/07391102.2020.1780946 10.1007/s11701-009-0143-9 10.1016/j.urology.2008.08.491 10.1007/s11030-021-10217-3 10.1007/s11695-011-0422-1 10.1038/s41746-017-0012-2 10.1002/rcs.1488 10.1007/978-981-10-6989-5_4 10.1111/j.1442-2042.2012.03193.x 10.1111/j.1464-410X.2012.11015.x 10.1016/j.jvs.2016.11.031 10.1186/s13321-020-00429-4 10.1212/WNL.0000000000003490 10.1038/s41401-019-0306-9 10.1038/s41598-020-69790-6 10.1097/MOU.0b013e3282f517d6 |
ContentType | Journal Article |
Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 3V. 7RV 7XB 8C1 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH GNUQQ GUQSH KB0 M2O MBDVC NAPCQ PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/healthcare11020207 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Nursing & Allied Health Database (NC LIVE) ProQuest Central (purchase pre-March 2016) ProQuest Public Health Database ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep Nursing & Allied Health Database (Alumni Edition) Research Library Research Library (Corporate) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central Health Research Premium Collection ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Public Health ProQuest Central Basic ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 2227-9032 |
ExternalDocumentID | PMC9859198 36673575 10_3390_healthcare11020207 |
Genre | Journal Article Review |
GroupedDBID | 53G 5VS 7RV 8C1 8FI 8FJ 8G5 AAFWJ AAHBH AAYXX ABUWG ADBBV AFKRA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ CCPQU CITATION DIK DWQXO EIHBH FYUFA GNUQQ GUQSH GX1 HYE IAO IHR ITC KQ8 M2O M48 MODMG M~E NAPCQ OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM UKHRP 3V. GROUPED_DOAJ NPM 7XB 8FK COVID MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c430t-c83254baee4292ed99a793c9789445e057cf586e6b2b5e4af5d64ed62448a8ab3 |
IEDL.DBID | M48 |
ISSN | 2227-9032 |
IngestDate | Thu Aug 21 18:39:07 EDT 2025 Mon Jul 21 11:01:58 EDT 2025 Fri Jul 25 07:05:43 EDT 2025 Thu Jan 02 22:52:48 EST 2025 Tue Jul 01 04:06:05 EDT 2025 Thu Apr 24 22:52:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | deep learning artificial intelligence in healthcare medical infrastructure healthcare infrastructure machine learning artificial intelligence healthcare and AI |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c430t-c83254baee4292ed99a793c9789445e057cf586e6b2b5e4af5d64ed62448a8ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9193-6741 0000-0002-6869-8260 0000-0003-4419-4516 0000-0002-6661-6022 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/healthcare11020207 |
PMID | 36673575 |
PQID | 2767211451 |
PQPubID | 2032390 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9859198 proquest_miscellaneous_2768245763 proquest_journals_2767211451 pubmed_primary_36673575 crossref_primary_10_3390_healthcare11020207 crossref_citationtrail_10_3390_healthcare11020207 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230110 |
PublicationDateYYYYMMDD | 2023-01-10 |
PublicationDate_xml | – month: 1 year: 2023 text: 20230110 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Healthcare (Basel) |
PublicationTitleAlternate | Healthcare (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Stefanidis (ref_86) 2009; 24 Ficarra (ref_90) 2015; 61 Bakkar (ref_76) 2017; 135 Rassweiler (ref_87) 2006; 49 Morelli (ref_37) 2013; 9 Domenico (ref_63) 2020; 60 ref_14 Shen (ref_49) 2019; 3 Mori (ref_106) 2020; 92 ref_12 Patel (ref_102) 2020; 18 Kim (ref_36) 2020; 33 Chen (ref_5) 2021; 22 ref_15 Juhn (ref_35) 2021; 145 Afzal (ref_22) 2017; 65 Suzuki (ref_10) 2005; 24 Ruffle (ref_68) 2019; 114 ref_120 Rahman (ref_19) 2021; 8 ref_21 ref_20 ref_121 Krizhevsky (ref_80) 2017; 60 Vaishya (ref_3) 2021; 14 Schneider (ref_57) 2020; 19 ref_29 Mintz (ref_75) 2019; 28 Sukumar (ref_91) 2017; 114 Friedman (ref_27) 1994; 1 Miller (ref_23) 2017; 177 Tewari (ref_88) 2012; 62 Kulikowski (ref_69) 2015; 24 Kruijdenberg (ref_95) 2017; 120 Ahmed (ref_103) 2012; 110 Sinha (ref_94) 2015; 11 Fogel (ref_1) 2018; 1 Hakimi (ref_92) 2019; 73 May (ref_104) 2021; 269 Uygun (ref_59) 2021; 26 ref_78 ref_73 Miotto (ref_30) 2016; 6 Gupta (ref_66) 2021; 256 Hagen (ref_100) 2011; 22 Dimmitt (ref_48) 2017; 83 Zhang (ref_42) 2020; 18 ref_83 Nie (ref_11) 2015; 27 ref_82 ref_81 Sung (ref_65) 2020; 10 Anitha (ref_18) 2017; 28 Spiegel (ref_56) 2020; 12 ref_85 Castro (ref_24) 2016; 88 Morrow (ref_25) 2022; 151 Ha (ref_55) 2021; 12 Curet (ref_99) 2021; 3 Weiss (ref_71) 1978; 8 Shoieb (ref_6) 2016; 4 Amin (ref_54) 2020; 39 Topol (ref_2) 2019; 25 Amodeo (ref_101) 2015; 61 Taha (ref_62) 2020; 249 Bennett (ref_44) 2020; 60 Cunningham (ref_52) 2020; 17 Srivastava (ref_60) 2020; 40 ref_50 Eldeib (ref_7) 2016; 46 Gazgalis (ref_53) 2021; 5 Heemskerk (ref_96) 2013; 28 Rashid (ref_58) 2020; 96 Lim (ref_98) 2012; 20 Powles (ref_43) 2017; 7 LeCun (ref_79) 1989; 1 Babenko (ref_84) 2022; 6 Misawa (ref_116) 2018; 154 Gu (ref_61) 2019; 41 Schroeck (ref_93) 2015; 71 Ye (ref_32) 2018; 20 ref_67 Zhang (ref_26) 2022; 5 Zhavoronkov (ref_46) 2020; 107 Shimabukuro (ref_107) 2017; 4 Kulikowski (ref_70) 2019; 28 Ou (ref_28) 2014; 8 Zhou (ref_13) 2021; 81 ref_114 ref_117 Silva (ref_16) 2017; 76 ref_118 Acharya (ref_115) 2022; 2022 Jensen (ref_31) 2017; 7 ref_111 ref_110 ref_113 ref_112 Shortliffe (ref_72) 1975; 8 Silva (ref_17) 2018; 56 ref_39 ref_38 Cheng (ref_9) 2016; 6 ref_105 ref_108 Imler (ref_33) 2014; 12 ref_109 ref_47 Kazemi (ref_119) 2018; 84 ref_45 Ferrucci (ref_74) 2015; 199–200 ref_40 Gupta (ref_41) 2021; 25 Box (ref_89) 2008; 18 Abacha (ref_34) 2015; 51 Xue (ref_51) 2019; 33 Porpiglia (ref_97) 2017; 63 ref_8 Wong (ref_64) 2018; 20 ref_4 Comendador (ref_77) 2015; 3 |
References_xml | – volume: 22 start-page: e21476 year: 2021 ident: ref_5 article-title: Artificial Intelligence for COVID-19: Rapid Review publication-title: J. Med. Internet Res. doi: 10.2196/21476 – volume: 33 start-page: 202 year: 2019 ident: ref_51 article-title: Prediction of Adverse Drug Reactions by Combining Biomedical Tripartite Network and Graph Representation Model publication-title: Chem. Res. Toxicol. doi: 10.1021/acs.chemrestox.9b00238 – ident: ref_83 doi: 10.1109/CVPR.2016.90 – volume: 145 start-page: 463 year: 2021 ident: ref_35 article-title: Artificial intelligence approaches using natural language processing to advance EHR-based clinical research publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2019.12.897 – volume: 61 start-page: 541 year: 2015 ident: ref_90 article-title: Systematic Review of Methods for Reporting Combined Outcomes After Radical Prostatectomy and Proposal of a Novel System: The Survival, Continence, and Potency (SCP) Classification publication-title: Eur. Urol. doi: 10.1016/j.eururo.2011.11.042 – volume: 28 start-page: 73 year: 2019 ident: ref_75 article-title: Introduction to artificial intelligence in medicine publication-title: Minim. Invasive Ther. Allied Technol. doi: 10.1080/13645706.2019.1575882 – ident: ref_39 – ident: ref_81 doi: 10.1109/ACPR.2015.7486599 – volume: 154 start-page: 2027 year: 2018 ident: ref_116 article-title: Artificial Intelligence-Assisted Polyp Detection for Colonoscopy: Initial Experience publication-title: Gastroenterology doi: 10.1053/j.gastro.2018.04.003 – volume: 3 start-page: 1900114 year: 2019 ident: ref_49 article-title: Harnessing Artificial Intelligence to Optimize Long-Term Maintenance Dosing for Antiretroviral-Naive Adults with HIV-1 Infection publication-title: Adv. Ther. doi: 10.1002/adtp.201900114 – ident: ref_108 doi: 10.3390/healthcare10040608 – volume: 24 start-page: 227 year: 2015 ident: ref_69 article-title: An Opening Chapter of the First Generation of Artificial Intelligence in Medicine: The First Rutgers AIM Workshop, June 1975 publication-title: Yearb. Med. Inform. doi: 10.15265/IY-2015-016 – ident: ref_113 doi: 10.3390/healthcare10122493 – ident: ref_8 doi: 10.1109/ICOMET.2018.8346384 – ident: ref_114 – ident: ref_4 – volume: 7 start-page: 351 year: 2017 ident: ref_43 article-title: Google DeepMind and healthcare in an age of algorithms publication-title: Health Technol. doi: 10.1007/s12553-017-0179-1 – volume: 114 start-page: 824 year: 2017 ident: ref_91 article-title: Oncological outcomes after robot-assisted radical prostatectomy: Long-term follow-up in 4803 patients publication-title: BJU Int. doi: 10.1111/bju.12404 – ident: ref_121 doi: 10.1109/ICPR.2018.8545174 – volume: 20 start-page: 273 year: 2018 ident: ref_64 article-title: Estimation of clinical trial success rates and related parameters publication-title: Biostatistics doi: 10.1093/biostatistics/kxx069 – ident: ref_111 doi: 10.3390/healthcare10030509 – volume: 18 start-page: 242 year: 2020 ident: ref_102 article-title: Robotic and laparoscopic surgery: Cost and training publication-title: Surg. Oncol. doi: 10.1016/j.suronc.2009.02.007 – volume: 25 start-page: 44 year: 2019 ident: ref_2 article-title: High-performance medicine: The convergence of human and artificial intelligence publication-title: Nat. Med. doi: 10.1038/s41591-018-0300-7 – volume: 8 start-page: 191586 year: 2021 ident: ref_19 article-title: Reliable Tuberculosis Detection Using Chest X-Ray With Deep Learning, Segmentation and Visualization publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3031384 – ident: ref_45 – volume: 269 start-page: 621 year: 2021 ident: ref_104 article-title: Robot-assisted Minimally Invasive Thoracolaparoscopic Esophagectomy Versus Open Transthoracic Esophagectomy for Resectable Esophageal Cancer publication-title: Ann. Surg. – ident: ref_118 doi: 10.3390/healthcare10112188 – volume: 199–200 start-page: 93 year: 2015 ident: ref_74 article-title: Watson: Beyond Jeopardy! publication-title: Artif. Intell. – ident: ref_20 doi: 10.1109/EE-RDS53766.2021.9708588 – volume: 17 start-page: 175 year: 2020 ident: ref_52 article-title: Biophysical prediction of protein–peptide interactions and signaling networks using machine learning publication-title: Nat. Methods doi: 10.1038/s41592-019-0687-1 – volume: 1 start-page: 161 year: 1994 ident: ref_27 article-title: A General Natural-language Text Processor for Clinical Radiology publication-title: J. Am. Med. Inform. Assoc. doi: 10.1136/jamia.1994.95236146 – volume: 5 start-page: 46 year: 2022 ident: ref_26 article-title: Natural language processing applied to mental illness detection: A narrative review publication-title: NPJ Digit. Med. doi: 10.1038/s41746-022-00589-7 – volume: 7 start-page: 46226 year: 2017 ident: ref_31 article-title: Analysis of free text in electronic health records for identification of cancer patient trajectories publication-title: Sci. Rep. doi: 10.1038/srep46226 – ident: ref_47 – volume: 14 start-page: 337 year: 2021 ident: ref_3 article-title: Artificial Intelligence (AI) applications for COVID-19 pandemic publication-title: Diabetes Metab. Syndr. Clin. Res. Rev. doi: 10.1016/j.dsx.2020.04.012 – ident: ref_117 doi: 10.3390/healthcare10112313 – ident: ref_12 doi: 10.1145/2733373.2806217 – ident: ref_67 – volume: 114 start-page: 422 year: 2019 ident: ref_68 article-title: Artificial Intelligence-Assisted Gastroenterology— Promises and Pitfalls publication-title: Am. J. Gastroenterol. doi: 10.1038/s41395-018-0268-4 – volume: 177 start-page: 283 year: 2017 ident: ref_23 article-title: Using electronic medical record data to report laboratory adverse events publication-title: Br. J. Haematol. doi: 10.1111/bjh.14538 – ident: ref_73 – volume: 33 start-page: 254 year: 2020 ident: ref_36 article-title: Robot single incision left lateral sectionectomy via da Vinci® Xi™ Single Site™ & vaginal extraction of the specimen publication-title: Surg. Oncol. doi: 10.1016/j.suronc.2019.11.002 – volume: 61 start-page: 121 year: 2015 ident: ref_101 article-title: Robotic laparoscopic surgery: Cost and training publication-title: Minerva Urol. Nefrol. Ital. J. Urol. Nephrol. – ident: ref_120 doi: 10.1016/B978-0-12-821353-7.00014-4 – volume: 46 start-page: 139 year: 2016 ident: ref_7 article-title: Breast cancer classification using deep belief networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.10.015 – ident: ref_105 doi: 10.1371/journal.pone.0254950 – volume: 20 start-page: e22 year: 2018 ident: ref_32 article-title: Prediction of Incident Hypertension Within the Next Year: Prospective Study Using Statewide Electronic Health Records and Machine Learning publication-title: J. Med. Internet Res. doi: 10.2196/jmir.9268 – ident: ref_50 doi: 10.1038/s41467-020-19950-z – volume: 62 start-page: 1 year: 2012 ident: ref_88 article-title: Positive Surgical Margin and Perioperative Complication Rates of Primary Surgical Treatments for Prostate Cancer: A Systematic Review and Meta-Analysis Comparing Retropubic, Laparoscopic, and Robotic Prostatectomy publication-title: Eur. Urol. doi: 10.1016/j.eururo.2012.02.029 – volume: 3 start-page: 137 year: 2015 ident: ref_77 article-title: Pharmabot: A Pediatric Generic Medicine Consultant Chatbot publication-title: J. Autom. Control. Eng. doi: 10.12720/joace.3.2.137-140 – volume: 120 start-page: 334 year: 2017 ident: ref_95 article-title: Robot-assisted versus total laparoscopic radical hysterectomy in early cervical cancer, a review publication-title: Gynecol. Oncol. doi: 10.1016/j.ygyno.2010.12.342 – volume: 6 start-page: 26094 year: 2016 ident: ref_30 article-title: Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records publication-title: Sci. Rep. doi: 10.1038/srep26094 – volume: 60 start-page: 4582 year: 2020 ident: ref_63 article-title: De Novo Drug Design of Targeted Chemical Libraries Based on Artificial Intelligence and Pair-Based Multiobjective Optimization publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c00517 – volume: 71 start-page: 597 year: 2015 ident: ref_93 article-title: Trainees Do Not Negatively Impact the Institutional Learning Curve for Robotic Prostatectomy as Characterized by Operative Time, Estimated Blood Loss, and Positive Surgical Margin Rate publication-title: Urology doi: 10.1016/j.urology.2007.12.023 – volume: 11 start-page: 50 year: 2015 ident: ref_94 article-title: Robotic surgery in gynecology publication-title: J. Minimal Access Surg. doi: 10.4103/0972-9941.147690 – volume: 5 start-page: 14297 year: 2021 ident: ref_53 article-title: Protein Binding Pocket Optimization for Virtual High-Throughput Screening (vHTS) Drug Discovery publication-title: ACS Omega doi: 10.1021/acsomega.0c00522 – volume: 92 start-page: 905 year: 2020 ident: ref_106 article-title: Cost savings in colonoscopy with artificial intelligence-aided polyp diagnosis: An add-on analysis of a clinical trial (with video) publication-title: Gastrointest. Endosc. doi: 10.1016/j.gie.2020.03.3759 – volume: 8 start-page: 25 year: 1978 ident: ref_71 article-title: Glaucoma consultation by computer publication-title: Comput. Biol. Med. doi: 10.1016/0010-4825(78)90011-2 – volume: 27 start-page: 2107 year: 2015 ident: ref_11 article-title: Disease Inference from Health-Related Questions via Sparse Deep Learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2015.2399298 – volume: 4 start-page: e000234 year: 2017 ident: ref_107 article-title: Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: A randomised clinical trial publication-title: BMJ Open Respir. Res. doi: 10.1136/bmjresp-2017-000234 – volume: 49 start-page: 612 year: 2006 ident: ref_87 article-title: Laparoscopic and Robotic Assisted Radical Prostatectomy—Critical Analysis of the Results publication-title: Eur. Urol. doi: 10.1016/j.eururo.2005.12.054 – volume: 28 start-page: 48 year: 2017 ident: ref_18 article-title: Development of computer-aided approach for brain tumor detection using random forest classifier publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22255 – volume: 51 start-page: 570 year: 2015 ident: ref_34 article-title: MEANS: A medical question-answering system combining NLP techniques and semantic Web technologies publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2015.04.006 – volume: 83 start-page: 1365 year: 2017 ident: ref_48 article-title: When less is more—Efficacy with less toxicity at the ED50 publication-title: Br. J. Clin. Pharmacol. doi: 10.1111/bcp.13281 – volume: 18 start-page: 152 year: 2020 ident: ref_42 article-title: In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus publication-title: J. Integr. Med. doi: 10.1016/j.joim.2020.02.005 – volume: 84 start-page: 117 year: 2018 ident: ref_119 article-title: A novel method for predicting kidney stone type using ensemble learning publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2017.12.001 – volume: 60 start-page: 84 year: 2017 ident: ref_80 article-title: ImageNet Classification with Deep Convolutional Neural Networks publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 40 start-page: 1858 year: 2020 ident: ref_60 article-title: Exploring nature’s bounty: Identification of Withania somnifera as a promising source of therapeutic agents against COVID-19 by virtual screening and in silico evaluation publication-title: J. Biomol. Struct. Dyn. doi: 10.1080/07391102.2020.1835725 – ident: ref_14 doi: 10.1109/ISSPA.2012.6310676 – ident: ref_112 doi: 10.3390/healthcare10122497 – ident: ref_29 doi: 10.15439/2019F197 – volume: 1 start-page: 541 year: 1989 ident: ref_79 article-title: Backpropagation Applied to Handwritten Zip Code Recognition publication-title: Neural Comput. doi: 10.1162/neco.1989.1.4.541 – volume: 151 start-page: 328 year: 2022 ident: ref_25 article-title: A case for developing domain-specific vocabularies for extracting suicide factors from healthcare notes publication-title: J. Psychiatr. Res. doi: 10.1016/j.jpsychires.2022.04.009 – volume: 12 start-page: 1130 year: 2014 ident: ref_33 article-title: Clinical Decision Support With Natural Language Processing Facilitates Determination of Colonoscopy Surveillance Intervals publication-title: Clin. Gastroenterol. Hepatol. doi: 10.1016/j.cgh.2013.11.025 – volume: 19 start-page: 353 year: 2020 ident: ref_57 article-title: Rethinking drug design in the artificial intelligence era publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-019-0050-3 – volume: 28 start-page: 1388 year: 2013 ident: ref_96 article-title: The end of robot-assisted laparoscopy? A critical appraisal of scientific evidence on the use of robot-assisted laparoscopic surgery publication-title: Surg. Endosc. doi: 10.1007/s00464-013-3306-8 – volume: 8 start-page: 303 year: 1975 ident: ref_72 article-title: Computer-based consultations in clinical therapeutics: Explanation and rule acquisition capabilities of the MYCIN system publication-title: Comput. Biomed. Res. doi: 10.1016/0010-4809(75)90009-9 – volume: 63 start-page: 606 year: 2017 ident: ref_97 article-title: Randomised Controlled Trial Comparing Laparoscopic and Robot-assisted Radical Prostatectomy publication-title: Eur. Urol. doi: 10.1016/j.eururo.2012.07.007 – volume: 60 start-page: 5375 year: 2020 ident: ref_44 article-title: Predicting Small Molecule Transfer Free Energies by Combining Molecular Dynamics Simulations and Deep Learning publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c00318 – volume: 135 start-page: 227 year: 2017 ident: ref_76 article-title: Artificial intelligence in neurodegenerative disease research: Use of IBM Watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis publication-title: Acta Neuropathol. doi: 10.1007/s00401-017-1785-8 – ident: ref_82 doi: 10.1109/CVPR.2015.7298594 – ident: ref_109 doi: 10.3390/healthcare10101997 – volume: 2022 start-page: 2399428 year: 2022 ident: ref_115 article-title: AI-Assisted Tuberculosis Detection and Classification from Chest X-Rays Using a Deep Learning Normalization-Free Network Model publication-title: Comput. Intell. Neurosci. doi: 10.1155/2022/2399428 – volume: 28 start-page: 249 year: 2019 ident: ref_70 article-title: Beginnings of Artificial Intelligence in Medicine (AIM): Computational Artifice Assisting Scientific Inquiry and Clinical Art – with Reflections on Present AIM Challenges publication-title: Yearb. Med. Inform. doi: 10.1055/s-0039-1677895 – volume: 6 start-page: 1370 year: 2022 ident: ref_84 article-title: Detection of signs of disease in external photographs of the eyes via deep learning publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-022-00867-5 – volume: 6 start-page: 24454 year: 2016 ident: ref_9 article-title: Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans publication-title: Sci. Rep. doi: 10.1038/srep24454 – volume: 81 start-page: 103754 year: 2021 ident: ref_13 article-title: Accurate diagnosis of early lung cancer based on the convolutional neural network model of the embedded medical system publication-title: Microprocess. Microsyst. doi: 10.1016/j.micpro.2020.103754 – volume: 26 start-page: 113 year: 2021 ident: ref_59 article-title: A new synthetic approach for pyrazolo[1, 5-a]pyrazine-4(5H)-one derivatives and their antiproliferative effects on lung adenocarcinoma cell line publication-title: Mol. Divers. doi: 10.1007/s11030-020-10161-8 – volume: 8 start-page: 20 year: 2014 ident: ref_28 article-title: Automatic Structured Reporting from Narrative Cancer Pathology Reports publication-title: Electron. J. Health Inform. – volume: 96 start-page: 103576 year: 2020 ident: ref_58 article-title: Design, synthesis and ADMET prediction of bis-benzimidazole as anticancer agent publication-title: Bioorganic Chem. doi: 10.1016/j.bioorg.2020.103576 – volume: 24 start-page: 377 year: 2009 ident: ref_86 article-title: Robotic assistance improves intracorporeal suturing performance and safety in the operating room while decreasing operator workload publication-title: Surg. Endosc. doi: 10.1007/s00464-009-0578-0 – ident: ref_38 – volume: 76 start-page: 19039 year: 2017 ident: ref_16 article-title: Lung nodules diagnosis based on evolutionary convolutional neural network publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-017-4480-9 – volume: 107 start-page: 780 year: 2020 ident: ref_46 article-title: Will Artificial Intelligence for Drug Discovery Impact Clinical Pharmacology? publication-title: Clin. Pharmacol. Ther. doi: 10.1002/cpt.1795 – volume: 249 start-page: 112413 year: 2020 ident: ref_62 article-title: Identifying cancer-related molecular targets of Nandina domestica Thunb. by network pharmacology-based analysis in combination with chemical profiling and molecular docking studies publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2019.112413 – volume: 4 start-page: 116 year: 2016 ident: ref_6 article-title: Computer-Aided Model for Skin Diagnosis Using Deep Learning publication-title: J. Image Graph. – volume: 12 start-page: 69 year: 2021 ident: ref_55 article-title: LigGrep: A tool for filtering docked poses to improve virtual-screening hit rates publication-title: J. Cheminformatics doi: 10.1186/s13321-020-00471-2 – ident: ref_15 doi: 10.1109/ICCSNT.2012.6526151 – ident: ref_110 doi: 10.3390/healthcare10101940 – volume: 24 start-page: 1138 year: 2005 ident: ref_10 article-title: Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2005.852048 – volume: 56 start-page: 2125 year: 2018 ident: ref_17 article-title: Classification of malignant and benign lung nodules using taxonomic diversity index and phylogenetic distance publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-018-1841-0 – volume: 256 start-page: 117912 year: 2021 ident: ref_66 article-title: Identification of novel class I and class IIb histone deacetylase inhibitor for Alzheimer’s disease therapeutics publication-title: Life Sci. doi: 10.1016/j.lfs.2020.117912 – volume: 39 start-page: 4764 year: 2020 ident: ref_54 article-title: Chemical-informatics approach to COVID-19 drug discovery: Monte Carlo based QSAR, virtual screening and molecular docking study of some in-house molecules as papain-like protease (PLpro) inhibitors publication-title: J. Biomol. Struct. Dyn. doi: 10.1080/07391102.2020.1780946 – volume: 3 start-page: 75 year: 2021 ident: ref_99 article-title: Comparison of hospital charges between robotic, laparoscopic stapled, and laparoscopic handsewn Roux-en-Y gastric bypass publication-title: J. Robot. Surg. doi: 10.1007/s11701-009-0143-9 – ident: ref_40 – volume: 73 start-page: 119 year: 2019 ident: ref_92 article-title: Direct Comparison of Surgical and Functional Outcomes of Robotic-Assisted Versus Pure Laparoscopic Radical Prostatectomy: Single-Surgeon Experience publication-title: Urology doi: 10.1016/j.urology.2008.08.491 – volume: 25 start-page: 1315 year: 2021 ident: ref_41 article-title: Artificial intelligence to deep learning: Machine intelligence approach for drug discovery publication-title: Mol. Divers. doi: 10.1007/s11030-021-10217-3 – volume: 22 start-page: 52 year: 2011 ident: ref_100 article-title: Reducing Cost of Surgery by Avoiding Complications: The Model of Robotic Roux-en-Y Gastric Bypass publication-title: Obes. Surg. doi: 10.1007/s11695-011-0422-1 – volume: 1 start-page: 5 year: 2018 ident: ref_1 article-title: Artificial intelligence powers digital medicine publication-title: NPJ Digit. Med. doi: 10.1038/s41746-017-0012-2 – ident: ref_21 – volume: 9 start-page: 258 year: 2013 ident: ref_37 article-title: Robotic right colectomy using the Da Vinci Single-Site® platform: Case report publication-title: Int. J. Med. Robot. Comput. Assist. Surg. doi: 10.1002/rcs.1488 – ident: ref_78 doi: 10.1007/978-981-10-6989-5_4 – volume: 20 start-page: 271 year: 2012 ident: ref_98 article-title: Current status of robot-assisted laparoscopic radical prostatectomy: How does it compare with other surgical approaches? publication-title: Int. J. Urol. doi: 10.1111/j.1442-2042.2012.03193.x – volume: 110 start-page: 1544 year: 2012 ident: ref_103 article-title: Assessing the cost effectiveness of robotics in urological surgery—A systematic review publication-title: BJU Int. doi: 10.1111/j.1464-410X.2012.11015.x – ident: ref_85 – volume: 65 start-page: 1753 year: 2017 ident: ref_22 article-title: Mining peripheral arterial disease cases from narrative clinical notes using natural language processing publication-title: J. Vasc. Surg. doi: 10.1016/j.jvs.2016.11.031 – volume: 12 start-page: 1 year: 2020 ident: ref_56 article-title: AutoGrow4: An open-source genetic algorithm for de novo drug design and lead optimization publication-title: J. Cheminform. doi: 10.1186/s13321-020-00429-4 – volume: 88 start-page: 164 year: 2016 ident: ref_24 article-title: Large-scale identification of patients with cerebral aneurysms using natural language processing publication-title: Neurology doi: 10.1212/WNL.0000000000003490 – volume: 41 start-page: 432 year: 2019 ident: ref_61 article-title: Associating 197 Chinese herbal medicine with drug targets and diseases using the similarity ensemble approach publication-title: Acta Pharmacol. Sin. doi: 10.1038/s41401-019-0306-9 – volume: 10 start-page: 12872 year: 2020 ident: ref_65 article-title: Functional fine-mapping of noncoding risk variants in amyotrophic lateral sclerosis utilizing convolutional neural network publication-title: Sci. Rep. doi: 10.1038/s41598-020-69790-6 – volume: 18 start-page: 173 year: 2008 ident: ref_89 article-title: Robotic radical prostatectomy: Long-term outcomes publication-title: Curr. Opin. Urol. doi: 10.1097/MOU.0b013e3282f517d6 |
SSID | ssj0000913835 |
Score | 2.4593835 |
SecondaryResourceType | review_article |
Snippet | People in the life sciences who work with Artificial Intelligence (AI) and Machine Learning (ML) are under increased pressure to develop algorithms faster than... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 207 |
SubjectTerms | Algorithms Artificial intelligence Breast cancer Cancer therapies Coronaviruses COVID-19 Deep learning Disease Documentation Drug dosages Illnesses Infrastructure Laboratories Ligands Lung cancer Machine learning Medical imaging Medical research Pandemics R&D Research & development Review Robots Skin cancer X-rays |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxtBEB80eSmItNrWs1a20Dc5vOR276MvJUpCLChFFHw79mOuCnJRk_z_ztxuzljB19u5D252dn_zsb8B-MmEJCq1SWxUXseEwF1c6ELGSWnK3DHBWhvvOL_Iptfyz426CQG3eSirXK2J7ULtZpZj5MfDPGNnRarB74fHmLtGcXY1tNDYhD4twUXRg_7J-OLvZRdlYdZLwhj-tExK_v3xbVdWRRsfef7cR3Z9R3oDM_-vllzbfiYfYTvgRjHyiv4EG9jswJYPugl_lmgXljzsKSHE2RrXptCNE-dt2SSKwKj6T5zQBuZauVXRo7hrRMjc0PX6SXt22eUT_hIj4dMI7bMmLROJ8AW1n-F6Mr46ncahr0JsZZosYktWrKTRiNyrCl1ZarJSS_5kKaVCQnC2VkWGmRkahVLXymUSXUZIgPSoTfoFes2swT0QCo3NscTaDBMSJLSpM5dhbVM-YpvYCAarf1vZQDrOvS_uK3I-WB_VW31EcNTd8-ApN96VPliprArmN69eJksEP7phMhzOhugGZ8tWphhKcrfSCL56DXevS7kZKgHZCPJXuu8EmJT79Uhzd9uSc5dMCFgW--9_1jf4wH3rOZYzSA6gR9rE74RuFuYwTOFnrmn-Vg priority: 102 providerName: ProQuest |
Title | Artificial Intelligence and Machine Learning Based Intervention in Medical Infrastructure: A Review and Future Trends |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36673575 https://www.proquest.com/docview/2767211451 https://www.proquest.com/docview/2768245763 https://pubmed.ncbi.nlm.nih.gov/PMC9859198 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS9xAEB6svhRKqdofafXYgm-SNrnsJllBRMVDCydSeuBb2N1MqiCxvXrQ_ved2U2Cp62v2dkk7GQz37c7-w3ADguSqMwlsVVFExMCr-PSlDJOtNVFzQJrfr1jep6fzuSXS3W5An25o24Af_2T2nE9qdn85tPvn38OaMLvM-Mkyv75asiUolhGZJ4Pl69RZCq4osG0g_v-z6xTImQqnJ35T9fl-PQIdD7MnbwXjCav4GWHIsVhcPs6rGC7AS_CEpwIJ4s2YcHNQSBCnN1T3hSmrcXUJ1Gi6PRVv4sjCme1t-tTIMV1K7p9HLrezE3Qml3McU8cirCp4O818bokIqTXvobZ5OTb8WncVVmIncySu9jRnFbSGkSuXIW11obmrCN2qaVUSHjONarMMbdjq1CaRtW5xDonXEBeNTZ7A6vtbYvvQCi0rkCNjR0nZEjY0-R1jo3L-MBt4iJI-7GtXCdBzpUwbiqiIuyP6rE_Itgd-vwIAhxPWm_1Lqv6b6kaFznzXKnSCD4OzTSNeG_EtHi78DblWBL5yiJ4Gzw8PC7j0qgEayMolnw_GLBE93JLe33lpbo1ywPq8v3Tr_UBnnMVe17ZSZMtWCVv4jZhnTs7gmflcTqCtaOT84uvI_85_wVx9wRt |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGeAAJIb4pDAgSPKFqvSZpm0kIbYPTHdvtaZP2VvJVNgn1xrYT4p_ib5ydtGW3SXub-ta4aRM7tZ3YPwN8IEASyW2WGlk2KVrgLq10JdJMGVU6AlgL-x2zvWJyIL4fysMV-NfnwlBYZf9PDD9qN7e0R76elwU5K0KOvpz8TqlqFJ2u9iU0oljs-L9_0GU7-zz9ivz9mOfjb_vbk7SrKpBawbPz1KIMS2G091SpyTulNMqoRW9KCSE92i-2kVXhC5Mb6YVupCuEdwXqQRyFNhz7vQN3BcelSZnp26NhT4cwNtGiibk5nKts_WgI4kI1m-NVLuu_a0bt1djMS8pu_AgedlYq24xi9RhWfPsEHsQtPhYzl57CgpojAAWbXkL2ZLp1bBaCND3r8Ft_si1Uly7Q9SGW7Lhl3TkR3m9OdcSyXZz6DbbJ4qFF6GsccE9YDN99Bge3Mt_PYbWdt_4lMOmNLb3yjckzJETbVheu8I3llNCb2QRG_dzWtoM4p0obv2p0dYgf9XV-JPBpeOYkAnzcSL3Ws6zuFvtZ_V80E3g_NOMypbMX3fr5ItBUuUDnjifwInJ4eB2n0qtoNidQLvF-ICAI8OWW9vgoQIErgh9U1aubP-sd3Jvsz3br3enezmu4jyOhGDrUwGuwipz1b9CuOjdvgzAz-HHbq-cCfPw5tg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qBRGk-G1q1RX0ScLlsrtJVhCprUfP2uKDhb7F_YotlFy_jtJ_zb_Omd0k9iz0reQtO9lkd2YyM7uzvwF4R4AkktssNbJsUvTAXVrpSqSZMqp0BLAW1jt2doutPfFtX-4vwZ_-LAylVfb_xPCjdjNLa-SjvCwoWBFyPGq6tIgfm5PPxycpVZCinda-nEYUkW1_eYHh29mn6Sby-n2eT77-3NhKuwoDqRU8O08tyrMURntPVZu8U0qjvFqMrJQQ0qMvYxtZFb4wuZFe6Ea6QnhXoE3EEWnDsd87cLfkZUU6Vm2Mh_UdwttE7yae0-FcZaODIaELTW6OV7loC685uP_naV4xfJOHsNJ5rGw9itgjWPLtY3gQl_tYPMX0BObUHMEo2PQKyifTrWM7IWHTsw7L9Tf7gqbTBbo-3ZIdtqzbM8L7zamOuLbzU_-RrbO4gRH6mgQMFBZTeZ_C3q3M9zNYbmetfwFMemNLr3xj8gwJ0c_VhSt8Yzkd7s1sAuN-bmvbwZ1T1Y2jGsMe4kd9nR8JfBieOY5gHzdSr_UsqzvFP6v_iWkCb4dmVFnah9Gtn80DTZULDPR4As8jh4fXcSrDii50AuUC7wcCggNfbGkPDwIsuCIoQlWt3vxZb-Ae6k39fbq7_RLu40AonQ6N8RosI2P9K3Sxzs3rIMsMft228vwFuVQ97A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+and+Machine+Learning+Based+Intervention+in+Medical+Infrastructure%3A+A+Review+and+Future+Trends&rft.jtitle=Healthcare+%28Basel%29&rft.au=Kumar%2C+Kamlesh&rft.au=Kumar%2C+Prince&rft.au=Deb%2C+Dipankar&rft.au=Mihaela-Ligia+Unguresan&rft.date=2023-01-10&rft.pub=MDPI+AG&rft.eissn=2227-9032&rft.volume=11&rft.issue=2&rft.spage=207&rft_id=info:doi/10.3390%2Fhealthcare11020207&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9032&client=summon |