Artificial Intelligence and Machine Learning Based Intervention in Medical Infrastructure: A Review and Future Trends

People in the life sciences who work with Artificial Intelligence (AI) and Machine Learning (ML) are under increased pressure to develop algorithms faster than ever. The possibility of revealing innovative insights and speeding breakthroughs lies in using large datasets integrated on several levels....

Full description

Saved in:
Bibliographic Details
Published inHealthcare (Basel) Vol. 11; no. 2; p. 207
Main Authors Kumar, Kamlesh, Kumar, Prince, Deb, Dipankar, Unguresan, Mihaela-Ligia, Muresan, Vlad
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 10.01.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract People in the life sciences who work with Artificial Intelligence (AI) and Machine Learning (ML) are under increased pressure to develop algorithms faster than ever. The possibility of revealing innovative insights and speeding breakthroughs lies in using large datasets integrated on several levels. However, even if there is more data at our disposal than ever, only a meager portion is being filtered, interpreted, integrated, and analyzed. The subject of this technology is the study of how computers may learn from data and imitate human mental processes. Both an increase in the learning capacity and the provision of a decision support system at a size that is redefining the future of healthcare are enabled by AI and ML. This article offers a survey of the uses of AI and ML in the healthcare industry, with a particular emphasis on clinical, developmental, administrative, and global health implementations to support the healthcare infrastructure as a whole, along with the impact and expectations of each component of healthcare. Additionally, possible future trends and scopes of the utilization of this technology in medical infrastructure have also been discussed.
AbstractList People in the life sciences who work with Artificial Intelligence (AI) and Machine Learning (ML) are under increased pressure to develop algorithms faster than ever. The possibility of revealing innovative insights and speeding breakthroughs lies in using large datasets integrated on several levels. However, even if there is more data at our disposal than ever, only a meager portion is being filtered, interpreted, integrated, and analyzed. The subject of this technology is the study of how computers may learn from data and imitate human mental processes. Both an increase in the learning capacity and the provision of a decision support system at a size that is redefining the future of healthcare are enabled by AI and ML. This article offers a survey of the uses of AI and ML in the healthcare industry, with a particular emphasis on clinical, developmental, administrative, and global health implementations to support the healthcare infrastructure as a whole, along with the impact and expectations of each component of healthcare. Additionally, possible future trends and scopes of the utilization of this technology in medical infrastructure have also been discussed.
People in the life sciences who work with Artificial Intelligence (AI) and Machine Learning (ML) are under increased pressure to develop algorithms faster than ever. The possibility of revealing innovative insights and speeding breakthroughs lies in using large datasets integrated on several levels. However, even if there is more data at our disposal than ever, only a meager portion is being filtered, interpreted, integrated, and analyzed. The subject of this technology is the study of how computers may learn from data and imitate human mental processes. Both an increase in the learning capacity and the provision of a decision support system at a size that is redefining the future of healthcare are enabled by AI and ML. This article offers a survey of the uses of AI and ML in the healthcare industry, with a particular emphasis on clinical, developmental, administrative, and global health implementations to support the healthcare infrastructure as a whole, along with the impact and expectations of each component of healthcare. Additionally, possible future trends and scopes of the utilization of this technology in medical infrastructure have also been discussed.People in the life sciences who work with Artificial Intelligence (AI) and Machine Learning (ML) are under increased pressure to develop algorithms faster than ever. The possibility of revealing innovative insights and speeding breakthroughs lies in using large datasets integrated on several levels. However, even if there is more data at our disposal than ever, only a meager portion is being filtered, interpreted, integrated, and analyzed. The subject of this technology is the study of how computers may learn from data and imitate human mental processes. Both an increase in the learning capacity and the provision of a decision support system at a size that is redefining the future of healthcare are enabled by AI and ML. This article offers a survey of the uses of AI and ML in the healthcare industry, with a particular emphasis on clinical, developmental, administrative, and global health implementations to support the healthcare infrastructure as a whole, along with the impact and expectations of each component of healthcare. Additionally, possible future trends and scopes of the utilization of this technology in medical infrastructure have also been discussed.
Author Muresan, Vlad
Deb, Dipankar
Kumar, Kamlesh
Kumar, Prince
Unguresan, Mihaela-Ligia
AuthorAffiliation 3 Department of Automation, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
1 Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research And Management, Ahmedabad 380026, India
2 Department of Chemistry, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
AuthorAffiliation_xml – name: 1 Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research And Management, Ahmedabad 380026, India
– name: 2 Department of Chemistry, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
– name: 3 Department of Automation, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
Author_xml – sequence: 1
  givenname: Kamlesh
  orcidid: 0000-0002-6869-8260
  surname: Kumar
  fullname: Kumar, Kamlesh
– sequence: 2
  givenname: Prince
  orcidid: 0000-0002-6661-6022
  surname: Kumar
  fullname: Kumar, Prince
– sequence: 3
  givenname: Dipankar
  orcidid: 0000-0003-4419-4516
  surname: Deb
  fullname: Deb, Dipankar
– sequence: 4
  givenname: Mihaela-Ligia
  orcidid: 0000-0001-9193-6741
  surname: Unguresan
  fullname: Unguresan, Mihaela-Ligia
– sequence: 5
  givenname: Vlad
  surname: Muresan
  fullname: Muresan, Vlad
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36673575$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1rFDEUhoNU7If9A15IwBtvtk6-JokXwlr6BVsEqdfDmcyZ3ZTZTE0yK_77Zre11AomFzkkz_tyTt5DshfGgIS8Y9WJELb6tEIY8spBRMYqXrZ-RQ4453pmK8H3ntX75Dil26osy4QR6g3ZF3WthdLqgEzzmH3vnYeBXoWMw-CXGBxSCB29BrfyAekCIQYflvQrJOx2XNxgyH4M1Ad6jZ13O30fIeU4uTxF_Ezn9DtuPP7aeZ1P20t6EzF06S153cOQ8PjxPCI_zs9uTi9ni28XV6fzxcxJUeWZM4Ir2QKi5JZjZy1oK5zVxkqpsFLa9crUWLe8VSihV10tsau5lAYMtOKIfHnwvZvaNXau9BxhaO6iX0P83Yzgm79fgl81y3HTWKMss6YYfHw0iOPPCVNu1j658ksQcJxSw3VtuFS6FgX98AK9HacYynhbSnPGpGKFev-8o6dW_iRSAP4AuDimFLF_QljVbJNv_k2-iMwLkfMZtvmUqfzwP-k9haS3rA
CitedBy_id crossref_primary_10_1016_j_dajour_2023_100301
crossref_primary_10_1371_journal_pone_0302238
crossref_primary_10_17925_USOR_2023_17_2_1
crossref_primary_10_4103_jrcr_jrcr_7_24
crossref_primary_10_4103_ACCJ_ACCJ_20_23
crossref_primary_10_4108_eetpht_9_4197
crossref_primary_10_3390_healthcare11182497
crossref_primary_10_21015_vtse_v12i1_1760
crossref_primary_10_3390_app15010296
crossref_primary_10_36074_grail_of_science_06_09_2024_024
crossref_primary_10_3390_clinpract15010017
crossref_primary_10_1007_s00500_023_08622_x
crossref_primary_10_1109_ACCESS_2024_3418974
crossref_primary_10_18787_jr_2024_00032
crossref_primary_10_3389_fcvm_2023_1127716
crossref_primary_10_3390_ijerph21121694
crossref_primary_10_7759_cureus_54467
crossref_primary_10_7180_kmj_24_140
crossref_primary_10_1007_s12597_024_00865_y
crossref_primary_10_3390_bdcc7030147
crossref_primary_10_3390_bioengineering10030386
crossref_primary_10_34133_jbioxresearch_0016
crossref_primary_10_1080_03007995_2024_2423737
crossref_primary_10_1016_j_glmedi_2024_100137
crossref_primary_10_1177_08953996241300018
crossref_primary_10_3390_diagnostics14141472
crossref_primary_10_6087_kcse_323
crossref_primary_10_1111_inr_13084
Cites_doi 10.2196/21476
10.1021/acs.chemrestox.9b00238
10.1109/CVPR.2016.90
10.1016/j.jaci.2019.12.897
10.1016/j.eururo.2011.11.042
10.1080/13645706.2019.1575882
10.1109/ACPR.2015.7486599
10.1053/j.gastro.2018.04.003
10.1002/adtp.201900114
10.3390/healthcare10040608
10.15265/IY-2015-016
10.3390/healthcare10122493
10.1109/ICOMET.2018.8346384
10.1007/s12553-017-0179-1
10.1111/bju.12404
10.1109/ICPR.2018.8545174
10.1093/biostatistics/kxx069
10.3390/healthcare10030509
10.1016/j.suronc.2009.02.007
10.1038/s41591-018-0300-7
10.1109/ACCESS.2020.3031384
10.3390/healthcare10112188
10.1109/EE-RDS53766.2021.9708588
10.1038/s41592-019-0687-1
10.1136/jamia.1994.95236146
10.1038/s41746-022-00589-7
10.1038/srep46226
10.1016/j.dsx.2020.04.012
10.3390/healthcare10112313
10.1145/2733373.2806217
10.1038/s41395-018-0268-4
10.1111/bjh.14538
10.1016/j.suronc.2019.11.002
10.1016/B978-0-12-821353-7.00014-4
10.1016/j.eswa.2015.10.015
10.1371/journal.pone.0254950
10.2196/jmir.9268
10.1038/s41467-020-19950-z
10.1016/j.eururo.2012.02.029
10.12720/joace.3.2.137-140
10.1016/j.ygyno.2010.12.342
10.1038/srep26094
10.1021/acs.jcim.0c00517
10.1016/j.urology.2007.12.023
10.4103/0972-9941.147690
10.1021/acsomega.0c00522
10.1016/j.gie.2020.03.3759
10.1016/0010-4825(78)90011-2
10.1109/TKDE.2015.2399298
10.1136/bmjresp-2017-000234
10.1016/j.eururo.2005.12.054
10.1002/ima.22255
10.1016/j.ipm.2015.04.006
10.1111/bcp.13281
10.1016/j.joim.2020.02.005
10.1016/j.artmed.2017.12.001
10.1145/3065386
10.1080/07391102.2020.1835725
10.1109/ISSPA.2012.6310676
10.3390/healthcare10122497
10.15439/2019F197
10.1162/neco.1989.1.4.541
10.1016/j.jpsychires.2022.04.009
10.1016/j.cgh.2013.11.025
10.1038/s41573-019-0050-3
10.1007/s00464-013-3306-8
10.1016/0010-4809(75)90009-9
10.1016/j.eururo.2012.07.007
10.1021/acs.jcim.0c00318
10.1007/s00401-017-1785-8
10.1109/CVPR.2015.7298594
10.3390/healthcare10101997
10.1155/2022/2399428
10.1055/s-0039-1677895
10.1038/s41551-022-00867-5
10.1038/srep24454
10.1016/j.micpro.2020.103754
10.1007/s11030-020-10161-8
10.1016/j.bioorg.2020.103576
10.1007/s00464-009-0578-0
10.1007/s11042-017-4480-9
10.1002/cpt.1795
10.1016/j.jep.2019.112413
10.1186/s13321-020-00471-2
10.1109/ICCSNT.2012.6526151
10.3390/healthcare10101940
10.1109/TMI.2005.852048
10.1007/s11517-018-1841-0
10.1016/j.lfs.2020.117912
10.1080/07391102.2020.1780946
10.1007/s11701-009-0143-9
10.1016/j.urology.2008.08.491
10.1007/s11030-021-10217-3
10.1007/s11695-011-0422-1
10.1038/s41746-017-0012-2
10.1002/rcs.1488
10.1007/978-981-10-6989-5_4
10.1111/j.1442-2042.2012.03193.x
10.1111/j.1464-410X.2012.11015.x
10.1016/j.jvs.2016.11.031
10.1186/s13321-020-00429-4
10.1212/WNL.0000000000003490
10.1038/s41401-019-0306-9
10.1038/s41598-020-69790-6
10.1097/MOU.0b013e3282f517d6
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7RV
7XB
8C1
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
KB0
M2O
MBDVC
NAPCQ
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/healthcare11020207
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Nursing & Allied Health Database (NC LIVE)
ProQuest Central (purchase pre-March 2016)
ProQuest Public Health Database
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
Nursing & Allied Health Database (Alumni Edition)
Research Library
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
Health Research Premium Collection
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Public Health
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 2227-9032
ExternalDocumentID PMC9859198
36673575
10_3390_healthcare11020207
Genre Journal Article
Review
GroupedDBID 53G
5VS
7RV
8C1
8FI
8FJ
8G5
AAFWJ
AAHBH
AAYXX
ABUWG
ADBBV
AFKRA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DIK
DWQXO
EIHBH
FYUFA
GNUQQ
GUQSH
GX1
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
NAPCQ
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
UKHRP
3V.
GROUPED_DOAJ
NPM
7XB
8FK
COVID
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c430t-c83254baee4292ed99a793c9789445e057cf586e6b2b5e4af5d64ed62448a8ab3
IEDL.DBID M48
ISSN 2227-9032
IngestDate Thu Aug 21 18:39:07 EDT 2025
Mon Jul 21 11:01:58 EDT 2025
Fri Jul 25 07:05:43 EDT 2025
Thu Jan 02 22:52:48 EST 2025
Tue Jul 01 04:06:05 EDT 2025
Thu Apr 24 22:52:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords deep learning
artificial intelligence in healthcare
medical infrastructure
healthcare infrastructure
machine learning
artificial intelligence
healthcare and AI
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-c83254baee4292ed99a793c9789445e057cf586e6b2b5e4af5d64ed62448a8ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9193-6741
0000-0002-6869-8260
0000-0003-4419-4516
0000-0002-6661-6022
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/healthcare11020207
PMID 36673575
PQID 2767211451
PQPubID 2032390
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9859198
proquest_miscellaneous_2768245763
proquest_journals_2767211451
pubmed_primary_36673575
crossref_primary_10_3390_healthcare11020207
crossref_citationtrail_10_3390_healthcare11020207
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230110
PublicationDateYYYYMMDD 2023-01-10
PublicationDate_xml – month: 1
  year: 2023
  text: 20230110
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Healthcare (Basel)
PublicationTitleAlternate Healthcare (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Stefanidis (ref_86) 2009; 24
Ficarra (ref_90) 2015; 61
Bakkar (ref_76) 2017; 135
Rassweiler (ref_87) 2006; 49
Morelli (ref_37) 2013; 9
Domenico (ref_63) 2020; 60
ref_14
Shen (ref_49) 2019; 3
Mori (ref_106) 2020; 92
ref_12
Patel (ref_102) 2020; 18
Kim (ref_36) 2020; 33
Chen (ref_5) 2021; 22
ref_15
Juhn (ref_35) 2021; 145
Afzal (ref_22) 2017; 65
Suzuki (ref_10) 2005; 24
Ruffle (ref_68) 2019; 114
ref_120
Rahman (ref_19) 2021; 8
ref_21
ref_20
ref_121
Krizhevsky (ref_80) 2017; 60
Vaishya (ref_3) 2021; 14
Schneider (ref_57) 2020; 19
ref_29
Mintz (ref_75) 2019; 28
Sukumar (ref_91) 2017; 114
Friedman (ref_27) 1994; 1
Miller (ref_23) 2017; 177
Tewari (ref_88) 2012; 62
Kulikowski (ref_69) 2015; 24
Kruijdenberg (ref_95) 2017; 120
Ahmed (ref_103) 2012; 110
Sinha (ref_94) 2015; 11
Fogel (ref_1) 2018; 1
Hakimi (ref_92) 2019; 73
May (ref_104) 2021; 269
Uygun (ref_59) 2021; 26
ref_78
ref_73
Miotto (ref_30) 2016; 6
Gupta (ref_66) 2021; 256
Hagen (ref_100) 2011; 22
Dimmitt (ref_48) 2017; 83
Zhang (ref_42) 2020; 18
ref_83
Nie (ref_11) 2015; 27
ref_82
ref_81
Sung (ref_65) 2020; 10
Anitha (ref_18) 2017; 28
Spiegel (ref_56) 2020; 12
ref_85
Castro (ref_24) 2016; 88
Morrow (ref_25) 2022; 151
Ha (ref_55) 2021; 12
Curet (ref_99) 2021; 3
Weiss (ref_71) 1978; 8
Shoieb (ref_6) 2016; 4
Amin (ref_54) 2020; 39
Topol (ref_2) 2019; 25
Amodeo (ref_101) 2015; 61
Taha (ref_62) 2020; 249
Bennett (ref_44) 2020; 60
Cunningham (ref_52) 2020; 17
Srivastava (ref_60) 2020; 40
ref_50
Eldeib (ref_7) 2016; 46
Gazgalis (ref_53) 2021; 5
Heemskerk (ref_96) 2013; 28
Rashid (ref_58) 2020; 96
Lim (ref_98) 2012; 20
Powles (ref_43) 2017; 7
LeCun (ref_79) 1989; 1
Babenko (ref_84) 2022; 6
Misawa (ref_116) 2018; 154
Gu (ref_61) 2019; 41
Schroeck (ref_93) 2015; 71
Ye (ref_32) 2018; 20
ref_67
Zhang (ref_26) 2022; 5
Zhavoronkov (ref_46) 2020; 107
Shimabukuro (ref_107) 2017; 4
Kulikowski (ref_70) 2019; 28
Ou (ref_28) 2014; 8
Zhou (ref_13) 2021; 81
ref_114
ref_117
Silva (ref_16) 2017; 76
ref_118
Acharya (ref_115) 2022; 2022
Jensen (ref_31) 2017; 7
ref_111
ref_110
ref_113
ref_112
Shortliffe (ref_72) 1975; 8
Silva (ref_17) 2018; 56
ref_39
ref_38
Cheng (ref_9) 2016; 6
ref_105
ref_108
Imler (ref_33) 2014; 12
ref_109
ref_47
Kazemi (ref_119) 2018; 84
ref_45
Ferrucci (ref_74) 2015; 199–200
ref_40
Gupta (ref_41) 2021; 25
Box (ref_89) 2008; 18
Abacha (ref_34) 2015; 51
Xue (ref_51) 2019; 33
Porpiglia (ref_97) 2017; 63
ref_8
Wong (ref_64) 2018; 20
ref_4
Comendador (ref_77) 2015; 3
References_xml – volume: 22
  start-page: e21476
  year: 2021
  ident: ref_5
  article-title: Artificial Intelligence for COVID-19: Rapid Review
  publication-title: J. Med. Internet Res.
  doi: 10.2196/21476
– volume: 33
  start-page: 202
  year: 2019
  ident: ref_51
  article-title: Prediction of Adverse Drug Reactions by Combining Biomedical Tripartite Network and Graph Representation Model
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/acs.chemrestox.9b00238
– ident: ref_83
  doi: 10.1109/CVPR.2016.90
– volume: 145
  start-page: 463
  year: 2021
  ident: ref_35
  article-title: Artificial intelligence approaches using natural language processing to advance EHR-based clinical research
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2019.12.897
– volume: 61
  start-page: 541
  year: 2015
  ident: ref_90
  article-title: Systematic Review of Methods for Reporting Combined Outcomes After Radical Prostatectomy and Proposal of a Novel System: The Survival, Continence, and Potency (SCP) Classification
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2011.11.042
– volume: 28
  start-page: 73
  year: 2019
  ident: ref_75
  article-title: Introduction to artificial intelligence in medicine
  publication-title: Minim. Invasive Ther. Allied Technol.
  doi: 10.1080/13645706.2019.1575882
– ident: ref_39
– ident: ref_81
  doi: 10.1109/ACPR.2015.7486599
– volume: 154
  start-page: 2027
  year: 2018
  ident: ref_116
  article-title: Artificial Intelligence-Assisted Polyp Detection for Colonoscopy: Initial Experience
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2018.04.003
– volume: 3
  start-page: 1900114
  year: 2019
  ident: ref_49
  article-title: Harnessing Artificial Intelligence to Optimize Long-Term Maintenance Dosing for Antiretroviral-Naive Adults with HIV-1 Infection
  publication-title: Adv. Ther.
  doi: 10.1002/adtp.201900114
– ident: ref_108
  doi: 10.3390/healthcare10040608
– volume: 24
  start-page: 227
  year: 2015
  ident: ref_69
  article-title: An Opening Chapter of the First Generation of Artificial Intelligence in Medicine: The First Rutgers AIM Workshop, June 1975
  publication-title: Yearb. Med. Inform.
  doi: 10.15265/IY-2015-016
– ident: ref_113
  doi: 10.3390/healthcare10122493
– ident: ref_8
  doi: 10.1109/ICOMET.2018.8346384
– ident: ref_114
– ident: ref_4
– volume: 7
  start-page: 351
  year: 2017
  ident: ref_43
  article-title: Google DeepMind and healthcare in an age of algorithms
  publication-title: Health Technol.
  doi: 10.1007/s12553-017-0179-1
– volume: 114
  start-page: 824
  year: 2017
  ident: ref_91
  article-title: Oncological outcomes after robot-assisted radical prostatectomy: Long-term follow-up in 4803 patients
  publication-title: BJU Int.
  doi: 10.1111/bju.12404
– ident: ref_121
  doi: 10.1109/ICPR.2018.8545174
– volume: 20
  start-page: 273
  year: 2018
  ident: ref_64
  article-title: Estimation of clinical trial success rates and related parameters
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxx069
– ident: ref_111
  doi: 10.3390/healthcare10030509
– volume: 18
  start-page: 242
  year: 2020
  ident: ref_102
  article-title: Robotic and laparoscopic surgery: Cost and training
  publication-title: Surg. Oncol.
  doi: 10.1016/j.suronc.2009.02.007
– volume: 25
  start-page: 44
  year: 2019
  ident: ref_2
  article-title: High-performance medicine: The convergence of human and artificial intelligence
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0300-7
– volume: 8
  start-page: 191586
  year: 2021
  ident: ref_19
  article-title: Reliable Tuberculosis Detection Using Chest X-Ray With Deep Learning, Segmentation and Visualization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031384
– ident: ref_45
– volume: 269
  start-page: 621
  year: 2021
  ident: ref_104
  article-title: Robot-assisted Minimally Invasive Thoracolaparoscopic Esophagectomy Versus Open Transthoracic Esophagectomy for Resectable Esophageal Cancer
  publication-title: Ann. Surg.
– ident: ref_118
  doi: 10.3390/healthcare10112188
– volume: 199–200
  start-page: 93
  year: 2015
  ident: ref_74
  article-title: Watson: Beyond Jeopardy!
  publication-title: Artif. Intell.
– ident: ref_20
  doi: 10.1109/EE-RDS53766.2021.9708588
– volume: 17
  start-page: 175
  year: 2020
  ident: ref_52
  article-title: Biophysical prediction of protein–peptide interactions and signaling networks using machine learning
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0687-1
– volume: 1
  start-page: 161
  year: 1994
  ident: ref_27
  article-title: A General Natural-language Text Processor for Clinical Radiology
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1136/jamia.1994.95236146
– volume: 5
  start-page: 46
  year: 2022
  ident: ref_26
  article-title: Natural language processing applied to mental illness detection: A narrative review
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-022-00589-7
– volume: 7
  start-page: 46226
  year: 2017
  ident: ref_31
  article-title: Analysis of free text in electronic health records for identification of cancer patient trajectories
  publication-title: Sci. Rep.
  doi: 10.1038/srep46226
– ident: ref_47
– volume: 14
  start-page: 337
  year: 2021
  ident: ref_3
  article-title: Artificial Intelligence (AI) applications for COVID-19 pandemic
  publication-title: Diabetes Metab. Syndr. Clin. Res. Rev.
  doi: 10.1016/j.dsx.2020.04.012
– ident: ref_117
  doi: 10.3390/healthcare10112313
– ident: ref_12
  doi: 10.1145/2733373.2806217
– ident: ref_67
– volume: 114
  start-page: 422
  year: 2019
  ident: ref_68
  article-title: Artificial Intelligence-Assisted Gastroenterology— Promises and Pitfalls
  publication-title: Am. J. Gastroenterol.
  doi: 10.1038/s41395-018-0268-4
– volume: 177
  start-page: 283
  year: 2017
  ident: ref_23
  article-title: Using electronic medical record data to report laboratory adverse events
  publication-title: Br. J. Haematol.
  doi: 10.1111/bjh.14538
– ident: ref_73
– volume: 33
  start-page: 254
  year: 2020
  ident: ref_36
  article-title: Robot single incision left lateral sectionectomy via da Vinci® Xi™ Single Site™ & vaginal extraction of the specimen
  publication-title: Surg. Oncol.
  doi: 10.1016/j.suronc.2019.11.002
– volume: 61
  start-page: 121
  year: 2015
  ident: ref_101
  article-title: Robotic laparoscopic surgery: Cost and training
  publication-title: Minerva Urol. Nefrol. Ital. J. Urol. Nephrol.
– ident: ref_120
  doi: 10.1016/B978-0-12-821353-7.00014-4
– volume: 46
  start-page: 139
  year: 2016
  ident: ref_7
  article-title: Breast cancer classification using deep belief networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.10.015
– ident: ref_105
  doi: 10.1371/journal.pone.0254950
– volume: 20
  start-page: e22
  year: 2018
  ident: ref_32
  article-title: Prediction of Incident Hypertension Within the Next Year: Prospective Study Using Statewide Electronic Health Records and Machine Learning
  publication-title: J. Med. Internet Res.
  doi: 10.2196/jmir.9268
– ident: ref_50
  doi: 10.1038/s41467-020-19950-z
– volume: 62
  start-page: 1
  year: 2012
  ident: ref_88
  article-title: Positive Surgical Margin and Perioperative Complication Rates of Primary Surgical Treatments for Prostate Cancer: A Systematic Review and Meta-Analysis Comparing Retropubic, Laparoscopic, and Robotic Prostatectomy
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2012.02.029
– volume: 3
  start-page: 137
  year: 2015
  ident: ref_77
  article-title: Pharmabot: A Pediatric Generic Medicine Consultant Chatbot
  publication-title: J. Autom. Control. Eng.
  doi: 10.12720/joace.3.2.137-140
– volume: 120
  start-page: 334
  year: 2017
  ident: ref_95
  article-title: Robot-assisted versus total laparoscopic radical hysterectomy in early cervical cancer, a review
  publication-title: Gynecol. Oncol.
  doi: 10.1016/j.ygyno.2010.12.342
– volume: 6
  start-page: 26094
  year: 2016
  ident: ref_30
  article-title: Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records
  publication-title: Sci. Rep.
  doi: 10.1038/srep26094
– volume: 60
  start-page: 4582
  year: 2020
  ident: ref_63
  article-title: De Novo Drug Design of Targeted Chemical Libraries Based on Artificial Intelligence and Pair-Based Multiobjective Optimization
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00517
– volume: 71
  start-page: 597
  year: 2015
  ident: ref_93
  article-title: Trainees Do Not Negatively Impact the Institutional Learning Curve for Robotic Prostatectomy as Characterized by Operative Time, Estimated Blood Loss, and Positive Surgical Margin Rate
  publication-title: Urology
  doi: 10.1016/j.urology.2007.12.023
– volume: 11
  start-page: 50
  year: 2015
  ident: ref_94
  article-title: Robotic surgery in gynecology
  publication-title: J. Minimal Access Surg.
  doi: 10.4103/0972-9941.147690
– volume: 5
  start-page: 14297
  year: 2021
  ident: ref_53
  article-title: Protein Binding Pocket Optimization for Virtual High-Throughput Screening (vHTS) Drug Discovery
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c00522
– volume: 92
  start-page: 905
  year: 2020
  ident: ref_106
  article-title: Cost savings in colonoscopy with artificial intelligence-aided polyp diagnosis: An add-on analysis of a clinical trial (with video)
  publication-title: Gastrointest. Endosc.
  doi: 10.1016/j.gie.2020.03.3759
– volume: 8
  start-page: 25
  year: 1978
  ident: ref_71
  article-title: Glaucoma consultation by computer
  publication-title: Comput. Biol. Med.
  doi: 10.1016/0010-4825(78)90011-2
– volume: 27
  start-page: 2107
  year: 2015
  ident: ref_11
  article-title: Disease Inference from Health-Related Questions via Sparse Deep Learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2015.2399298
– volume: 4
  start-page: e000234
  year: 2017
  ident: ref_107
  article-title: Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: A randomised clinical trial
  publication-title: BMJ Open Respir. Res.
  doi: 10.1136/bmjresp-2017-000234
– volume: 49
  start-page: 612
  year: 2006
  ident: ref_87
  article-title: Laparoscopic and Robotic Assisted Radical Prostatectomy—Critical Analysis of the Results
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2005.12.054
– volume: 28
  start-page: 48
  year: 2017
  ident: ref_18
  article-title: Development of computer-aided approach for brain tumor detection using random forest classifier
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22255
– volume: 51
  start-page: 570
  year: 2015
  ident: ref_34
  article-title: MEANS: A medical question-answering system combining NLP techniques and semantic Web technologies
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2015.04.006
– volume: 83
  start-page: 1365
  year: 2017
  ident: ref_48
  article-title: When less is more—Efficacy with less toxicity at the ED50
  publication-title: Br. J. Clin. Pharmacol.
  doi: 10.1111/bcp.13281
– volume: 18
  start-page: 152
  year: 2020
  ident: ref_42
  article-title: In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus
  publication-title: J. Integr. Med.
  doi: 10.1016/j.joim.2020.02.005
– volume: 84
  start-page: 117
  year: 2018
  ident: ref_119
  article-title: A novel method for predicting kidney stone type using ensemble learning
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2017.12.001
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_80
  article-title: ImageNet Classification with Deep Convolutional Neural Networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 40
  start-page: 1858
  year: 2020
  ident: ref_60
  article-title: Exploring nature’s bounty: Identification of Withania somnifera as a promising source of therapeutic agents against COVID-19 by virtual screening and in silico evaluation
  publication-title: J. Biomol. Struct. Dyn.
  doi: 10.1080/07391102.2020.1835725
– ident: ref_14
  doi: 10.1109/ISSPA.2012.6310676
– ident: ref_112
  doi: 10.3390/healthcare10122497
– ident: ref_29
  doi: 10.15439/2019F197
– volume: 1
  start-page: 541
  year: 1989
  ident: ref_79
  article-title: Backpropagation Applied to Handwritten Zip Code Recognition
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.4.541
– volume: 151
  start-page: 328
  year: 2022
  ident: ref_25
  article-title: A case for developing domain-specific vocabularies for extracting suicide factors from healthcare notes
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/j.jpsychires.2022.04.009
– volume: 12
  start-page: 1130
  year: 2014
  ident: ref_33
  article-title: Clinical Decision Support With Natural Language Processing Facilitates Determination of Colonoscopy Surveillance Intervals
  publication-title: Clin. Gastroenterol. Hepatol.
  doi: 10.1016/j.cgh.2013.11.025
– volume: 19
  start-page: 353
  year: 2020
  ident: ref_57
  article-title: Rethinking drug design in the artificial intelligence era
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-019-0050-3
– volume: 28
  start-page: 1388
  year: 2013
  ident: ref_96
  article-title: The end of robot-assisted laparoscopy? A critical appraisal of scientific evidence on the use of robot-assisted laparoscopic surgery
  publication-title: Surg. Endosc.
  doi: 10.1007/s00464-013-3306-8
– volume: 8
  start-page: 303
  year: 1975
  ident: ref_72
  article-title: Computer-based consultations in clinical therapeutics: Explanation and rule acquisition capabilities of the MYCIN system
  publication-title: Comput. Biomed. Res.
  doi: 10.1016/0010-4809(75)90009-9
– volume: 63
  start-page: 606
  year: 2017
  ident: ref_97
  article-title: Randomised Controlled Trial Comparing Laparoscopic and Robot-assisted Radical Prostatectomy
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2012.07.007
– volume: 60
  start-page: 5375
  year: 2020
  ident: ref_44
  article-title: Predicting Small Molecule Transfer Free Energies by Combining Molecular Dynamics Simulations and Deep Learning
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00318
– volume: 135
  start-page: 227
  year: 2017
  ident: ref_76
  article-title: Artificial intelligence in neurodegenerative disease research: Use of IBM Watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-017-1785-8
– ident: ref_82
  doi: 10.1109/CVPR.2015.7298594
– ident: ref_109
  doi: 10.3390/healthcare10101997
– volume: 2022
  start-page: 2399428
  year: 2022
  ident: ref_115
  article-title: AI-Assisted Tuberculosis Detection and Classification from Chest X-Rays Using a Deep Learning Normalization-Free Network Model
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2022/2399428
– volume: 28
  start-page: 249
  year: 2019
  ident: ref_70
  article-title: Beginnings of Artificial Intelligence in Medicine (AIM): Computational Artifice Assisting Scientific Inquiry and Clinical Art – with Reflections on Present AIM Challenges
  publication-title: Yearb. Med. Inform.
  doi: 10.1055/s-0039-1677895
– volume: 6
  start-page: 1370
  year: 2022
  ident: ref_84
  article-title: Detection of signs of disease in external photographs of the eyes via deep learning
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-022-00867-5
– volume: 6
  start-page: 24454
  year: 2016
  ident: ref_9
  article-title: Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans
  publication-title: Sci. Rep.
  doi: 10.1038/srep24454
– volume: 81
  start-page: 103754
  year: 2021
  ident: ref_13
  article-title: Accurate diagnosis of early lung cancer based on the convolutional neural network model of the embedded medical system
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2020.103754
– volume: 26
  start-page: 113
  year: 2021
  ident: ref_59
  article-title: A new synthetic approach for pyrazolo[1, 5-a]pyrazine-4(5H)-one derivatives and their antiproliferative effects on lung adenocarcinoma cell line
  publication-title: Mol. Divers.
  doi: 10.1007/s11030-020-10161-8
– volume: 8
  start-page: 20
  year: 2014
  ident: ref_28
  article-title: Automatic Structured Reporting from Narrative Cancer Pathology Reports
  publication-title: Electron. J. Health Inform.
– volume: 96
  start-page: 103576
  year: 2020
  ident: ref_58
  article-title: Design, synthesis and ADMET prediction of bis-benzimidazole as anticancer agent
  publication-title: Bioorganic Chem.
  doi: 10.1016/j.bioorg.2020.103576
– volume: 24
  start-page: 377
  year: 2009
  ident: ref_86
  article-title: Robotic assistance improves intracorporeal suturing performance and safety in the operating room while decreasing operator workload
  publication-title: Surg. Endosc.
  doi: 10.1007/s00464-009-0578-0
– ident: ref_38
– volume: 76
  start-page: 19039
  year: 2017
  ident: ref_16
  article-title: Lung nodules diagnosis based on evolutionary convolutional neural network
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-017-4480-9
– volume: 107
  start-page: 780
  year: 2020
  ident: ref_46
  article-title: Will Artificial Intelligence for Drug Discovery Impact Clinical Pharmacology?
  publication-title: Clin. Pharmacol. Ther.
  doi: 10.1002/cpt.1795
– volume: 249
  start-page: 112413
  year: 2020
  ident: ref_62
  article-title: Identifying cancer-related molecular targets of Nandina domestica Thunb. by network pharmacology-based analysis in combination with chemical profiling and molecular docking studies
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2019.112413
– volume: 4
  start-page: 116
  year: 2016
  ident: ref_6
  article-title: Computer-Aided Model for Skin Diagnosis Using Deep Learning
  publication-title: J. Image Graph.
– volume: 12
  start-page: 69
  year: 2021
  ident: ref_55
  article-title: LigGrep: A tool for filtering docked poses to improve virtual-screening hit rates
  publication-title: J. Cheminformatics
  doi: 10.1186/s13321-020-00471-2
– ident: ref_15
  doi: 10.1109/ICCSNT.2012.6526151
– ident: ref_110
  doi: 10.3390/healthcare10101940
– volume: 24
  start-page: 1138
  year: 2005
  ident: ref_10
  article-title: Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2005.852048
– volume: 56
  start-page: 2125
  year: 2018
  ident: ref_17
  article-title: Classification of malignant and benign lung nodules using taxonomic diversity index and phylogenetic distance
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-018-1841-0
– volume: 256
  start-page: 117912
  year: 2021
  ident: ref_66
  article-title: Identification of novel class I and class IIb histone deacetylase inhibitor for Alzheimer’s disease therapeutics
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2020.117912
– volume: 39
  start-page: 4764
  year: 2020
  ident: ref_54
  article-title: Chemical-informatics approach to COVID-19 drug discovery: Monte Carlo based QSAR, virtual screening and molecular docking study of some in-house molecules as papain-like protease (PLpro) inhibitors
  publication-title: J. Biomol. Struct. Dyn.
  doi: 10.1080/07391102.2020.1780946
– volume: 3
  start-page: 75
  year: 2021
  ident: ref_99
  article-title: Comparison of hospital charges between robotic, laparoscopic stapled, and laparoscopic handsewn Roux-en-Y gastric bypass
  publication-title: J. Robot. Surg.
  doi: 10.1007/s11701-009-0143-9
– ident: ref_40
– volume: 73
  start-page: 119
  year: 2019
  ident: ref_92
  article-title: Direct Comparison of Surgical and Functional Outcomes of Robotic-Assisted Versus Pure Laparoscopic Radical Prostatectomy: Single-Surgeon Experience
  publication-title: Urology
  doi: 10.1016/j.urology.2008.08.491
– volume: 25
  start-page: 1315
  year: 2021
  ident: ref_41
  article-title: Artificial intelligence to deep learning: Machine intelligence approach for drug discovery
  publication-title: Mol. Divers.
  doi: 10.1007/s11030-021-10217-3
– volume: 22
  start-page: 52
  year: 2011
  ident: ref_100
  article-title: Reducing Cost of Surgery by Avoiding Complications: The Model of Robotic Roux-en-Y Gastric Bypass
  publication-title: Obes. Surg.
  doi: 10.1007/s11695-011-0422-1
– volume: 1
  start-page: 5
  year: 2018
  ident: ref_1
  article-title: Artificial intelligence powers digital medicine
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-017-0012-2
– ident: ref_21
– volume: 9
  start-page: 258
  year: 2013
  ident: ref_37
  article-title: Robotic right colectomy using the Da Vinci Single-Site® platform: Case report
  publication-title: Int. J. Med. Robot. Comput. Assist. Surg.
  doi: 10.1002/rcs.1488
– ident: ref_78
  doi: 10.1007/978-981-10-6989-5_4
– volume: 20
  start-page: 271
  year: 2012
  ident: ref_98
  article-title: Current status of robot-assisted laparoscopic radical prostatectomy: How does it compare with other surgical approaches?
  publication-title: Int. J. Urol.
  doi: 10.1111/j.1442-2042.2012.03193.x
– volume: 110
  start-page: 1544
  year: 2012
  ident: ref_103
  article-title: Assessing the cost effectiveness of robotics in urological surgery—A systematic review
  publication-title: BJU Int.
  doi: 10.1111/j.1464-410X.2012.11015.x
– ident: ref_85
– volume: 65
  start-page: 1753
  year: 2017
  ident: ref_22
  article-title: Mining peripheral arterial disease cases from narrative clinical notes using natural language processing
  publication-title: J. Vasc. Surg.
  doi: 10.1016/j.jvs.2016.11.031
– volume: 12
  start-page: 1
  year: 2020
  ident: ref_56
  article-title: AutoGrow4: An open-source genetic algorithm for de novo drug design and lead optimization
  publication-title: J. Cheminform.
  doi: 10.1186/s13321-020-00429-4
– volume: 88
  start-page: 164
  year: 2016
  ident: ref_24
  article-title: Large-scale identification of patients with cerebral aneurysms using natural language processing
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000003490
– volume: 41
  start-page: 432
  year: 2019
  ident: ref_61
  article-title: Associating 197 Chinese herbal medicine with drug targets and diseases using the similarity ensemble approach
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/s41401-019-0306-9
– volume: 10
  start-page: 12872
  year: 2020
  ident: ref_65
  article-title: Functional fine-mapping of noncoding risk variants in amyotrophic lateral sclerosis utilizing convolutional neural network
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-69790-6
– volume: 18
  start-page: 173
  year: 2008
  ident: ref_89
  article-title: Robotic radical prostatectomy: Long-term outcomes
  publication-title: Curr. Opin. Urol.
  doi: 10.1097/MOU.0b013e3282f517d6
SSID ssj0000913835
Score 2.4593835
SecondaryResourceType review_article
Snippet People in the life sciences who work with Artificial Intelligence (AI) and Machine Learning (ML) are under increased pressure to develop algorithms faster than...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 207
SubjectTerms Algorithms
Artificial intelligence
Breast cancer
Cancer therapies
Coronaviruses
COVID-19
Deep learning
Disease
Documentation
Drug dosages
Illnesses
Infrastructure
Laboratories
Ligands
Lung cancer
Machine learning
Medical imaging
Medical research
Pandemics
R&D
Research & development
Review
Robots
Skin cancer
X-rays
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxtBEB80eSmItNrWs1a20Dc5vOR276MvJUpCLChFFHw79mOuCnJRk_z_ztxuzljB19u5D252dn_zsb8B-MmEJCq1SWxUXseEwF1c6ELGSWnK3DHBWhvvOL_Iptfyz426CQG3eSirXK2J7ULtZpZj5MfDPGNnRarB74fHmLtGcXY1tNDYhD4twUXRg_7J-OLvZRdlYdZLwhj-tExK_v3xbVdWRRsfef7cR3Z9R3oDM_-vllzbfiYfYTvgRjHyiv4EG9jswJYPugl_lmgXljzsKSHE2RrXptCNE-dt2SSKwKj6T5zQBuZauVXRo7hrRMjc0PX6SXt22eUT_hIj4dMI7bMmLROJ8AW1n-F6Mr46ncahr0JsZZosYktWrKTRiNyrCl1ZarJSS_5kKaVCQnC2VkWGmRkahVLXymUSXUZIgPSoTfoFes2swT0QCo3NscTaDBMSJLSpM5dhbVM-YpvYCAarf1vZQDrOvS_uK3I-WB_VW31EcNTd8-ApN96VPliprArmN69eJksEP7phMhzOhugGZ8tWphhKcrfSCL56DXevS7kZKgHZCPJXuu8EmJT79Uhzd9uSc5dMCFgW--9_1jf4wH3rOZYzSA6gR9rE74RuFuYwTOFnrmn-Vg
  priority: 102
  providerName: ProQuest
Title Artificial Intelligence and Machine Learning Based Intervention in Medical Infrastructure: A Review and Future Trends
URI https://www.ncbi.nlm.nih.gov/pubmed/36673575
https://www.proquest.com/docview/2767211451
https://www.proquest.com/docview/2768245763
https://pubmed.ncbi.nlm.nih.gov/PMC9859198
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS9xAEB6svhRKqdofafXYgm-SNrnsJllBRMVDCydSeuBb2N1MqiCxvXrQ_ved2U2Cp62v2dkk7GQz37c7-w3ADguSqMwlsVVFExMCr-PSlDJOtNVFzQJrfr1jep6fzuSXS3W5An25o24Af_2T2nE9qdn85tPvn38OaMLvM-Mkyv75asiUolhGZJ4Pl69RZCq4osG0g_v-z6xTImQqnJ35T9fl-PQIdD7MnbwXjCav4GWHIsVhcPs6rGC7AS_CEpwIJ4s2YcHNQSBCnN1T3hSmrcXUJ1Gi6PRVv4sjCme1t-tTIMV1K7p9HLrezE3Qml3McU8cirCp4O818bokIqTXvobZ5OTb8WncVVmIncySu9jRnFbSGkSuXIW11obmrCN2qaVUSHjONarMMbdjq1CaRtW5xDonXEBeNTZ7A6vtbYvvQCi0rkCNjR0nZEjY0-R1jo3L-MBt4iJI-7GtXCdBzpUwbiqiIuyP6rE_Itgd-vwIAhxPWm_1Lqv6b6kaFznzXKnSCD4OzTSNeG_EtHi78DblWBL5yiJ4Gzw8PC7j0qgEayMolnw_GLBE93JLe33lpbo1ywPq8v3Tr_UBnnMVe17ZSZMtWCVv4jZhnTs7gmflcTqCtaOT84uvI_85_wVx9wRt
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGeAAJIb4pDAgSPKFqvSZpm0kIbYPTHdvtaZP2VvJVNgn1xrYT4p_ib5ydtGW3SXub-ta4aRM7tZ3YPwN8IEASyW2WGlk2KVrgLq10JdJMGVU6AlgL-x2zvWJyIL4fysMV-NfnwlBYZf9PDD9qN7e0R76elwU5K0KOvpz8TqlqFJ2u9iU0oljs-L9_0GU7-zz9ivz9mOfjb_vbk7SrKpBawbPz1KIMS2G091SpyTulNMqoRW9KCSE92i-2kVXhC5Mb6YVupCuEdwXqQRyFNhz7vQN3BcelSZnp26NhT4cwNtGiibk5nKts_WgI4kI1m-NVLuu_a0bt1djMS8pu_AgedlYq24xi9RhWfPsEHsQtPhYzl57CgpojAAWbXkL2ZLp1bBaCND3r8Ft_si1Uly7Q9SGW7Lhl3TkR3m9OdcSyXZz6DbbJ4qFF6GsccE9YDN99Bge3Mt_PYbWdt_4lMOmNLb3yjckzJETbVheu8I3llNCb2QRG_dzWtoM4p0obv2p0dYgf9XV-JPBpeOYkAnzcSL3Ws6zuFvtZ_V80E3g_NOMypbMX3fr5ItBUuUDnjifwInJ4eB2n0qtoNidQLvF-ICAI8OWW9vgoQIErgh9U1aubP-sd3Jvsz3br3enezmu4jyOhGDrUwGuwipz1b9CuOjdvgzAz-HHbq-cCfPw5tg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qBRGk-G1q1RX0ScLlsrtJVhCprUfP2uKDhb7F_YotlFy_jtJ_zb_Omd0k9iz0reQtO9lkd2YyM7uzvwF4R4AkktssNbJsUvTAXVrpSqSZMqp0BLAW1jt2doutPfFtX-4vwZ_-LAylVfb_xPCjdjNLa-SjvCwoWBFyPGq6tIgfm5PPxycpVZCinda-nEYUkW1_eYHh29mn6Sby-n2eT77-3NhKuwoDqRU8O08tyrMURntPVZu8U0qjvFqMrJQQ0qMvYxtZFb4wuZFe6Ea6QnhXoE3EEWnDsd87cLfkZUU6Vm2Mh_UdwttE7yae0-FcZaODIaELTW6OV7loC685uP_naV4xfJOHsNJ5rGw9itgjWPLtY3gQl_tYPMX0BObUHMEo2PQKyifTrWM7IWHTsw7L9Tf7gqbTBbo-3ZIdtqzbM8L7zamOuLbzU_-RrbO4gRH6mgQMFBZTeZ_C3q3M9zNYbmetfwFMemNLr3xj8gwJ0c_VhSt8Yzkd7s1sAuN-bmvbwZ1T1Y2jGsMe4kd9nR8JfBieOY5gHzdSr_UsqzvFP6v_iWkCb4dmVFnah9Gtn80DTZULDPR4As8jh4fXcSrDii50AuUC7wcCggNfbGkPDwIsuCIoQlWt3vxZb-Ae6k39fbq7_RLu40AonQ6N8RosI2P9K3Sxzs3rIMsMft228vwFuVQ97A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+and+Machine+Learning+Based+Intervention+in+Medical+Infrastructure%3A+A+Review+and+Future+Trends&rft.jtitle=Healthcare+%28Basel%29&rft.au=Kumar%2C+Kamlesh&rft.au=Kumar%2C+Prince&rft.au=Deb%2C+Dipankar&rft.au=Mihaela-Ligia+Unguresan&rft.date=2023-01-10&rft.pub=MDPI+AG&rft.eissn=2227-9032&rft.volume=11&rft.issue=2&rft.spage=207&rft_id=info:doi/10.3390%2Fhealthcare11020207&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9032&client=summon