The Yin and Yang of Microglia

Microglia, the resident immune cells of the mammalian central nervous system (CNS), play a pivotal role in both physiological and pathological conditions such as the restoration of CNS integrity and the progression of neurodegenerative disorders. Extensive data have been published that describe neur...

Full description

Saved in:
Bibliographic Details
Published inDevelopmental neuroscience Vol. 33; no. 3-4; pp. 199 - 209
Main Authors Czeh, Melinda, Gressens, Pierre, Kaindl, Angela M.
Format Journal Article
LanguageEnglish
Published Basel, Switzerland S. Karger AG 01.01.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microglia, the resident immune cells of the mammalian central nervous system (CNS), play a pivotal role in both physiological and pathological conditions such as the restoration of CNS integrity and the progression of neurodegenerative disorders. Extensive data have been published that describe neuroinflammation by microglial activation to have detrimental consequences on the developing and mature brain. On the other hand, a properly directed and limited inflammatory response is known to be a natural healing process after an insult in several other tissues. Thus, it is not surprising that research results illustrating benefits of neuroinflammation have been emerging over the past decade. Inflammation-mediated benefits for CNS outcomes include mechanisms such as neuroprotection, mobilization of neural precursors for repair, remyelination and axonal regeneration. Here, we review data that highlight the dual aspects of microglia with a focus on the developing brain, i.e. as aggressors potentiating damage and as helpers in the recovery process following CNS damage.
AbstractList Microglia, the resident immune cells of the mammalian central nervous system (CNS), play a pivotal role in both physiological and pathological conditions such as the restoration of CNS integrity and the progression of neurodegenerative disorders. Extensive data have been published that describe neuroinflammation by microglial activation to have detrimental consequences on the developing and mature brain. On the other hand, a properly directed and limited inflammatory response is known to be a natural healing process after an insult in several other tissues. Thus, it is not surprising that research results illustrating benefits of neuroinflammation have been emerging over the past decade. Inflammation-mediated benefits for CNS outcomes include mechanisms such as neuroprotection, mobilization of neural precursors for repair, remyelination and axonal regeneration. Here, we review data that highlight the dual aspects of microglia with a focus on the developing brain, i.e. as aggressors potentiating damage and as helpers in the recovery process following CNS damage.Microglia, the resident immune cells of the mammalian central nervous system (CNS), play a pivotal role in both physiological and pathological conditions such as the restoration of CNS integrity and the progression of neurodegenerative disorders. Extensive data have been published that describe neuroinflammation by microglial activation to have detrimental consequences on the developing and mature brain. On the other hand, a properly directed and limited inflammatory response is known to be a natural healing process after an insult in several other tissues. Thus, it is not surprising that research results illustrating benefits of neuroinflammation have been emerging over the past decade. Inflammation-mediated benefits for CNS outcomes include mechanisms such as neuroprotection, mobilization of neural precursors for repair, remyelination and axonal regeneration. Here, we review data that highlight the dual aspects of microglia with a focus on the developing brain, i.e. as aggressors potentiating damage and as helpers in the recovery process following CNS damage.
Microglia, the resident immune cells of the mammalian central nervous system (CNS), play a pivotal role in both physiological and pathological conditions such as the restoration of CNS integrity and the progression of neurodegenerative disorders. Extensive data have been published that describe neuroinflammation by microglial activation to have detrimental consequences on the developing and mature brain. On the other hand, a properly directed and limited inflammatory response is known to be a natural healing process after an insult in several other tissues. Thus, it is not surprising that research results illustrating benefits of neuroinflammation have been emerging over the past decade. Inflammation-mediated benefits for CNS outcomes include mechanisms such as neuroprotection, mobilization of neural precursors for repair, remyelination and axonal regeneration. Here, we review data that highlight the dual aspects of microglia with a focus on the developing brain, i.e. as aggressors potentiating damage and as helpers in the recovery process following CNS damage.
Microglia, the resident immune cells of the mammalian central nervous system (CNS), play a pivotal role in both physiological and pathological conditions such as the restoration of CNS integrity and the progression of neurodegenerative disorders. Extensive data have been published that describe neuroinflammation by microglial activation to have detrimental consequences on the developing and mature brain. On the other hand, a properly directed and limited inflammatory response is known to be a natural healing process after an insult in several other tissues. Thus, it is not surprising that research results illustrating benefits of neuroinflammation have been emerging over the past decade. Inflammation-mediated benefits for CNS outcomes include mechanisms such as neuroprotection, mobilization of neural precursors for repair, remyelination and axonal regeneration. Here, we review data that highlight the dual aspects of microglia with a focus on the developing brain, i.e. as aggressors potentiating damage and as helpers in the recovery process following CNS damage. Copyright © 2011 S. Karger AG, Basel [PUBLICATION ABSTRACT]
Microglia, the resident immune cells of the mammalian central nervous system (CNS), play a pivotal role in both physiological and pathological conditions such as the restoration of CNS integrity and the progression of neurodegenerative disorders. Extensive data have been published that describe neuroinflammation by microglial activation to have detrimental consequences on the developing and mature brain. On the other hand, a properly directed and limited inflammatory response is known to be a natural healing process after an insult in several other tissues. Thus, it is not surprising that research results illustrating benefits of neuroinflammation have been emerging over the past decade. Inflammation-mediated benefits for CNS outcomes include mechanisms such as neuroprotection, mobilization of neural precursors for repair, remyelination and axonal regeneration. Here, we review data that highlight the dual aspects of microglia with a focus on the developing brain, i.e. as aggressors potentiating damage and as helpers in the recovery process following CNS damage. Copyright [copy 2011 S. Karger AG, Basel
Author Czeh, Melinda
Gressens, Pierre
Kaindl, Angela M.
Author_xml – sequence: 1
  givenname: Melinda
  surname: Czeh
  fullname: Czeh, Melinda
– sequence: 2
  givenname: Pierre
  surname: Gressens
  fullname: Gressens, Pierre
– sequence: 3
  givenname: Angela M.
  surname: Kaindl
  fullname: Kaindl, Angela M.
  email: angela.kaindl@charite.de
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21757877$$D View this record in MEDLINE/PubMed
BookMark eNqFkbtPwzAQxg0U0Qcd2AFFLIgh1OdX7BFVvKQiliLRKXISu6SkSXGSgf8eoz6GConpTrrffbr7vj7qlFVpEDoDfAvA1QhjTIlUUh2goYoklZhzJSVXh6gHjECofH-E-tsBe--gHqaRDLkUoov6db3AGIii0QnqEoh4JKOohy6mHyaY5WWgyyyY6XIeVDZ4yVNXzYtcn6Jjq4vaDDd1gN4e7qfjp3Dy-vg8vpuEKaO4CROWaZ7QjIASCUsJpQm3EclEYqVOwXLrT7LCCqD-1oyDIJYxmUqTGYxVQgfoeq27ctVXa-omXuZ1aopCl6Zq61iBN4FKJv8nMQgGkhFPXu2Ri6p1pX_DyzEQwAnz0OUGapOlyeKVy5fafcdbgzwwWgPekbp2xsZp3ugmr8rG6byIAce_-cS7fPzGzd7GVvQv9nzNfmo3N25HbsY_zsKO4g
CitedBy_id crossref_primary_10_1111_cns_14409
crossref_primary_10_1155_2013_608654
crossref_primary_10_3390_biology11121822
crossref_primary_10_3390_biomedicines10123186
crossref_primary_10_1017_neu_2017_2
crossref_primary_10_1016_j_npep_2012_09_001
crossref_primary_10_1038_pr_2011_64
crossref_primary_10_3389_fnins_2023_1158228
crossref_primary_10_2147_IJGM_S364954
crossref_primary_10_3389_fphys_2019_00141
crossref_primary_10_3233_JAD_160121
crossref_primary_10_1007_s00259_020_04772_4
crossref_primary_10_1016_j_molmet_2014_10_001
crossref_primary_10_3390_ijms232113606
crossref_primary_10_1016_j_ijdevneu_2018_11_003
crossref_primary_10_1159_000398791
crossref_primary_10_1038_s41390_019_0366_z
crossref_primary_10_1111_ene_12798
crossref_primary_10_1016_j_neurobiolaging_2013_06_020
crossref_primary_10_1016_j_neuroscience_2017_02_019
crossref_primary_10_1002_glia_22459
crossref_primary_10_1007_s00011_016_0939_9
crossref_primary_10_1186_scrt147
crossref_primary_10_1146_annurev_immunol_093019_124155
crossref_primary_10_1016_j_isci_2020_101701
crossref_primary_10_1016_j_neuro_2015_08_006
crossref_primary_10_1038_srep33356
crossref_primary_10_1038_srep38247
crossref_primary_10_1016_j_biopsych_2018_08_008
crossref_primary_10_1111_jnc_13362
crossref_primary_10_3389_fncel_2015_00084
crossref_primary_10_1186_s13041_017_0308_9
crossref_primary_10_1016_j_acthis_2021_151759
crossref_primary_10_1016_j_bbi_2019_07_004
crossref_primary_10_1007_s12035_022_02781_y
crossref_primary_10_1016_j_coph_2012_09_013
crossref_primary_10_3389_fimmu_2022_816619
crossref_primary_10_3389_fphar_2021_675725
crossref_primary_10_1155_2015_257139
crossref_primary_10_1186_s12888_019_2087_6
crossref_primary_10_14336_AD_2017_1028
crossref_primary_10_1016_j_ajpath_2021_04_009
crossref_primary_10_1016_j_bioorg_2022_106175
crossref_primary_10_1016_j_pnpbp_2017_04_012
crossref_primary_10_1002_jnr_23986
crossref_primary_10_3727_096368916X693572
crossref_primary_10_1177_1352458514549397
crossref_primary_10_3390_ijms231810364
crossref_primary_10_1007_s40263_013_0093_7
crossref_primary_10_1177_08839115241287215
crossref_primary_10_1177_1352458514533230
crossref_primary_10_1177_0269881117711708
crossref_primary_10_3389_fncel_2018_00255
crossref_primary_10_3390_ijms24076354
crossref_primary_10_1016_j_pneurobio_2012_06_005
crossref_primary_10_3390_ijms18040802
crossref_primary_10_1016_j_jneuroim_2018_01_017
crossref_primary_10_1007_s12035_018_0933_z
crossref_primary_10_1186_s12974_014_0157_8
crossref_primary_10_1016_j_neuint_2018_12_016
crossref_primary_10_1159_000346683
crossref_primary_10_3389_fbioe_2023_1261255
crossref_primary_10_3390_diagnostics11091525
crossref_primary_10_3390_cells12172128
crossref_primary_10_1016_j_bbi_2014_11_006
crossref_primary_10_1016_j_ejmech_2021_113713
crossref_primary_10_3389_fncel_2015_00185
crossref_primary_10_1016_j_neubiorev_2021_07_004
crossref_primary_10_2174_0115743624255521230920070219
crossref_primary_10_1016_j_molimm_2019_04_010
crossref_primary_10_1002_jnr_23563
crossref_primary_10_1016_j_expneurol_2016_06_017
crossref_primary_10_1016_j_arabjc_2021_103540
crossref_primary_10_1016_j_freeradbiomed_2015_03_013
crossref_primary_10_3389_fopht_2023_1290465
crossref_primary_10_1016_j_nicl_2019_101767
crossref_primary_10_1016_j_ajog_2019_03_001
crossref_primary_10_1016_j_ijdevneu_2014_06_011
crossref_primary_10_1007_s13139_017_0510_9
crossref_primary_10_1007_s12250_017_3997_4
crossref_primary_10_3389_fnagi_2021_671499
crossref_primary_10_1016_j_neurobiolaging_2014_05_021
crossref_primary_10_1016_j_expneurol_2013_04_009
crossref_primary_10_1002_ird3_70002
crossref_primary_10_1002_glia_22894
crossref_primary_10_1080_14756366_2018_1501043
crossref_primary_10_1002_biof_1278
crossref_primary_10_1038_jcbfm_2012_53
crossref_primary_10_1002_glia_22658
crossref_primary_10_1016_j_drudis_2021_07_013
crossref_primary_10_1152_jn_00823_2018
crossref_primary_10_1016_j_expneurol_2015_08_010
crossref_primary_10_1016_j_jneuroim_2017_11_002
crossref_primary_10_1002_brb3_2315
crossref_primary_10_1523_JNEUROSCI_4849_12_2013
crossref_primary_10_1186_s12868_014_0125_3
crossref_primary_10_1016_j_brainres_2017_09_019
crossref_primary_10_1016_j_ejphar_2014_09_022
crossref_primary_10_1016_j_expneurol_2014_06_009
crossref_primary_10_1155_2013_939786
crossref_primary_10_1177_0271678X17747189
crossref_primary_10_1007_s11010_019_03668_8
crossref_primary_10_1016_j_brainres_2014_03_028
crossref_primary_10_1007_s10495_022_01754_9
crossref_primary_10_1186_s41983_021_00420_2
crossref_primary_10_1016_j_pneurobio_2013_12_002
crossref_primary_10_1371_journal_pone_0154541
crossref_primary_10_54097_hset_v36i_5645
crossref_primary_10_1186_s12974_015_0397_2
crossref_primary_10_3389_fncel_2021_805755
crossref_primary_10_1021_acschemneuro_8b00627
crossref_primary_10_1186_s13020_024_00990_2
crossref_primary_10_3389_fnins_2021_817697
crossref_primary_10_1016_j_arr_2022_101622
crossref_primary_10_2174_1381612825666190722114248
crossref_primary_10_1111_jnc_13179
crossref_primary_10_1111_dmcn_12723
crossref_primary_10_3390_ijms21031095
crossref_primary_10_1016_j_jneuroim_2015_12_004
crossref_primary_10_1089_ars_2016_6958
crossref_primary_10_1007_s11011_014_9633_1
crossref_primary_10_1080_00207454_2020_1770246
crossref_primary_10_1159_000357811
crossref_primary_10_1007_s00436_016_5135_x
crossref_primary_10_1016_j_neubiorev_2015_12_004
crossref_primary_10_1016_j_cellimm_2018_03_006
crossref_primary_10_1016_j_expneurol_2013_05_014
crossref_primary_10_3390_ijms25063401
crossref_primary_10_1016_j_imbio_2012_08_266
crossref_primary_10_1016_j_mehy_2013_11_032
crossref_primary_10_3390_ijms20020410
crossref_primary_10_3390_ijms252312999
crossref_primary_10_1016_S1474_4422_14_70256_X
crossref_primary_10_1371_journal_pone_0091167
crossref_primary_10_1007_s10787_019_00580_x
crossref_primary_10_1159_000494761
crossref_primary_10_1159_000346156
crossref_primary_10_1159_000346155
crossref_primary_10_1146_annurev_neuro_051508_135728
crossref_primary_10_1016_j_neurobiolaging_2013_12_026
crossref_primary_10_1016_j_apradiso_2021_110032
crossref_primary_10_1186_s12974_014_0143_1
crossref_primary_10_3390_ijms24054739
crossref_primary_10_1007_s13765_012_2093_6
crossref_primary_10_3390_cells13080660
crossref_primary_10_1016_j_jocn_2018_10_034
crossref_primary_10_1186_s12974_015_0440_3
crossref_primary_10_3389_fncel_2015_00476
crossref_primary_10_3389_fnmol_2020_00094
crossref_primary_10_1016_j_neuro_2023_04_003
crossref_primary_10_1002_reg2_99
crossref_primary_10_3389_fnins_2021_771557
crossref_primary_10_1016_j_bbi_2012_08_011
crossref_primary_10_1136_gpsych_2018_000006
crossref_primary_10_1016_j_expneurol_2019_113015
crossref_primary_10_1111_cns_14496
crossref_primary_10_1007_s11064_021_03322_0
crossref_primary_10_1007_s11011_025_01538_5
crossref_primary_10_1007_s11307_016_0984_3
crossref_primary_10_1016_j_bbi_2016_08_018
crossref_primary_10_1016_j_neuroscience_2015_12_022
crossref_primary_10_1016_j_ecoenv_2024_117620
crossref_primary_10_3389_fnins_2016_00526
crossref_primary_10_1002_cne_24771
crossref_primary_10_1016_j_neurobiolaging_2012_06_010
crossref_primary_10_1016_j_neuint_2021_105117
crossref_primary_10_1038_nrneurol_2012_168
crossref_primary_10_3390_brainsci12060723
crossref_primary_10_1111_ejn_14720
crossref_primary_10_1016_j_brainresbull_2020_09_020
crossref_primary_10_1159_000353820
crossref_primary_10_3390_molecules19078820
crossref_primary_10_1016_j_brainres_2024_148763
crossref_primary_10_1124_jpet_116_239608
crossref_primary_10_1177_0271678X16638669
crossref_primary_10_3390_ijms21103703
crossref_primary_10_1038_s41390_020_0815_8
crossref_primary_10_1002_glia_22950
crossref_primary_10_1016_j_intimp_2019_105963
crossref_primary_10_1002_jnr_24683
crossref_primary_10_1186_1742_2094_11_49
crossref_primary_10_1093_ijnp_pyy014
crossref_primary_10_1159_000356529
crossref_primary_10_1016_j_pharmthera_2020_107513
crossref_primary_10_1177_09636897231171001
crossref_primary_10_3858_emm_2012_44_6_042
crossref_primary_10_1016_j_taap_2013_03_004
crossref_primary_10_1177_0960327119880586
crossref_primary_10_7759_cureus_35756
crossref_primary_10_1111_ejn_13778
crossref_primary_10_1016_j_neuint_2012_07_019
crossref_primary_10_1016_j_jneuroim_2018_11_010
crossref_primary_10_4103_1673_5374_219032
crossref_primary_10_1002_JLB_3MR1021_531R
crossref_primary_10_1002_sctm_19_0327
crossref_primary_10_1089_jir_2014_0019
crossref_primary_10_1016_j_earlhumdev_2012_09_011
crossref_primary_10_1007_s12640_014_9487_7
crossref_primary_10_1080_1744666X_2016_1191351
crossref_primary_10_1007_s12017_016_8394_x
crossref_primary_10_1155_2020_8836173
crossref_primary_10_3390_cells9081871
crossref_primary_10_1080_01443615_2022_2158318
crossref_primary_10_1038_jcbfm_2013_111
crossref_primary_10_1002_adbi_202100906
crossref_primary_10_1155_2017_9478542
crossref_primary_10_1093_brain_awu312
crossref_primary_10_1007_s12035_024_04679_3
crossref_primary_10_1007_s12035_023_03338_3
crossref_primary_10_1186_scrt312
crossref_primary_10_1186_s12974_024_03022_w
crossref_primary_10_1038_nrneurol_2013_163
crossref_primary_10_1111_jpi_12479
crossref_primary_10_2174_1871527319666200702143719
crossref_primary_10_3389_fnagi_2022_815347
crossref_primary_10_1038_s41423_019_0223_3
crossref_primary_10_1159_000350230
crossref_primary_10_3390_ijms231710191
crossref_primary_10_3390_pharmaceutics13060806
crossref_primary_10_3390_ijms18050993
crossref_primary_10_1155_2012_135187
crossref_primary_10_1016_j_yfrne_2017_10_006
crossref_primary_10_1002_jnr_23271
crossref_primary_10_1042_BST20130284
crossref_primary_10_1111_cns_13266
crossref_primary_10_1038_pr_2017_170
crossref_primary_10_3389_fcell_2021_626704
crossref_primary_10_1016_j_nbd_2015_10_001
crossref_primary_10_1016_j_drugalcdep_2019_107776
crossref_primary_10_1038_nrneurol_2016_110
crossref_primary_10_1152_ajpregu_00171_2018
crossref_primary_10_1002_ana_22627
crossref_primary_10_3390_neuroglia4010001
crossref_primary_10_1093_jpp_rgaa019
crossref_primary_10_3390_ijms252111638
crossref_primary_10_1016_j_neubiorev_2021_09_018
crossref_primary_10_2174_1570159X19666210609162809
crossref_primary_10_1016_j_clp_2013_09_002
Cites_doi 10.1159%2F000068498
10.1002%2Fglia.20034
10.1177%2F0883073809337920
10.1186%2F1742-2094-5-46
10.1523%2FJNEUROSCI.2042-07.2007
10.1523%2FJNEUROSCI.2615-05.2006
10.1097%2F01.jnen.0000187052.81889.57
10.1046%2Fj.1471-4159.1999.721671.x
10.1038%2Fnri2448
10.1073%2Fpnas.95.26.15769
10.2217%2Ffnl.10.1
10.1172%2FJCI26836
10.1002%2Fglia.21104
10.1002%2Fglia.10081
10.1002%2Fmrdd.10007
10.1016%2Fj.nbd.2006.01.004
10.1038%2Fnm1201-1356
10.1111%2Fj.1460-9568.2006.04918.x
10.1016%2Fj.jneuroim.2008.11.007
10.1016%2Fj.psyneuen.2008.02.013
10.1002%2Fjemt.1114
10.1634%2Fstemcells.2005-0507
10.2174%2F187152711794488575
10.1016%2F0955-2235%2894%2900004-5
10.1111%2Fj.1750-3639.2008.00138.x
10.1016%2Fj.jneumeth.2005.06.026
10.1159%2F000113717
10.1016%2Fj.neuron.2006.01.022
10.1038%2F77046
10.1038%2Fjcbfm.2009.194
10.1016%2FS0165-3806%2899%2900043-7
10.1007%2Fs11481-006-9015-5
10.1016%2Fj.mcn.2003.10.023
10.1126%2Fscience.1194637
10.1038%2Fnn1997
10.1002%2Fcne.21123
10.1523%2FJNEUROSCI.4456-04.2005
10.1161%2FSTROKEAHA.107.489765
10.1523%2FJNEUROSCI.2451-04.2004
10.1038%2Fnri978
10.1002%2F1097-4547%2820000701%2961%3A1%3C10%3A%3AAID-JNR2%3E3.0.CO%3B2-E
10.1016%2Fj.jneuroim.2005.11.005
10.1073%2Fpnas.96.21.12102
10.1097%2F00004647-199901000-00010
10.1177%2F08830738050200120501
10.1002%2Fmds.10332
10.1161%2F01.STR.0000254477.34231.cb
10.1007%2Fs11481-009-9174-2
10.1084%2Fjem.20050030
10.1073%2Fpnas.2237050100
10.1023%2FA%3A1018514415073
10.1159%2F000105478
10.1016%2FS0887-8994%2897%2900041-6
10.1111%2Fj.1750-3639.2004.tb00492.x
10.1016%2Fj.ijdevneu.2008.02.005
10.1002%2Fjnr.20482
10.1002%2Fjnr.21890
10.1016%2Fj.neuroscience.2005.09.023
10.1073%2Fpnas.251341998
10.1016%2Fj.expneurol.2004.01.011
10.1523%2FJNEUROSCI.5572-08.2009
10.1006%2Fnbdi.2000.0318
10.1038%2Fjcbfm.2009.47
10.1016%2FS0896-6273%2804%2900069-8
10.1016%2Fj.tins.2007.08.007
10.1016%2Fj.it.2004.09.015
10.1016%2Fj.neulet.2010.10.014
10.1006%2Fexnr.1999.7255
10.1203%2F00006450-199601000-00006
10.1179%2F016164104X2357
10.1002%2F%28SICI%291097-4547%2819981001%2954%3A1%3C68%3A%3AAID-JNR8%3E3.0.CO%3B2-F
10.1111%2Fj.1460-9568.2008.06062.x
10.1126%2Fscience.1110647
10.1016%2F0006-8993%2889%2990078-4
10.1016%2FS0022-510X%2802%2900430-6
10.1038%2Fnm0796-788
10.1007%2Fs00415-008-1004-6
10.1073%2Fpnas.96.23.13496
10.1016%2Fj.tins.2007.07.007
10.1038%2Fnature08983
10.1016%2Fj.expneurol.2008.11.022
10.1016%2FS0165-5728%2801%2900444-1
10.1038%2Fnn1805
10.1111%2Fj.1471-4159.2006.03672.x
10.1038%2Fnn1629
10.1186%2F1742-2094-5-50
10.1186%2F1471-2202-7-56
10.1023%2FA%3A1022368915400
10.1038%2Fnm1387
10.1097%2F00004647-200012000-00007
10.1038%2Fnn1988
10.1016%2F0165-3806%2894%2900177-2
10.1002%2Fjnr.20485
10.1016%2Fj.jneuroim.2010.05.022
10.1385%2FMN%3A34%3A3%3A221
10.1016%2Fj.tins.2005.09.001
10.1136%2Fjcp.44.2.102
10.1006%2Fdbio.1996.0147
10.1111%2Fj.1460-9568.2007.05309.x
10.1002%2Fcne.903590410
10.1016%2Fj.bbi.2008.09.002
10.1096%2Ffj.08-105908
10.1111%2Fj.1471-4159.2006.04162.x
10.2174%2F187152709787601821
10.1016%2Fj.brainres.2005.07.071
10.1016%2Fj.ajog.2007.06.035
10.1007%2Fs00401-009-0622-0
10.1016%2Fj.expneurol.2009.08.003
10.1016%2Fj.neuroscience.2008.06.052
10.1016%2F0166-2236%2896%2910049-7
10.1097%2Fnen.0b013e3180517b46
10.1002%2Fana.10242
10.1002%2Fmrdd.20102
10.1046%2Fj.1471-4159.2002.01062.x
10.1002%2Fcne.902680209
10.1111%2Fj.1469-7580.2010.01245.x
10.1002%2Fjnr.22533
10.1111%2Fj.1750-3639.2001.tb00381.x
10.1038%2Fnm1177
10.1016%2FS0306-4522%2803%2900558-X
10.1002%2Fglia.20565
10.1002%2Fana.21511
10.1016%2FS0079-6123%2808%2962552-2
10.1159%2F000112098
10.1042%2FBJ20041835
10.1038%2F80538
10.1038%2Fnn1472
10.2967%2Fjnumed.106.038539
10.1523%2FJNEUROSCI.3257-09.2009
10.1016%2Fj.nbd.2008.04.003
10.1038%2F417074a
10.1016%2Fj.neuroscience.2009.12.040
10.1038%2Fnm1555
10.1016%2FS0006-8993%2800%2902459-8
10.1186%2F1742-2094-7-89
10.1038%2F87945
10.1161%2F01.STR.25.7.1411
10.1016%2F0306-4522%2890%2990281-8
10.1046%2Fj.1440-1789.2002.00438.x
10.1038%2Fsj.jcbfm.9600121
10.1016%2Fj.nurt.2010.07.005
10.1097%2F00004647-199703000-00006
10.1046%2Fj.1471-4159.2001.t01-1-00216.x
10.1523%2FJNEUROSCI.3992-08.2009
10.1111%2Fj.1365-2990.2007.00925.x
10.1007%2FBF03033182
10.1007%2Fs00018-005-5177-1
10.1002%2Fana.10092
10.1161%2FSTROKEAHA.109.549691
10.1002%2Fglia.10154
10.1002%2F%28SICI%291097-0029%2819990615%2945%3A6%3C359%3A%3AAID-JEMT4%3E3.0.CO%3B2-D
10.1016%2Fj.stem.2009.05.008
10.1016%2Fj.nbd.2008.12.012
10.1038%2Fsj.jcbfm.9600025
10.1212%2F01.wnl.0000222734.56412.17
10.2174%2F092986708785132915
10.1007%2Fs00281-009-0180-5
ContentType Journal Article
Copyright 2011 S. Karger AG, Basel
Copyright © 2011 S. Karger AG, Basel.
Copyright (c) 2011 S. Karger AG, Basel
Copyright_xml – notice: 2011 S. Karger AG, Basel
– notice: Copyright © 2011 S. Karger AG, Basel.
– notice: Copyright (c) 2011 S. Karger AG, Basel
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7TK
7U7
7X7
7XB
88E
88G
8AO
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
K9.
M0S
M1P
M2M
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOI 10.1159/000328989
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
ProQuest One Psychology
Neurosciences Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISBN 9783805598859
3805598858
EISSN 1421-9859
EndPage 209
ExternalDocumentID 2553363741
21757877
10_1159_000328989
328989
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
.55
.GJ
0~5
0~B
29F
30W
325
34G
36B
39C
3O.
3V.
4.4
53G
5GY
5RE
7X7
88E
8AO
8FI
8FJ
8UI
AAYIC
ABIVO
ABJNI
ABPAZ
ABUWG
ACCCW
ACGFO
ACGFS
ACIWK
ACPRK
ACPSR
ADAGL
ADBBV
ADFRT
ADGES
ADOJD
AENEX
AEYAO
AFFNX
AFJJK
AFKRA
AFRAH
AHMBA
ALDHI
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AZPMC
AZQEC
BENPR
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CYUIP
DU5
DWQXO
E0A
EBS
EJD
EMB
EMOBN
F5P
FB.
FYUFA
GNUQQ
HMCUK
HZ~
IY7
KUZGX
M1P
M2M
N9A
O1H
O9-
P2P
PQQKQ
PROAC
PSQYO
PSYQQ
RIG
RKO
RXVBD
SV3
TN5
UJ6
UKHRP
X7M
YYP
ZGI
ZXP
AAYXX
ABBTS
ABWCG
ACQXL
AFSIO
AHDLI
AHFRZ
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
7QR
7TK
7U7
7XB
8FD
8FK
C1K
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c430t-b4da5b3d2196b4c233b5f72d6bf8ac1f5f598f6f613142d5162f448c8ede009b3
IEDL.DBID 7X7
ISBN 380559884X
9783805598842
ISSN 0378-5866
1421-9859
IngestDate Fri Jul 11 12:44:22 EDT 2025
Thu Jul 10 22:15:07 EDT 2025
Sat Aug 23 14:49:26 EDT 2025
Mon Jul 21 06:05:32 EDT 2025
Tue Jul 01 04:54:55 EDT 2025
Thu Apr 24 23:04:33 EDT 2025
Thu Aug 29 12:04:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords Brain
Neuroprotection
Inflammation
Neurodegeneration
Microglia
Language English
License Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
https://www.karger.com/Services/SiteLicenses
Copyright © 2011 S. Karger AG, Basel.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-b4da5b3d2196b4c233b5f72d6bf8ac1f5f598f6f613142d5162f448c8ede009b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 21757877
PQID 914161524
PQPubID 34046
PageCount 11
ParticipantIDs proquest_journals_914161524
karger_primary_328989
pubmed_primary_21757877
crossref_citationtrail_10_1159_000328989
crossref_primary_10_1159_000328989
proquest_miscellaneous_911153848
proquest_miscellaneous_901641842
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-01-01
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – month: 01
  year: 2011
  text: 2011-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel, Switzerland
PublicationPlace_xml – name: Basel, Switzerland
– name: Switzerland
– name: Basel
PublicationTitle Developmental neuroscience
PublicationTitleAlternate Dev Neurosci
PublicationYear 2011
Publisher S. Karger AG
Publisher_xml – name: S. Karger AG
References Barron KD: Microglia: history, cytology, and reactions. J Neurol Sci 2003;207:98.1261493810.1016%2FS0022-510X%2802%2900430-6
Buller KM, Carty ML, Reinebrant HE, Wixey JA: Minocycline: a neuroprotective agent for hypoxic-ischemic brain injury in the neonate? J Neurosci Res 2009;87:599–608.1883100510.1002%2Fjnr.21890
Streit WJ, Kreutzberg GW: Response of endogenous glial cells to motor neuron degeneration induced by toxic ricin. J Comp Neurol 1988;268:248–263.336098710.1002%2Fcne.902680209
Sawada M, Sawada H, Nagatsu T: Effects of aging on neuroprotective and neurotoxic properties of microglia in neurodegenerative diseases. Neurodegener Dis 2008;5:254–256.1832240510.1159%2F000113717
Lee SC, Liu W, Dickson DW, et al: Cytokine production by human fetal microglia and astrocytes: differential induction by lipopolysaccharide and IL-1β. J Immunol 1993;150:2659–2667.8454848
Lechpammer M, Manning SM, Samonte F, et al: Minocycline treatment following hypoxic/ischaemic injury attenuates white matter injury in a rodent model of periventricular leucomalacia. Neuropathol Appl Neurobiol 2008;34:379–393.1822126110.1111%2Fj.1365-2990.2007.00925.x
Yrjänheikki J, Keinänen R, Pellikka M, et al: Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA 1998;95:15769–15774.986104510.1073%2Fpnas.95.26.15769
El Khoury J, Toft M, Hickman SE, et al: Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 2007;13:432–438.1735162310.1038%2Fnm1555
Mandrekar S, Jiang Q, Lee CY, et al: Microglia mediate the clearance of soluble Aβ through fluid phase macropinocytosis. J Neurosci 2009;29:4252–4262.1933961910.1523%2FJNEUROSCI.5572-08.2009
Du Y, Ma Z, Lin S, et al: Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci USA 2001;98:14669–14674.1172492910.1073%2Fpnas.251341998
Rezaie P, Male D: Colonisation of the developing human brain and spinal cord by microglia: a review. Microsc Res Tech 1999;45:359–382.1040226410.1002%2F%28SICI%291097-0029%2819990615%2945%3A6%3C359%3A%3AAID-JEMT4%3E3.0.CO%3B2-D
Ekdahl CT, Kokaia Z, Lindvall O: Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 2009;158:1021–1029.1866274810.1016%2Fj.neuroscience.2008.06.052
Arvin KL, Han BH, Du Y, et al: Minocycline markedly protects the neonatal brain against hypoxic-ischemic injury. Ann Neurol 2002;52:54–61.1211204710.1002%2Fana.10242
Bukowski L: Synthesis of 2-(2′-thiazolyl) alkanebenzimidazoles: potential anthelmintics (in Polish). Acta Pol Pharm 1975;32:651–656.1211204
Gordon S: Alternative activation of macrophages. Nat Rev Immunol 2003;3:23–35.1251187310.1038%2Fnri978
Nakanishi M, Niidome T, Matsuda S, et al: Microglia-derived interleukin-6 and leukaemia inhibitory factor promote astrocytic differentiation of neural stem/progenitor cells. Eur J Neurosci 2007;25:649–658.1732876910.1111%2Fj.1460-9568.2007.05309.x
Zheng Z, Yenari MA: Post-ischemic inflammation: molecular mechanisms and therapeutic implications. Neurol Res 2004;26:884–892.1572727210.1179%2F016164104X2357
Verney C, Monier A, Fallet-Bianco C, Gressens P: Early microglial colonization of the human forebrain and possible involvement in periventricular white-matter injury of preterm infants. J Anat 2010;217:436–448.2055740110.1111%2Fj.1469-7580.2010.01245.x
Walter L, Neumann H: Role of microglia in neuronal degeneration and regeneration. Semin Immunopathol 2009;31:513–525.1976357410.1007%2Fs00281-009-0180-5
Jin Y, Silverman AJ, Vannucci SJ: Mast cell stabilization limits hypoxic-ischemic brain damage in the immature rat. Dev Neurosci 2007;29:373–384.1776220510.1159%2F000105478
Mantovani A, Sica A, Sozzani S, et al: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004;25:677–686.1553083910.1016%2Fj.it.2004.09.015
Wyss-Coray T, Lin C, Yan F, et al: TGF-β1 promotes microglial amyloid-β clearance and reduces plaque burden in transgenic mice. Nat Med 2001;7:612–618.1132906410.1038%2F87945
Olivier P, Baud O, Evrard P, et al: Prenatal ischemia and white matter damage in rats. J Neuropathol Exp Neurol 2005;64:998–1006.1625449410.1097%2F01.jnen.0000187052.81889.57
Sugama S, Takenouchi T, Fujita M, et al: Differential microglial activation between acute stress and lipopolysaccharide treatment. J Neuroimmunol 2009;207:24–31.1911135510.1016%2Fj.jneuroim.2008.11.007
Kahles T, Luedike P, Endres M, et al: NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke 2007;38:3000–3006.1791676410.1161%2FSTROKEAHA.107.489765
Beauvillain C, Donnou S, Jarry U, et al: Neonatal and adult microglia cross-present exogenous antigens. Glia 2008;56:69–77.1793294210.1002%2Fglia.20565
Njie EG, Boelen E, Stassen FR, et al: Ex vivo cultures of microglia from young and aged rodent brain reveal age-related changes in microglial function. Neurobiol Aging 2010, E-pub ahead of print.
Streit WJ, Hurley SD, McGraw TS, Semple-Rowland SL: Comparative evaluation of cytokine profiles and reactive gliosis supports a critical role for interleukin-6 in neuron-glia signaling during regeneration. J Neurosci Res 2000;61:10–20.1086179510.1002%2F1097-4547%2820000701%2961%3A1%3C10%3A%3AAID-JNR2%3E3.0.CO%3B2-E
Clausen BH, Lambertsen KL, Babcock AA, et al: Interleukin-1β and tumor necrosis factor-α are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J Neuroinflammation 2008;5:46.1894740010.1186%2F1742-2094-5-46
Pocock JM, Kettenmann H: Neurotransmitter receptors on microglia. Trends Neurosci 2007;30:527–535.1790465110.1016%2Fj.tins.2007.07.007
Pang Y, Campbell L, Zheng B, et al: Lipopolysaccharide-activated microglia induce death of oligodendrocyte progenitor cells and impede their development. Neuroscience 2010;166:464–475.2003583710.1016%2Fj.neuroscience.2009.12.040
Blalock EM, Chen KC, Sharrow K, et al: Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment. J Neurosci 2003;23:3807–3819.12736351
Teismann P, Tieu K, Cohen O, et al: Pathogenic role of glial cells in Parkinson’s disease. Mov Disord 2003;18:121–129.1253920410.1002%2Fmds.10332
Ziv Y, Ron N, Butovsky O, et al: Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 2006;9:268–275.1641586710.1038%2Fnn1629
Banati RB, Graeber MB: Surveillance, intervention and cytotoxicity: is there a protective role of microglia? Dev Neurosci 1994;16:114–127.770521910.1159%2F000112098
Jones LL, Banati RB, Graeber MB, et al: Population control of microglia: does apoptosis play a role? J Neurocytol 1997;26:755–770.942617210.1023%2FA%3A1018514415073
Shimizu E, Kawahara K, Kajizono M, et al: IL-4-induced selective clearance of oligomeric β-amyloid peptide1–42 by rat primary type 2 microglia. J Immunol 2008;181:6503–6513.18941241
Frank MG, Wieseler-Frank JL, Watkins LR, Maier SF: Rapid isolation of highly enriched and quiescent microglia from adult rat hippocampus: immunophenotypic and functional characteristics. J Neurosci Methods 2006;151:121–130.1612524710.1016%2Fj.jneumeth.2005.06.026
Suh SW, Shin BS, Ma H, et al: Glucose and NADPH oxidase drive neuronal superoxide formation in stroke. Ann Neurol 2008;64:654–663.1910798810.1002%2Fana.21511
Garden GA, Möller T: Microglia biology in health and disease. J Neuroimmune Pharmacol 2006;1:127–137.1804077910.1007%2Fs11481-006-9015-5
Gensel JC, Nakamura S, Guan Z, et al: Macrophages promote axon regeneration with concurrent neurotoxicity. J Neurosci 2009;29:3956–3968.1932179210.1523%2FJNEUROSCI.3992-08.2009
Machado LS, Kozak A, Ergul A, et al: Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. BMC Neurosci 2006;7:56.1684650110.1186%2F1471-2202-7-56
Ide CF, Scripter JL, Coltman BW, et al: Cellular and molecular correlates to plasticity during recovery from injury in the developing mammalian brain. Prog Brain Res 1996;108:365–377.897981410.1016%2FS0079-6123%2808%2962552-2
Keller M, Griesmaier E, Auer M, et al: Dextromethorphan is protective against sensitized N-methyl-D-aspartate receptor-mediated excitotoxic brain damage in the developing mouse brain. Eur J Neurosci 2008;27:874–883.1827936310.1111%2Fj.1460-9568.2008.06062.x
Liu B, Wang K, Gao HM, et al: Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. J Neurochem 2001;77:182–189.1127927410.1046%2Fj.1471-4159.2001.t01-1-00216.x
Fan LW, Mitchell HJ, Tien LT, et al: Interleukin-1β-induced brain injury in the neonatal rat can be ameliorated by α-phenyl-n-tert-butyl-nitrone. Exp Neurol 2009;220:143–153.1968298710.1016%2Fj.expneurol.2009.08.003
Ginhoux F, Greter M, Leboeuf M, et al: Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010;330:841–845.2096621410.1126%2Fscience.1194637
Lee CK, Weindruch R, Prolla TA: Gene-expression profile of the ageing brain in mice. Nat Genet 2000;25:294–297.1088887610.1038%2F77046
Smith ME, van der Maesen K, Somera FP: Macrophage and microglial responses to cytokines in vitro: phagocytic activity, proteolytic enzyme release, and free radical production. J Neurosci Res 1998;54:68–78.977815110.1002%2F%28SICI%291097-4547%2819981001%2954%3A1%3C68%3A%3AAID-JNR8%3E3.0.CO%3B2-F
Kannan S, Saadani-Makki F, Muzik O, et al: Microglial activation in perinatal rabbit brain induced by intrauterine inflammation: detection with 11C-(R)-PK11195 and small-animal PET. J Nucl Med 2007;48:946–954.1750487110.2967%2Fjnumed.106.038539
Baud O, Daire JL, Dalmaz Y, et al: Gestational hypoxia induces white matter damage in neonatal rats: a new model of periventricular leukomalacia. Brain Pathol 2004;14:1–10.1499793210.1111%2Fj.1750-3639.2004.tb00492.x
Bishop NA, Lu T, Yankner BA: Neural mechanisms of ageing and cognitive decline. Nature 2010;464:529–535.2033613510.103
ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref148
ref30
ref149
ref33
ref146
ref32
ref147
ref39
ref38
ref155
ref156
ref153
ref154
ref151
ref152
ref150
ref24
ref23
ref26
ref25
ref20
ref22
ref157
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref128
ref14
ref129
ref97
ref126
ref96
ref127
ref11
ref99
ref124
ref10
ref98
ref125
ref17
ref16
ref19
ref18
ref93
ref133
ref92
ref134
ref95
ref131
ref94
ref132
ref130
ref91
ref90
ref89
ref139
ref86
ref137
ref85
ref138
ref88
ref135
ref87
ref136
ref82
ref144
ref81
ref145
ref84
ref142
ref83
ref143
ref140
ref141
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – reference: Ekdahl CT, Kokaia Z, Lindvall O: Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 2009;158:1021–1029.1866274810.1016%2Fj.neuroscience.2008.06.052
– reference: Njie EG, Boelen E, Stassen FR, et al: Ex vivo cultures of microglia from young and aged rodent brain reveal age-related changes in microglial function. Neurobiol Aging 2010, E-pub ahead of print.
– reference: Clausen BH, Lambertsen KL, Babcock AA, et al: Interleukin-1β and tumor necrosis factor-α are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J Neuroinflammation 2008;5:46.1894740010.1186%2F1742-2094-5-46
– reference: Arvin KL, Han BH, Du Y, et al: Minocycline markedly protects the neonatal brain against hypoxic-ischemic injury. Ann Neurol 2002;52:54–61.1211204710.1002%2Fana.10242
– reference: Streit WJ, Hurley SD, McGraw TS, Semple-Rowland SL: Comparative evaluation of cytokine profiles and reactive gliosis supports a critical role for interleukin-6 in neuron-glia signaling during regeneration. J Neurosci Res 2000;61:10–20.1086179510.1002%2F1097-4547%2820000701%2961%3A1%3C10%3A%3AAID-JNR2%3E3.0.CO%3B2-E
– reference: Fan LW, Mitchell HJ, Tien LT, et al: Interleukin-1β-induced brain injury in the neonatal rat can be ameliorated by α-phenyl-n-tert-butyl-nitrone. Exp Neurol 2009;220:143–153.1968298710.1016%2Fj.expneurol.2009.08.003
– reference: Polazzi E, Contestabile A: Overactivation of LPS-stimulated microglial cells by co-cultured neurons or neuron-conditioned medium. J Neuroimmunol 2006;172:104–111.1637643610.1016%2Fj.jneuroim.2005.11.005
– reference: Kuhn SA, van Landeghem FK, Zacharias R, et al: Microglia express GABAB receptors to modulate interleukin release. Mol Cell Neurosci 2004;25:312–322.1501994710.1016%2Fj.mcn.2003.10.023
– reference: Taylor DL, Diemel LT, Pocock JM: Activation of microglial group III metabotropic glutamate receptors protects neurons against microglial neurotoxicity. J Neurosci 2003;23:2150–2160.12657674
– reference: Baud O, Daire JL, Dalmaz Y, et al: Gestational hypoxia induces white matter damage in neonatal rats: a new model of periventricular leukomalacia. Brain Pathol 2004;14:1–10.1499793210.1111%2Fj.1750-3639.2004.tb00492.x
– reference: Olivier P, Baud O, Evrard P, et al: Prenatal ischemia and white matter damage in rats. J Neuropathol Exp Neurol 2005;64:998–1006.1625449410.1097%2F01.jnen.0000187052.81889.57
– reference: Henry CJ, Huang Y, Wynne AM, Godbout JP: Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1β and anti-inflammatory IL-10 cytokines. Brain Behav Immun 2009;23:309–317.1881484610.1016%2Fj.bbi.2008.09.002
– reference: Taylor DL, Jones F, Kubota ES, Pocock JM: Stimulation of microglial metabotropic glutamate receptor mGlu2 triggers tumor necrosis factor α-induced neurotoxicity in concert with microglial-derived Fas ligand. J Neurosci 2005;25:2952–2964.1577235510.1523%2FJNEUROSCI.4456-04.2005
– reference: Weinstein JR, Koerner IP, Möller T: Microglia in ischemic brain injury. Future Neurol 2010;5:227–246.2040117110.2217%2Ffnl.10.1
– reference: Rezaie P, Cairns NJ, Male DK: Expression of adhesion molecules on human fetal cerebral vessels: relationship to microglial colonisation during development. Brain Res Dev Brain Res 1997;104:175–189.9466720
– reference: Popovic N, Schubart A, Goetz BD, et al: Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann Neurol 2002;51:215–223.1183537810.1002%2Fana.10092
– reference: O’Donnell SL, Frederick TJ, Krady JK, et al: IGF-I and microglia/macrophage proliferation in the ischemic mouse brain. Glia 2002;39:85–97.1211237810.1002%2Fglia.10081
– reference: Hornig M, Weissenböck H, Horscroft N, Lipkin WI: An infection-based model of neurodevelopmental damage. Proc Natl Acad Sci USA 1999;96:12102–12107.1051858310.1073%2Fpnas.96.21.12102
– reference: Chen H, Song YS, Chan PH: Inhibition of NADPH oxidase is neuroprotective after ischemia-reperfusion. J Cereb Blood Flow Metab 2009;29:1262–1272.1941775710.1038%2Fjcbfm.2009.47
– reference: Mandrekar S, Jiang Q, Lee CY, et al: Microglia mediate the clearance of soluble Aβ through fluid phase macropinocytosis. J Neurosci 2009;29:4252–4262.1933961910.1523%2FJNEUROSCI.5572-08.2009
– reference: Kotter MR, Li WW, Zhao C, Franklin RJ: Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci 2006;26:328–332.1639970310.1523%2FJNEUROSCI.2615-05.2006
– reference: Barron KD: Microglia: history, cytology, and reactions. J Neurol Sci 2003;207:98.1261493810.1016%2FS0022-510X%2802%2900430-6
– reference: Nakanishi M, Niidome T, Matsuda S, et al: Microglia-derived interleukin-6 and leukaemia inhibitory factor promote astrocytic differentiation of neural stem/progenitor cells. Eur J Neurosci 2007;25:649–658.1732876910.1111%2Fj.1460-9568.2007.05309.x
– reference: Mantovani A, Sica A, Sozzani S, et al: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004;25:677–686.1553083910.1016%2Fj.it.2004.09.015
– reference: Sawada M, Kondo N, Suzumura A, Marunouchi T: Production of tumor necrosis factor-α by microglia and astrocytes in culture. Brain Res 1989;491:394–397.276589510.1016%2F0006-8993%2889%2990078-4
– reference: Harry GJ, McPherson CA, Wine RN, et al: Trimethyltin-induced neurogenesis in the murine hippocampus. Neurotox Res 2004;5:623–627.1511123910.1007%2FBF03033182
– reference: Rappert A, Bechmann I, Pivneva T, et al: CXCR3-dependent microglial recruitment is essential for dendrite loss after brain lesion. J Neurosci 2004;24:8500–8509.1545682410.1523%2FJNEUROSCI.2451-04.2004
– reference: Jonakait GM, Luskin MB, Wei R, et al: Conditioned medium from activated microglia promotes cholinergic differentiation in the basal forebrain in vitro. Dev Biol 1996;177:85–95.866087910.1006%2Fdbio.1996.0147
– reference: Retamal MA, Froger N, Palacios-Prado N, et al: Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J Neurosci 2007;27:13781–13792.1807769010.1523%2FJNEUROSCI.2042-07.2007
– reference: Lechpammer M, Manning SM, Samonte F, et al: Minocycline treatment following hypoxic/ischaemic injury attenuates white matter injury in a rodent model of periventricular leucomalacia. Neuropathol Appl Neurobiol 2008;34:379–393.1822126110.1111%2Fj.1365-2990.2007.00925.x
– reference: Zhao X, Haensel C, Araki E, et al: Gene-dosing effect and persistence of reduction in ischemic brain injury in mice lacking inducible nitric oxide synthase. Brain Res 2000;872:215–218.1092469610.1016%2FS0006-8993%2800%2902459-8
– reference: Yrjänheikki J, Tikka T, Keinänen R, et al: A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 1999;96:13496–13500.1055734910.1073%2Fpnas.96.23.13496
– reference: Yadav A, Collman RG: CNS inflammation and macrophage/microglial biology associated with HIV-1 infection. J Neuroimmune Pharmacol 2009;4:430–447.1976855310.1007%2Fs11481-009-9174-2
– reference: Bruce AJ, Boling W, Kindy MS, et al: Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med 1996;2:788–794.867392510.1038%2Fnm0796-788
– reference: Ferrer I, Bernet E, Soriano E, et al: Naturally occurring cell death in the cerebral cortex of the rat and removal of dead cells by transitory phagocytes. Neuroscience 1990;39:451–458.208726610.1016%2F0306-4522%2890%2990281-8
– reference: Sawada M, Sawada H, Nagatsu T: Effects of aging on neuroprotective and neurotoxic properties of microglia in neurodegenerative diseases. Neurodegener Dis 2008;5:254–256.1832240510.1159%2F000113717
– reference: Rezaie P: Microglia in the human nervous system during development. Neuroembryology 2003;2:18–31.10.1159%2F000068498
– reference: Monier A, Evrard P, Gressens P, Verney C: Distribution and differentiation of microglia in the human encephalon during the first two trimesters of gestation. J Comp Neurol 2006;499:565–582.1702927110.1002%2Fcne.21123
– reference: Haynes SE, Hollopeter G, Yang G, et al: The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 2006;9:1512–1519.1711504010.1038%2Fnn1805
– reference: Welser JV, Li L, Milner R: Microglial activation state exerts a biphasic influence on brain endothelial cell proliferation by regulating the balance of TNF and TGF-β1. J Neuroinflammation 2010;7:89.2113428910.1186%2F1742-2094-7-89
– reference: Jack C, Ruffini F, Bar-Or A, Antel JP: Microglia and multiple sclerosis. J Neurosci Res 2005;81:363–373.1594818810.1002%2Fjnr.20482
– reference: Buchanan JB, Sparkman NL, Chen J, Johnson RW: Cognitive and neuroinflammatory consequences of mild repeated stress are exacerbated in aged mice. Psychoneuroendocrinology 2008;33:755–765.1840742510.1016%2Fj.psyneuen.2008.02.013
– reference: Gordon S: Alternative activation of macrophages. Nat Rev Immunol 2003;3:23–35.1251187310.1038%2Fnri978
– reference: Walter L, Neumann H: Role of microglia in neuronal degeneration and regeneration. Semin Immunopathol 2009;31:513–525.1976357410.1007%2Fs00281-009-0180-5
– reference: Jones LL, Banati RB, Graeber MB, et al: Population control of microglia: does apoptosis play a role? J Neurocytol 1997;26:755–770.942617210.1023%2FA%3A1018514415073
– reference: Kaindl AM, Favrais G, Gressens P: Molecular mechanisms involved in injury to the preterm brain. J Child Neurol 2009;24:1112–1118.1960577610.1177%2F0883073809337920
– reference: Kannan S, Saadani-Makki F, Muzik O, et al: Microglial activation in perinatal rabbit brain induced by intrauterine inflammation: detection with 11C-(R)-PK11195 and small-animal PET. J Nucl Med 2007;48:946–954.1750487110.2967%2Fjnumed.106.038539
– reference: Machado LS, Kozak A, Ergul A, et al: Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. BMC Neurosci 2006;7:56.1684650110.1186%2F1471-2202-7-56
– reference: Suh SW, Shin BS, Ma H, et al: Glucose and NADPH oxidase drive neuronal superoxide formation in stroke. Ann Neurol 2008;64:654–663.1910798810.1002%2Fana.21511
– reference: Banati RB, Graeber MB: Surveillance, intervention and cytotoxicity: is there a protective role of microglia? Dev Neurosci 1994;16:114–127.770521910.1159%2F000112098
– reference: Zhu P, Hata R, Cao F, et al: Ramified microglial cells promote astrogliogenesis and maintenance of neural stem cells through activation of Stat3 function. FASEB J 2008;22:3866–3877.1868507810.1096%2Ffj.08-105908
– reference: Tomita M, Mori T, Maruyama K, et al: A comparison of neural differentiation and retinal transplantation with bone marrow-derived cells and retinal progenitor cells. Stem Cells 2006;24:2270–2278.1700843010.1634%2Fstemcells.2005-0507
– reference: Nimmerjahn A, Kirchhoff F, Helmchen F: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005;308:1314–1318.1583171710.1126%2Fscience.1110647
– reference: Antony JM, Paquin A, Nutt SL, et al: Endogenous microglia regulate development of embryonic cortical precursor cells. J Neurosci Res 2011;89:286–298.2125931610.1002%2Fjnr.22533
– reference: Hudson LC, Bragg DC, Tompkins MB, Meeker RB: Astrocytes and microglia differentially regulate trafficking of lymphocyte subsets across brain endothelial cells. Brain Res 2005;1058:148–160.1613766310.1016%2Fj.brainres.2005.07.071
– reference: Lee SC, Liu W, Dickson DW, et al: Cytokine production by human fetal microglia and astrocytes: differential induction by lipopolysaccharide and IL-1β. J Immunol 1993;150:2659–2667.8454848
– reference: Du Y, Ma Z, Lin S, et al: Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci USA 2001;98:14669–14674.1172492910.1073%2Fpnas.251341998
– reference: Hutton LC, Castillo-Melendez M, Smythe GA, Walker DW: Microglial activation, macrophage infiltration, and evidence of cell death in the fetal brain after uteroplacental administration of lipopolysaccharide in sheep in late gestation. Am J Obstet Gynecol 2008;198:117e1–e11.1816632310.1016%2Fj.ajog.2007.06.035
– reference: Hirayama A, Okoshi Y, Hachiya Y, et al: Early immunohistochemical detection of axonal damage and glial activation in extremely immature brains with periventricular leukomalacia. Clin Neuropathol 2001;20:87–91.11327303
– reference: Frank MG, Wieseler-Frank JL, Watkins LR, Maier SF: Rapid isolation of highly enriched and quiescent microglia from adult rat hippocampus: immunophenotypic and functional characteristics. J Neurosci Methods 2006;151:121–130.1612524710.1016%2Fj.jneumeth.2005.06.026
– reference: Ide CF, Scripter JL, Coltman BW, et al: Cellular and molecular correlates to plasticity during recovery from injury in the developing mammalian brain. Prog Brain Res 1996;108:365–377.897981410.1016%2FS0079-6123%2808%2962552-2
– reference: Moisse K, Strong MJ: Innate immunity in amyotrophic lateral sclerosis. Biochim Biophys Acta 2006;1762:1083–1093.16624536
– reference: Ovanesov MV, Ayhan Y, Wolbert C, et al: Astrocytes play a key role in activation of microglia by persistent Borna disease virus infection. J Neuroinflammation 2008;5:50.1901443210.1186%2F1742-2094-5-50
– reference: Biber K, Neumann H, Inoue K, Boddeke HW: Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci 2007;30:596–602.1795092610.1016%2Fj.tins.2007.08.007
– reference: Streit WJ: Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 2002;40:133–139.1237990110.1002%2Fglia.10154
– reference: Olah M, Biber K, Vinet J, Boddeke HW: Microglia phenotype diversity. CNS Neurol Disord Drug Targets 2011;10:108–118.2114314110.2174%2F187152711794488575
– reference: Walker EJ, Rosenberg GA: TIMP-3 and MMP-3 contribute to delayed inflammation and hippocampal neuronal death following global ischemia. Exp Neurol 2009;216:122–131.1911153910.1016%2Fj.expneurol.2008.11.022
– reference: Pavese N, Gerhard A, Tai YF, et al: Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 2006;66:1638–1643.1676993310.1212%2F01.wnl.0000222734.56412.17
– reference: Esiri MM, al Izzi MS, Reading MC: Macrophages, microglial cells, and HLA-DR antigens in fetal and infant brain. J Clin Pathol 1991;44:102–106.186498210.1136%2Fjcp.44.2.102
– reference: Davalos D, Grutzendler J, Yang G, et al: ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005;8:752–758.1589508410.1038%2Fnn1472
– reference: Monier A, Adle-Biassette H, Delezoide AL, et al: Entry and distribution of microglial cells in human embryonic and fetal cerebral cortex. J Neuropathol Exp Neurol 2007;66:372–382.1748369410.1097%2Fnen.0b013e3180517b46
– reference: Watters JJ, Schartner JM, Badie B: Microglia function in brain tumors. J Neurosci Res 2005;81:447–455.1595990310.1002%2Fjnr.20485
– reference: Gensel JC, Nakamura S, Guan Z, et al: Macrophages promote axon regeneration with concurrent neurotoxicity. J Neurosci 2009;29:3956–3968.1932179210.1523%2FJNEUROSCI.3992-08.2009
– reference: Noda M, Nakanishi H, Nabekura J, Akaike N: AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. J Neurosci 2000;20:251–258.10627602
– reference: Jin Y, Silverman AJ, Vannucci SJ: Mast cell stabilization limits hypoxic-ischemic brain damage in the immature rat. Dev Neurosci 2007;29:373–384.1776220510.1159%2F000105478
– reference: Smith ME, van der Maesen K, Somera FP: Macrophage and microglial responses to cytokines in vitro: phagocytic activity, proteolytic enzyme release, and free radical production. J Neurosci Res 1998;54:68–78.977815110.1002%2F%28SICI%291097-4547%2819981001%2954%3A1%3C68%3A%3AAID-JNR8%3E3.0.CO%3B2-F
– reference: Rezaie P, Patel K, Male DK: Microglia in the human fetal spinal cord: patterns of distribution, morphology and phenotype. Brain Res Dev Brain Res 1999;115:71–81.1036670410.1016%2FS0165-3806%2899%2900043-7
– reference: Beauvillain C, Donnou S, Jarry U, et al: Neonatal and adult microglia cross-present exogenous antigens. Glia 2008;56:69–77.1793294210.1002%2Fglia.20565
– reference: Dommergues MA, Plaisant F, Verney C, Gressens P: Early microglial activation following neonatal excitotoxic brain damage in mice: a potential target for neuroprotection. Neuroscience 2003;121:619–628.1456802210.1016%2FS0306-4522%2803%2900558-X
– reference: Cai Z, Lin S, Fan LW, et al: Minocycline alleviates hypoxic-ischemic injury to developing oligodendrocytes in the neonatal rat brain. Neuroscience 2006;137:425–435.1628983810.1016%2Fj.neuroscience.2005.09.023
– reference: Heppner FL, Greter M, Marino D, et al: Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 2005;11:146–152.1566583310.1038%2Fnm1177
– reference: Fox C, Dingman A, Derugin N, et al: Minocycline confers early but transient protection in the immature brain following focal cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 2005;25:1138–1149.1587497510.1038%2Fsj.jcbfm.9600121
– reference: Strle K, Zhou JH, Broussard SR, et al: IL-10 promotes survival of microglia without activating Akt. J Neuroimmunol 2002;122:9–19.1177753910.1016%2FS0165-5728%2801%2900444-1
– reference: Hanisch UK, Kettenmann H: Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007;10:1387–1394.1796565910.1038%2Fnn1997
– reference: Tahraoui SL, Marret S, Bodenant C, et al: Central role of microglia in neonatal excitotoxic lesions of the murine periventricular white matter. Brain Pathol 2001;11:56–71.1114520410.1111%2Fj.1750-3639.2001.tb00381.x
– reference: Pang Y, Campbell L, Zheng B, et al: Lipopolysaccharide-activated microglia induce death of oligodendrocyte progenitor cells and impede their development. Neuroscience 2010;166:464–475.2003583710.1016%2Fj.neuroscience.2009.12.040
– reference: Svedin P, Kjellmer I, Welin AK, et al: Maturational effects of lipopolysaccharide on white-matter injury in fetal sheep. J Child Neurol 2005;20:960–964.1641784210.1177%2F08830738050200120501
– reference: Doverhag C, Keller M, Karlsson A, et al: Pharmacological and genetic inhibition of NADPH oxidase does not reduce brain damage in different models of perinatal brain injury in newborn mice. Neurobiol Dis 2008;31:133–144.1857109910.1016%2Fj.nbd.2008.04.003
– reference: Priller J, Flügel A, Wehner T, et al: Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat Med 2001;7:1356–1361.1172697810.1038%2Fnm1201-1356
– reference: Sonnenfeld MJ, Jacobs JR: Macrophages and glia participate in the removal of apoptotic neurons from the Drosophila embryonic nervous system. J Comp Neurol 1995;359:644–652.749955310.1002%2Fcne.903590410
– reference: Rezaie P, Dean A: Periventricular leukomalacia, inflammation and white matter lesions within the developing nervous system. Neuropathology 2002;22:106–132.1241655110.1046%2Fj.1440-1789.2002.00438.x
– reference: Bishop NA, Lu T, Yankner BA: Neural mechanisms of ageing and cognitive decline. Nature 2010;464:529–535.2033613510.1038%2Fnature08983
– reference: Kadhim H, Tabarki B, Verellen G, et al: Inflammatory cytokines in the pathogenesis of periventricular leukomalacia. Neurology 2001;56:1278–1284.11376173
– reference: McRae A, Gilland E, Bona E, Hagberg H: Microglia activation after neonatal hypoxic-ischemia. Brain Res Dev Brain Res 1995;84:245–252.774364410.1016%2F0165-3806%2894%2900177-2
– reference: Frank MG, Barrientos RM, Watkins LR, Maier SF: Aging sensitizes rapidly isolated hippocampal microglia to LPS ex vivo. J Neuroimmunol 2010;226:181–184.2053773010.1016%2Fj.jneuroim.2010.05.022
– reference: Clark WM, Calcagno FA, Gabler WL, et al: Reduction of central nervous system reperfusion injury in rabbits using doxycycline treatment. Stroke 1994;25:1411–1415, discussion 1416.802335710.1161%2F01.STR.25.7.1411
– reference: Romero-Sandoval EA, Horvath RJ, DeLeo JA: Neuroimmune interactions and pain: focus on glial-modulating targets. Curr Opin Investig Drugs 2008;9:726–734.18600578
– reference: Buller KM, Carty ML, Reinebrant HE, Wixey JA: Minocycline: a neuroprotective agent for hypoxic-ischemic brain injury in the neonate? J Neurosci Res 2009;87:599–608.1883100510.1002%2Fjnr.21890
– reference: Boche D, Cunningham C, Docagne F, et al: TGFβ1 regulates the inflammatory response during chronic neurodegeneration. Neurobiol Dis 2006;22:638–650.1651029110.1016%2Fj.nbd.2006.01.004
– reference: Lee CK, Weindruch R, Prolla TA: Gene-expression profile of the ageing brain in mice. Nat Genet 2000;25:294–297.1088887610.1038%2F77046
– reference: Cimino PJ, Keene CD, Breyer RM, et al: Therapeutic targets in prostaglandin E2 signaling for neurologic disease. Curr Med Chem 2008;15:1863–1869.1869104410.2174%2F092986708785132915
– reference: Sugama S, Takenouchi T, Fujita M, et al: Differential microglial activation between acute stress and lipopolysaccharide treatment. J Neuroimmunol 2009;207:24–31.1911135510.1016%2Fj.jneuroim.2008.11.007
– reference: Deng Y, Lu J, Sivakumar V, et al: Amoeboid microglia in the periventricular white matter induce oligodendrocyte damage through expression of proinflammatory cytokines via MAP kinase signaling pathway in hypoxic neonatal rats. Brain Pathol 2008;18:387–400.1837117910.1111%2Fj.1750-3639.2008.00138.x
– reference: Yenari MA, Kauppinen TM, Swanson RA: Microglial activation in stroke: therapeutic targets. Neurotherapeutics 2010;7:378–391.2088050210.1016%2Fj.nurt.2010.07.005
– reference: Fan LW, Lin S, Pang Y, et al: Minocycline attenuates hypoxia-ischemia-induced neurological dysfunction and brain injury in the juvenile rat. Eur J Neurosci 2006;24:341–350.1683663910.1111%2Fj.1460-9568.2006.04918.x
– reference: Turrin NP, Rivest S: Molecular and cellular immune mediators of neuroprotection. Mol Neurobiol 2006;34:221–242.1730835410.1385%2FMN%3A34%3A3%3A221
– reference: Raivich G: Like cops on the beat: the active role of resting microglia. Trends Neurosci 2005;28:571–573.1616522810.1016%2Fj.tins.2005.09.001
– reference: Streit WJ, Kreutzberg GW: Response of endogenous glial cells to motor neuron degeneration induced by toxic ricin. J Comp Neurol 1988;268:248–263.336098710.1002%2Fcne.902680209
– reference: Franklin RJ, Kotter MR: The biology of CNS remyelination: the key to therapeutic advances. J Neurol 2008;255(suppl 1):19–25.1831767310.1007%2Fs00415-008-1004-6
– reference: Hagberg H, Peebles D, Mallard C: Models of white matter injury: comparison of infectious, hypoxic-ischemic, and excitotoxic insults. Ment Retard Dev Disabil Res Rev 2002;8:30–38.1192138410.1002%2Fmrdd.10007
– reference: Zhu S, Stavrovskaya IG, Drozda M, et al: Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 2002;417:74–78.1198666810.1038%2F417074a
– reference: Butovsky O, Landa G, Kunis G, et al: Induction and blockage of oligodendrogenesis by differently activated microglia in an animal model of multiple sclerosis. J Clin Invest 2006;116:905–915.1655730210.1172%2FJCI26836
– reference: Teismann P, Tieu K, Cohen O, et al: Pathogenic role of glial cells in Parkinson’s disease. Mov Disord 2003;18:121–129.1253920410.1002%2Fmds.10332
– reference: El Khoury J, Toft M, Hickman SE, et al: Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 2007;13:432–438.1735162310.1038%2Fnm1555
– reference: Deguchi K, Oguchi K, Takashima S: Characteristic neuropathology of leukomalacia in extremely low birth weight infants. Pediatr Neurol 1997;16:296–300.925896110.1016%2FS0887-8994%2897%2900041-6
– reference: del Zoppo GJ, Milner R, Mabuchi T, et al: Microglial activation and matrix protease generation during focal cerebral ischemia. Stroke 2007;38:646–651.1726170810.1161%2F01.STR.0000254477.34231.cb
– reference: Lee H, Park JW, Kim SP, et al: Doxycycline inhibits matrix metalloproteinase-9 and laminin degradation after transient global cerebral ischemia. Neurobiol Dis 2009;34:189–198.1920085410.1016%2Fj.nbd.2008.12.012
– reference: Decoursey TE, Ligeti E: Regulation and termination of NADPH oxidase activity. Cell Mol Life Sci 2005;62:2173–2193.1613223210.1007%2Fs00018-005-5177-1
– reference: Marin-Teva JL, Dusart I, Colin C, et al: Microglia promote the death of developing Purkinje cells. Neuron 2004;41:535–547.1498020310.1016%2FS0896-6273%2804%2900069-8
– reference: Jin Y, Silverman AJ, Vannucci SJ: Mast cells are early responders after hypoxia-ischemia in immature rat brain. Stroke 2009;40:3107–3112.1952099110.1161%2FSTROKEAHA.109.549691
– reference: Vodovotz Y, Bogdan C: Control of nitric oxide synthase expression by transforming growth factor-β: implications for homeostasis. Prog Growth Factor Res 1994;5:341–351.754005910.1016%2F0955-2235%2894%2900004-5
– reference: Jantzie LL, Cheung PY, Todd KG: Doxycycline reduces cleaved caspase-3 and microglial activation in an animal model of neonatal hypoxia-ischemia. J Cereb Blood Flow Metab 2005;25:314–324.1564774110.1038%2Fsj.jcbfm.9600025
– reference: Glezer I, Lapointe A, Rivest S: Innate immunity triggers oligodendrocyte progenitor reactivity and confines damages to brain injuries. FASEB J 2006;20:750–752.16464958
– reference: Simard AR, Soulet D, Gowing G, et al: Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 2006;49:489–502.1647666010.1016%2Fj.neuron.2006.01.022
– reference: Denker SP, Ji S, Dingman A, et al: Macrophages are comprised of resident brain microglia not infiltrating peripheral monocytes acutely after neonatal stroke. J Neurochem 2007;100:893–904.1721270110.1111%2Fj.1471-4159.2006.04162.x
– reference: Kaur C, Hao AJ, Wu CH, Ling EA: Origin of microglia. Microsc Res Tech 2001;54:2–9.1152695310.1002%2Fjemt.1114
– reference: Graeber MB, Streit WJ: Microglia: biology and pathology. Acta Neuropathol 2010;119:89–105.2001287310.1007%2Fs00401-009-0622-0
– reference: Ivacko JA, Sun R, Silverstein FS: Hypoxic-ischemic brain injury induces an acute microglial reaction in perinatal rats. Pediatr Res 1996;39:39–47.882538410.1203%2F00006450-199601000-00006
– reference: Zhao BQ, Wang S, Kim HY, et al: Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med 2006;12:441–445.1656572310.1038%2Fnm1387
– reference: Yrjänheikki J, Keinänen R, Pellikka M, et al: Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA 1998;95:15769–15774.986104510.1073%2Fpnas.95.26.15769
– reference: Pocock JM, Kettenmann H: Neurotransmitter receptors on microglia. Trends Neurosci 2007;30:527–535.1790465110.1016%2Fj.tins.2007.07.007
– reference: Blalock EM, Chen KC, Sharrow K, et al: Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment. J Neurosci 2003;23:3807–3819.12736351
– reference: Prinz M, Mildner A: Microglia in the CNS: immigrants from another world. Glia 2011;59:177–187.2112565910.1002%2Fglia.21104
– reference: Jonakait GM, Wen Y, Wan Y, Ni L: Macrophage cell-conditioned medium promotes cholinergic differentiation of undifferentiated progenitors and synergizes with nerve growth factor action in the developing basal forebrain. Exp Neurol 2000;161:285–296.1068329410.1006%2Fexnr.1999.7255
– reference: Dingman A, Lee SY, Derugin N, et al: Aminoguanidine inhibits caspase-3 and calpain activation without affecting microglial activation following neonatal transient cerebral ischemia. J Neurochem 2006;96:1467–1479.1646423410.1111%2Fj.1471-4159.2006.03672.x
– reference: Ziv Y, Ron N, Butovsky O, et al: Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 2006;9:268–275.1641586710.1038%2Fnn1629
– reference: Rezaie P, Male D: Colonisation of the developing human brain and spinal cord by microglia: a review. Microsc Res Tech 1999;45:359–382.1040226410.1002%2F%28SICI%291097-0029%2819990615%2945%3A6%3C359%3A%3AAID-JEMT4%3E3.0.CO%3B2-D
– reference: Tsuji M, Wilson MA, Lange MS, Johnston MV: Minocycline worsens hypoxic-ischemic brain injury in a neonatal mouse model. Exp Neurol 2004;189:58–65.1529683610.1016%2Fj.expneurol.2004.01.011
– reference: Simard AR, Rivest S: Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J 2004;18:998–1000.15084516
– reference: Keller M, Griesmaier E, Auer M, et al: Dextromethorphan is protective against sensitized N-methyl-D-aspartate receptor-mediated excitotoxic brain damage in the developing mouse brain. Eur J Neurosci 2008;27:874–883.1827936310.1111%2Fj.1460-9568.2008.06062.x
– reference: Kahles T, Luedike P, Endres M, et al: NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke 2007;38:3000–3006.1791676410.1161%2FSTROKEAHA.107.489765
– reference: Bukowski L: Synthesis of 2-(2′-thiazolyl) alkanebenzimidazoles: potential anthelmintics (in Polish). Acta Pol Pharm 1975;32:651–656.1211204
– reference: Opydo-Chanek M, Dabrowski Z: Response of astrocytes and microglia/macrophages to brain injury after bone marrow stromal cell transplantation: a quantitative study. Neurosci Lett 2011;487:163–168.2095118610.1016%2Fj.neulet.2010.10.014
– reference: Kigerl KA, Gensel JC, Ankeny DP, et al: Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 2009;29:13435–13444.1986455610.1523%2FJNEUROSCI.3257-09.2009
– reference: Chen M, Ona VO, Li M, et al: Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 2000;6:797–801.1088892910.1038%2F80538
– reference: Ginhoux F, Greter M, Leboeuf M, et al: Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010;330:841–845.2096621410.1126%2Fscience.1194637
– reference: Verney C, Monier A, Fallet-Bianco C, Gressens P: Early microglial colonization of the human forebrain and possible involvement in periventricular white-matter injury of preterm infants. J Anat 2010;217:436–448.2055740110.1111%2Fj.1469-7580.2010.01245.x
– reference: Jurgens HA, Johnson RW: Dysregulated neuronal-microglial cross-talk during aging, stress and inflammation. Exp Neurol 2010, E-pub ahead of print.
– reference: Taylor DL, Diemel LT, Cuzner ML, Pocock JM: Activation of group II metabotropic glutamate receptors underlies microglial reactivity and neurotoxicity following stimulation with chromogranin A, a peptide up-regulated in Alzheimer’s disease. J Neurochem 2002;82:1179–1191.1235876510.1046%2Fj.1471-4159.2002.01062.x
– reference: Biber K, Laurie DJ, Berthele A, et al: Expression and signaling of group I metabotropic glutamate receptors in astrocytes and microglia. J Neurochem 1999;72:1671–1680.1009887610.1046%2Fj.1471-4159.1999.721671.x
– reference: Lobsiger CS, Cleveland DW: Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat Neurosci 2007;10:1355–1360.1796565510.1038%2Fnn1988
– reference: Liu B, Wang K, Gao HM, et al: Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. J Neurochem 2001;77:182–189.1127927410.1046%2Fj.1471-4159.2001.t01-1-00216.x
– reference: Mallard C, Welin AK, Peebles D, et al: White matter injury following systemic endotoxemia or asphyxia in the fetal sheep. Neurochem Res 2003;28:215–223.1260869510.1023%2FA%3A1022368915400
– reference: Morgan D: The role of microglia in antibody-mediated clearance of amyloid-β from the brain. CNS Neurol Disord Drug Targets 2009;8:7–15.1927563310.2174%2F187152709787601821
– reference: Garden GA, Möller T: Microglia biology in health and disease. J Neuroimmune Pharmacol 2006;1:127–137.1804077910.1007%2Fs11481-006-9015-5
– reference: Kreutzberg GW: Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996;19:312–318.884359910.1016%2F0166-2236%2896%2910049-7
– reference: Hagino Y, Kariura Y, Manago Y, et al: Heterogeneity and potentiation of AMPA type of glutamate receptors in rat cultured microglia. Glia 2004;47:68–77.1513901410.1002%2Fglia.20034
– reference: Kim HJ, Ifergan I, Antel JP, et al: Type 2 monocyte and microglia differentiation mediated by glatiramer acetate therapy in patients with multiple sclerosis. J Immunol 2004;172:7144–7153.15153538
– reference: Davies CA, Loddick SA, Toulmond S, et al: The progression and topographic distribution of interleukin-1β expression after permanent middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 1999;19:87–98.988635910.1097%2F00004647-199901000-00010
– reference: Groemping Y, Rittinger K: Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J 2005;386:401–416.1558825510.1042%2FBJ20041835
– reference: Shimizu E, Kawahara K, Kajizono M, et al: IL-4-induced selective clearance of oligomeric β-amyloid peptide1–42 by rat primary type 2 microglia. J Immunol 2008;181:6503–6513.18941241
– reference: Tang M, Alexander H, Clark RS, et al: Minocycline reduces neuronal death and attenuates microglial response after pediatric asphyxial cardiac arrest. J Cereb Blood Flow Metab 2010;30:119–129.1975602310.1038%2Fjcbfm.2009.194
– reference: Zheng Z, Yenari MA: Post-ischemic inflammation: molecular mechanisms and therapeutic implications. Neurol Res 2004;26:884–892.1572727210.1179%2F016164104X2357
– reference: Massengale M, Wagers AJ, Vogel H, Weissman IL: Hematopoietic cells maintain hematopoietic fates upon entering the brain. J Exp Med 2005;201:1579–1589.1589727510.1084%2Fjem.20050030
– reference: Miller FD, Gauthier-Fisher A: Home at last: neural stem cell niches defined. Cell Stem Cell 2009;4:507–510.1949727910.1016%2Fj.stem.2009.05.008
– reference: Aarum J, Sandberg K, Haeberlein SL, Persson MA: Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci USA 2003;100:15983–15988.1466844810.1073%2Fpnas.2237050100
– reference: Mosser DM, Edwards JP: Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008;8:958–969.1902999010.1038%2Fnri2448
– reference: Chew LJ, Takanohashi A, Bell M: Microglia and inflammation: impact on developmental brain injuries. Ment Retard Dev Disabil Res Rev 2006;12:105–112.1680789010.1002%2Fmrdd.20102
– reference: Carty ML, Wixey JA, Colditz PB, Buller KM: Post-insult minocycline treatment attenuates hypoxia-ischemia-induced neuroinflammation and white matter injury in the neonatal rat: a comparison of two different dose regimens. Int J Dev Neurosci 2008;26:477–485.1838777110.1016%2Fj.ijdevneu.2008.02.005
– reference: Dougherty KD, Dreyfus CF, Black IB: Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury. Neurobiol Dis 2000;7:574–585.1111425710.1006%2Fnbdi.2000.0318
– reference: Fontaine V, Mohand-Said S, Hanoteau N, et al: Neurodegenerative and neuroprotective effects of tumor necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor 1 and TNF receptor 2. J Neurosci 2002;22:RC216.
– reference: Asahi M, Asahi K, Jung JC, et al: Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab 2000;20:1681–1689.1112978410.1097%2F00004647-200012000-00007
– reference: Wyss-Coray T, Lin C, Yan F, et al: TGF-β1 promotes microglial amyloid-β clearance and reduces plaque burden in transgenic mice. Nat Med 2001;7:612–618.1132906410.1038%2F87945
– reference: Gottlieb M, Matute C: Expression of ionotropic glutamate receptor subunits in glial cells of the hippocampal CA1 area following transient forebrain ischemia. J Cereb Blood Flow Metab 1997;17:290–300.911990210.1097%2F00004647-199703000-00006
– ident: ref27
  doi: 10.1159%2F000068498
– ident: ref154
  doi: 10.1002%2Fglia.20034
– ident: ref1
  doi: 10.1177%2F0883073809337920
– ident: ref17
  doi: 10.1186%2F1742-2094-5-46
– ident: ref109
  doi: 10.1523%2FJNEUROSCI.2042-07.2007
– ident: ref142
  doi: 10.1523%2FJNEUROSCI.2615-05.2006
– ident: ref81
  doi: 10.1097%2F01.jnen.0000187052.81889.57
– ident: ref151
  doi: 10.1046%2Fj.1471-4159.1999.721671.x
– ident: ref98
  doi: 10.1038%2Fnri2448
– ident: ref125
  doi: 10.1073%2Fpnas.95.26.15769
– ident: ref2
  doi: 10.2217%2Ffnl.10.1
– ident: ref157
  doi: 10.1172%2FJCI26836
– ident: ref12
  doi: 10.1002%2Fglia.21104
– ident: ref44
  doi: 10.1002%2Fglia.10081
– ident: ref69
  doi: 10.1002%2Fmrdd.10007
– ident: ref148
  doi: 10.1016%2Fj.nbd.2006.01.004
– ident: ref26
  doi: 10.1038%2Fnm1201-1356
– ident: ref134
  doi: 10.1111%2Fj.1460-9568.2006.04918.x
– ident: ref62
  doi: 10.1016%2Fj.jneuroim.2008.11.007
– ident: ref93
  doi: 10.1016%2Fj.psyneuen.2008.02.013
– ident: ref14
  doi: 10.1002%2Fjemt.1114
– ident: ref24
  doi: 10.1634%2Fstemcells.2005-0507
– ident: ref30
  doi: 10.2174%2F187152711794488575
– ident: ref114
  doi: 10.1016%2F0955-2235%2894%2900004-5
– ident: ref82
  doi: 10.1111%2Fj.1750-3639.2008.00138.x
– ident: ref92
  doi: 10.1016%2Fj.jneumeth.2005.06.026
– ident: ref102
  doi: 10.1159%2F000113717
– ident: ref145
  doi: 10.1016%2Fj.neuron.2006.01.022
– ident: ref97
  doi: 10.1038%2F77046
– ident: ref135
  doi: 10.1038%2Fjcbfm.2009.194
– ident: ref29
  doi: 10.1016%2FS0165-3806%2899%2900043-7
– ident: ref9
  doi: 10.1007%2Fs11481-006-9015-5
– ident: ref156
  doi: 10.1016%2Fj.mcn.2003.10.023
– ident: ref13
  doi: 10.1126%2Fscience.1194637
– ident: ref47
  doi: 10.1038%2Fnn1997
– ident: ref16
  doi: 10.1002%2Fcne.21123
– ident: ref153
  doi: 10.1523%2FJNEUROSCI.4456-04.2005
– ident: ref119
  doi: 10.1161%2FSTROKEAHA.107.489765
– ident: ref54
  doi: 10.1523%2FJNEUROSCI.2451-04.2004
– ident: ref100
  doi: 10.1038%2Fnri978
– ident: ref146
  doi: 10.1002%2F1097-4547%2820000701%2961%3A1%3C10%3A%3AAID-JNR2%3E3.0.CO%3B2-E
– ident: ref64
  doi: 10.1016%2Fj.jneuroim.2005.11.005
– ident: ref68
  doi: 10.1073%2Fpnas.96.21.12102
– ident: ref111
  doi: 10.1097%2F00004647-199901000-00010
– ident: ref71
  doi: 10.1177%2F08830738050200120501
– ident: ref7
  doi: 10.1002%2Fmds.10332
– ident: ref105
  doi: 10.1161%2F01.STR.0000254477.34231.cb
– ident: ref3
  doi: 10.1007%2Fs11481-009-9174-2
– ident: ref23
  doi: 10.1084%2Fjem.20050030
– ident: ref38
  doi: 10.1073%2Fpnas.2237050100
– ident: ref59
  doi: 10.1023%2FA%3A1018514415073
– ident: ref74
  doi: 10.1159%2F000105478
– ident: ref83
  doi: 10.1016%2FS0887-8994%2897%2900041-6
– ident: ref79
  doi: 10.1111%2Fj.1750-3639.2004.tb00492.x
– ident: ref131
  doi: 10.1016%2Fj.ijdevneu.2008.02.005
– ident: ref5
  doi: 10.1002%2Fjnr.20482
– ident: ref136
  doi: 10.1002%2Fjnr.21890
– ident: ref137
  doi: 10.1016%2Fj.neuroscience.2005.09.023
– ident: ref127
  doi: 10.1073%2Fpnas.251341998
– ident: ref138
  doi: 10.1016%2Fj.expneurol.2004.01.011
– ident: ref143
  doi: 10.1523%2FJNEUROSCI.5572-08.2009
– ident: ref43
  doi: 10.1006%2Fnbdi.2000.0318
– ident: ref120
  doi: 10.1038%2Fjcbfm.2009.47
– ident: ref37
  doi: 10.1016%2FS0896-6273%2804%2900069-8
– ident: ref150
  doi: 10.1016%2Fj.tins.2007.08.007
– ident: ref101
  doi: 10.1016%2Fj.it.2004.09.015
– ident: ref25
  doi: 10.1016%2Fj.neulet.2010.10.014
– ident: ref40
  doi: 10.1006%2Fexnr.1999.7255
– ident: ref86
  doi: 10.1203%2F00006450-199601000-00006
– ident: ref110
  doi: 10.1179%2F016164104X2357
– ident: ref65
  doi: 10.1002%2F%28SICI%291097-4547%2819981001%2954%3A1%3C68%3A%3AAID-JNR8%3E3.0.CO%3B2-F
– ident: ref76
  doi: 10.1111%2Fj.1460-9568.2008.06062.x
– ident: ref20
  doi: 10.1126%2Fscience.1110647
– ident: ref112
  doi: 10.1016%2F0006-8993%2889%2990078-4
– ident: ref18
  doi: 10.1016%2FS0022-510X%2802%2900430-6
– ident: ref104
  doi: 10.1038%2Fnm0796-788
– ident: ref141
  doi: 10.1007%2Fs00415-008-1004-6
– ident: ref126
  doi: 10.1073%2Fpnas.96.23.13496
– ident: ref55
  doi: 10.1016%2Fj.tins.2007.07.007
– ident: ref96
  doi: 10.1038%2Fnature08983
– ident: ref107
  doi: 10.1016%2Fj.expneurol.2008.11.022
– ident: ref147
  doi: 10.1016%2FS0165-5728%2801%2900444-1
– ident: ref53
  doi: 10.1038%2Fnn1805
– ident: ref89
  doi: 10.1111%2Fj.1471-4159.2006.03672.x
– ident: ref140
  doi: 10.1038%2Fnn1629
– ident: ref60
  doi: 10.1186%2F1742-2094-5-50
– ident: ref124
  doi: 10.1186%2F1471-2202-7-56
– ident: ref80
  doi: 10.1023%2FA%3A1022368915400
– ident: ref108
  doi: 10.1038%2Fnm1387
– ident: ref106
  doi: 10.1097%2F00004647-200012000-00007
– ident: ref48
  doi: 10.1038%2Fnn1988
– ident: ref87
  doi: 10.1016%2F0165-3806%2894%2900177-2
– ident: ref4
  doi: 10.1002%2Fjnr.20485
– ident: ref94
  doi: 10.1016%2Fj.jneuroim.2010.05.022
– ident: ref11
  doi: 10.1385%2FMN%3A34%3A3%3A221
– ident: ref50
  doi: 10.1016%2Fj.tins.2005.09.001
– ident: ref22
  doi: 10.1136%2Fjcp.44.2.102
– ident: ref39
  doi: 10.1006%2Fdbio.1996.0147
– ident: ref41
  doi: 10.1111%2Fj.1460-9568.2007.05309.x
– ident: ref36
  doi: 10.1002%2Fcne.903590410
– ident: ref95
  doi: 10.1016%2Fj.bbi.2008.09.002
– ident: ref42
  doi: 10.1096%2Ffj.08-105908
– ident: ref88
  doi: 10.1111%2Fj.1471-4159.2006.04162.x
– ident: ref6
  doi: 10.2174%2F187152709787601821
– ident: ref61
  doi: 10.1016%2Fj.brainres.2005.07.071
– ident: ref75
  doi: 10.1016%2Fj.ajog.2007.06.035
– ident: ref51
  doi: 10.1007%2Fs00401-009-0622-0
– ident: ref78
  doi: 10.1016%2Fj.expneurol.2009.08.003
– ident: ref35
  doi: 10.1016%2Fj.neuroscience.2008.06.052
– ident: ref46
  doi: 10.1016%2F0166-2236%2896%2910049-7
– ident: ref15
  doi: 10.1097%2Fnen.0b013e3180517b46
– ident: ref90
  doi: 10.1002%2Fana.10242
– ident: ref72
  doi: 10.1002%2Fmrdd.20102
– ident: ref152
  doi: 10.1046%2Fj.1471-4159.2002.01062.x
– ident: ref21
  doi: 10.1002%2Fcne.902680209
– ident: ref19
  doi: 10.1111%2Fj.1469-7580.2010.01245.x
– ident: ref32
  doi: 10.1002%2Fjnr.22533
– ident: ref56
  doi: 10.1111%2Fj.1750-3639.2001.tb00381.x
– ident: ref10
  doi: 10.1038%2Fnm1177
– ident: ref66
  doi: 10.1016%2FS0306-4522%2803%2900558-X
– ident: ref58
  doi: 10.1002%2Fglia.20565
– ident: ref117
  doi: 10.1002%2Fana.21511
– ident: ref67
  doi: 10.1016%2FS0079-6123%2808%2962552-2
– ident: ref45
  doi: 10.1159%2F000112098
– ident: ref116
  doi: 10.1042%2FBJ20041835
– ident: ref128
  doi: 10.1038%2F80538
– ident: ref52
  doi: 10.1038%2Fnn1472
– ident: ref73
  doi: 10.2967%2Fjnumed.106.038539
– ident: ref99
  doi: 10.1523%2FJNEUROSCI.3257-09.2009
– ident: ref121
  doi: 10.1016%2Fj.nbd.2008.04.003
– ident: ref130
  doi: 10.1038%2F417074a
– ident: ref85
  doi: 10.1016%2Fj.neuroscience.2009.12.040
– ident: ref144
  doi: 10.1038%2Fnm1555
– ident: ref115
  doi: 10.1016%2FS0006-8993%2800%2902459-8
– ident: ref33
  doi: 10.1186%2F1742-2094-7-89
– ident: ref149
  doi: 10.1038%2F87945
– ident: ref132
  doi: 10.1161%2F01.STR.25.7.1411
– ident: ref31
  doi: 10.1016%2F0306-4522%2890%2990281-8
– ident: ref84
  doi: 10.1046%2Fj.1440-1789.2002.00438.x
– ident: ref91
  doi: 10.1038%2Fsj.jcbfm.9600121
– ident: ref113
  doi: 10.1016%2Fj.nurt.2010.07.005
– ident: ref155
  doi: 10.1097%2F00004647-199703000-00006
– ident: ref63
  doi: 10.1046%2Fj.1471-4159.2001.t01-1-00216.x
– ident: ref103
  doi: 10.1523%2FJNEUROSCI.3992-08.2009
– ident: ref133
  doi: 10.1111%2Fj.1365-2990.2007.00925.x
– ident: ref139
  doi: 10.1007%2FBF03033182
– ident: ref118
  doi: 10.1007%2Fs00018-005-5177-1
– ident: ref129
  doi: 10.1002%2Fana.10092
– ident: ref77
  doi: 10.1161%2FSTROKEAHA.109.549691
– ident: ref49
  doi: 10.1002%2Fglia.10154
– ident: ref28
  doi: 10.1002%2F%28SICI%291097-0029%2819990615%2945%3A6%3C359%3A%3AAID-JEMT4%3E3.0.CO%3B2-D
– ident: ref34
  doi: 10.1016%2Fj.stem.2009.05.008
– ident: ref123
  doi: 10.1016%2Fj.nbd.2008.12.012
– ident: ref70
  doi: 10.1038%2Fsj.jcbfm.9600025
– ident: ref8
  doi: 10.1212%2F01.wnl.0000222734.56412.17
– ident: ref122
  doi: 10.2174%2F092986708785132915
– ident: ref57
  doi: 10.1007%2Fs00281-009-0180-5
SSID ssj0012937
Score 2.4333708
SecondaryResourceType review_article
Snippet Microglia, the resident immune cells of the mammalian central nervous system (CNS), play a pivotal role in both physiological and pathological conditions such...
SourceID proquest
pubmed
crossref
karger
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 199
SubjectTerms Aging - physiology
Brain - cytology
Brain - embryology
Brain - growth & development
Brain - pathology
Central Nervous System - cytology
Central Nervous System - immunology
Central Nervous System - pathology
Central Nervous System - physiology
Encephalitis - immunology
Encephalitis - pathology
Humans
Microglia - cytology
Microglia - physiology
Nerve Degeneration - pathology
Nerve Degeneration - physiopathology
Review
Title The Yin and Yang of Microglia
URI https://karger.com/doi/10.1159/000328989
https://www.ncbi.nlm.nih.gov/pubmed/21757877
https://www.proquest.com/docview/914161524
https://www.proquest.com/docview/901641842
https://www.proquest.com/docview/911153848
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60FfEiPqrW2hLEg5eg3UeyOYlKSxFaRCy0p5B9iShp7eP_u5NsA4IKOSUTlsxsZubbeQFcaXkrYiNMKGMHVxlXMhRW8VBTE4mM4ktYKDwcRYMxe5rwic_NWfq0yo1OLBS1nik8I79JuuiKc8Lu5l8hDo3C4KqfoLENdexchhld8aTCW2jJimppGmNxURT5xkLOgGP9AiU4OfGHOdr5wOzrxd_OZmF0-gew773F4L4U7yFsmfwIdoc-Hn4MbSflYPqeB1mug2mWvwUzGwwxx-7t8z1rwLjfe30chH7gQagYvV2FkumMS6qdFokkU4RSyW1MdCStyFTXcssTYSPrTHCXEc27EbEOXilhtHG-kqQnUMtnuTmDgFpDTEas0lIwba2MZSKZM9cx-lSGN-F6892p8t3AcSjFZ1qgAp6kFYuacFmRzssWGL8RNUrmVSSb-60NL1P_dyzTSpZNCKqnbltjrCLLzWztSLD1l0Of5B8Sp6adumaiCaelkKq1Hc5CTRSf_7t6C_bKE2K8LqC2WqxN27kYK9kpNlIH6g-90fPLN_7BzV4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZSxxBEC50FZMXMcbEjUeaoJCXIbt9zPQ-BPFkje4ioqBP4_Qlosxu1pXgj_I_pmrnAEF9E-Zppmaaqa7u-qrrAthwpqUTr31kEjRXpbIm0sGqyAkf60zQS5Qo3OvH3XP550JdTMFTlQtDYZXVnjjZqN3A0hn5r06boLjicmv4N6KmUeRcrTpoFFJx5B__ocV2__twD6d3k_OD_bPdblQ2FYisFK1xZKTLlBEOV2pspOVCGBUS7mITdGbbQQXV0SEOqObakjvVjnlAE8Zq7zziESPwu9MwIwVaMg2Y2dnvn5zWbgvUnZP8bJFQOlMcl6WMEDJQxoTg1KvxmQKcvaV479Hr8Hai5g4WYL7Ep2y7EKhPMOXzRZjrlR74z7CGcsUub3KW5Y5dZvk1GwTWo6i-67ubbAnO34UbX6CRD3K_DEwEz33Gg3VGSxeCSUzHSAQICaE4r5rws_rv1Jb1x6kNxl06sUNUJ61Z1IQfNemwKLrxEtFSwbyapLq_UvEyLdfjfVpLTxNY_RQXEnlHstwPHpCEio2hvcvfIEHFgApC6iZ8LSapHhstO9r7km9vjv4dPnTPesfp8WH_aAU-FufTdK1CYzx68GsIcMZmvRQrBlfvLcn_ARB6CjI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+yin+and+yang+of+microglia&rft.jtitle=Developmental+neuroscience&rft.au=Czeh%2C+Melinda&rft.au=Gressens%2C+Pierre&rft.au=Kaindl%2C+Angela+M&rft.date=2011-01-01&rft.issn=1421-9859&rft.eissn=1421-9859&rft.volume=33&rft.issue=3-4&rft.spage=199&rft_id=info:doi/10.1159%2F000328989&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-5866&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-5866&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-5866&client=summon