The Yin and Yang of Microglia
Microglia, the resident immune cells of the mammalian central nervous system (CNS), play a pivotal role in both physiological and pathological conditions such as the restoration of CNS integrity and the progression of neurodegenerative disorders. Extensive data have been published that describe neur...
Saved in:
Published in | Developmental neuroscience Vol. 33; no. 3-4; pp. 199 - 209 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel, Switzerland
S. Karger AG
01.01.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microglia, the resident immune cells of the mammalian central nervous system (CNS), play a pivotal role in both physiological and pathological conditions such as the restoration of CNS integrity and the progression of neurodegenerative disorders. Extensive data have been published that describe neuroinflammation by microglial activation to have detrimental consequences on the developing and mature brain. On the other hand, a properly directed and limited inflammatory response is known to be a natural healing process after an insult in several other tissues. Thus, it is not surprising that research results illustrating benefits of neuroinflammation have been emerging over the past decade. Inflammation-mediated benefits for CNS outcomes include mechanisms such as neuroprotection, mobilization of neural precursors for repair, remyelination and axonal regeneration. Here, we review data that highlight the dual aspects of microglia with a focus on the developing brain, i.e. as aggressors potentiating damage and as helpers in the recovery process following CNS damage. |
---|---|
AbstractList | Microglia, the resident immune cells of the mammalian central nervous system (CNS), play a pivotal role in both physiological and pathological conditions such as the restoration of CNS integrity and the progression of neurodegenerative disorders. Extensive data have been published that describe neuroinflammation by microglial activation to have detrimental consequences on the developing and mature brain. On the other hand, a properly directed and limited inflammatory response is known to be a natural healing process after an insult in several other tissues. Thus, it is not surprising that research results illustrating benefits of neuroinflammation have been emerging over the past decade. Inflammation-mediated benefits for CNS outcomes include mechanisms such as neuroprotection, mobilization of neural precursors for repair, remyelination and axonal regeneration. Here, we review data that highlight the dual aspects of microglia with a focus on the developing brain, i.e. as aggressors potentiating damage and as helpers in the recovery process following CNS damage.Microglia, the resident immune cells of the mammalian central nervous system (CNS), play a pivotal role in both physiological and pathological conditions such as the restoration of CNS integrity and the progression of neurodegenerative disorders. Extensive data have been published that describe neuroinflammation by microglial activation to have detrimental consequences on the developing and mature brain. On the other hand, a properly directed and limited inflammatory response is known to be a natural healing process after an insult in several other tissues. Thus, it is not surprising that research results illustrating benefits of neuroinflammation have been emerging over the past decade. Inflammation-mediated benefits for CNS outcomes include mechanisms such as neuroprotection, mobilization of neural precursors for repair, remyelination and axonal regeneration. Here, we review data that highlight the dual aspects of microglia with a focus on the developing brain, i.e. as aggressors potentiating damage and as helpers in the recovery process following CNS damage. Microglia, the resident immune cells of the mammalian central nervous system (CNS), play a pivotal role in both physiological and pathological conditions such as the restoration of CNS integrity and the progression of neurodegenerative disorders. Extensive data have been published that describe neuroinflammation by microglial activation to have detrimental consequences on the developing and mature brain. On the other hand, a properly directed and limited inflammatory response is known to be a natural healing process after an insult in several other tissues. Thus, it is not surprising that research results illustrating benefits of neuroinflammation have been emerging over the past decade. Inflammation-mediated benefits for CNS outcomes include mechanisms such as neuroprotection, mobilization of neural precursors for repair, remyelination and axonal regeneration. Here, we review data that highlight the dual aspects of microglia with a focus on the developing brain, i.e. as aggressors potentiating damage and as helpers in the recovery process following CNS damage. Microglia, the resident immune cells of the mammalian central nervous system (CNS), play a pivotal role in both physiological and pathological conditions such as the restoration of CNS integrity and the progression of neurodegenerative disorders. Extensive data have been published that describe neuroinflammation by microglial activation to have detrimental consequences on the developing and mature brain. On the other hand, a properly directed and limited inflammatory response is known to be a natural healing process after an insult in several other tissues. Thus, it is not surprising that research results illustrating benefits of neuroinflammation have been emerging over the past decade. Inflammation-mediated benefits for CNS outcomes include mechanisms such as neuroprotection, mobilization of neural precursors for repair, remyelination and axonal regeneration. Here, we review data that highlight the dual aspects of microglia with a focus on the developing brain, i.e. as aggressors potentiating damage and as helpers in the recovery process following CNS damage. Copyright © 2011 S. Karger AG, Basel [PUBLICATION ABSTRACT] Microglia, the resident immune cells of the mammalian central nervous system (CNS), play a pivotal role in both physiological and pathological conditions such as the restoration of CNS integrity and the progression of neurodegenerative disorders. Extensive data have been published that describe neuroinflammation by microglial activation to have detrimental consequences on the developing and mature brain. On the other hand, a properly directed and limited inflammatory response is known to be a natural healing process after an insult in several other tissues. Thus, it is not surprising that research results illustrating benefits of neuroinflammation have been emerging over the past decade. Inflammation-mediated benefits for CNS outcomes include mechanisms such as neuroprotection, mobilization of neural precursors for repair, remyelination and axonal regeneration. Here, we review data that highlight the dual aspects of microglia with a focus on the developing brain, i.e. as aggressors potentiating damage and as helpers in the recovery process following CNS damage. Copyright [copy 2011 S. Karger AG, Basel |
Author | Czeh, Melinda Gressens, Pierre Kaindl, Angela M. |
Author_xml | – sequence: 1 givenname: Melinda surname: Czeh fullname: Czeh, Melinda – sequence: 2 givenname: Pierre surname: Gressens fullname: Gressens, Pierre – sequence: 3 givenname: Angela M. surname: Kaindl fullname: Kaindl, Angela M. email: angela.kaindl@charite.de |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21757877$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkbtPwzAQxg0U0Qcd2AFFLIgh1OdX7BFVvKQiliLRKXISu6SkSXGSgf8eoz6GConpTrrffbr7vj7qlFVpEDoDfAvA1QhjTIlUUh2goYoklZhzJSVXh6gHjECofH-E-tsBe--gHqaRDLkUoov6db3AGIii0QnqEoh4JKOohy6mHyaY5WWgyyyY6XIeVDZ4yVNXzYtcn6Jjq4vaDDd1gN4e7qfjp3Dy-vg8vpuEKaO4CROWaZ7QjIASCUsJpQm3EclEYqVOwXLrT7LCCqD-1oyDIJYxmUqTGYxVQgfoeq27ctVXa-omXuZ1aopCl6Zq61iBN4FKJv8nMQgGkhFPXu2Ri6p1pX_DyzEQwAnz0OUGapOlyeKVy5fafcdbgzwwWgPekbp2xsZp3ugmr8rG6byIAce_-cS7fPzGzd7GVvQv9nzNfmo3N25HbsY_zsKO4g |
CitedBy_id | crossref_primary_10_1111_cns_14409 crossref_primary_10_1155_2013_608654 crossref_primary_10_3390_biology11121822 crossref_primary_10_3390_biomedicines10123186 crossref_primary_10_1017_neu_2017_2 crossref_primary_10_1016_j_npep_2012_09_001 crossref_primary_10_1038_pr_2011_64 crossref_primary_10_3389_fnins_2023_1158228 crossref_primary_10_2147_IJGM_S364954 crossref_primary_10_3389_fphys_2019_00141 crossref_primary_10_3233_JAD_160121 crossref_primary_10_1007_s00259_020_04772_4 crossref_primary_10_1016_j_molmet_2014_10_001 crossref_primary_10_3390_ijms232113606 crossref_primary_10_1016_j_ijdevneu_2018_11_003 crossref_primary_10_1159_000398791 crossref_primary_10_1038_s41390_019_0366_z crossref_primary_10_1111_ene_12798 crossref_primary_10_1016_j_neurobiolaging_2013_06_020 crossref_primary_10_1016_j_neuroscience_2017_02_019 crossref_primary_10_1002_glia_22459 crossref_primary_10_1007_s00011_016_0939_9 crossref_primary_10_1186_scrt147 crossref_primary_10_1146_annurev_immunol_093019_124155 crossref_primary_10_1016_j_isci_2020_101701 crossref_primary_10_1016_j_neuro_2015_08_006 crossref_primary_10_1038_srep33356 crossref_primary_10_1038_srep38247 crossref_primary_10_1016_j_biopsych_2018_08_008 crossref_primary_10_1111_jnc_13362 crossref_primary_10_3389_fncel_2015_00084 crossref_primary_10_1186_s13041_017_0308_9 crossref_primary_10_1016_j_acthis_2021_151759 crossref_primary_10_1016_j_bbi_2019_07_004 crossref_primary_10_1007_s12035_022_02781_y crossref_primary_10_1016_j_coph_2012_09_013 crossref_primary_10_3389_fimmu_2022_816619 crossref_primary_10_3389_fphar_2021_675725 crossref_primary_10_1155_2015_257139 crossref_primary_10_1186_s12888_019_2087_6 crossref_primary_10_14336_AD_2017_1028 crossref_primary_10_1016_j_ajpath_2021_04_009 crossref_primary_10_1016_j_bioorg_2022_106175 crossref_primary_10_1016_j_pnpbp_2017_04_012 crossref_primary_10_1002_jnr_23986 crossref_primary_10_3727_096368916X693572 crossref_primary_10_1177_1352458514549397 crossref_primary_10_3390_ijms231810364 crossref_primary_10_1007_s40263_013_0093_7 crossref_primary_10_1177_08839115241287215 crossref_primary_10_1177_1352458514533230 crossref_primary_10_1177_0269881117711708 crossref_primary_10_3389_fncel_2018_00255 crossref_primary_10_3390_ijms24076354 crossref_primary_10_1016_j_pneurobio_2012_06_005 crossref_primary_10_3390_ijms18040802 crossref_primary_10_1016_j_jneuroim_2018_01_017 crossref_primary_10_1007_s12035_018_0933_z crossref_primary_10_1186_s12974_014_0157_8 crossref_primary_10_1016_j_neuint_2018_12_016 crossref_primary_10_1159_000346683 crossref_primary_10_3389_fbioe_2023_1261255 crossref_primary_10_3390_diagnostics11091525 crossref_primary_10_3390_cells12172128 crossref_primary_10_1016_j_bbi_2014_11_006 crossref_primary_10_1016_j_ejmech_2021_113713 crossref_primary_10_3389_fncel_2015_00185 crossref_primary_10_1016_j_neubiorev_2021_07_004 crossref_primary_10_2174_0115743624255521230920070219 crossref_primary_10_1016_j_molimm_2019_04_010 crossref_primary_10_1002_jnr_23563 crossref_primary_10_1016_j_expneurol_2016_06_017 crossref_primary_10_1016_j_arabjc_2021_103540 crossref_primary_10_1016_j_freeradbiomed_2015_03_013 crossref_primary_10_3389_fopht_2023_1290465 crossref_primary_10_1016_j_nicl_2019_101767 crossref_primary_10_1016_j_ajog_2019_03_001 crossref_primary_10_1016_j_ijdevneu_2014_06_011 crossref_primary_10_1007_s13139_017_0510_9 crossref_primary_10_1007_s12250_017_3997_4 crossref_primary_10_3389_fnagi_2021_671499 crossref_primary_10_1016_j_neurobiolaging_2014_05_021 crossref_primary_10_1016_j_expneurol_2013_04_009 crossref_primary_10_1002_ird3_70002 crossref_primary_10_1002_glia_22894 crossref_primary_10_1080_14756366_2018_1501043 crossref_primary_10_1002_biof_1278 crossref_primary_10_1038_jcbfm_2012_53 crossref_primary_10_1002_glia_22658 crossref_primary_10_1016_j_drudis_2021_07_013 crossref_primary_10_1152_jn_00823_2018 crossref_primary_10_1016_j_expneurol_2015_08_010 crossref_primary_10_1016_j_jneuroim_2017_11_002 crossref_primary_10_1002_brb3_2315 crossref_primary_10_1523_JNEUROSCI_4849_12_2013 crossref_primary_10_1186_s12868_014_0125_3 crossref_primary_10_1016_j_brainres_2017_09_019 crossref_primary_10_1016_j_ejphar_2014_09_022 crossref_primary_10_1016_j_expneurol_2014_06_009 crossref_primary_10_1155_2013_939786 crossref_primary_10_1177_0271678X17747189 crossref_primary_10_1007_s11010_019_03668_8 crossref_primary_10_1016_j_brainres_2014_03_028 crossref_primary_10_1007_s10495_022_01754_9 crossref_primary_10_1186_s41983_021_00420_2 crossref_primary_10_1016_j_pneurobio_2013_12_002 crossref_primary_10_1371_journal_pone_0154541 crossref_primary_10_54097_hset_v36i_5645 crossref_primary_10_1186_s12974_015_0397_2 crossref_primary_10_3389_fncel_2021_805755 crossref_primary_10_1021_acschemneuro_8b00627 crossref_primary_10_1186_s13020_024_00990_2 crossref_primary_10_3389_fnins_2021_817697 crossref_primary_10_1016_j_arr_2022_101622 crossref_primary_10_2174_1381612825666190722114248 crossref_primary_10_1111_jnc_13179 crossref_primary_10_1111_dmcn_12723 crossref_primary_10_3390_ijms21031095 crossref_primary_10_1016_j_jneuroim_2015_12_004 crossref_primary_10_1089_ars_2016_6958 crossref_primary_10_1007_s11011_014_9633_1 crossref_primary_10_1080_00207454_2020_1770246 crossref_primary_10_1159_000357811 crossref_primary_10_1007_s00436_016_5135_x crossref_primary_10_1016_j_neubiorev_2015_12_004 crossref_primary_10_1016_j_cellimm_2018_03_006 crossref_primary_10_1016_j_expneurol_2013_05_014 crossref_primary_10_3390_ijms25063401 crossref_primary_10_1016_j_imbio_2012_08_266 crossref_primary_10_1016_j_mehy_2013_11_032 crossref_primary_10_3390_ijms20020410 crossref_primary_10_3390_ijms252312999 crossref_primary_10_1016_S1474_4422_14_70256_X crossref_primary_10_1371_journal_pone_0091167 crossref_primary_10_1007_s10787_019_00580_x crossref_primary_10_1159_000494761 crossref_primary_10_1159_000346156 crossref_primary_10_1159_000346155 crossref_primary_10_1146_annurev_neuro_051508_135728 crossref_primary_10_1016_j_neurobiolaging_2013_12_026 crossref_primary_10_1016_j_apradiso_2021_110032 crossref_primary_10_1186_s12974_014_0143_1 crossref_primary_10_3390_ijms24054739 crossref_primary_10_1007_s13765_012_2093_6 crossref_primary_10_3390_cells13080660 crossref_primary_10_1016_j_jocn_2018_10_034 crossref_primary_10_1186_s12974_015_0440_3 crossref_primary_10_3389_fncel_2015_00476 crossref_primary_10_3389_fnmol_2020_00094 crossref_primary_10_1016_j_neuro_2023_04_003 crossref_primary_10_1002_reg2_99 crossref_primary_10_3389_fnins_2021_771557 crossref_primary_10_1016_j_bbi_2012_08_011 crossref_primary_10_1136_gpsych_2018_000006 crossref_primary_10_1016_j_expneurol_2019_113015 crossref_primary_10_1111_cns_14496 crossref_primary_10_1007_s11064_021_03322_0 crossref_primary_10_1007_s11011_025_01538_5 crossref_primary_10_1007_s11307_016_0984_3 crossref_primary_10_1016_j_bbi_2016_08_018 crossref_primary_10_1016_j_neuroscience_2015_12_022 crossref_primary_10_1016_j_ecoenv_2024_117620 crossref_primary_10_3389_fnins_2016_00526 crossref_primary_10_1002_cne_24771 crossref_primary_10_1016_j_neurobiolaging_2012_06_010 crossref_primary_10_1016_j_neuint_2021_105117 crossref_primary_10_1038_nrneurol_2012_168 crossref_primary_10_3390_brainsci12060723 crossref_primary_10_1111_ejn_14720 crossref_primary_10_1016_j_brainresbull_2020_09_020 crossref_primary_10_1159_000353820 crossref_primary_10_3390_molecules19078820 crossref_primary_10_1016_j_brainres_2024_148763 crossref_primary_10_1124_jpet_116_239608 crossref_primary_10_1177_0271678X16638669 crossref_primary_10_3390_ijms21103703 crossref_primary_10_1038_s41390_020_0815_8 crossref_primary_10_1002_glia_22950 crossref_primary_10_1016_j_intimp_2019_105963 crossref_primary_10_1002_jnr_24683 crossref_primary_10_1186_1742_2094_11_49 crossref_primary_10_1093_ijnp_pyy014 crossref_primary_10_1159_000356529 crossref_primary_10_1016_j_pharmthera_2020_107513 crossref_primary_10_1177_09636897231171001 crossref_primary_10_3858_emm_2012_44_6_042 crossref_primary_10_1016_j_taap_2013_03_004 crossref_primary_10_1177_0960327119880586 crossref_primary_10_7759_cureus_35756 crossref_primary_10_1111_ejn_13778 crossref_primary_10_1016_j_neuint_2012_07_019 crossref_primary_10_1016_j_jneuroim_2018_11_010 crossref_primary_10_4103_1673_5374_219032 crossref_primary_10_1002_JLB_3MR1021_531R crossref_primary_10_1002_sctm_19_0327 crossref_primary_10_1089_jir_2014_0019 crossref_primary_10_1016_j_earlhumdev_2012_09_011 crossref_primary_10_1007_s12640_014_9487_7 crossref_primary_10_1080_1744666X_2016_1191351 crossref_primary_10_1007_s12017_016_8394_x crossref_primary_10_1155_2020_8836173 crossref_primary_10_3390_cells9081871 crossref_primary_10_1080_01443615_2022_2158318 crossref_primary_10_1038_jcbfm_2013_111 crossref_primary_10_1002_adbi_202100906 crossref_primary_10_1155_2017_9478542 crossref_primary_10_1093_brain_awu312 crossref_primary_10_1007_s12035_024_04679_3 crossref_primary_10_1007_s12035_023_03338_3 crossref_primary_10_1186_scrt312 crossref_primary_10_1186_s12974_024_03022_w crossref_primary_10_1038_nrneurol_2013_163 crossref_primary_10_1111_jpi_12479 crossref_primary_10_2174_1871527319666200702143719 crossref_primary_10_3389_fnagi_2022_815347 crossref_primary_10_1038_s41423_019_0223_3 crossref_primary_10_1159_000350230 crossref_primary_10_3390_ijms231710191 crossref_primary_10_3390_pharmaceutics13060806 crossref_primary_10_3390_ijms18050993 crossref_primary_10_1155_2012_135187 crossref_primary_10_1016_j_yfrne_2017_10_006 crossref_primary_10_1002_jnr_23271 crossref_primary_10_1042_BST20130284 crossref_primary_10_1111_cns_13266 crossref_primary_10_1038_pr_2017_170 crossref_primary_10_3389_fcell_2021_626704 crossref_primary_10_1016_j_nbd_2015_10_001 crossref_primary_10_1016_j_drugalcdep_2019_107776 crossref_primary_10_1038_nrneurol_2016_110 crossref_primary_10_1152_ajpregu_00171_2018 crossref_primary_10_1002_ana_22627 crossref_primary_10_3390_neuroglia4010001 crossref_primary_10_1093_jpp_rgaa019 crossref_primary_10_3390_ijms252111638 crossref_primary_10_1016_j_neubiorev_2021_09_018 crossref_primary_10_2174_1570159X19666210609162809 crossref_primary_10_1016_j_clp_2013_09_002 |
Cites_doi | 10.1159%2F000068498 10.1002%2Fglia.20034 10.1177%2F0883073809337920 10.1186%2F1742-2094-5-46 10.1523%2FJNEUROSCI.2042-07.2007 10.1523%2FJNEUROSCI.2615-05.2006 10.1097%2F01.jnen.0000187052.81889.57 10.1046%2Fj.1471-4159.1999.721671.x 10.1038%2Fnri2448 10.1073%2Fpnas.95.26.15769 10.2217%2Ffnl.10.1 10.1172%2FJCI26836 10.1002%2Fglia.21104 10.1002%2Fglia.10081 10.1002%2Fmrdd.10007 10.1016%2Fj.nbd.2006.01.004 10.1038%2Fnm1201-1356 10.1111%2Fj.1460-9568.2006.04918.x 10.1016%2Fj.jneuroim.2008.11.007 10.1016%2Fj.psyneuen.2008.02.013 10.1002%2Fjemt.1114 10.1634%2Fstemcells.2005-0507 10.2174%2F187152711794488575 10.1016%2F0955-2235%2894%2900004-5 10.1111%2Fj.1750-3639.2008.00138.x 10.1016%2Fj.jneumeth.2005.06.026 10.1159%2F000113717 10.1016%2Fj.neuron.2006.01.022 10.1038%2F77046 10.1038%2Fjcbfm.2009.194 10.1016%2FS0165-3806%2899%2900043-7 10.1007%2Fs11481-006-9015-5 10.1016%2Fj.mcn.2003.10.023 10.1126%2Fscience.1194637 10.1038%2Fnn1997 10.1002%2Fcne.21123 10.1523%2FJNEUROSCI.4456-04.2005 10.1161%2FSTROKEAHA.107.489765 10.1523%2FJNEUROSCI.2451-04.2004 10.1038%2Fnri978 10.1002%2F1097-4547%2820000701%2961%3A1%3C10%3A%3AAID-JNR2%3E3.0.CO%3B2-E 10.1016%2Fj.jneuroim.2005.11.005 10.1073%2Fpnas.96.21.12102 10.1097%2F00004647-199901000-00010 10.1177%2F08830738050200120501 10.1002%2Fmds.10332 10.1161%2F01.STR.0000254477.34231.cb 10.1007%2Fs11481-009-9174-2 10.1084%2Fjem.20050030 10.1073%2Fpnas.2237050100 10.1023%2FA%3A1018514415073 10.1159%2F000105478 10.1016%2FS0887-8994%2897%2900041-6 10.1111%2Fj.1750-3639.2004.tb00492.x 10.1016%2Fj.ijdevneu.2008.02.005 10.1002%2Fjnr.20482 10.1002%2Fjnr.21890 10.1016%2Fj.neuroscience.2005.09.023 10.1073%2Fpnas.251341998 10.1016%2Fj.expneurol.2004.01.011 10.1523%2FJNEUROSCI.5572-08.2009 10.1006%2Fnbdi.2000.0318 10.1038%2Fjcbfm.2009.47 10.1016%2FS0896-6273%2804%2900069-8 10.1016%2Fj.tins.2007.08.007 10.1016%2Fj.it.2004.09.015 10.1016%2Fj.neulet.2010.10.014 10.1006%2Fexnr.1999.7255 10.1203%2F00006450-199601000-00006 10.1179%2F016164104X2357 10.1002%2F%28SICI%291097-4547%2819981001%2954%3A1%3C68%3A%3AAID-JNR8%3E3.0.CO%3B2-F 10.1111%2Fj.1460-9568.2008.06062.x 10.1126%2Fscience.1110647 10.1016%2F0006-8993%2889%2990078-4 10.1016%2FS0022-510X%2802%2900430-6 10.1038%2Fnm0796-788 10.1007%2Fs00415-008-1004-6 10.1073%2Fpnas.96.23.13496 10.1016%2Fj.tins.2007.07.007 10.1038%2Fnature08983 10.1016%2Fj.expneurol.2008.11.022 10.1016%2FS0165-5728%2801%2900444-1 10.1038%2Fnn1805 10.1111%2Fj.1471-4159.2006.03672.x 10.1038%2Fnn1629 10.1186%2F1742-2094-5-50 10.1186%2F1471-2202-7-56 10.1023%2FA%3A1022368915400 10.1038%2Fnm1387 10.1097%2F00004647-200012000-00007 10.1038%2Fnn1988 10.1016%2F0165-3806%2894%2900177-2 10.1002%2Fjnr.20485 10.1016%2Fj.jneuroim.2010.05.022 10.1385%2FMN%3A34%3A3%3A221 10.1016%2Fj.tins.2005.09.001 10.1136%2Fjcp.44.2.102 10.1006%2Fdbio.1996.0147 10.1111%2Fj.1460-9568.2007.05309.x 10.1002%2Fcne.903590410 10.1016%2Fj.bbi.2008.09.002 10.1096%2Ffj.08-105908 10.1111%2Fj.1471-4159.2006.04162.x 10.2174%2F187152709787601821 10.1016%2Fj.brainres.2005.07.071 10.1016%2Fj.ajog.2007.06.035 10.1007%2Fs00401-009-0622-0 10.1016%2Fj.expneurol.2009.08.003 10.1016%2Fj.neuroscience.2008.06.052 10.1016%2F0166-2236%2896%2910049-7 10.1097%2Fnen.0b013e3180517b46 10.1002%2Fana.10242 10.1002%2Fmrdd.20102 10.1046%2Fj.1471-4159.2002.01062.x 10.1002%2Fcne.902680209 10.1111%2Fj.1469-7580.2010.01245.x 10.1002%2Fjnr.22533 10.1111%2Fj.1750-3639.2001.tb00381.x 10.1038%2Fnm1177 10.1016%2FS0306-4522%2803%2900558-X 10.1002%2Fglia.20565 10.1002%2Fana.21511 10.1016%2FS0079-6123%2808%2962552-2 10.1159%2F000112098 10.1042%2FBJ20041835 10.1038%2F80538 10.1038%2Fnn1472 10.2967%2Fjnumed.106.038539 10.1523%2FJNEUROSCI.3257-09.2009 10.1016%2Fj.nbd.2008.04.003 10.1038%2F417074a 10.1016%2Fj.neuroscience.2009.12.040 10.1038%2Fnm1555 10.1016%2FS0006-8993%2800%2902459-8 10.1186%2F1742-2094-7-89 10.1038%2F87945 10.1161%2F01.STR.25.7.1411 10.1016%2F0306-4522%2890%2990281-8 10.1046%2Fj.1440-1789.2002.00438.x 10.1038%2Fsj.jcbfm.9600121 10.1016%2Fj.nurt.2010.07.005 10.1097%2F00004647-199703000-00006 10.1046%2Fj.1471-4159.2001.t01-1-00216.x 10.1523%2FJNEUROSCI.3992-08.2009 10.1111%2Fj.1365-2990.2007.00925.x 10.1007%2FBF03033182 10.1007%2Fs00018-005-5177-1 10.1002%2Fana.10092 10.1161%2FSTROKEAHA.109.549691 10.1002%2Fglia.10154 10.1002%2F%28SICI%291097-0029%2819990615%2945%3A6%3C359%3A%3AAID-JEMT4%3E3.0.CO%3B2-D 10.1016%2Fj.stem.2009.05.008 10.1016%2Fj.nbd.2008.12.012 10.1038%2Fsj.jcbfm.9600025 10.1212%2F01.wnl.0000222734.56412.17 10.2174%2F092986708785132915 10.1007%2Fs00281-009-0180-5 |
ContentType | Journal Article |
Copyright | 2011 S. Karger AG, Basel Copyright © 2011 S. Karger AG, Basel. Copyright (c) 2011 S. Karger AG, Basel |
Copyright_xml | – notice: 2011 S. Karger AG, Basel – notice: Copyright © 2011 S. Karger AG, Basel. – notice: Copyright (c) 2011 S. Karger AG, Basel |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QR 7TK 7U7 7X7 7XB 88E 88G 8AO 8FD 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ K9. M0S M1P M2M P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 |
DOI | 10.1159/000328989 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Psychology Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest One Psychology Neurosciences Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISBN | 9783805598859 3805598858 |
EISSN | 1421-9859 |
EndPage | 209 |
ExternalDocumentID | 2553363741 21757877 10_1159_000328989 328989 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- .55 .GJ 0~5 0~B 29F 30W 325 34G 36B 39C 3O. 3V. 4.4 53G 5GY 5RE 7X7 88E 8AO 8FI 8FJ 8UI AAYIC ABIVO ABJNI ABPAZ ABUWG ACCCW ACGFO ACGFS ACIWK ACPRK ACPSR ADAGL ADBBV ADFRT ADGES ADOJD AENEX AEYAO AFFNX AFJJK AFKRA AFRAH AHMBA ALDHI ALIPV ALMA_UNASSIGNED_HOLDINGS AZPMC AZQEC BENPR BPHCQ BVXVI CAG CCPQU COF CS3 CYUIP DU5 DWQXO E0A EBS EJD EMB EMOBN F5P FB. FYUFA GNUQQ HMCUK HZ~ IY7 KUZGX M1P M2M N9A O1H O9- P2P PQQKQ PROAC PSQYO PSYQQ RIG RKO RXVBD SV3 TN5 UJ6 UKHRP X7M YYP ZGI ZXP AAYXX ABBTS ABWCG ACQXL AFSIO AHDLI AHFRZ CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY 7QR 7TK 7U7 7XB 8FD 8FK C1K FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c430t-b4da5b3d2196b4c233b5f72d6bf8ac1f5f598f6f613142d5162f448c8ede009b3 |
IEDL.DBID | 7X7 |
ISBN | 380559884X 9783805598842 |
ISSN | 0378-5866 1421-9859 |
IngestDate | Fri Jul 11 12:44:22 EDT 2025 Thu Jul 10 22:15:07 EDT 2025 Sat Aug 23 14:49:26 EDT 2025 Mon Jul 21 06:05:32 EDT 2025 Tue Jul 01 04:54:55 EDT 2025 Thu Apr 24 23:04:33 EDT 2025 Thu Aug 29 12:04:38 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3-4 |
Keywords | Brain Neuroprotection Inflammation Neurodegeneration Microglia |
Language | English |
License | Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. https://www.karger.com/Services/SiteLicenses Copyright © 2011 S. Karger AG, Basel. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c430t-b4da5b3d2196b4c233b5f72d6bf8ac1f5f598f6f613142d5162f448c8ede009b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 21757877 |
PQID | 914161524 |
PQPubID | 34046 |
PageCount | 11 |
ParticipantIDs | proquest_journals_914161524 karger_primary_328989 pubmed_primary_21757877 crossref_citationtrail_10_1159_000328989 crossref_primary_10_1159_000328989 proquest_miscellaneous_911153848 proquest_miscellaneous_901641842 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-01-01 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – month: 01 year: 2011 text: 2011-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel, Switzerland |
PublicationPlace_xml | – name: Basel, Switzerland – name: Switzerland – name: Basel |
PublicationTitle | Developmental neuroscience |
PublicationTitleAlternate | Dev Neurosci |
PublicationYear | 2011 |
Publisher | S. Karger AG |
Publisher_xml | – name: S. Karger AG |
References | Barron KD: Microglia: history, cytology, and reactions. J Neurol Sci 2003;207:98.1261493810.1016%2FS0022-510X%2802%2900430-6 Buller KM, Carty ML, Reinebrant HE, Wixey JA: Minocycline: a neuroprotective agent for hypoxic-ischemic brain injury in the neonate? J Neurosci Res 2009;87:599–608.1883100510.1002%2Fjnr.21890 Streit WJ, Kreutzberg GW: Response of endogenous glial cells to motor neuron degeneration induced by toxic ricin. J Comp Neurol 1988;268:248–263.336098710.1002%2Fcne.902680209 Sawada M, Sawada H, Nagatsu T: Effects of aging on neuroprotective and neurotoxic properties of microglia in neurodegenerative diseases. Neurodegener Dis 2008;5:254–256.1832240510.1159%2F000113717 Lee SC, Liu W, Dickson DW, et al: Cytokine production by human fetal microglia and astrocytes: differential induction by lipopolysaccharide and IL-1β. J Immunol 1993;150:2659–2667.8454848 Lechpammer M, Manning SM, Samonte F, et al: Minocycline treatment following hypoxic/ischaemic injury attenuates white matter injury in a rodent model of periventricular leucomalacia. Neuropathol Appl Neurobiol 2008;34:379–393.1822126110.1111%2Fj.1365-2990.2007.00925.x Yrjänheikki J, Keinänen R, Pellikka M, et al: Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA 1998;95:15769–15774.986104510.1073%2Fpnas.95.26.15769 El Khoury J, Toft M, Hickman SE, et al: Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 2007;13:432–438.1735162310.1038%2Fnm1555 Mandrekar S, Jiang Q, Lee CY, et al: Microglia mediate the clearance of soluble Aβ through fluid phase macropinocytosis. J Neurosci 2009;29:4252–4262.1933961910.1523%2FJNEUROSCI.5572-08.2009 Du Y, Ma Z, Lin S, et al: Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci USA 2001;98:14669–14674.1172492910.1073%2Fpnas.251341998 Rezaie P, Male D: Colonisation of the developing human brain and spinal cord by microglia: a review. Microsc Res Tech 1999;45:359–382.1040226410.1002%2F%28SICI%291097-0029%2819990615%2945%3A6%3C359%3A%3AAID-JEMT4%3E3.0.CO%3B2-D Ekdahl CT, Kokaia Z, Lindvall O: Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 2009;158:1021–1029.1866274810.1016%2Fj.neuroscience.2008.06.052 Arvin KL, Han BH, Du Y, et al: Minocycline markedly protects the neonatal brain against hypoxic-ischemic injury. Ann Neurol 2002;52:54–61.1211204710.1002%2Fana.10242 Bukowski L: Synthesis of 2-(2′-thiazolyl) alkanebenzimidazoles: potential anthelmintics (in Polish). Acta Pol Pharm 1975;32:651–656.1211204 Gordon S: Alternative activation of macrophages. Nat Rev Immunol 2003;3:23–35.1251187310.1038%2Fnri978 Nakanishi M, Niidome T, Matsuda S, et al: Microglia-derived interleukin-6 and leukaemia inhibitory factor promote astrocytic differentiation of neural stem/progenitor cells. Eur J Neurosci 2007;25:649–658.1732876910.1111%2Fj.1460-9568.2007.05309.x Zheng Z, Yenari MA: Post-ischemic inflammation: molecular mechanisms and therapeutic implications. Neurol Res 2004;26:884–892.1572727210.1179%2F016164104X2357 Verney C, Monier A, Fallet-Bianco C, Gressens P: Early microglial colonization of the human forebrain and possible involvement in periventricular white-matter injury of preterm infants. J Anat 2010;217:436–448.2055740110.1111%2Fj.1469-7580.2010.01245.x Walter L, Neumann H: Role of microglia in neuronal degeneration and regeneration. Semin Immunopathol 2009;31:513–525.1976357410.1007%2Fs00281-009-0180-5 Jin Y, Silverman AJ, Vannucci SJ: Mast cell stabilization limits hypoxic-ischemic brain damage in the immature rat. Dev Neurosci 2007;29:373–384.1776220510.1159%2F000105478 Mantovani A, Sica A, Sozzani S, et al: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004;25:677–686.1553083910.1016%2Fj.it.2004.09.015 Wyss-Coray T, Lin C, Yan F, et al: TGF-β1 promotes microglial amyloid-β clearance and reduces plaque burden in transgenic mice. Nat Med 2001;7:612–618.1132906410.1038%2F87945 Olivier P, Baud O, Evrard P, et al: Prenatal ischemia and white matter damage in rats. J Neuropathol Exp Neurol 2005;64:998–1006.1625449410.1097%2F01.jnen.0000187052.81889.57 Sugama S, Takenouchi T, Fujita M, et al: Differential microglial activation between acute stress and lipopolysaccharide treatment. J Neuroimmunol 2009;207:24–31.1911135510.1016%2Fj.jneuroim.2008.11.007 Kahles T, Luedike P, Endres M, et al: NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke 2007;38:3000–3006.1791676410.1161%2FSTROKEAHA.107.489765 Beauvillain C, Donnou S, Jarry U, et al: Neonatal and adult microglia cross-present exogenous antigens. Glia 2008;56:69–77.1793294210.1002%2Fglia.20565 Njie EG, Boelen E, Stassen FR, et al: Ex vivo cultures of microglia from young and aged rodent brain reveal age-related changes in microglial function. Neurobiol Aging 2010, E-pub ahead of print. Streit WJ, Hurley SD, McGraw TS, Semple-Rowland SL: Comparative evaluation of cytokine profiles and reactive gliosis supports a critical role for interleukin-6 in neuron-glia signaling during regeneration. J Neurosci Res 2000;61:10–20.1086179510.1002%2F1097-4547%2820000701%2961%3A1%3C10%3A%3AAID-JNR2%3E3.0.CO%3B2-E Clausen BH, Lambertsen KL, Babcock AA, et al: Interleukin-1β and tumor necrosis factor-α are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J Neuroinflammation 2008;5:46.1894740010.1186%2F1742-2094-5-46 Pocock JM, Kettenmann H: Neurotransmitter receptors on microglia. Trends Neurosci 2007;30:527–535.1790465110.1016%2Fj.tins.2007.07.007 Pang Y, Campbell L, Zheng B, et al: Lipopolysaccharide-activated microglia induce death of oligodendrocyte progenitor cells and impede their development. Neuroscience 2010;166:464–475.2003583710.1016%2Fj.neuroscience.2009.12.040 Blalock EM, Chen KC, Sharrow K, et al: Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment. J Neurosci 2003;23:3807–3819.12736351 Teismann P, Tieu K, Cohen O, et al: Pathogenic role of glial cells in Parkinson’s disease. Mov Disord 2003;18:121–129.1253920410.1002%2Fmds.10332 Ziv Y, Ron N, Butovsky O, et al: Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 2006;9:268–275.1641586710.1038%2Fnn1629 Banati RB, Graeber MB: Surveillance, intervention and cytotoxicity: is there a protective role of microglia? Dev Neurosci 1994;16:114–127.770521910.1159%2F000112098 Jones LL, Banati RB, Graeber MB, et al: Population control of microglia: does apoptosis play a role? J Neurocytol 1997;26:755–770.942617210.1023%2FA%3A1018514415073 Shimizu E, Kawahara K, Kajizono M, et al: IL-4-induced selective clearance of oligomeric β-amyloid peptide1–42 by rat primary type 2 microglia. J Immunol 2008;181:6503–6513.18941241 Frank MG, Wieseler-Frank JL, Watkins LR, Maier SF: Rapid isolation of highly enriched and quiescent microglia from adult rat hippocampus: immunophenotypic and functional characteristics. J Neurosci Methods 2006;151:121–130.1612524710.1016%2Fj.jneumeth.2005.06.026 Suh SW, Shin BS, Ma H, et al: Glucose and NADPH oxidase drive neuronal superoxide formation in stroke. Ann Neurol 2008;64:654–663.1910798810.1002%2Fana.21511 Garden GA, Möller T: Microglia biology in health and disease. J Neuroimmune Pharmacol 2006;1:127–137.1804077910.1007%2Fs11481-006-9015-5 Gensel JC, Nakamura S, Guan Z, et al: Macrophages promote axon regeneration with concurrent neurotoxicity. J Neurosci 2009;29:3956–3968.1932179210.1523%2FJNEUROSCI.3992-08.2009 Machado LS, Kozak A, Ergul A, et al: Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. BMC Neurosci 2006;7:56.1684650110.1186%2F1471-2202-7-56 Ide CF, Scripter JL, Coltman BW, et al: Cellular and molecular correlates to plasticity during recovery from injury in the developing mammalian brain. Prog Brain Res 1996;108:365–377.897981410.1016%2FS0079-6123%2808%2962552-2 Keller M, Griesmaier E, Auer M, et al: Dextromethorphan is protective against sensitized N-methyl-D-aspartate receptor-mediated excitotoxic brain damage in the developing mouse brain. Eur J Neurosci 2008;27:874–883.1827936310.1111%2Fj.1460-9568.2008.06062.x Liu B, Wang K, Gao HM, et al: Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. J Neurochem 2001;77:182–189.1127927410.1046%2Fj.1471-4159.2001.t01-1-00216.x Fan LW, Mitchell HJ, Tien LT, et al: Interleukin-1β-induced brain injury in the neonatal rat can be ameliorated by α-phenyl-n-tert-butyl-nitrone. Exp Neurol 2009;220:143–153.1968298710.1016%2Fj.expneurol.2009.08.003 Ginhoux F, Greter M, Leboeuf M, et al: Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010;330:841–845.2096621410.1126%2Fscience.1194637 Lee CK, Weindruch R, Prolla TA: Gene-expression profile of the ageing brain in mice. Nat Genet 2000;25:294–297.1088887610.1038%2F77046 Smith ME, van der Maesen K, Somera FP: Macrophage and microglial responses to cytokines in vitro: phagocytic activity, proteolytic enzyme release, and free radical production. J Neurosci Res 1998;54:68–78.977815110.1002%2F%28SICI%291097-4547%2819981001%2954%3A1%3C68%3A%3AAID-JNR8%3E3.0.CO%3B2-F Kannan S, Saadani-Makki F, Muzik O, et al: Microglial activation in perinatal rabbit brain induced by intrauterine inflammation: detection with 11C-(R)-PK11195 and small-animal PET. J Nucl Med 2007;48:946–954.1750487110.2967%2Fjnumed.106.038539 Baud O, Daire JL, Dalmaz Y, et al: Gestational hypoxia induces white matter damage in neonatal rats: a new model of periventricular leukomalacia. Brain Pathol 2004;14:1–10.1499793210.1111%2Fj.1750-3639.2004.tb00492.x Bishop NA, Lu T, Yankner BA: Neural mechanisms of ageing and cognitive decline. Nature 2010;464:529–535.2033613510.103 ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref148 ref30 ref149 ref33 ref146 ref32 ref147 ref39 ref38 ref155 ref156 ref153 ref154 ref151 ref152 ref150 ref24 ref23 ref26 ref25 ref20 ref22 ref157 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref128 ref14 ref129 ref97 ref126 ref96 ref127 ref11 ref99 ref124 ref10 ref98 ref125 ref17 ref16 ref19 ref18 ref93 ref133 ref92 ref134 ref95 ref131 ref94 ref132 ref130 ref91 ref90 ref89 ref139 ref86 ref137 ref85 ref138 ref88 ref135 ref87 ref136 ref82 ref144 ref81 ref145 ref84 ref142 ref83 ref143 ref140 ref141 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
References_xml | – reference: Ekdahl CT, Kokaia Z, Lindvall O: Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 2009;158:1021–1029.1866274810.1016%2Fj.neuroscience.2008.06.052 – reference: Njie EG, Boelen E, Stassen FR, et al: Ex vivo cultures of microglia from young and aged rodent brain reveal age-related changes in microglial function. Neurobiol Aging 2010, E-pub ahead of print. – reference: Clausen BH, Lambertsen KL, Babcock AA, et al: Interleukin-1β and tumor necrosis factor-α are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J Neuroinflammation 2008;5:46.1894740010.1186%2F1742-2094-5-46 – reference: Arvin KL, Han BH, Du Y, et al: Minocycline markedly protects the neonatal brain against hypoxic-ischemic injury. Ann Neurol 2002;52:54–61.1211204710.1002%2Fana.10242 – reference: Streit WJ, Hurley SD, McGraw TS, Semple-Rowland SL: Comparative evaluation of cytokine profiles and reactive gliosis supports a critical role for interleukin-6 in neuron-glia signaling during regeneration. J Neurosci Res 2000;61:10–20.1086179510.1002%2F1097-4547%2820000701%2961%3A1%3C10%3A%3AAID-JNR2%3E3.0.CO%3B2-E – reference: Fan LW, Mitchell HJ, Tien LT, et al: Interleukin-1β-induced brain injury in the neonatal rat can be ameliorated by α-phenyl-n-tert-butyl-nitrone. Exp Neurol 2009;220:143–153.1968298710.1016%2Fj.expneurol.2009.08.003 – reference: Polazzi E, Contestabile A: Overactivation of LPS-stimulated microglial cells by co-cultured neurons or neuron-conditioned medium. J Neuroimmunol 2006;172:104–111.1637643610.1016%2Fj.jneuroim.2005.11.005 – reference: Kuhn SA, van Landeghem FK, Zacharias R, et al: Microglia express GABAB receptors to modulate interleukin release. Mol Cell Neurosci 2004;25:312–322.1501994710.1016%2Fj.mcn.2003.10.023 – reference: Taylor DL, Diemel LT, Pocock JM: Activation of microglial group III metabotropic glutamate receptors protects neurons against microglial neurotoxicity. J Neurosci 2003;23:2150–2160.12657674 – reference: Baud O, Daire JL, Dalmaz Y, et al: Gestational hypoxia induces white matter damage in neonatal rats: a new model of periventricular leukomalacia. Brain Pathol 2004;14:1–10.1499793210.1111%2Fj.1750-3639.2004.tb00492.x – reference: Olivier P, Baud O, Evrard P, et al: Prenatal ischemia and white matter damage in rats. J Neuropathol Exp Neurol 2005;64:998–1006.1625449410.1097%2F01.jnen.0000187052.81889.57 – reference: Henry CJ, Huang Y, Wynne AM, Godbout JP: Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1β and anti-inflammatory IL-10 cytokines. Brain Behav Immun 2009;23:309–317.1881484610.1016%2Fj.bbi.2008.09.002 – reference: Taylor DL, Jones F, Kubota ES, Pocock JM: Stimulation of microglial metabotropic glutamate receptor mGlu2 triggers tumor necrosis factor α-induced neurotoxicity in concert with microglial-derived Fas ligand. J Neurosci 2005;25:2952–2964.1577235510.1523%2FJNEUROSCI.4456-04.2005 – reference: Weinstein JR, Koerner IP, Möller T: Microglia in ischemic brain injury. Future Neurol 2010;5:227–246.2040117110.2217%2Ffnl.10.1 – reference: Rezaie P, Cairns NJ, Male DK: Expression of adhesion molecules on human fetal cerebral vessels: relationship to microglial colonisation during development. Brain Res Dev Brain Res 1997;104:175–189.9466720 – reference: Popovic N, Schubart A, Goetz BD, et al: Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann Neurol 2002;51:215–223.1183537810.1002%2Fana.10092 – reference: O’Donnell SL, Frederick TJ, Krady JK, et al: IGF-I and microglia/macrophage proliferation in the ischemic mouse brain. Glia 2002;39:85–97.1211237810.1002%2Fglia.10081 – reference: Hornig M, Weissenböck H, Horscroft N, Lipkin WI: An infection-based model of neurodevelopmental damage. Proc Natl Acad Sci USA 1999;96:12102–12107.1051858310.1073%2Fpnas.96.21.12102 – reference: Chen H, Song YS, Chan PH: Inhibition of NADPH oxidase is neuroprotective after ischemia-reperfusion. J Cereb Blood Flow Metab 2009;29:1262–1272.1941775710.1038%2Fjcbfm.2009.47 – reference: Mandrekar S, Jiang Q, Lee CY, et al: Microglia mediate the clearance of soluble Aβ through fluid phase macropinocytosis. J Neurosci 2009;29:4252–4262.1933961910.1523%2FJNEUROSCI.5572-08.2009 – reference: Kotter MR, Li WW, Zhao C, Franklin RJ: Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci 2006;26:328–332.1639970310.1523%2FJNEUROSCI.2615-05.2006 – reference: Barron KD: Microglia: history, cytology, and reactions. J Neurol Sci 2003;207:98.1261493810.1016%2FS0022-510X%2802%2900430-6 – reference: Nakanishi M, Niidome T, Matsuda S, et al: Microglia-derived interleukin-6 and leukaemia inhibitory factor promote astrocytic differentiation of neural stem/progenitor cells. Eur J Neurosci 2007;25:649–658.1732876910.1111%2Fj.1460-9568.2007.05309.x – reference: Mantovani A, Sica A, Sozzani S, et al: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004;25:677–686.1553083910.1016%2Fj.it.2004.09.015 – reference: Sawada M, Kondo N, Suzumura A, Marunouchi T: Production of tumor necrosis factor-α by microglia and astrocytes in culture. Brain Res 1989;491:394–397.276589510.1016%2F0006-8993%2889%2990078-4 – reference: Harry GJ, McPherson CA, Wine RN, et al: Trimethyltin-induced neurogenesis in the murine hippocampus. Neurotox Res 2004;5:623–627.1511123910.1007%2FBF03033182 – reference: Rappert A, Bechmann I, Pivneva T, et al: CXCR3-dependent microglial recruitment is essential for dendrite loss after brain lesion. J Neurosci 2004;24:8500–8509.1545682410.1523%2FJNEUROSCI.2451-04.2004 – reference: Jonakait GM, Luskin MB, Wei R, et al: Conditioned medium from activated microglia promotes cholinergic differentiation in the basal forebrain in vitro. Dev Biol 1996;177:85–95.866087910.1006%2Fdbio.1996.0147 – reference: Retamal MA, Froger N, Palacios-Prado N, et al: Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J Neurosci 2007;27:13781–13792.1807769010.1523%2FJNEUROSCI.2042-07.2007 – reference: Lechpammer M, Manning SM, Samonte F, et al: Minocycline treatment following hypoxic/ischaemic injury attenuates white matter injury in a rodent model of periventricular leucomalacia. Neuropathol Appl Neurobiol 2008;34:379–393.1822126110.1111%2Fj.1365-2990.2007.00925.x – reference: Zhao X, Haensel C, Araki E, et al: Gene-dosing effect and persistence of reduction in ischemic brain injury in mice lacking inducible nitric oxide synthase. Brain Res 2000;872:215–218.1092469610.1016%2FS0006-8993%2800%2902459-8 – reference: Yrjänheikki J, Tikka T, Keinänen R, et al: A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 1999;96:13496–13500.1055734910.1073%2Fpnas.96.23.13496 – reference: Yadav A, Collman RG: CNS inflammation and macrophage/microglial biology associated with HIV-1 infection. J Neuroimmune Pharmacol 2009;4:430–447.1976855310.1007%2Fs11481-009-9174-2 – reference: Bruce AJ, Boling W, Kindy MS, et al: Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med 1996;2:788–794.867392510.1038%2Fnm0796-788 – reference: Ferrer I, Bernet E, Soriano E, et al: Naturally occurring cell death in the cerebral cortex of the rat and removal of dead cells by transitory phagocytes. Neuroscience 1990;39:451–458.208726610.1016%2F0306-4522%2890%2990281-8 – reference: Sawada M, Sawada H, Nagatsu T: Effects of aging on neuroprotective and neurotoxic properties of microglia in neurodegenerative diseases. Neurodegener Dis 2008;5:254–256.1832240510.1159%2F000113717 – reference: Rezaie P: Microglia in the human nervous system during development. Neuroembryology 2003;2:18–31.10.1159%2F000068498 – reference: Monier A, Evrard P, Gressens P, Verney C: Distribution and differentiation of microglia in the human encephalon during the first two trimesters of gestation. J Comp Neurol 2006;499:565–582.1702927110.1002%2Fcne.21123 – reference: Haynes SE, Hollopeter G, Yang G, et al: The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 2006;9:1512–1519.1711504010.1038%2Fnn1805 – reference: Welser JV, Li L, Milner R: Microglial activation state exerts a biphasic influence on brain endothelial cell proliferation by regulating the balance of TNF and TGF-β1. J Neuroinflammation 2010;7:89.2113428910.1186%2F1742-2094-7-89 – reference: Jack C, Ruffini F, Bar-Or A, Antel JP: Microglia and multiple sclerosis. J Neurosci Res 2005;81:363–373.1594818810.1002%2Fjnr.20482 – reference: Buchanan JB, Sparkman NL, Chen J, Johnson RW: Cognitive and neuroinflammatory consequences of mild repeated stress are exacerbated in aged mice. Psychoneuroendocrinology 2008;33:755–765.1840742510.1016%2Fj.psyneuen.2008.02.013 – reference: Gordon S: Alternative activation of macrophages. Nat Rev Immunol 2003;3:23–35.1251187310.1038%2Fnri978 – reference: Walter L, Neumann H: Role of microglia in neuronal degeneration and regeneration. Semin Immunopathol 2009;31:513–525.1976357410.1007%2Fs00281-009-0180-5 – reference: Jones LL, Banati RB, Graeber MB, et al: Population control of microglia: does apoptosis play a role? J Neurocytol 1997;26:755–770.942617210.1023%2FA%3A1018514415073 – reference: Kaindl AM, Favrais G, Gressens P: Molecular mechanisms involved in injury to the preterm brain. J Child Neurol 2009;24:1112–1118.1960577610.1177%2F0883073809337920 – reference: Kannan S, Saadani-Makki F, Muzik O, et al: Microglial activation in perinatal rabbit brain induced by intrauterine inflammation: detection with 11C-(R)-PK11195 and small-animal PET. J Nucl Med 2007;48:946–954.1750487110.2967%2Fjnumed.106.038539 – reference: Machado LS, Kozak A, Ergul A, et al: Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. BMC Neurosci 2006;7:56.1684650110.1186%2F1471-2202-7-56 – reference: Suh SW, Shin BS, Ma H, et al: Glucose and NADPH oxidase drive neuronal superoxide formation in stroke. Ann Neurol 2008;64:654–663.1910798810.1002%2Fana.21511 – reference: Banati RB, Graeber MB: Surveillance, intervention and cytotoxicity: is there a protective role of microglia? Dev Neurosci 1994;16:114–127.770521910.1159%2F000112098 – reference: Zhu P, Hata R, Cao F, et al: Ramified microglial cells promote astrogliogenesis and maintenance of neural stem cells through activation of Stat3 function. FASEB J 2008;22:3866–3877.1868507810.1096%2Ffj.08-105908 – reference: Tomita M, Mori T, Maruyama K, et al: A comparison of neural differentiation and retinal transplantation with bone marrow-derived cells and retinal progenitor cells. Stem Cells 2006;24:2270–2278.1700843010.1634%2Fstemcells.2005-0507 – reference: Nimmerjahn A, Kirchhoff F, Helmchen F: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005;308:1314–1318.1583171710.1126%2Fscience.1110647 – reference: Antony JM, Paquin A, Nutt SL, et al: Endogenous microglia regulate development of embryonic cortical precursor cells. J Neurosci Res 2011;89:286–298.2125931610.1002%2Fjnr.22533 – reference: Hudson LC, Bragg DC, Tompkins MB, Meeker RB: Astrocytes and microglia differentially regulate trafficking of lymphocyte subsets across brain endothelial cells. Brain Res 2005;1058:148–160.1613766310.1016%2Fj.brainres.2005.07.071 – reference: Lee SC, Liu W, Dickson DW, et al: Cytokine production by human fetal microglia and astrocytes: differential induction by lipopolysaccharide and IL-1β. J Immunol 1993;150:2659–2667.8454848 – reference: Du Y, Ma Z, Lin S, et al: Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci USA 2001;98:14669–14674.1172492910.1073%2Fpnas.251341998 – reference: Hutton LC, Castillo-Melendez M, Smythe GA, Walker DW: Microglial activation, macrophage infiltration, and evidence of cell death in the fetal brain after uteroplacental administration of lipopolysaccharide in sheep in late gestation. Am J Obstet Gynecol 2008;198:117e1–e11.1816632310.1016%2Fj.ajog.2007.06.035 – reference: Hirayama A, Okoshi Y, Hachiya Y, et al: Early immunohistochemical detection of axonal damage and glial activation in extremely immature brains with periventricular leukomalacia. Clin Neuropathol 2001;20:87–91.11327303 – reference: Frank MG, Wieseler-Frank JL, Watkins LR, Maier SF: Rapid isolation of highly enriched and quiescent microglia from adult rat hippocampus: immunophenotypic and functional characteristics. J Neurosci Methods 2006;151:121–130.1612524710.1016%2Fj.jneumeth.2005.06.026 – reference: Ide CF, Scripter JL, Coltman BW, et al: Cellular and molecular correlates to plasticity during recovery from injury in the developing mammalian brain. Prog Brain Res 1996;108:365–377.897981410.1016%2FS0079-6123%2808%2962552-2 – reference: Moisse K, Strong MJ: Innate immunity in amyotrophic lateral sclerosis. Biochim Biophys Acta 2006;1762:1083–1093.16624536 – reference: Ovanesov MV, Ayhan Y, Wolbert C, et al: Astrocytes play a key role in activation of microglia by persistent Borna disease virus infection. J Neuroinflammation 2008;5:50.1901443210.1186%2F1742-2094-5-50 – reference: Biber K, Neumann H, Inoue K, Boddeke HW: Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci 2007;30:596–602.1795092610.1016%2Fj.tins.2007.08.007 – reference: Streit WJ: Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 2002;40:133–139.1237990110.1002%2Fglia.10154 – reference: Olah M, Biber K, Vinet J, Boddeke HW: Microglia phenotype diversity. CNS Neurol Disord Drug Targets 2011;10:108–118.2114314110.2174%2F187152711794488575 – reference: Walker EJ, Rosenberg GA: TIMP-3 and MMP-3 contribute to delayed inflammation and hippocampal neuronal death following global ischemia. Exp Neurol 2009;216:122–131.1911153910.1016%2Fj.expneurol.2008.11.022 – reference: Pavese N, Gerhard A, Tai YF, et al: Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 2006;66:1638–1643.1676993310.1212%2F01.wnl.0000222734.56412.17 – reference: Esiri MM, al Izzi MS, Reading MC: Macrophages, microglial cells, and HLA-DR antigens in fetal and infant brain. J Clin Pathol 1991;44:102–106.186498210.1136%2Fjcp.44.2.102 – reference: Davalos D, Grutzendler J, Yang G, et al: ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005;8:752–758.1589508410.1038%2Fnn1472 – reference: Monier A, Adle-Biassette H, Delezoide AL, et al: Entry and distribution of microglial cells in human embryonic and fetal cerebral cortex. J Neuropathol Exp Neurol 2007;66:372–382.1748369410.1097%2Fnen.0b013e3180517b46 – reference: Watters JJ, Schartner JM, Badie B: Microglia function in brain tumors. J Neurosci Res 2005;81:447–455.1595990310.1002%2Fjnr.20485 – reference: Gensel JC, Nakamura S, Guan Z, et al: Macrophages promote axon regeneration with concurrent neurotoxicity. J Neurosci 2009;29:3956–3968.1932179210.1523%2FJNEUROSCI.3992-08.2009 – reference: Noda M, Nakanishi H, Nabekura J, Akaike N: AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. J Neurosci 2000;20:251–258.10627602 – reference: Jin Y, Silverman AJ, Vannucci SJ: Mast cell stabilization limits hypoxic-ischemic brain damage in the immature rat. Dev Neurosci 2007;29:373–384.1776220510.1159%2F000105478 – reference: Smith ME, van der Maesen K, Somera FP: Macrophage and microglial responses to cytokines in vitro: phagocytic activity, proteolytic enzyme release, and free radical production. J Neurosci Res 1998;54:68–78.977815110.1002%2F%28SICI%291097-4547%2819981001%2954%3A1%3C68%3A%3AAID-JNR8%3E3.0.CO%3B2-F – reference: Rezaie P, Patel K, Male DK: Microglia in the human fetal spinal cord: patterns of distribution, morphology and phenotype. Brain Res Dev Brain Res 1999;115:71–81.1036670410.1016%2FS0165-3806%2899%2900043-7 – reference: Beauvillain C, Donnou S, Jarry U, et al: Neonatal and adult microglia cross-present exogenous antigens. Glia 2008;56:69–77.1793294210.1002%2Fglia.20565 – reference: Dommergues MA, Plaisant F, Verney C, Gressens P: Early microglial activation following neonatal excitotoxic brain damage in mice: a potential target for neuroprotection. Neuroscience 2003;121:619–628.1456802210.1016%2FS0306-4522%2803%2900558-X – reference: Cai Z, Lin S, Fan LW, et al: Minocycline alleviates hypoxic-ischemic injury to developing oligodendrocytes in the neonatal rat brain. Neuroscience 2006;137:425–435.1628983810.1016%2Fj.neuroscience.2005.09.023 – reference: Heppner FL, Greter M, Marino D, et al: Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 2005;11:146–152.1566583310.1038%2Fnm1177 – reference: Fox C, Dingman A, Derugin N, et al: Minocycline confers early but transient protection in the immature brain following focal cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 2005;25:1138–1149.1587497510.1038%2Fsj.jcbfm.9600121 – reference: Strle K, Zhou JH, Broussard SR, et al: IL-10 promotes survival of microglia without activating Akt. J Neuroimmunol 2002;122:9–19.1177753910.1016%2FS0165-5728%2801%2900444-1 – reference: Hanisch UK, Kettenmann H: Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007;10:1387–1394.1796565910.1038%2Fnn1997 – reference: Tahraoui SL, Marret S, Bodenant C, et al: Central role of microglia in neonatal excitotoxic lesions of the murine periventricular white matter. Brain Pathol 2001;11:56–71.1114520410.1111%2Fj.1750-3639.2001.tb00381.x – reference: Pang Y, Campbell L, Zheng B, et al: Lipopolysaccharide-activated microglia induce death of oligodendrocyte progenitor cells and impede their development. Neuroscience 2010;166:464–475.2003583710.1016%2Fj.neuroscience.2009.12.040 – reference: Svedin P, Kjellmer I, Welin AK, et al: Maturational effects of lipopolysaccharide on white-matter injury in fetal sheep. J Child Neurol 2005;20:960–964.1641784210.1177%2F08830738050200120501 – reference: Doverhag C, Keller M, Karlsson A, et al: Pharmacological and genetic inhibition of NADPH oxidase does not reduce brain damage in different models of perinatal brain injury in newborn mice. Neurobiol Dis 2008;31:133–144.1857109910.1016%2Fj.nbd.2008.04.003 – reference: Priller J, Flügel A, Wehner T, et al: Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat Med 2001;7:1356–1361.1172697810.1038%2Fnm1201-1356 – reference: Sonnenfeld MJ, Jacobs JR: Macrophages and glia participate in the removal of apoptotic neurons from the Drosophila embryonic nervous system. J Comp Neurol 1995;359:644–652.749955310.1002%2Fcne.903590410 – reference: Rezaie P, Dean A: Periventricular leukomalacia, inflammation and white matter lesions within the developing nervous system. Neuropathology 2002;22:106–132.1241655110.1046%2Fj.1440-1789.2002.00438.x – reference: Bishop NA, Lu T, Yankner BA: Neural mechanisms of ageing and cognitive decline. Nature 2010;464:529–535.2033613510.1038%2Fnature08983 – reference: Kadhim H, Tabarki B, Verellen G, et al: Inflammatory cytokines in the pathogenesis of periventricular leukomalacia. Neurology 2001;56:1278–1284.11376173 – reference: McRae A, Gilland E, Bona E, Hagberg H: Microglia activation after neonatal hypoxic-ischemia. Brain Res Dev Brain Res 1995;84:245–252.774364410.1016%2F0165-3806%2894%2900177-2 – reference: Frank MG, Barrientos RM, Watkins LR, Maier SF: Aging sensitizes rapidly isolated hippocampal microglia to LPS ex vivo. J Neuroimmunol 2010;226:181–184.2053773010.1016%2Fj.jneuroim.2010.05.022 – reference: Clark WM, Calcagno FA, Gabler WL, et al: Reduction of central nervous system reperfusion injury in rabbits using doxycycline treatment. Stroke 1994;25:1411–1415, discussion 1416.802335710.1161%2F01.STR.25.7.1411 – reference: Romero-Sandoval EA, Horvath RJ, DeLeo JA: Neuroimmune interactions and pain: focus on glial-modulating targets. Curr Opin Investig Drugs 2008;9:726–734.18600578 – reference: Buller KM, Carty ML, Reinebrant HE, Wixey JA: Minocycline: a neuroprotective agent for hypoxic-ischemic brain injury in the neonate? J Neurosci Res 2009;87:599–608.1883100510.1002%2Fjnr.21890 – reference: Boche D, Cunningham C, Docagne F, et al: TGFβ1 regulates the inflammatory response during chronic neurodegeneration. Neurobiol Dis 2006;22:638–650.1651029110.1016%2Fj.nbd.2006.01.004 – reference: Lee CK, Weindruch R, Prolla TA: Gene-expression profile of the ageing brain in mice. Nat Genet 2000;25:294–297.1088887610.1038%2F77046 – reference: Cimino PJ, Keene CD, Breyer RM, et al: Therapeutic targets in prostaglandin E2 signaling for neurologic disease. Curr Med Chem 2008;15:1863–1869.1869104410.2174%2F092986708785132915 – reference: Sugama S, Takenouchi T, Fujita M, et al: Differential microglial activation between acute stress and lipopolysaccharide treatment. J Neuroimmunol 2009;207:24–31.1911135510.1016%2Fj.jneuroim.2008.11.007 – reference: Deng Y, Lu J, Sivakumar V, et al: Amoeboid microglia in the periventricular white matter induce oligodendrocyte damage through expression of proinflammatory cytokines via MAP kinase signaling pathway in hypoxic neonatal rats. Brain Pathol 2008;18:387–400.1837117910.1111%2Fj.1750-3639.2008.00138.x – reference: Yenari MA, Kauppinen TM, Swanson RA: Microglial activation in stroke: therapeutic targets. Neurotherapeutics 2010;7:378–391.2088050210.1016%2Fj.nurt.2010.07.005 – reference: Fan LW, Lin S, Pang Y, et al: Minocycline attenuates hypoxia-ischemia-induced neurological dysfunction and brain injury in the juvenile rat. Eur J Neurosci 2006;24:341–350.1683663910.1111%2Fj.1460-9568.2006.04918.x – reference: Turrin NP, Rivest S: Molecular and cellular immune mediators of neuroprotection. Mol Neurobiol 2006;34:221–242.1730835410.1385%2FMN%3A34%3A3%3A221 – reference: Raivich G: Like cops on the beat: the active role of resting microglia. Trends Neurosci 2005;28:571–573.1616522810.1016%2Fj.tins.2005.09.001 – reference: Streit WJ, Kreutzberg GW: Response of endogenous glial cells to motor neuron degeneration induced by toxic ricin. J Comp Neurol 1988;268:248–263.336098710.1002%2Fcne.902680209 – reference: Franklin RJ, Kotter MR: The biology of CNS remyelination: the key to therapeutic advances. J Neurol 2008;255(suppl 1):19–25.1831767310.1007%2Fs00415-008-1004-6 – reference: Hagberg H, Peebles D, Mallard C: Models of white matter injury: comparison of infectious, hypoxic-ischemic, and excitotoxic insults. Ment Retard Dev Disabil Res Rev 2002;8:30–38.1192138410.1002%2Fmrdd.10007 – reference: Zhu S, Stavrovskaya IG, Drozda M, et al: Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 2002;417:74–78.1198666810.1038%2F417074a – reference: Butovsky O, Landa G, Kunis G, et al: Induction and blockage of oligodendrogenesis by differently activated microglia in an animal model of multiple sclerosis. J Clin Invest 2006;116:905–915.1655730210.1172%2FJCI26836 – reference: Teismann P, Tieu K, Cohen O, et al: Pathogenic role of glial cells in Parkinson’s disease. Mov Disord 2003;18:121–129.1253920410.1002%2Fmds.10332 – reference: El Khoury J, Toft M, Hickman SE, et al: Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 2007;13:432–438.1735162310.1038%2Fnm1555 – reference: Deguchi K, Oguchi K, Takashima S: Characteristic neuropathology of leukomalacia in extremely low birth weight infants. Pediatr Neurol 1997;16:296–300.925896110.1016%2FS0887-8994%2897%2900041-6 – reference: del Zoppo GJ, Milner R, Mabuchi T, et al: Microglial activation and matrix protease generation during focal cerebral ischemia. Stroke 2007;38:646–651.1726170810.1161%2F01.STR.0000254477.34231.cb – reference: Lee H, Park JW, Kim SP, et al: Doxycycline inhibits matrix metalloproteinase-9 and laminin degradation after transient global cerebral ischemia. Neurobiol Dis 2009;34:189–198.1920085410.1016%2Fj.nbd.2008.12.012 – reference: Decoursey TE, Ligeti E: Regulation and termination of NADPH oxidase activity. Cell Mol Life Sci 2005;62:2173–2193.1613223210.1007%2Fs00018-005-5177-1 – reference: Marin-Teva JL, Dusart I, Colin C, et al: Microglia promote the death of developing Purkinje cells. Neuron 2004;41:535–547.1498020310.1016%2FS0896-6273%2804%2900069-8 – reference: Jin Y, Silverman AJ, Vannucci SJ: Mast cells are early responders after hypoxia-ischemia in immature rat brain. Stroke 2009;40:3107–3112.1952099110.1161%2FSTROKEAHA.109.549691 – reference: Vodovotz Y, Bogdan C: Control of nitric oxide synthase expression by transforming growth factor-β: implications for homeostasis. Prog Growth Factor Res 1994;5:341–351.754005910.1016%2F0955-2235%2894%2900004-5 – reference: Jantzie LL, Cheung PY, Todd KG: Doxycycline reduces cleaved caspase-3 and microglial activation in an animal model of neonatal hypoxia-ischemia. J Cereb Blood Flow Metab 2005;25:314–324.1564774110.1038%2Fsj.jcbfm.9600025 – reference: Glezer I, Lapointe A, Rivest S: Innate immunity triggers oligodendrocyte progenitor reactivity and confines damages to brain injuries. FASEB J 2006;20:750–752.16464958 – reference: Simard AR, Soulet D, Gowing G, et al: Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 2006;49:489–502.1647666010.1016%2Fj.neuron.2006.01.022 – reference: Denker SP, Ji S, Dingman A, et al: Macrophages are comprised of resident brain microglia not infiltrating peripheral monocytes acutely after neonatal stroke. J Neurochem 2007;100:893–904.1721270110.1111%2Fj.1471-4159.2006.04162.x – reference: Kaur C, Hao AJ, Wu CH, Ling EA: Origin of microglia. Microsc Res Tech 2001;54:2–9.1152695310.1002%2Fjemt.1114 – reference: Graeber MB, Streit WJ: Microglia: biology and pathology. Acta Neuropathol 2010;119:89–105.2001287310.1007%2Fs00401-009-0622-0 – reference: Ivacko JA, Sun R, Silverstein FS: Hypoxic-ischemic brain injury induces an acute microglial reaction in perinatal rats. Pediatr Res 1996;39:39–47.882538410.1203%2F00006450-199601000-00006 – reference: Zhao BQ, Wang S, Kim HY, et al: Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med 2006;12:441–445.1656572310.1038%2Fnm1387 – reference: Yrjänheikki J, Keinänen R, Pellikka M, et al: Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA 1998;95:15769–15774.986104510.1073%2Fpnas.95.26.15769 – reference: Pocock JM, Kettenmann H: Neurotransmitter receptors on microglia. Trends Neurosci 2007;30:527–535.1790465110.1016%2Fj.tins.2007.07.007 – reference: Blalock EM, Chen KC, Sharrow K, et al: Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment. J Neurosci 2003;23:3807–3819.12736351 – reference: Prinz M, Mildner A: Microglia in the CNS: immigrants from another world. Glia 2011;59:177–187.2112565910.1002%2Fglia.21104 – reference: Jonakait GM, Wen Y, Wan Y, Ni L: Macrophage cell-conditioned medium promotes cholinergic differentiation of undifferentiated progenitors and synergizes with nerve growth factor action in the developing basal forebrain. Exp Neurol 2000;161:285–296.1068329410.1006%2Fexnr.1999.7255 – reference: Dingman A, Lee SY, Derugin N, et al: Aminoguanidine inhibits caspase-3 and calpain activation without affecting microglial activation following neonatal transient cerebral ischemia. J Neurochem 2006;96:1467–1479.1646423410.1111%2Fj.1471-4159.2006.03672.x – reference: Ziv Y, Ron N, Butovsky O, et al: Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 2006;9:268–275.1641586710.1038%2Fnn1629 – reference: Rezaie P, Male D: Colonisation of the developing human brain and spinal cord by microglia: a review. Microsc Res Tech 1999;45:359–382.1040226410.1002%2F%28SICI%291097-0029%2819990615%2945%3A6%3C359%3A%3AAID-JEMT4%3E3.0.CO%3B2-D – reference: Tsuji M, Wilson MA, Lange MS, Johnston MV: Minocycline worsens hypoxic-ischemic brain injury in a neonatal mouse model. Exp Neurol 2004;189:58–65.1529683610.1016%2Fj.expneurol.2004.01.011 – reference: Simard AR, Rivest S: Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J 2004;18:998–1000.15084516 – reference: Keller M, Griesmaier E, Auer M, et al: Dextromethorphan is protective against sensitized N-methyl-D-aspartate receptor-mediated excitotoxic brain damage in the developing mouse brain. Eur J Neurosci 2008;27:874–883.1827936310.1111%2Fj.1460-9568.2008.06062.x – reference: Kahles T, Luedike P, Endres M, et al: NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke 2007;38:3000–3006.1791676410.1161%2FSTROKEAHA.107.489765 – reference: Bukowski L: Synthesis of 2-(2′-thiazolyl) alkanebenzimidazoles: potential anthelmintics (in Polish). Acta Pol Pharm 1975;32:651–656.1211204 – reference: Opydo-Chanek M, Dabrowski Z: Response of astrocytes and microglia/macrophages to brain injury after bone marrow stromal cell transplantation: a quantitative study. Neurosci Lett 2011;487:163–168.2095118610.1016%2Fj.neulet.2010.10.014 – reference: Kigerl KA, Gensel JC, Ankeny DP, et al: Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 2009;29:13435–13444.1986455610.1523%2FJNEUROSCI.3257-09.2009 – reference: Chen M, Ona VO, Li M, et al: Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 2000;6:797–801.1088892910.1038%2F80538 – reference: Ginhoux F, Greter M, Leboeuf M, et al: Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010;330:841–845.2096621410.1126%2Fscience.1194637 – reference: Verney C, Monier A, Fallet-Bianco C, Gressens P: Early microglial colonization of the human forebrain and possible involvement in periventricular white-matter injury of preterm infants. J Anat 2010;217:436–448.2055740110.1111%2Fj.1469-7580.2010.01245.x – reference: Jurgens HA, Johnson RW: Dysregulated neuronal-microglial cross-talk during aging, stress and inflammation. Exp Neurol 2010, E-pub ahead of print. – reference: Taylor DL, Diemel LT, Cuzner ML, Pocock JM: Activation of group II metabotropic glutamate receptors underlies microglial reactivity and neurotoxicity following stimulation with chromogranin A, a peptide up-regulated in Alzheimer’s disease. J Neurochem 2002;82:1179–1191.1235876510.1046%2Fj.1471-4159.2002.01062.x – reference: Biber K, Laurie DJ, Berthele A, et al: Expression and signaling of group I metabotropic glutamate receptors in astrocytes and microglia. J Neurochem 1999;72:1671–1680.1009887610.1046%2Fj.1471-4159.1999.721671.x – reference: Lobsiger CS, Cleveland DW: Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat Neurosci 2007;10:1355–1360.1796565510.1038%2Fnn1988 – reference: Liu B, Wang K, Gao HM, et al: Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. J Neurochem 2001;77:182–189.1127927410.1046%2Fj.1471-4159.2001.t01-1-00216.x – reference: Mallard C, Welin AK, Peebles D, et al: White matter injury following systemic endotoxemia or asphyxia in the fetal sheep. Neurochem Res 2003;28:215–223.1260869510.1023%2FA%3A1022368915400 – reference: Morgan D: The role of microglia in antibody-mediated clearance of amyloid-β from the brain. CNS Neurol Disord Drug Targets 2009;8:7–15.1927563310.2174%2F187152709787601821 – reference: Garden GA, Möller T: Microglia biology in health and disease. J Neuroimmune Pharmacol 2006;1:127–137.1804077910.1007%2Fs11481-006-9015-5 – reference: Kreutzberg GW: Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996;19:312–318.884359910.1016%2F0166-2236%2896%2910049-7 – reference: Hagino Y, Kariura Y, Manago Y, et al: Heterogeneity and potentiation of AMPA type of glutamate receptors in rat cultured microglia. Glia 2004;47:68–77.1513901410.1002%2Fglia.20034 – reference: Kim HJ, Ifergan I, Antel JP, et al: Type 2 monocyte and microglia differentiation mediated by glatiramer acetate therapy in patients with multiple sclerosis. J Immunol 2004;172:7144–7153.15153538 – reference: Davies CA, Loddick SA, Toulmond S, et al: The progression and topographic distribution of interleukin-1β expression after permanent middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 1999;19:87–98.988635910.1097%2F00004647-199901000-00010 – reference: Groemping Y, Rittinger K: Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J 2005;386:401–416.1558825510.1042%2FBJ20041835 – reference: Shimizu E, Kawahara K, Kajizono M, et al: IL-4-induced selective clearance of oligomeric β-amyloid peptide1–42 by rat primary type 2 microglia. J Immunol 2008;181:6503–6513.18941241 – reference: Tang M, Alexander H, Clark RS, et al: Minocycline reduces neuronal death and attenuates microglial response after pediatric asphyxial cardiac arrest. J Cereb Blood Flow Metab 2010;30:119–129.1975602310.1038%2Fjcbfm.2009.194 – reference: Zheng Z, Yenari MA: Post-ischemic inflammation: molecular mechanisms and therapeutic implications. Neurol Res 2004;26:884–892.1572727210.1179%2F016164104X2357 – reference: Massengale M, Wagers AJ, Vogel H, Weissman IL: Hematopoietic cells maintain hematopoietic fates upon entering the brain. J Exp Med 2005;201:1579–1589.1589727510.1084%2Fjem.20050030 – reference: Miller FD, Gauthier-Fisher A: Home at last: neural stem cell niches defined. Cell Stem Cell 2009;4:507–510.1949727910.1016%2Fj.stem.2009.05.008 – reference: Aarum J, Sandberg K, Haeberlein SL, Persson MA: Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci USA 2003;100:15983–15988.1466844810.1073%2Fpnas.2237050100 – reference: Mosser DM, Edwards JP: Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008;8:958–969.1902999010.1038%2Fnri2448 – reference: Chew LJ, Takanohashi A, Bell M: Microglia and inflammation: impact on developmental brain injuries. Ment Retard Dev Disabil Res Rev 2006;12:105–112.1680789010.1002%2Fmrdd.20102 – reference: Carty ML, Wixey JA, Colditz PB, Buller KM: Post-insult minocycline treatment attenuates hypoxia-ischemia-induced neuroinflammation and white matter injury in the neonatal rat: a comparison of two different dose regimens. Int J Dev Neurosci 2008;26:477–485.1838777110.1016%2Fj.ijdevneu.2008.02.005 – reference: Dougherty KD, Dreyfus CF, Black IB: Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury. Neurobiol Dis 2000;7:574–585.1111425710.1006%2Fnbdi.2000.0318 – reference: Fontaine V, Mohand-Said S, Hanoteau N, et al: Neurodegenerative and neuroprotective effects of tumor necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor 1 and TNF receptor 2. J Neurosci 2002;22:RC216. – reference: Asahi M, Asahi K, Jung JC, et al: Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab 2000;20:1681–1689.1112978410.1097%2F00004647-200012000-00007 – reference: Wyss-Coray T, Lin C, Yan F, et al: TGF-β1 promotes microglial amyloid-β clearance and reduces plaque burden in transgenic mice. Nat Med 2001;7:612–618.1132906410.1038%2F87945 – reference: Gottlieb M, Matute C: Expression of ionotropic glutamate receptor subunits in glial cells of the hippocampal CA1 area following transient forebrain ischemia. J Cereb Blood Flow Metab 1997;17:290–300.911990210.1097%2F00004647-199703000-00006 – ident: ref27 doi: 10.1159%2F000068498 – ident: ref154 doi: 10.1002%2Fglia.20034 – ident: ref1 doi: 10.1177%2F0883073809337920 – ident: ref17 doi: 10.1186%2F1742-2094-5-46 – ident: ref109 doi: 10.1523%2FJNEUROSCI.2042-07.2007 – ident: ref142 doi: 10.1523%2FJNEUROSCI.2615-05.2006 – ident: ref81 doi: 10.1097%2F01.jnen.0000187052.81889.57 – ident: ref151 doi: 10.1046%2Fj.1471-4159.1999.721671.x – ident: ref98 doi: 10.1038%2Fnri2448 – ident: ref125 doi: 10.1073%2Fpnas.95.26.15769 – ident: ref2 doi: 10.2217%2Ffnl.10.1 – ident: ref157 doi: 10.1172%2FJCI26836 – ident: ref12 doi: 10.1002%2Fglia.21104 – ident: ref44 doi: 10.1002%2Fglia.10081 – ident: ref69 doi: 10.1002%2Fmrdd.10007 – ident: ref148 doi: 10.1016%2Fj.nbd.2006.01.004 – ident: ref26 doi: 10.1038%2Fnm1201-1356 – ident: ref134 doi: 10.1111%2Fj.1460-9568.2006.04918.x – ident: ref62 doi: 10.1016%2Fj.jneuroim.2008.11.007 – ident: ref93 doi: 10.1016%2Fj.psyneuen.2008.02.013 – ident: ref14 doi: 10.1002%2Fjemt.1114 – ident: ref24 doi: 10.1634%2Fstemcells.2005-0507 – ident: ref30 doi: 10.2174%2F187152711794488575 – ident: ref114 doi: 10.1016%2F0955-2235%2894%2900004-5 – ident: ref82 doi: 10.1111%2Fj.1750-3639.2008.00138.x – ident: ref92 doi: 10.1016%2Fj.jneumeth.2005.06.026 – ident: ref102 doi: 10.1159%2F000113717 – ident: ref145 doi: 10.1016%2Fj.neuron.2006.01.022 – ident: ref97 doi: 10.1038%2F77046 – ident: ref135 doi: 10.1038%2Fjcbfm.2009.194 – ident: ref29 doi: 10.1016%2FS0165-3806%2899%2900043-7 – ident: ref9 doi: 10.1007%2Fs11481-006-9015-5 – ident: ref156 doi: 10.1016%2Fj.mcn.2003.10.023 – ident: ref13 doi: 10.1126%2Fscience.1194637 – ident: ref47 doi: 10.1038%2Fnn1997 – ident: ref16 doi: 10.1002%2Fcne.21123 – ident: ref153 doi: 10.1523%2FJNEUROSCI.4456-04.2005 – ident: ref119 doi: 10.1161%2FSTROKEAHA.107.489765 – ident: ref54 doi: 10.1523%2FJNEUROSCI.2451-04.2004 – ident: ref100 doi: 10.1038%2Fnri978 – ident: ref146 doi: 10.1002%2F1097-4547%2820000701%2961%3A1%3C10%3A%3AAID-JNR2%3E3.0.CO%3B2-E – ident: ref64 doi: 10.1016%2Fj.jneuroim.2005.11.005 – ident: ref68 doi: 10.1073%2Fpnas.96.21.12102 – ident: ref111 doi: 10.1097%2F00004647-199901000-00010 – ident: ref71 doi: 10.1177%2F08830738050200120501 – ident: ref7 doi: 10.1002%2Fmds.10332 – ident: ref105 doi: 10.1161%2F01.STR.0000254477.34231.cb – ident: ref3 doi: 10.1007%2Fs11481-009-9174-2 – ident: ref23 doi: 10.1084%2Fjem.20050030 – ident: ref38 doi: 10.1073%2Fpnas.2237050100 – ident: ref59 doi: 10.1023%2FA%3A1018514415073 – ident: ref74 doi: 10.1159%2F000105478 – ident: ref83 doi: 10.1016%2FS0887-8994%2897%2900041-6 – ident: ref79 doi: 10.1111%2Fj.1750-3639.2004.tb00492.x – ident: ref131 doi: 10.1016%2Fj.ijdevneu.2008.02.005 – ident: ref5 doi: 10.1002%2Fjnr.20482 – ident: ref136 doi: 10.1002%2Fjnr.21890 – ident: ref137 doi: 10.1016%2Fj.neuroscience.2005.09.023 – ident: ref127 doi: 10.1073%2Fpnas.251341998 – ident: ref138 doi: 10.1016%2Fj.expneurol.2004.01.011 – ident: ref143 doi: 10.1523%2FJNEUROSCI.5572-08.2009 – ident: ref43 doi: 10.1006%2Fnbdi.2000.0318 – ident: ref120 doi: 10.1038%2Fjcbfm.2009.47 – ident: ref37 doi: 10.1016%2FS0896-6273%2804%2900069-8 – ident: ref150 doi: 10.1016%2Fj.tins.2007.08.007 – ident: ref101 doi: 10.1016%2Fj.it.2004.09.015 – ident: ref25 doi: 10.1016%2Fj.neulet.2010.10.014 – ident: ref40 doi: 10.1006%2Fexnr.1999.7255 – ident: ref86 doi: 10.1203%2F00006450-199601000-00006 – ident: ref110 doi: 10.1179%2F016164104X2357 – ident: ref65 doi: 10.1002%2F%28SICI%291097-4547%2819981001%2954%3A1%3C68%3A%3AAID-JNR8%3E3.0.CO%3B2-F – ident: ref76 doi: 10.1111%2Fj.1460-9568.2008.06062.x – ident: ref20 doi: 10.1126%2Fscience.1110647 – ident: ref112 doi: 10.1016%2F0006-8993%2889%2990078-4 – ident: ref18 doi: 10.1016%2FS0022-510X%2802%2900430-6 – ident: ref104 doi: 10.1038%2Fnm0796-788 – ident: ref141 doi: 10.1007%2Fs00415-008-1004-6 – ident: ref126 doi: 10.1073%2Fpnas.96.23.13496 – ident: ref55 doi: 10.1016%2Fj.tins.2007.07.007 – ident: ref96 doi: 10.1038%2Fnature08983 – ident: ref107 doi: 10.1016%2Fj.expneurol.2008.11.022 – ident: ref147 doi: 10.1016%2FS0165-5728%2801%2900444-1 – ident: ref53 doi: 10.1038%2Fnn1805 – ident: ref89 doi: 10.1111%2Fj.1471-4159.2006.03672.x – ident: ref140 doi: 10.1038%2Fnn1629 – ident: ref60 doi: 10.1186%2F1742-2094-5-50 – ident: ref124 doi: 10.1186%2F1471-2202-7-56 – ident: ref80 doi: 10.1023%2FA%3A1022368915400 – ident: ref108 doi: 10.1038%2Fnm1387 – ident: ref106 doi: 10.1097%2F00004647-200012000-00007 – ident: ref48 doi: 10.1038%2Fnn1988 – ident: ref87 doi: 10.1016%2F0165-3806%2894%2900177-2 – ident: ref4 doi: 10.1002%2Fjnr.20485 – ident: ref94 doi: 10.1016%2Fj.jneuroim.2010.05.022 – ident: ref11 doi: 10.1385%2FMN%3A34%3A3%3A221 – ident: ref50 doi: 10.1016%2Fj.tins.2005.09.001 – ident: ref22 doi: 10.1136%2Fjcp.44.2.102 – ident: ref39 doi: 10.1006%2Fdbio.1996.0147 – ident: ref41 doi: 10.1111%2Fj.1460-9568.2007.05309.x – ident: ref36 doi: 10.1002%2Fcne.903590410 – ident: ref95 doi: 10.1016%2Fj.bbi.2008.09.002 – ident: ref42 doi: 10.1096%2Ffj.08-105908 – ident: ref88 doi: 10.1111%2Fj.1471-4159.2006.04162.x – ident: ref6 doi: 10.2174%2F187152709787601821 – ident: ref61 doi: 10.1016%2Fj.brainres.2005.07.071 – ident: ref75 doi: 10.1016%2Fj.ajog.2007.06.035 – ident: ref51 doi: 10.1007%2Fs00401-009-0622-0 – ident: ref78 doi: 10.1016%2Fj.expneurol.2009.08.003 – ident: ref35 doi: 10.1016%2Fj.neuroscience.2008.06.052 – ident: ref46 doi: 10.1016%2F0166-2236%2896%2910049-7 – ident: ref15 doi: 10.1097%2Fnen.0b013e3180517b46 – ident: ref90 doi: 10.1002%2Fana.10242 – ident: ref72 doi: 10.1002%2Fmrdd.20102 – ident: ref152 doi: 10.1046%2Fj.1471-4159.2002.01062.x – ident: ref21 doi: 10.1002%2Fcne.902680209 – ident: ref19 doi: 10.1111%2Fj.1469-7580.2010.01245.x – ident: ref32 doi: 10.1002%2Fjnr.22533 – ident: ref56 doi: 10.1111%2Fj.1750-3639.2001.tb00381.x – ident: ref10 doi: 10.1038%2Fnm1177 – ident: ref66 doi: 10.1016%2FS0306-4522%2803%2900558-X – ident: ref58 doi: 10.1002%2Fglia.20565 – ident: ref117 doi: 10.1002%2Fana.21511 – ident: ref67 doi: 10.1016%2FS0079-6123%2808%2962552-2 – ident: ref45 doi: 10.1159%2F000112098 – ident: ref116 doi: 10.1042%2FBJ20041835 – ident: ref128 doi: 10.1038%2F80538 – ident: ref52 doi: 10.1038%2Fnn1472 – ident: ref73 doi: 10.2967%2Fjnumed.106.038539 – ident: ref99 doi: 10.1523%2FJNEUROSCI.3257-09.2009 – ident: ref121 doi: 10.1016%2Fj.nbd.2008.04.003 – ident: ref130 doi: 10.1038%2F417074a – ident: ref85 doi: 10.1016%2Fj.neuroscience.2009.12.040 – ident: ref144 doi: 10.1038%2Fnm1555 – ident: ref115 doi: 10.1016%2FS0006-8993%2800%2902459-8 – ident: ref33 doi: 10.1186%2F1742-2094-7-89 – ident: ref149 doi: 10.1038%2F87945 – ident: ref132 doi: 10.1161%2F01.STR.25.7.1411 – ident: ref31 doi: 10.1016%2F0306-4522%2890%2990281-8 – ident: ref84 doi: 10.1046%2Fj.1440-1789.2002.00438.x – ident: ref91 doi: 10.1038%2Fsj.jcbfm.9600121 – ident: ref113 doi: 10.1016%2Fj.nurt.2010.07.005 – ident: ref155 doi: 10.1097%2F00004647-199703000-00006 – ident: ref63 doi: 10.1046%2Fj.1471-4159.2001.t01-1-00216.x – ident: ref103 doi: 10.1523%2FJNEUROSCI.3992-08.2009 – ident: ref133 doi: 10.1111%2Fj.1365-2990.2007.00925.x – ident: ref139 doi: 10.1007%2FBF03033182 – ident: ref118 doi: 10.1007%2Fs00018-005-5177-1 – ident: ref129 doi: 10.1002%2Fana.10092 – ident: ref77 doi: 10.1161%2FSTROKEAHA.109.549691 – ident: ref49 doi: 10.1002%2Fglia.10154 – ident: ref28 doi: 10.1002%2F%28SICI%291097-0029%2819990615%2945%3A6%3C359%3A%3AAID-JEMT4%3E3.0.CO%3B2-D – ident: ref34 doi: 10.1016%2Fj.stem.2009.05.008 – ident: ref123 doi: 10.1016%2Fj.nbd.2008.12.012 – ident: ref70 doi: 10.1038%2Fsj.jcbfm.9600025 – ident: ref8 doi: 10.1212%2F01.wnl.0000222734.56412.17 – ident: ref122 doi: 10.2174%2F092986708785132915 – ident: ref57 doi: 10.1007%2Fs00281-009-0180-5 |
SSID | ssj0012937 |
Score | 2.4333708 |
SecondaryResourceType | review_article |
Snippet | Microglia, the resident immune cells of the mammalian central nervous system (CNS), play a pivotal role in both physiological and pathological conditions such... |
SourceID | proquest pubmed crossref karger |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 199 |
SubjectTerms | Aging - physiology Brain - cytology Brain - embryology Brain - growth & development Brain - pathology Central Nervous System - cytology Central Nervous System - immunology Central Nervous System - pathology Central Nervous System - physiology Encephalitis - immunology Encephalitis - pathology Humans Microglia - cytology Microglia - physiology Nerve Degeneration - pathology Nerve Degeneration - physiopathology Review |
Title | The Yin and Yang of Microglia |
URI | https://karger.com/doi/10.1159/000328989 https://www.ncbi.nlm.nih.gov/pubmed/21757877 https://www.proquest.com/docview/914161524 https://www.proquest.com/docview/901641842 https://www.proquest.com/docview/911153848 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60FfEiPqrW2hLEg5eg3UeyOYlKSxFaRCy0p5B9iShp7eP_u5NsA4IKOSUTlsxsZubbeQFcaXkrYiNMKGMHVxlXMhRW8VBTE4mM4ktYKDwcRYMxe5rwic_NWfq0yo1OLBS1nik8I79JuuiKc8Lu5l8hDo3C4KqfoLENdexchhld8aTCW2jJimppGmNxURT5xkLOgGP9AiU4OfGHOdr5wOzrxd_OZmF0-gew773F4L4U7yFsmfwIdoc-Hn4MbSflYPqeB1mug2mWvwUzGwwxx-7t8z1rwLjfe30chH7gQagYvV2FkumMS6qdFokkU4RSyW1MdCStyFTXcssTYSPrTHCXEc27EbEOXilhtHG-kqQnUMtnuTmDgFpDTEas0lIwba2MZSKZM9cx-lSGN-F6892p8t3AcSjFZ1qgAp6kFYuacFmRzssWGL8RNUrmVSSb-60NL1P_dyzTSpZNCKqnbltjrCLLzWztSLD1l0Of5B8Sp6adumaiCaelkKq1Hc5CTRSf_7t6C_bKE2K8LqC2WqxN27kYK9kpNlIH6g-90fPLN_7BzV4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZSxxBEC50FZMXMcbEjUeaoJCXIbt9zPQ-BPFkje4ioqBP4_Qlosxu1pXgj_I_pmrnAEF9E-Zppmaaqa7u-qrrAthwpqUTr31kEjRXpbIm0sGqyAkf60zQS5Qo3OvH3XP550JdTMFTlQtDYZXVnjjZqN3A0hn5r06boLjicmv4N6KmUeRcrTpoFFJx5B__ocV2__twD6d3k_OD_bPdblQ2FYisFK1xZKTLlBEOV2pspOVCGBUS7mITdGbbQQXV0SEOqObakjvVjnlAE8Zq7zziESPwu9MwIwVaMg2Y2dnvn5zWbgvUnZP8bJFQOlMcl6WMEDJQxoTg1KvxmQKcvaV479Hr8Hai5g4WYL7Ep2y7EKhPMOXzRZjrlR74z7CGcsUub3KW5Y5dZvk1GwTWo6i-67ubbAnO34UbX6CRD3K_DEwEz33Gg3VGSxeCSUzHSAQICaE4r5rws_rv1Jb1x6kNxl06sUNUJ61Z1IQfNemwKLrxEtFSwbyapLq_UvEyLdfjfVpLTxNY_RQXEnlHstwPHpCEio2hvcvfIEHFgApC6iZ8LSapHhstO9r7km9vjv4dPnTPesfp8WH_aAU-FufTdK1CYzx68GsIcMZmvRQrBlfvLcn_ARB6CjI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+yin+and+yang+of+microglia&rft.jtitle=Developmental+neuroscience&rft.au=Czeh%2C+Melinda&rft.au=Gressens%2C+Pierre&rft.au=Kaindl%2C+Angela+M&rft.date=2011-01-01&rft.issn=1421-9859&rft.eissn=1421-9859&rft.volume=33&rft.issue=3-4&rft.spage=199&rft_id=info:doi/10.1159%2F000328989&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-5866&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-5866&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-5866&client=summon |