Gray-Molasses Optical-Tweezer Loading: Controlling Collisions for Scaling Atom-Array Assembly
To isolate individual neutral atoms in microtraps, experimenters have long harnessed molecular photoassociation to make atom distributions sub-Poissonian. While a variety of approaches have used a combination of attractive (red-detuned) and repulsive (blue-detuned) molecular states, to date all expe...
Saved in:
Published in | Physical review. X Vol. 9; no. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
College Park
American Physical Society
29.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To isolate individual neutral atoms in microtraps, experimenters have long harnessed molecular photoassociation to make atom distributions sub-Poissonian. While a variety of approaches have used a combination of attractive (red-detuned) and repulsive (blue-detuned) molecular states, to date all experiments have been predicated on red-detuned cooling. In our work, we present a shifted perspective—namely, the efficient way to capture single atoms is to eliminate red-detuned light in the loading stage and use blue-detuned light that both cools the atoms and precisely controls trap loss through the amount of energy released during atom-atom collisions in the photoassociation process. Subsequent application of red-detuned light then assures the preparation of maximally one atom in the trap. UsingΛ-enhanced gray-molasses for loading, we study and model the molecular processes and find we can trap single atoms with 90% probability even in a very shallow optical tweezer. Using 100 traps loaded with 80% probability, we demonstrate one example of the power of enhanced loading by assembling a grid of 36 atoms using only a single move of rows and columns in 2D. Our insight is key in scaling the number of particles in a bottom-up quantum simulation and computation with atoms, or even molecules. |
---|---|
AbstractList | To isolate individual neutral atoms in microtraps, experimenters have long harnessed molecular photoassociation to make atom distributions sub-Poissonian. While a variety of approaches have used a combination of attractive (red-detuned) and repulsive (blue-detuned) molecular states, to date all experiments have been predicated on red-detuned cooling. In our work, we present a shifted perspective—namely, the efficient way to capture single atoms is to eliminate red-detuned light in the loading stage and use blue-detuned light that both cools the atoms and precisely controls trap loss through the amount of energy released during atom-atom collisions in the photoassociation process. Subsequent application of red-detuned light then assures the preparation of maximally one atom in the trap. UsingΛ-enhanced gray-molasses for loading, we study and model the molecular processes and find we can trap single atoms with 90% probability even in a very shallow optical tweezer. Using 100 traps loaded with 80% probability, we demonstrate one example of the power of enhanced loading by assembling a grid of 36 atoms using only a single move of rows and columns in 2D. Our insight is key in scaling the number of particles in a bottom-up quantum simulation and computation with atoms, or even molecules. |
ArticleNumber | 011057 |
Author | Thiele, T. Kiehl, C. Brown, M. O. Hsu, T.-W. Regal, C. A. |
Author_xml | – sequence: 1 givenname: M. O. surname: Brown fullname: Brown, M. O. – sequence: 2 givenname: T. surname: Thiele fullname: Thiele, T. – sequence: 3 givenname: C. surname: Kiehl fullname: Kiehl, C. – sequence: 4 givenname: T.-W. surname: Hsu fullname: Hsu, T.-W. – sequence: 5 givenname: C. A. surname: Regal fullname: Regal, C. A. |
BookMark | eNpNUE1LAzEUDFLBWvsDvC14Tn3Z7Fe8LUWrsFLRCl4kJJtEt2w3Ndkq6683pQq-y8wb5s2DOUWjznYaoXMCM0KAXj68D_5Rf77M2AyCkOZHaByTDDClUIz-8RM09X4NYTIgSZ6P0evCiQHf21Z4r3203PZNLVq8-tL6W7uoskI13dtVNLdd72zbhiXwgL6xnY-MddFTONjLZW83uHQhLypD2Ea2wxk6NqL1evqLE_R8c72a3-JqubiblxWuEwo9FkJpIlMoiFI00YbIPGdKF0yDyqUhJoa4lkUsC8lMkihCCwOMJgaM1LGq6QRdHHK3zn7stO_52u5cF17yOE0hI1lasOAiB1ftrPdOG751zUa4gRPg-yL5X5Gc8UOR9Ad1ZGsW |
CitedBy_id | crossref_primary_10_1103_PhysRevLett_122_203601 crossref_primary_10_1103_PhysRevA_101_043421 crossref_primary_10_1103_PhysRevLett_131_083001 crossref_primary_10_1088_1361_6455_ab52ef crossref_primary_10_1103_PhysRevLett_127_050501 crossref_primary_10_1103_PhysRevA_103_043301 crossref_primary_10_1103_PhysRevLett_131_253603 crossref_primary_10_1103_PhysRevResearch_6_023232 crossref_primary_10_1103_PhysRevX_13_041035 crossref_primary_10_1103_PhysRevResearch_6_023154 crossref_primary_10_7498_aps_73_20240135 crossref_primary_10_1088_2633_4356_aca3f2 crossref_primary_10_1103_PhysRevA_108_023107 crossref_primary_10_1103_PhysRevA_102_063107 crossref_primary_10_1116_5_0036562 crossref_primary_10_1103_PhysRevA_106_022611 crossref_primary_10_1103_PhysRevX_12_021027 crossref_primary_10_1103_PhysRevA_104_053110 crossref_primary_10_1103_PhysRevResearch_5_L032009 crossref_primary_10_1103_PhysRevA_101_043816 crossref_primary_10_1103_PhysRevApplied_19_054032 crossref_primary_10_1103_PhysRevLett_130_193402 crossref_primary_10_1103_PhysRevApplied_19_034048 crossref_primary_10_1364_OPTICA_513551 crossref_primary_10_1103_PhysRevA_105_042404 crossref_primary_10_1103_PhysRevA_103_022410 crossref_primary_10_1063_5_0197119 crossref_primary_10_1088_1367_2630_acf518 crossref_primary_10_1140_epjqt_s40507_023_00190_1 crossref_primary_10_1103_PhysRevA_104_013523 crossref_primary_10_1103_PhysRevResearch_3_043059 crossref_primary_10_1364_OE_444711 crossref_primary_10_3788_COL202321_110010 crossref_primary_10_1088_1361_6455_ab8b46 crossref_primary_10_1103_PhysRevResearch_4_033087 crossref_primary_10_1103_PhysRevLett_132_183401 crossref_primary_10_1088_1367_2630_ab98d4 crossref_primary_10_1103_PhysRevResearch_5_033108 crossref_primary_10_1103_PRXQuantum_3_040309 crossref_primary_10_1103_PhysRevA_103_022424 crossref_primary_10_1103_PhysRevApplied_16_034013 crossref_primary_10_1103_PhysRevLett_124_073401 crossref_primary_10_1103_PhysRevLett_128_083202 crossref_primary_10_1088_1367_2630_ac0000 crossref_primary_10_1103_PhysRevLett_124_253602 crossref_primary_10_1103_PhysRevLett_130_180601 crossref_primary_10_1126_science_abo0608 crossref_primary_10_7498_aps_73_20240182 crossref_primary_10_1088_2058_9565_ad33ad crossref_primary_10_1103_PhysRevResearch_4_013240 crossref_primary_10_1103_PhysRevResearch_3_023008 crossref_primary_10_1103_PhysRevLett_125_263601 crossref_primary_10_1088_0256_307X_37_4_044209 crossref_primary_10_1103_PhysRevLett_124_103601 crossref_primary_10_1103_PhysRevA_103_032427 crossref_primary_10_1103_PhysRevA_103_053304 crossref_primary_10_1103_PhysRevApplied_16_064031 |
Cites_doi | 10.1126/science.aah3752 10.1038/nphys1778 10.1038/s41586-018-0458-7 10.1038/nature09378 10.1214/ss/1009213285 10.1103/PhysRevLett.61.826 10.1088/1361-6455/aa65ea 10.1088/1367-2630/17/3/035014 10.1126/science.aah3778 10.1103/PhysRevLett.104.010503 10.1038/s41586-018-0450-2 10.1103/PhysRevLett.118.063606 10.1038/nature08482 10.1038/nature16073 10.1103/PhysRevA.70.040302 10.1103/PhysRevLett.115.073003 10.1126/science.aar7797 10.1088/1612-2011/10/12/125501 10.1103/RevModPhys.71.1 10.1140/epjd/e2013-30729-x 10.1209/0295-5075/27/1/008 10.1038/35082512 10.1103/PhysRevLett.89.023005 10.1103/PhysRevLett.120.123201 10.1209/0295-5075/100/63001 10.1364/OL.21.000991 10.1103/PhysRevA.95.053424 10.1126/science.1250057 10.1038/442151a 10.1103/PhysRevLett.121.083201 10.1038/s41567-018-0191-z 10.1103/PhysRevA.48.R4035 10.1103/PhysRevLett.104.010502 10.1038/nature24622 10.1088/1367-2630/17/7/073011 10.1103/PhysRevA.87.063411 10.1038/s41598-018-19814-z 10.1088/1367-2630/18/12/123017 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1103/PhysRevX.9.011057 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Science Database (ProQuest) Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student Technology Collection ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2160-3308 |
ExternalDocumentID | 10_1103_PhysRevX_9_011057 |
GroupedDBID | 3MX 5VS 88I AAYXX ABJCF ABUWG ADBBV AENEX AFGMR AFKRA AGDNE ALMA_UNASSIGNED_HOLDINGS AUAIK AZQEC BCNDV BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD FRP GNUQQ GROUPED_DOAJ HCIFZ KQ8 M2P M7S M~E OK1 PIMPY PTHSS ROL S7W 3V. 7XB 8FE 8FG 8FK L6V PQEST PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c430t-aade1b5081dd34ef1b779de89e0d7bf1f202cb82b8b9f44d138f0934f0fbe2dc3 |
IEDL.DBID | 8FG |
ISSN | 2160-3308 |
IngestDate | Tue Dec 17 15:07:37 EST 2024 Fri Aug 23 02:42:59 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c430t-aade1b5081dd34ef1b779de89e0d7bf1f202cb82b8b9f44d138f0934f0fbe2dc3 |
OpenAccessLink | https://www.proquest.com/docview/2550616589?pq-origsite=%requestingapplication% |
PQID | 2550616589 |
PQPubID | 5161131 |
ParticipantIDs | proquest_journals_2550616589 crossref_primary_10_1103_PhysRevX_9_011057 |
PublicationCentury | 2000 |
PublicationDate | 2019-03-29 |
PublicationDateYYYYMMDD | 2019-03-29 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | College Park |
PublicationPlace_xml | – name: College Park |
PublicationTitle | Physical review. X |
PublicationYear | 2019 |
Publisher | American Physical Society |
Publisher_xml | – sequence: 0 name: American Physical Society |
References | PhysRevX.9.011057Cc29R1 PhysRevX.9.011057Cc25R1 PhysRevX.9.011057Cc26R1 PhysRevX.9.011057Cc27R1 PhysRevX.9.011057Cc28R1 PhysRevX.9.011057Cc32R1 PhysRevX.9.011057Cc33R1 PhysRevX.9.011057Cc34R1 PhysRevX.9.011057Cc13R1 PhysRevX.9.011057Cc12R1 PhysRevX.9.011057Cc11R1 PhysRevX.9.011057Cc30R1 PhysRevX.9.011057Cc10R1 PhysRevX.9.011057Cc31R1 PhysRevX.9.011057Cc4R1 PhysRevX.9.011057Cc3R1 PhysRevX.9.011057Cc6R1 PhysRevX.9.011057Cc5R1 PhysRevX.9.011057Cc2R1 PhysRevX.9.011057Cc1R1 L. D. Brown (PhysRevX.9.011057Cc40R1) 2001; 16 PhysRevX.9.011057Cc17R1 PhysRevX.9.011057Cc16R1 PhysRevX.9.011057Cc15R1 PhysRevX.9.011057Cc14R1 PhysRevX.9.011057Cc8R1 PhysRevX.9.011057Cc36R1 PhysRevX.9.011057Cc7R1 PhysRevX.9.011057Cc37R1 PhysRevX.9.011057Cc19R1 PhysRevX.9.011057Cc38R1 PhysRevX.9.011057Cc9R1 PhysRevX.9.011057Cc18R1 PhysRevX.9.011057Cc21R1 PhysRevX.9.011057Cc22R1 PhysRevX.9.011057Cc23R1 PhysRevX.9.011057Cc24R1 PhysRevX.9.011057Cc20R1 |
References_xml | – ident: PhysRevX.9.011057Cc9R1 doi: 10.1126/science.aah3752 – ident: PhysRevX.9.011057Cc19R1 doi: 10.1038/nphys1778 – ident: PhysRevX.9.011057Cc15R1 doi: 10.1038/s41586-018-0458-7 – ident: PhysRevX.9.011057Cc2R1 doi: 10.1038/nature09378 – volume: 16 start-page: 101 issn: 0883-4237 year: 2001 ident: PhysRevX.9.011057Cc40R1 publication-title: Stat. Sci. doi: 10.1214/ss/1009213285 contributor: fullname: L. D. Brown – ident: PhysRevX.9.011057Cc24R1 doi: 10.1103/PhysRevLett.61.826 – ident: PhysRevX.9.011057Cc34R1 doi: 10.1088/1361-6455/aa65ea – ident: PhysRevX.9.011057Cc28R1 doi: 10.1088/1367-2630/17/3/035014 – ident: PhysRevX.9.011057Cc10R1 doi: 10.1126/science.aah3778 – ident: PhysRevX.9.011057Cc3R1 doi: 10.1103/PhysRevLett.104.010503 – ident: PhysRevX.9.011057Cc14R1 doi: 10.1038/s41586-018-0450-2 – ident: PhysRevX.9.011057Cc12R1 doi: 10.1103/PhysRevLett.118.063606 – ident: PhysRevX.9.011057Cc1R1 doi: 10.1038/nature08482 – ident: PhysRevX.9.011057Cc6R1 doi: 10.1038/nature16073 – ident: PhysRevX.9.011057Cc7R1 doi: 10.1103/PhysRevA.70.040302 – ident: PhysRevX.9.011057Cc22R1 doi: 10.1103/PhysRevLett.115.073003 – ident: PhysRevX.9.011057Cc37R1 doi: 10.1126/science.aar7797 – ident: PhysRevX.9.011057Cc21R1 doi: 10.1088/1612-2011/10/12/125501 – ident: PhysRevX.9.011057Cc36R1 doi: 10.1103/RevModPhys.71.1 – ident: PhysRevX.9.011057Cc38R1 doi: 10.1140/epjd/e2013-30729-x – ident: PhysRevX.9.011057Cc26R1 doi: 10.1209/0295-5075/27/1/008 – ident: PhysRevX.9.011057Cc18R1 doi: 10.1038/35082512 – ident: PhysRevX.9.011057Cc20R1 doi: 10.1103/PhysRevLett.89.023005 – ident: PhysRevX.9.011057Cc31R1 doi: 10.1103/PhysRevLett.120.123201 – ident: PhysRevX.9.011057Cc17R1 doi: 10.1209/0295-5075/100/63001 – ident: PhysRevX.9.011057Cc27R1 doi: 10.1364/OL.21.000991 – ident: PhysRevX.9.011057Cc13R1 doi: 10.1103/PhysRevA.95.053424 – ident: PhysRevX.9.011057Cc5R1 doi: 10.1126/science.1250057 – ident: PhysRevX.9.011057Cc8R1 doi: 10.1038/442151a – ident: PhysRevX.9.011057Cc30R1 doi: 10.1103/PhysRevLett.121.083201 – ident: PhysRevX.9.011057Cc32R1 doi: 10.1038/s41567-018-0191-z – ident: PhysRevX.9.011057Cc25R1 doi: 10.1103/PhysRevA.48.R4035 – ident: PhysRevX.9.011057Cc4R1 doi: 10.1103/PhysRevLett.104.010502 – ident: PhysRevX.9.011057Cc11R1 doi: 10.1038/nature24622 – ident: PhysRevX.9.011057Cc23R1 doi: 10.1088/1367-2630/17/7/073011 – ident: PhysRevX.9.011057Cc16R1 doi: 10.1103/PhysRevA.87.063411 – ident: PhysRevX.9.011057Cc33R1 doi: 10.1038/s41598-018-19814-z – ident: PhysRevX.9.011057Cc29R1 doi: 10.1088/1367-2630/18/12/123017 |
SSID | ssj0000601477 |
Score | 2.5687075 |
Snippet | To isolate individual neutral atoms in microtraps, experimenters have long harnessed molecular photoassociation to make atom distributions sub-Poissonian.... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
SubjectTerms | Algorithms Assembling Assembly Atomic collisions Atomic properties Efficiency Fluorescence Laser applications Laser arrays Laser cooling Molasses Neutral atoms Quantum computing Quantum theory Qubits (quantum computing) Simulation Stability Syrups & sweeteners |
Title | Gray-Molasses Optical-Tweezer Loading: Controlling Collisions for Scaling Atom-Array Assembly |
URI | https://www.proquest.com/docview/2550616589 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5qEbyIT6yPkoMnIe1mk202XqSKVcRWqQq9yLJJJidta7cq-utNslsfF69ZsocZMt-XmS8zCB0mIqKG5kAcOFjiTqIiKYAlWguHR0lu4tCnu9dvXz7wq2EyrBJuRSWrnMfEEKjNWPscectRXwc9Di_lyeSF-KlRvrpajdBYRDUai7aX9KXdi-8ci-81woWoipk0Yi0vqxzA27Apmx74PCj9hqO_0ThATHcNrVbcEHdKZ66jBRhtoOWg0dTFJnq8mOYfpDf2fBcKfDMJaWhy_w7wCVN8PQ5y-GN8VqrP_Ttz7PMC4fV4gR07xXdug1_uzFxo7Ezd_7Cv-j6rp48t9NA9vz-7JNV0BKI5i2Ykzw1Q5fgVNYZxsFQJIQ2kEiIjlKU2jmKt0lilSlrODWWpjSTjNrIKYqPZNloajUewgzBQE8s051TkiifC5syENvDMMG2kFnV0NDdSNimbYGTh8hCxbG7RTGalRetof27GrDoPRfbjvd3_P--hFUdJpFd5xXIfLc2mr3DgYH-mGsG3DVQ7Pe_fDhrh8vwF9eWyGA |
link.rule.ids | 314,780,784,864,12765,21388,27924,27925,33373,33744,43600,43805 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTwIxEG0UY_Ri_Iwoag-eTIrbbbFbL4YQERUwUUy4mM22nZ4UkEUN_nrbsvhx8bqb7WEmnfd25s0MQsc1EVFDMyAOHCxxN1GRBMASrYXDo1pm4jCnu9M9az3ym36tXyTc8kJWOY-JIVCbofY58lNHfR30OLyUF6NX4rdG-epqsUJjES1x5qDbd4o3r75zLH7WCBeiKGbSiJ16WeU9vPersuqBz4PSbzj6G40DxDTX0VrBDXF95swNtACDTbQcNJo630JPV-NsSjpDz3chx3ejkIYmvQ-ATxjj9jDI4c9xY6Y-933m2OcFQvd4jh07xQ_uA_-4PnGhsT5252Ff9X1Rz9Nt9Ni87DVapNiOQDRn0YRkmQGqHL-ixjAOliohpIFEQmSEstTGUaxVEqtEScu5oSyxkWTcRlZBbDTbQaXBcAC7CAM1sUwyTkWmeE3YjJkwBp4Zpo3UooxO5kZKR7MhGGn4eYhYOrdoKtOZRcuoMjdjWtyHPP3x3t7_r4_QSqvXaaft6-7tPlp19ER6xVcsK6g0Gb_BgaMAE3UY_PwFl3Kyaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gray-Molasses+Optical-Tweezer+Loading%3A+Controlling+Collisions+for+Scaling+Atom-Array+Assembly&rft.jtitle=Physical+review.+X&rft.au=Brown%2C+M.%E2%80%89O.&rft.au=Thiele%2C+T.&rft.au=Kiehl%2C+C.&rft.au=Hsu%2C+T.-W.&rft.date=2019-03-29&rft.issn=2160-3308&rft.eissn=2160-3308&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1103%2FPhysRevX.9.011057&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevX_9_011057 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon |