Gray-Molasses Optical-Tweezer Loading: Controlling Collisions for Scaling Atom-Array Assembly

To isolate individual neutral atoms in microtraps, experimenters have long harnessed molecular photoassociation to make atom distributions sub-Poissonian. While a variety of approaches have used a combination of attractive (red-detuned) and repulsive (blue-detuned) molecular states, to date all expe...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. X Vol. 9; no. 1
Main Authors Brown, M. O., Thiele, T., Kiehl, C., Hsu, T.-W., Regal, C. A.
Format Journal Article
LanguageEnglish
Published College Park American Physical Society 29.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To isolate individual neutral atoms in microtraps, experimenters have long harnessed molecular photoassociation to make atom distributions sub-Poissonian. While a variety of approaches have used a combination of attractive (red-detuned) and repulsive (blue-detuned) molecular states, to date all experiments have been predicated on red-detuned cooling. In our work, we present a shifted perspective—namely, the efficient way to capture single atoms is to eliminate red-detuned light in the loading stage and use blue-detuned light that both cools the atoms and precisely controls trap loss through the amount of energy released during atom-atom collisions in the photoassociation process. Subsequent application of red-detuned light then assures the preparation of maximally one atom in the trap. UsingΛ-enhanced gray-molasses for loading, we study and model the molecular processes and find we can trap single atoms with 90% probability even in a very shallow optical tweezer. Using 100 traps loaded with 80% probability, we demonstrate one example of the power of enhanced loading by assembling a grid of 36 atoms using only a single move of rows and columns in 2D. Our insight is key in scaling the number of particles in a bottom-up quantum simulation and computation with atoms, or even molecules.
AbstractList To isolate individual neutral atoms in microtraps, experimenters have long harnessed molecular photoassociation to make atom distributions sub-Poissonian. While a variety of approaches have used a combination of attractive (red-detuned) and repulsive (blue-detuned) molecular states, to date all experiments have been predicated on red-detuned cooling. In our work, we present a shifted perspective—namely, the efficient way to capture single atoms is to eliminate red-detuned light in the loading stage and use blue-detuned light that both cools the atoms and precisely controls trap loss through the amount of energy released during atom-atom collisions in the photoassociation process. Subsequent application of red-detuned light then assures the preparation of maximally one atom in the trap. UsingΛ-enhanced gray-molasses for loading, we study and model the molecular processes and find we can trap single atoms with 90% probability even in a very shallow optical tweezer. Using 100 traps loaded with 80% probability, we demonstrate one example of the power of enhanced loading by assembling a grid of 36 atoms using only a single move of rows and columns in 2D. Our insight is key in scaling the number of particles in a bottom-up quantum simulation and computation with atoms, or even molecules.
ArticleNumber 011057
Author Thiele, T.
Kiehl, C.
Brown, M. O.
Hsu, T.-W.
Regal, C. A.
Author_xml – sequence: 1
  givenname: M. O.
  surname: Brown
  fullname: Brown, M. O.
– sequence: 2
  givenname: T.
  surname: Thiele
  fullname: Thiele, T.
– sequence: 3
  givenname: C.
  surname: Kiehl
  fullname: Kiehl, C.
– sequence: 4
  givenname: T.-W.
  surname: Hsu
  fullname: Hsu, T.-W.
– sequence: 5
  givenname: C. A.
  surname: Regal
  fullname: Regal, C. A.
BookMark eNpNUE1LAzEUDFLBWvsDvC14Tn3Z7Fe8LUWrsFLRCl4kJJtEt2w3Ndkq6683pQq-y8wb5s2DOUWjznYaoXMCM0KAXj68D_5Rf77M2AyCkOZHaByTDDClUIz-8RM09X4NYTIgSZ6P0evCiQHf21Z4r3203PZNLVq8-tL6W7uoskI13dtVNLdd72zbhiXwgL6xnY-MddFTONjLZW83uHQhLypD2Ea2wxk6NqL1evqLE_R8c72a3-JqubiblxWuEwo9FkJpIlMoiFI00YbIPGdKF0yDyqUhJoa4lkUsC8lMkihCCwOMJgaM1LGq6QRdHHK3zn7stO_52u5cF17yOE0hI1lasOAiB1ftrPdOG751zUa4gRPg-yL5X5Gc8UOR9Ad1ZGsW
CitedBy_id crossref_primary_10_1103_PhysRevLett_122_203601
crossref_primary_10_1103_PhysRevA_101_043421
crossref_primary_10_1103_PhysRevLett_131_083001
crossref_primary_10_1088_1361_6455_ab52ef
crossref_primary_10_1103_PhysRevLett_127_050501
crossref_primary_10_1103_PhysRevA_103_043301
crossref_primary_10_1103_PhysRevLett_131_253603
crossref_primary_10_1103_PhysRevResearch_6_023232
crossref_primary_10_1103_PhysRevX_13_041035
crossref_primary_10_1103_PhysRevResearch_6_023154
crossref_primary_10_7498_aps_73_20240135
crossref_primary_10_1088_2633_4356_aca3f2
crossref_primary_10_1103_PhysRevA_108_023107
crossref_primary_10_1103_PhysRevA_102_063107
crossref_primary_10_1116_5_0036562
crossref_primary_10_1103_PhysRevA_106_022611
crossref_primary_10_1103_PhysRevX_12_021027
crossref_primary_10_1103_PhysRevA_104_053110
crossref_primary_10_1103_PhysRevResearch_5_L032009
crossref_primary_10_1103_PhysRevA_101_043816
crossref_primary_10_1103_PhysRevApplied_19_054032
crossref_primary_10_1103_PhysRevLett_130_193402
crossref_primary_10_1103_PhysRevApplied_19_034048
crossref_primary_10_1364_OPTICA_513551
crossref_primary_10_1103_PhysRevA_105_042404
crossref_primary_10_1103_PhysRevA_103_022410
crossref_primary_10_1063_5_0197119
crossref_primary_10_1088_1367_2630_acf518
crossref_primary_10_1140_epjqt_s40507_023_00190_1
crossref_primary_10_1103_PhysRevA_104_013523
crossref_primary_10_1103_PhysRevResearch_3_043059
crossref_primary_10_1364_OE_444711
crossref_primary_10_3788_COL202321_110010
crossref_primary_10_1088_1361_6455_ab8b46
crossref_primary_10_1103_PhysRevResearch_4_033087
crossref_primary_10_1103_PhysRevLett_132_183401
crossref_primary_10_1088_1367_2630_ab98d4
crossref_primary_10_1103_PhysRevResearch_5_033108
crossref_primary_10_1103_PRXQuantum_3_040309
crossref_primary_10_1103_PhysRevA_103_022424
crossref_primary_10_1103_PhysRevApplied_16_034013
crossref_primary_10_1103_PhysRevLett_124_073401
crossref_primary_10_1103_PhysRevLett_128_083202
crossref_primary_10_1088_1367_2630_ac0000
crossref_primary_10_1103_PhysRevLett_124_253602
crossref_primary_10_1103_PhysRevLett_130_180601
crossref_primary_10_1126_science_abo0608
crossref_primary_10_7498_aps_73_20240182
crossref_primary_10_1088_2058_9565_ad33ad
crossref_primary_10_1103_PhysRevResearch_4_013240
crossref_primary_10_1103_PhysRevResearch_3_023008
crossref_primary_10_1103_PhysRevLett_125_263601
crossref_primary_10_1088_0256_307X_37_4_044209
crossref_primary_10_1103_PhysRevLett_124_103601
crossref_primary_10_1103_PhysRevA_103_032427
crossref_primary_10_1103_PhysRevA_103_053304
crossref_primary_10_1103_PhysRevApplied_16_064031
Cites_doi 10.1126/science.aah3752
10.1038/nphys1778
10.1038/s41586-018-0458-7
10.1038/nature09378
10.1214/ss/1009213285
10.1103/PhysRevLett.61.826
10.1088/1361-6455/aa65ea
10.1088/1367-2630/17/3/035014
10.1126/science.aah3778
10.1103/PhysRevLett.104.010503
10.1038/s41586-018-0450-2
10.1103/PhysRevLett.118.063606
10.1038/nature08482
10.1038/nature16073
10.1103/PhysRevA.70.040302
10.1103/PhysRevLett.115.073003
10.1126/science.aar7797
10.1088/1612-2011/10/12/125501
10.1103/RevModPhys.71.1
10.1140/epjd/e2013-30729-x
10.1209/0295-5075/27/1/008
10.1038/35082512
10.1103/PhysRevLett.89.023005
10.1103/PhysRevLett.120.123201
10.1209/0295-5075/100/63001
10.1364/OL.21.000991
10.1103/PhysRevA.95.053424
10.1126/science.1250057
10.1038/442151a
10.1103/PhysRevLett.121.083201
10.1038/s41567-018-0191-z
10.1103/PhysRevA.48.R4035
10.1103/PhysRevLett.104.010502
10.1038/nature24622
10.1088/1367-2630/17/7/073011
10.1103/PhysRevA.87.063411
10.1038/s41598-018-19814-z
10.1088/1367-2630/18/12/123017
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1103/PhysRevX.9.011057
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database (ProQuest)
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
Technology Collection
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2160-3308
ExternalDocumentID 10_1103_PhysRevX_9_011057
GroupedDBID 3MX
5VS
88I
AAYXX
ABJCF
ABUWG
ADBBV
AENEX
AFGMR
AFKRA
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
KQ8
M2P
M7S
M~E
OK1
PIMPY
PTHSS
ROL
S7W
3V.
7XB
8FE
8FG
8FK
L6V
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c430t-aade1b5081dd34ef1b779de89e0d7bf1f202cb82b8b9f44d138f0934f0fbe2dc3
IEDL.DBID 8FG
ISSN 2160-3308
IngestDate Tue Dec 17 15:07:37 EST 2024
Fri Aug 23 02:42:59 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-aade1b5081dd34ef1b779de89e0d7bf1f202cb82b8b9f44d138f0934f0fbe2dc3
OpenAccessLink https://www.proquest.com/docview/2550616589?pq-origsite=%requestingapplication%
PQID 2550616589
PQPubID 5161131
ParticipantIDs proquest_journals_2550616589
crossref_primary_10_1103_PhysRevX_9_011057
PublicationCentury 2000
PublicationDate 2019-03-29
PublicationDateYYYYMMDD 2019-03-29
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-29
  day: 29
PublicationDecade 2010
PublicationPlace College Park
PublicationPlace_xml – name: College Park
PublicationTitle Physical review. X
PublicationYear 2019
Publisher American Physical Society
Publisher_xml – sequence: 0
  name: American Physical Society
References PhysRevX.9.011057Cc29R1
PhysRevX.9.011057Cc25R1
PhysRevX.9.011057Cc26R1
PhysRevX.9.011057Cc27R1
PhysRevX.9.011057Cc28R1
PhysRevX.9.011057Cc32R1
PhysRevX.9.011057Cc33R1
PhysRevX.9.011057Cc34R1
PhysRevX.9.011057Cc13R1
PhysRevX.9.011057Cc12R1
PhysRevX.9.011057Cc11R1
PhysRevX.9.011057Cc30R1
PhysRevX.9.011057Cc10R1
PhysRevX.9.011057Cc31R1
PhysRevX.9.011057Cc4R1
PhysRevX.9.011057Cc3R1
PhysRevX.9.011057Cc6R1
PhysRevX.9.011057Cc5R1
PhysRevX.9.011057Cc2R1
PhysRevX.9.011057Cc1R1
L. D. Brown (PhysRevX.9.011057Cc40R1) 2001; 16
PhysRevX.9.011057Cc17R1
PhysRevX.9.011057Cc16R1
PhysRevX.9.011057Cc15R1
PhysRevX.9.011057Cc14R1
PhysRevX.9.011057Cc8R1
PhysRevX.9.011057Cc36R1
PhysRevX.9.011057Cc7R1
PhysRevX.9.011057Cc37R1
PhysRevX.9.011057Cc19R1
PhysRevX.9.011057Cc38R1
PhysRevX.9.011057Cc9R1
PhysRevX.9.011057Cc18R1
PhysRevX.9.011057Cc21R1
PhysRevX.9.011057Cc22R1
PhysRevX.9.011057Cc23R1
PhysRevX.9.011057Cc24R1
PhysRevX.9.011057Cc20R1
References_xml – ident: PhysRevX.9.011057Cc9R1
  doi: 10.1126/science.aah3752
– ident: PhysRevX.9.011057Cc19R1
  doi: 10.1038/nphys1778
– ident: PhysRevX.9.011057Cc15R1
  doi: 10.1038/s41586-018-0458-7
– ident: PhysRevX.9.011057Cc2R1
  doi: 10.1038/nature09378
– volume: 16
  start-page: 101
  issn: 0883-4237
  year: 2001
  ident: PhysRevX.9.011057Cc40R1
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1009213285
  contributor:
    fullname: L. D. Brown
– ident: PhysRevX.9.011057Cc24R1
  doi: 10.1103/PhysRevLett.61.826
– ident: PhysRevX.9.011057Cc34R1
  doi: 10.1088/1361-6455/aa65ea
– ident: PhysRevX.9.011057Cc28R1
  doi: 10.1088/1367-2630/17/3/035014
– ident: PhysRevX.9.011057Cc10R1
  doi: 10.1126/science.aah3778
– ident: PhysRevX.9.011057Cc3R1
  doi: 10.1103/PhysRevLett.104.010503
– ident: PhysRevX.9.011057Cc14R1
  doi: 10.1038/s41586-018-0450-2
– ident: PhysRevX.9.011057Cc12R1
  doi: 10.1103/PhysRevLett.118.063606
– ident: PhysRevX.9.011057Cc1R1
  doi: 10.1038/nature08482
– ident: PhysRevX.9.011057Cc6R1
  doi: 10.1038/nature16073
– ident: PhysRevX.9.011057Cc7R1
  doi: 10.1103/PhysRevA.70.040302
– ident: PhysRevX.9.011057Cc22R1
  doi: 10.1103/PhysRevLett.115.073003
– ident: PhysRevX.9.011057Cc37R1
  doi: 10.1126/science.aar7797
– ident: PhysRevX.9.011057Cc21R1
  doi: 10.1088/1612-2011/10/12/125501
– ident: PhysRevX.9.011057Cc36R1
  doi: 10.1103/RevModPhys.71.1
– ident: PhysRevX.9.011057Cc38R1
  doi: 10.1140/epjd/e2013-30729-x
– ident: PhysRevX.9.011057Cc26R1
  doi: 10.1209/0295-5075/27/1/008
– ident: PhysRevX.9.011057Cc18R1
  doi: 10.1038/35082512
– ident: PhysRevX.9.011057Cc20R1
  doi: 10.1103/PhysRevLett.89.023005
– ident: PhysRevX.9.011057Cc31R1
  doi: 10.1103/PhysRevLett.120.123201
– ident: PhysRevX.9.011057Cc17R1
  doi: 10.1209/0295-5075/100/63001
– ident: PhysRevX.9.011057Cc27R1
  doi: 10.1364/OL.21.000991
– ident: PhysRevX.9.011057Cc13R1
  doi: 10.1103/PhysRevA.95.053424
– ident: PhysRevX.9.011057Cc5R1
  doi: 10.1126/science.1250057
– ident: PhysRevX.9.011057Cc8R1
  doi: 10.1038/442151a
– ident: PhysRevX.9.011057Cc30R1
  doi: 10.1103/PhysRevLett.121.083201
– ident: PhysRevX.9.011057Cc32R1
  doi: 10.1038/s41567-018-0191-z
– ident: PhysRevX.9.011057Cc25R1
  doi: 10.1103/PhysRevA.48.R4035
– ident: PhysRevX.9.011057Cc4R1
  doi: 10.1103/PhysRevLett.104.010502
– ident: PhysRevX.9.011057Cc11R1
  doi: 10.1038/nature24622
– ident: PhysRevX.9.011057Cc23R1
  doi: 10.1088/1367-2630/17/7/073011
– ident: PhysRevX.9.011057Cc16R1
  doi: 10.1103/PhysRevA.87.063411
– ident: PhysRevX.9.011057Cc33R1
  doi: 10.1038/s41598-018-19814-z
– ident: PhysRevX.9.011057Cc29R1
  doi: 10.1088/1367-2630/18/12/123017
SSID ssj0000601477
Score 2.5687075
Snippet To isolate individual neutral atoms in microtraps, experimenters have long harnessed molecular photoassociation to make atom distributions sub-Poissonian....
SourceID proquest
crossref
SourceType Aggregation Database
SubjectTerms Algorithms
Assembling
Assembly
Atomic collisions
Atomic properties
Efficiency
Fluorescence
Laser applications
Laser arrays
Laser cooling
Molasses
Neutral atoms
Quantum computing
Quantum theory
Qubits (quantum computing)
Simulation
Stability
Syrups & sweeteners
Title Gray-Molasses Optical-Tweezer Loading: Controlling Collisions for Scaling Atom-Array Assembly
URI https://www.proquest.com/docview/2550616589
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5qEbyIT6yPkoMnIe1mk202XqSKVcRWqQq9yLJJJidta7cq-utNslsfF69ZsocZMt-XmS8zCB0mIqKG5kAcOFjiTqIiKYAlWguHR0lu4tCnu9dvXz7wq2EyrBJuRSWrnMfEEKjNWPscectRXwc9Di_lyeSF-KlRvrpajdBYRDUai7aX9KXdi-8ci-81woWoipk0Yi0vqxzA27Apmx74PCj9hqO_0ThATHcNrVbcEHdKZ66jBRhtoOWg0dTFJnq8mOYfpDf2fBcKfDMJaWhy_w7wCVN8PQ5y-GN8VqrP_Ttz7PMC4fV4gR07xXdug1_uzFxo7Ezd_7Cv-j6rp48t9NA9vz-7JNV0BKI5i2Ykzw1Q5fgVNYZxsFQJIQ2kEiIjlKU2jmKt0lilSlrODWWpjSTjNrIKYqPZNloajUewgzBQE8s051TkiifC5syENvDMMG2kFnV0NDdSNimbYGTh8hCxbG7RTGalRetof27GrDoPRfbjvd3_P--hFUdJpFd5xXIfLc2mr3DgYH-mGsG3DVQ7Pe_fDhrh8vwF9eWyGA
link.rule.ids 314,780,784,864,12765,21388,27924,27925,33373,33744,43600,43805
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTwIxEG0UY_Ri_Iwoag-eTIrbbbFbL4YQERUwUUy4mM22nZ4UkEUN_nrbsvhx8bqb7WEmnfd25s0MQsc1EVFDMyAOHCxxN1GRBMASrYXDo1pm4jCnu9M9az3ym36tXyTc8kJWOY-JIVCbofY58lNHfR30OLyUF6NX4rdG-epqsUJjES1x5qDbd4o3r75zLH7WCBeiKGbSiJ16WeU9vPersuqBz4PSbzj6G40DxDTX0VrBDXF95swNtACDTbQcNJo630JPV-NsSjpDz3chx3ejkIYmvQ-ATxjj9jDI4c9xY6Y-933m2OcFQvd4jh07xQ_uA_-4PnGhsT5252Ff9X1Rz9Nt9Ni87DVapNiOQDRn0YRkmQGqHL-ixjAOliohpIFEQmSEstTGUaxVEqtEScu5oSyxkWTcRlZBbDTbQaXBcAC7CAM1sUwyTkWmeE3YjJkwBp4Zpo3UooxO5kZKR7MhGGn4eYhYOrdoKtOZRcuoMjdjWtyHPP3x3t7_r4_QSqvXaaft6-7tPlp19ER6xVcsK6g0Gb_BgaMAE3UY_PwFl3Kyaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gray-Molasses+Optical-Tweezer+Loading%3A+Controlling+Collisions+for+Scaling+Atom-Array+Assembly&rft.jtitle=Physical+review.+X&rft.au=Brown%2C+M.%E2%80%89O.&rft.au=Thiele%2C+T.&rft.au=Kiehl%2C+C.&rft.au=Hsu%2C+T.-W.&rft.date=2019-03-29&rft.issn=2160-3308&rft.eissn=2160-3308&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1103%2FPhysRevX.9.011057&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevX_9_011057
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon