Adipocyte Differentiation-Related Protein and OXPAT in Rat and Human Skeletal Muscle: Involvement in Lipid Accumulation and Type 2 Diabetes Mellitus

Setting: A disordered lipid metabolism is implicated in the development of skeletal muscle insulin resistance. Lipid droplet proteins of the PAT [perilipin, adipocyte differentiation-related protein (ADRP), and TIP47] family have been shown to regulate lipid accumulation and intracellular metabolism...

Full description

Saved in:
Bibliographic Details
Published inThe journal of clinical endocrinology and metabolism Vol. 94; no. 10; pp. 4077 - 4085
Main Authors Minnaard, Ronnie, Schrauwen, Patrick, Schaart, Gert, Jorgensen, Johanna A., Lenaers, Ellen, Mensink, Marco, Hesselink, Matthijs K.C.
Format Journal Article
LanguageEnglish
Published Bethesda, MD Oxford University Press 01.10.2009
Endocrine Society
Subjects
Rat
Online AccessGet full text
ISSN0021-972X
1945-7197
1945-7197
DOI10.1210/jc.2009-0352

Cover

Loading…
Abstract Setting: A disordered lipid metabolism is implicated in the development of skeletal muscle insulin resistance. Lipid droplet proteins of the PAT [perilipin, adipocyte differentiation-related protein (ADRP), and TIP47] family have been shown to regulate lipid accumulation and intracellular metabolism in other tissues. Objective: This study aimed to explore the role of the PAT proteins OXPAT and ADRP in skeletal muscle lipid metabolism and their putative role in modulating insulin sensitivity. Design: Muscle OXPAT and ADRP protein content was examined during the development of insulin resistance in Zucker diabetic fatty (ZDF) rats and in type 2 diabetes patients and BMI-matched control subjects. Furthermore, we examined the effect of 8 wk of insulin sensitizing by rosiglitazone on muscle OXPAT and ADRP content. Results: OXPAT and ADRP protein expression is muscle fiber type specific in humans and rats, with highest protein content in fibers containing most intramyocellular lipids (IMCL). Muscle OXPAT and ADRP protein content was 2- to 3-fold higher in ZDF rats during the progression of type 2 diabetes than in lean normoglycemic control rats, which was paralleled by high IMCL levels. Muscle OXPAT and ADRP content, as well as IMCL level, was not different between type 2 diabetes patients and control subjects. ADRP content was negatively associated with insulin-stimulated glucose uptake (r = −0.50; P = 0.017). Interestingly, rosiglitazone treatment decreased muscle OXPAT (−29%) and ADRP (−28%) content in diabetes patients, without affecting IMCL. Conclusions: These results indicate involvement of OXPAT and ADRP in muscular lipid accumulation and type 2 diabetes.ADRP and OXPAT proteins show fiber type-specific distribution in rat and human skeletal muscle, and are involved in lipid accumulation and type 2 diabetes mellitus.
AbstractList Setting: A disordered lipid metabolism is implicated in the development of skeletal muscle insulin resistance. Lipid droplet proteins of the PAT [perilipin, adipocyte differentiation-related protein (ADRP), and TIP47] family have been shown to regulate lipid accumulation and intracellular metabolism in other tissues. Objective: This study aimed to explore the role of the PAT proteins OXPAT and ADRP in skeletal muscle lipid metabolism and their putative role in modulating insulin sensitivity. Design: Muscle OXPAT and ADRP protein content was examined during the development of insulin resistance in Zucker diabetic fatty (ZDF) rats and in type 2 diabetes patients and BMI-matched control subjects. Furthermore, we examined the effect of 8 wk of insulin sensitizing by rosiglitazone on muscle OXPAT and ADRP content. Results: OXPAT and ADRP protein expression is muscle fiber type specific in humans and rats, with highest protein content in fibers containing most intramyocellular lipids (IMCL). Muscle OXPAT and ADRP protein content was 2- to 3-fold higher in ZDF rats during the progression of type 2 diabetes than in lean normoglycemic control rats, which was paralleled by high IMCL levels. Muscle OXPAT and ADRP content, as well as IMCL level, was not different between type 2 diabetes patients and control subjects. ADRP content was negatively associated with insulin-stimulated glucose uptake (r = −0.50; P = 0.017). Interestingly, rosiglitazone treatment decreased muscle OXPAT (−29%) and ADRP (−28%) content in diabetes patients, without affecting IMCL. Conclusions: These results indicate involvement of OXPAT and ADRP in muscular lipid accumulation and type 2 diabetes.ADRP and OXPAT proteins show fiber type-specific distribution in rat and human skeletal muscle, and are involved in lipid accumulation and type 2 diabetes mellitus.
A disordered lipid metabolism is implicated in the development of skeletal muscle insulin resistance. Lipid droplet proteins of the PAT [perilipin, adipocyte differentiation-related protein (ADRP), and TIP47] family have been shown to regulate lipid accumulation and intracellular metabolism in other tissues. This study aimed to explore the role of the PAT proteins OXPAT and ADRP in skeletal muscle lipid metabolism and their putative role in modulating insulin sensitivity. Muscle OXPAT and ADRP protein content was examined during the development of insulin resistance in Zucker diabetic fatty (ZDF) rats and in type 2 diabetes patients and BMI-matched control subjects. Furthermore, we examined the effect of 8 wk of insulin sensitizing by rosiglitazone on muscle OXPAT and ADRP content. OXPAT and ADRP protein expression is muscle fiber type specific in humans and rats, with highest protein content in fibers containing most intramyocellular lipids (IMCL). Muscle OXPAT and ADRP protein content was 2- to 3-fold higher in ZDF rats during the progression of type 2 diabetes than in lean normoglycemic control rats, which was paralleled by high IMCL levels. Muscle OXPAT and ADRP content, as well as IMCL level, was not different between type 2 diabetes patients and control subjects. ADRP content was negatively associated with insulin-stimulated glucose uptake (r = -0.50; P = 0.017). Interestingly, rosiglitazone treatment decreased muscle OXPAT (-29%) and ADRP (-28%) content in diabetes patients, without affecting IMCL. These results indicate involvement of OXPAT and ADRP in muscular lipid accumulation and type 2 diabetes.
Setting: A disordered lipid metabolism is implicated in the development of skeletal muscle insulin resistance. Lipid droplet proteins of the PAT [perilipin, adipocyte differentiation-related protein (ADRP), and TIP47] family have been shown to regulate lipid accumulation and intracellular metabolism in other tissues. Objective: This study aimed to explore the role of the PAT proteins OXPAT and ADRP in skeletal muscle lipid metabolism and their putative role in modulating insulin sensitivity. Design: Muscle OXPAT and ADRP protein content was examined during the development of insulin resistance in Zucker diabetic fatty (ZDF) rats and in type 2 diabetes patients and BMI-matched control subjects. Furthermore, we examined the effect of 8 wk of insulin sensitizing by rosiglitazone on muscle OXPAT and ADRP content. Results: OXPAT and ADRP protein expression is muscle fiber type specific in humans and rats, with highest protein content in fibers containing most intramyocellular lipids (IMCL). Muscle OXPAT and ADRP protein content was 2- to 3-fold higher in ZDF rats during the progression of type 2 diabetes than in lean normoglycemic control rats, which was paralleled by high IMCL levels. Muscle OXPAT and ADRP content, as well as IMCL level, was not different between type 2 diabetes patients and control subjects. ADRP content was negatively associated with insulin-stimulated glucose uptake (r = −0.50; P = 0.017). Interestingly, rosiglitazone treatment decreased muscle OXPAT (−29%) and ADRP (−28%) content in diabetes patients, without affecting IMCL. Conclusions: These results indicate involvement of OXPAT and ADRP in muscular lipid accumulation and type 2 diabetes.ADRP and OXPAT proteins show fiber type-specific distribution in rat and human skeletal muscle, and are involved in lipid accumulation and type 2 diabetes mellitus.
A disordered lipid metabolism is implicated in the development of skeletal muscle insulin resistance. Lipid droplet proteins of the PAT [perilipin, adipocyte differentiation-related protein (ADRP), and TIP47] family have been shown to regulate lipid accumulation and intracellular metabolism in other tissues.SETTINGA disordered lipid metabolism is implicated in the development of skeletal muscle insulin resistance. Lipid droplet proteins of the PAT [perilipin, adipocyte differentiation-related protein (ADRP), and TIP47] family have been shown to regulate lipid accumulation and intracellular metabolism in other tissues.This study aimed to explore the role of the PAT proteins OXPAT and ADRP in skeletal muscle lipid metabolism and their putative role in modulating insulin sensitivity.OBJECTIVEThis study aimed to explore the role of the PAT proteins OXPAT and ADRP in skeletal muscle lipid metabolism and their putative role in modulating insulin sensitivity.Muscle OXPAT and ADRP protein content was examined during the development of insulin resistance in Zucker diabetic fatty (ZDF) rats and in type 2 diabetes patients and BMI-matched control subjects. Furthermore, we examined the effect of 8 wk of insulin sensitizing by rosiglitazone on muscle OXPAT and ADRP content.DESIGNMuscle OXPAT and ADRP protein content was examined during the development of insulin resistance in Zucker diabetic fatty (ZDF) rats and in type 2 diabetes patients and BMI-matched control subjects. Furthermore, we examined the effect of 8 wk of insulin sensitizing by rosiglitazone on muscle OXPAT and ADRP content.OXPAT and ADRP protein expression is muscle fiber type specific in humans and rats, with highest protein content in fibers containing most intramyocellular lipids (IMCL). Muscle OXPAT and ADRP protein content was 2- to 3-fold higher in ZDF rats during the progression of type 2 diabetes than in lean normoglycemic control rats, which was paralleled by high IMCL levels. Muscle OXPAT and ADRP content, as well as IMCL level, was not different between type 2 diabetes patients and control subjects. ADRP content was negatively associated with insulin-stimulated glucose uptake (r = -0.50; P = 0.017). Interestingly, rosiglitazone treatment decreased muscle OXPAT (-29%) and ADRP (-28%) content in diabetes patients, without affecting IMCL.RESULTSOXPAT and ADRP protein expression is muscle fiber type specific in humans and rats, with highest protein content in fibers containing most intramyocellular lipids (IMCL). Muscle OXPAT and ADRP protein content was 2- to 3-fold higher in ZDF rats during the progression of type 2 diabetes than in lean normoglycemic control rats, which was paralleled by high IMCL levels. Muscle OXPAT and ADRP content, as well as IMCL level, was not different between type 2 diabetes patients and control subjects. ADRP content was negatively associated with insulin-stimulated glucose uptake (r = -0.50; P = 0.017). Interestingly, rosiglitazone treatment decreased muscle OXPAT (-29%) and ADRP (-28%) content in diabetes patients, without affecting IMCL.These results indicate involvement of OXPAT and ADRP in muscular lipid accumulation and type 2 diabetes.CONCLUSIONSThese results indicate involvement of OXPAT and ADRP in muscular lipid accumulation and type 2 diabetes.
Setting: A disordered lipid metabolism is implicated in the development of skeletal muscle insulin resistance. Lipid droplet proteins of the PAT [perilipin, adipocyte differentiation-related protein (ADRP), and TIP47] family have been shown to regulate lipid accumulation and intracellular metabolism in other tissues. Objective: This study aimed to explore the role of the PAT proteins OXPAT and ADRP in skeletal muscle lipid metabolism and their putative role in modulating insulin sensitivity. Design: Muscle OXPAT and ADRP protein content was examined during the development of insulin resistance in Zucker diabetic fatty (ZDF) rats and in type 2 diabetes patients and BMI-matched control subjects. Furthermore, we examined the effect of 8 wk of insulin sensitizing by rosiglitazone on muscle OXPAT and ADRP content. Results: OXPAT and ADRP protein expression is muscle fiber type specific in humans and rats, with highest protein content in fibers containing most intramyocellular lipids (IMCL). Muscle OXPAT and ADRP protein content was 2- to 3-fold higher in ZDF rats during the progression of type 2 diabetes than in lean normoglycemic control rats, which was paralleled by high IMCL levels. Muscle OXPAT and ADRP content, as well as IMCL level, was not different between type 2 diabetes patients and control subjects. ADRP content was negatively associated with insulin-stimulated glucose uptake (r = -0.50; P = 0.017). Interestingly, rosiglitazone treatment decreased muscle OXPAT (-29%) and ADRP (-28%) content in diabetes patients, without affecting IMCL. Conclusions: These results indicate involvement of OXPAT and ADRP in muscular lipid accumulation and type 2 diabetes
Author Schaart, Gert
Jorgensen, Johanna A.
Mensink, Marco
Schrauwen, Patrick
Hesselink, Matthijs K.C.
Minnaard, Ronnie
Lenaers, Ellen
Author_xml – sequence: 1
  givenname: Ronnie
  surname: Minnaard
  fullname: Minnaard, Ronnie
  organization: 1NUTRIM School for Nutrition, Toxicology, and Metabolism (R.M., P.S., G.S., J.A.J., E.L., M.K.C.H.), Departments of Human Movement Sciences and Human Biology, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
– sequence: 2
  givenname: Patrick
  surname: Schrauwen
  fullname: Schrauwen, Patrick
  organization: 1NUTRIM School for Nutrition, Toxicology, and Metabolism (R.M., P.S., G.S., J.A.J., E.L., M.K.C.H.), Departments of Human Movement Sciences and Human Biology, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
– sequence: 3
  givenname: Gert
  surname: Schaart
  fullname: Schaart, Gert
  organization: 1NUTRIM School for Nutrition, Toxicology, and Metabolism (R.M., P.S., G.S., J.A.J., E.L., M.K.C.H.), Departments of Human Movement Sciences and Human Biology, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
– sequence: 4
  givenname: Johanna A.
  surname: Jorgensen
  fullname: Jorgensen, Johanna A.
  organization: 1NUTRIM School for Nutrition, Toxicology, and Metabolism (R.M., P.S., G.S., J.A.J., E.L., M.K.C.H.), Departments of Human Movement Sciences and Human Biology, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
– sequence: 5
  givenname: Ellen
  surname: Lenaers
  fullname: Lenaers, Ellen
  organization: 1NUTRIM School for Nutrition, Toxicology, and Metabolism (R.M., P.S., G.S., J.A.J., E.L., M.K.C.H.), Departments of Human Movement Sciences and Human Biology, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
– sequence: 6
  givenname: Marco
  surname: Mensink
  fullname: Mensink, Marco
  organization: 2Wageningen University (M.M.), Division of Human Nutrition, 6700 EV Wageningen, The Netherlands
– sequence: 7
  givenname: Matthijs K.C.
  surname: Hesselink
  fullname: Hesselink, Matthijs K.C.
  email: matthijs.hesselink@bw.unimaas.nl
  organization: 1NUTRIM School for Nutrition, Toxicology, and Metabolism (R.M., P.S., G.S., J.A.J., E.L., M.K.C.H.), Departments of Human Movement Sciences and Human Biology, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22036972$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19602560$$D View this record in MEDLINE/PubMed
BookMark eNp1kstu1DAUhi1URKeFHWtkCQEbUnzJZdLdqFxaaapWZZC6sxznBHlwnNSXVvMePDDOzJRFBRsf2fr-c_H5j9CBHSwg9JqSE8oo-bRWJ4yQOiO8YM_QjNZ5kVW0rg7QjBBGs7pit4foyPs1ITTPC_4CHdK6JKwoyQz9XrR6HNQmAP6suw4c2KBl0IPNbsDIAC2-dkMAbbG0Lb66vV6scLrcyLB9OI-9tPj7LzAQpMGX0SsDp_jC3g_mHvqUbaKXetQtXigV-2i22bfi1WYEzFJh2UAAjy_BGB2if4med9J4eLWPx-jH1y-rs_NsefXt4myxzFTOScikZIRVJVNkrgrWVnXRlITLts47KmUOXVdwRTpW5rSBrmpVmRhFa8XpnOd5yY_R6S7vg_wJVtt0CCud0l4MUgujGyfdRjxEJ6yZwhgbL3hdsJwm8fudeHTDXQQfRK-9ShNIC0P0oqzKOa_mVQLfPgHXQ3Q2DSY4LXNeM84m6s2eik0PrRid7qfij6tKwLs9IL2SpnPSTo0-cowRXqZdJ47tOOUG7x10Qumw_fPgpDaCEjH5RqyVmHwjJt8k0ccnor_1_41_2OFDHP9Hbg3J_wAlStBT
CODEN JCEMAZ
CitedBy_id crossref_primary_10_1016_j_yexcr_2012_06_019
crossref_primary_10_1016_j_tem_2015_01_005
crossref_primary_10_1016_j_plipres_2011_11_003
crossref_primary_10_1139_h2012_059
crossref_primary_10_1007_s41048_019_0091_5
crossref_primary_10_1016_j_bbrc_2013_01_080
crossref_primary_10_1371_journal_pone_0073709
crossref_primary_10_1002_oby_23227
crossref_primary_10_1111_obr_12298
crossref_primary_10_1242_jcs_104992
crossref_primary_10_1016_j_tem_2011_03_008
crossref_primary_10_1152_ajpregu_00418_2012
crossref_primary_10_1186_s12944_018_0730_8
crossref_primary_10_1016_j_bone_2022_116539
crossref_primary_10_7717_peerj_7743
crossref_primary_10_3390_cells1020168
crossref_primary_10_1152_ajpgi_00357_2019
crossref_primary_10_1016_j_tem_2013_08_001
crossref_primary_10_1016_j_metabol_2010_08_004
crossref_primary_10_1371_journal_pone_0103062
crossref_primary_10_1016_j_acthis_2022_151869
crossref_primary_10_1016_j_jse_2013_04_011
crossref_primary_10_1155_2022_4594956
crossref_primary_10_3892_ijmm_2015_2276
crossref_primary_10_1172_JCI46069
crossref_primary_10_14814_phy2_12154
crossref_primary_10_1097_MOL_0b013e32833768d4
crossref_primary_10_1146_annurev_nutr_071812_161254
crossref_primary_10_3109_10409238_2014_931337
crossref_primary_10_3109_13813455_2011_630009
crossref_primary_10_1007_s00418_011_0888_x
crossref_primary_10_1007_s00441_018_2845_7
crossref_primary_10_1007_s00709_011_0329_7
crossref_primary_10_1152_ajpendo_00316_2010
crossref_primary_10_1302_2046_3758_39_2000294
crossref_primary_10_2337_db10_1221
crossref_primary_10_3389_fphys_2022_855193
crossref_primary_10_1111_j_1742_4658_2009_07525_x
crossref_primary_10_5187_jast_2021_e87
crossref_primary_10_1371_journal_pone_0073696
crossref_primary_10_18632_aging_202840
crossref_primary_10_1080_07391102_2019_1592027
crossref_primary_10_1152_ajpcell_00470_2022
crossref_primary_10_1139_apnm_2014_0485
crossref_primary_10_1177_2042018820969025
crossref_primary_10_1016_j_drudis_2014_03_007
crossref_primary_10_3390_ijms19051425
crossref_primary_10_1002_dmrr_2751
crossref_primary_10_3892_mmr_2019_10189
crossref_primary_10_1016_j_molmet_2018_08_004
crossref_primary_10_3389_fphar_2022_1074342
crossref_primary_10_1194_jlr_M079764
crossref_primary_10_1016_j_bbalip_2018_08_016
crossref_primary_10_1152_ajpcell_00107_2020
crossref_primary_10_1152_ajpendo_00272_2012
crossref_primary_10_1016_j_bbalip_2012_07_001
crossref_primary_10_1007_s11745_014_3985_5
crossref_primary_10_1152_ajpendo_00561_2011
crossref_primary_10_1371_journal_pone_0091675
crossref_primary_10_1096_fj_11_181982
crossref_primary_10_1152_ajpregu_00163_2011
crossref_primary_10_1016_j_meatsci_2011_02_020
crossref_primary_10_2337_db11_1402
crossref_primary_10_1007_s11033_010_0266_0
crossref_primary_10_1113_JP274374
crossref_primary_10_1371_journal_pone_0036712
crossref_primary_10_1016_j_metabol_2014_05_010
crossref_primary_10_1016_j_plipres_2016_09_001
crossref_primary_10_17221_52_2022_CJAS
crossref_primary_10_34172_jsums_2019_34
crossref_primary_10_1080_10495398_2018_1551230
crossref_primary_10_1155_2017_1789395
crossref_primary_10_1039_C4IB00271G
crossref_primary_10_3390_cells10040880
crossref_primary_10_1002_phy2_84
crossref_primary_10_1113_jphysiol_2012_240952
crossref_primary_10_1155_2021_9972704
crossref_primary_10_4236_jbise_2013_65A010
crossref_primary_10_1152_ajpendo_00399_2019
crossref_primary_10_1016_j_bbalip_2017_06_015
crossref_primary_10_1016_j_tem_2012_05_009
Cites_doi 10.1038/nbt0698-581
10.2337/diabetes.53.5.1243
10.1194/jlr.M600247-JLR200
10.1074/jbc.M601682200
10.1096/fj.08-112318
10.1006/bbrc.1996.0138
10.1007/s001250051123
10.1038/sj.ijo.0803567
10.1074/jbc.M506569200
10.1210/jcem.86.12.8075
10.1152/ajpgi.90204.2008
10.1194/jlr.M500170-JLR200
10.1016/j.metabol.2004.11.006
10.2337/diabetes.51.3.797
10.1210/jc.2008-0267
10.1194/jlr.M700359-JLR200
10.1016/S0022-2275(20)34939-7
10.1073/pnas.89.17.7856
10.2337/diabetes.50.1.123
10.1053/j.gastro.2007.02.046
10.1007/s004180100297
10.1016/j.bbalip.2006.11.011
10.1038/oby.2006.280
10.1002/mrm.20501
10.1111/j.1748-1716.1967.tb03720.x
10.1074/jbc.M304025200
10.1038/oby.2005.160
10.1074/jbc.274.24.16825
10.1093/clinchem/18.6.499
10.2337/diabetes.48.8.1600
10.1152/ajpendo.00040.2002
10.2337/db06-0399
10.1016/S0026-0495(00)80049-9
10.2337/diab.46.6.983
10.2337/diabetes.52.1.138
10.1194/jlr.R700014-JLR200
10.1152/ajpendo.00624.2007
ContentType Journal Article
Copyright Copyright © 2009 by The Endocrine Society 2009
2009 INIST-CNRS
Copyright © 2009 by The Endocrine Society
Wageningen University & Research
Copyright_xml – notice: Copyright © 2009 by The Endocrine Society 2009
– notice: 2009 INIST-CNRS
– notice: Copyright © 2009 by The Endocrine Society
– notice: Wageningen University & Research
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T5
7TM
H94
K9.
7X8
QVL
DOI 10.1210/jc.2009-0352
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Calcium & Calcified Tissue Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList AIDS and Cancer Research Abstracts
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1945-7197
EndPage 4085
ExternalDocumentID oai_library_wur_nl_wurpubs_395241
19602560
22036972
10_1210_jc_2009_0352
10.1210/jc.2009-0352
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.XZ
08P
0R~
18M
1TH
29K
2WC
34G
354
39C
4.4
48X
53G
5GY
5RS
5YH
8F7
AABZA
AACZT
AAIMJ
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
AAWTL
ABBLC
ABDFA
ABEJV
ABGNP
ABJNI
ABLJU
ABMNT
ABNHQ
ABOCM
ABPMR
ABPPZ
ABPQP
ABPTD
ABQNK
ABVGC
ABWST
ABXVV
ACGFO
ACGFS
ACPRK
ACUTJ
ACYHN
ADBBV
ADGKP
ADGZP
ADHKW
ADQBN
ADRTK
ADVEK
AELWJ
AEMDU
AENEX
AENZO
AERZD
AETBJ
AEWNT
AFCHL
AFFNX
AFFZL
AFGWE
AFOFC
AFRAH
AFXAL
AGINJ
AGKRT
AGQXC
AGUTN
AHMBA
AHMMS
AJEEA
ALMA_UNASSIGNED_HOLDINGS
APIBT
ARIXL
ASPBG
ATGXG
AVWKF
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BSWAC
BTRTY
C45
CDBKE
CS3
D-I
DAKXR
DIK
E3Z
EBS
EJD
EMOBN
ENERS
F5P
FECEO
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
HZ~
H~9
KBUDW
KOP
KQ8
KSI
KSN
L7B
M5~
MHKGH
MJL
N4W
N9A
NLBLG
NOMLY
NOYVH
NVLIB
O9-
OAUYM
OBH
OCB
ODMLO
OFXIZ
OGEVE
OHH
OJZSN
OK1
OPAEJ
OVD
OVIDX
P2P
P6G
REU
ROX
ROZ
TEORI
TJX
TLC
TR2
TWZ
VVN
W8F
WOQ
X7M
YBU
YFH
YHG
YOC
YSK
ZY1
~02
~H1
AAYXX
ABXZS
ADNBA
AEMQT
AEOTA
AFYAG
AGORE
ALXQX
CITATION
NU-
.GJ
3O-
7X7
88E
8FI
8FJ
AAJQQ
AAKAS
AAPGJ
AAQQT
AAUQX
AAWDT
AAYJJ
ABDPE
ABUWG
ACFRR
ACVCV
ACZBC
ADMTO
ADZCM
AFFQV
AFKRA
AGMDO
AHGBF
AI.
AJBYB
AJDVS
APJGH
AQDSO
AQKUS
AVNTJ
BENPR
BPHCQ
BVXVI
CCPQU
EIHJH
FEDTE
FYUFA
HMCUK
HVGLF
IAO
IHR
INH
IQODW
ITC
J5H
M1P
MBLQV
OBFPC
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
TMA
UKHRP
VH1
WHG
X52
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T5
7TM
H94
K9.
7X8
-
02
08R
0R
3V.
55
AABJS
AABMN
ABFLS
ABSAR
ACIMA
ADBIT
ADEIU
AELNO
AFXEN
AGVJH
AIKOY
AIMBJ
ASMCH
AYOIW
AZQFJ
BBAFP
BGYMP
BHONS
DPPUQ
FH7
G8K
GJ
H1
HZ
M5
O0-
PQEST
PQUKI
PRINS
QVL
TCN
X
XZ
ZA5
ID FETCH-LOGICAL-c430t-aa202762c08c52d795b603ad94f1aa4eff53c0f2641bef7dc6d79c19c31834463
ISSN 0021-972X
1945-7197
IngestDate Tue Jan 05 18:05:38 EST 2021
Fri Jul 11 00:56:22 EDT 2025
Mon Jun 30 12:44:14 EDT 2025
Thu Apr 03 06:53:32 EDT 2025
Mon Jul 21 09:17:11 EDT 2025
Tue Jul 01 04:01:32 EDT 2025
Thu Apr 24 22:50:31 EDT 2025
Fri Feb 07 10:35:32 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Endocrinopathy
Type 2 diabetes
Human
Adipocyte
Obesity
Nutrition
Rat
Rodentia
Nutrition disorder
Lipids
Metabolic diseases
Cell differentiation
Striated muscle
Accumulation
Protein
Vertebrata
Mammalia
Animal
Differentiation
Endocrinology
Nutritional status
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c430t-aa202762c08c52d795b603ad94f1aa4eff53c0f2641bef7dc6d79c19c31834463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 19602560
PQID 3164392327
PQPubID 2046206
PageCount 9
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_395241
proquest_miscellaneous_67683787
proquest_journals_3164392327
pubmed_primary_19602560
pascalfrancis_primary_22036972
crossref_citationtrail_10_1210_jc_2009_0352
crossref_primary_10_1210_jc_2009_0352
oup_primary_10_1210_jc_2009-0352
ProviderPackageCode CITATION
AAYXX
QVL
PublicationCentury 2000
PublicationDate 2009-10-01
PublicationDateYYYYMMDD 2009-10-01
PublicationDate_xml – month: 10
  year: 2009
  text: 2009-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Bethesda, MD
PublicationPlace_xml – name: Bethesda, MD
– name: United States
– name: Washington
PublicationTitle The journal of clinical endocrinology and metabolism
PublicationTitleAlternate J Clin Endocrinol Metab
PublicationYear 2009
Publisher Oxford University Press
Endocrine Society
Publisher_xml – name: Oxford University Press
– name: Endocrine Society
References Kuhlmann ( key 2019041113594579900_R6) 2003; 52
Korach-André ( key 2019041113594579900_R31) 2005; 54
Mayerson ( key 2019041113594579900_R35) 2002; 51
Wolins ( key 2019041113594579900_R11) 2006; 55
Imai ( key 2019041113594579900_R33) 2007; 132
Kuhlmann ( key 2019041113594579900_R5) 2005; 53
Masuda ( key 2019041113594579900_R28) 2006; 47
Gao ( key 2019041113594579900_R32) 1999; 274
Dalen ( key 2019041113594579900_R15) 2004; 53
Brasaemle ( key 2019041113594579900_R14) 1997; 38
Phillips ( key 2019041113594579900_R16) 2005; 13
Listenberger ( key 2019041113594579900_R20) 2007; 48
Brasaemle ( key 2019041113594579900_R9) 2007; 48
Prats ( key 2019041113594579900_R17) 2006; 47
Etgen ( key 2019041113594579900_R27) 2000; 49
Xu ( key 2019041113594579900_R29) 2005; 280
Moro ( key 2019041113594579900_R37) 2008; 294
Steiner ( key 2019041113594579900_R18) 1996; 218
Friedewald ( key 2019041113594579900_R25) 1972; 18
Scherer ( key 2019041113594579900_R10) 1998; 16
Dobbins ( key 2019041113594579900_R7) 2001; 50
Pan ( key 2019041113594579900_R3) 1997; 46
Koopman ( key 2019041113594579900_R26) 2001; 116
Petersen ( key 2019041113594579900_R8) 2006; 14
Varela ( key 2019041113594579900_R34) 2008; 295
Jiang ( key 2019041113594579900_R13) 1992; 89
Krssak ( key 2019041113594579900_R2) 1999; 42
Imamura ( key 2019041113594579900_R19) 2002; 283
Mensink ( key 2019041113594579900_R23) 2007; 31
Dalen ( key 2019041113594579900_R22) 2007; 1771
De Feyter ( key 2019041113594579900_R30) 2008; 22
Schrauwen-Hinderling ( key 2019041113594579900_R36) 2008; 93
Perseghin ( key 2019041113594579900_R4) 1999; 48
Wolins ( key 2019041113594579900_R12) 2003; 278
Goodpaster ( key 2019041113594579900_R1) 2001; 86
Yamaguchi ( key 2019041113594579900_R21) 2006; 281
Bergström ( key 2019041113594579900_R24) 1967; 71
References_xml – volume: 16
  start-page: 581
  year: 1998
  ident: key 2019041113594579900_R10
  article-title: Cloning of cell-specific secreted and surface proteins by subtractive antibody screening.
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt0698-581
– volume: 53
  start-page: 1243
  year: 2004
  ident: key 2019041113594579900_R15
  article-title: Adipose tissue expression of the lipid droplet-associating proteins S3–12 and perilipin is controlled by peroxisome proliferator-activated receptor-γ.
  publication-title: Diabetes
  doi: 10.2337/diabetes.53.5.1243
– volume: 47
  start-page: 2392
  year: 2006
  ident: key 2019041113594579900_R17
  article-title: Decrease in intramuscular lipid droplets and translocation of HSL in response to muscle contraction and epinephrine.
  publication-title: J Lipid Res
  doi: 10.1194/jlr.M600247-JLR200
– volume: 281
  start-page: 14232
  year: 2006
  ident: key 2019041113594579900_R21
  article-title: MLDP, a novel PAT family protein localized to lipid droplets and enriched in the heart, is regulated by peroxisome proliferator-activated receptor α.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M601682200
– volume: 22
  start-page: 3947
  year: 2008
  ident: key 2019041113594579900_R30
  article-title: Increased intramyocellular lipid content but normal skeletal muscle mitochondrial oxidative capacity throughout the pathogenesis of type 2 diabetes.
  publication-title: FASEB J
  doi: 10.1096/fj.08-112318
– volume: 218
  start-page: 777
  year: 1996
  ident: key 2019041113594579900_R18
  article-title: Induction of the adipose differentiation-related protein in liver of etomoxir-treated rats.
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1996.0138
– volume: 42
  start-page: 113
  year: 1999
  ident: key 2019041113594579900_R2
  article-title: Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study.
  publication-title: Diabetologia
  doi: 10.1007/s001250051123
– volume: 31
  start-page: 1302
  year: 2007
  ident: key 2019041113594579900_R23
  article-title: Improved skeletal muscle oxidative enzyme activity and restoration of PGC-1 α and PPAR β/δ gene expression upon rosiglitazone treatment in obese patients with type 2 diabetes mellitus.
  publication-title: Int J Obes (Lond)
  doi: 10.1038/sj.ijo.0803567
– volume: 280
  start-page: 42841
  year: 2005
  ident: key 2019041113594579900_R29
  article-title: Post-translational regulation of adipose differentiation-related protein by the ubiquitin/proteasome pathway.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M506569200
– volume: 86
  start-page: 5755
  year: 2001
  ident: key 2019041113594579900_R1
  article-title: Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes.
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jcem.86.12.8075
– volume: 295
  start-page: G621
  year: 2008
  ident: key 2019041113594579900_R34
  article-title: Inhibition of ADRP prevents diet-induced insulin resistance
  publication-title: Am J Physiol Gastrointest Liver Physiol
  doi: 10.1152/ajpgi.90204.2008
– volume: 47
  start-page: 87
  year: 2006
  ident: key 2019041113594579900_R28
  article-title: ADRP/adipophilin is degraded through the proteasome-dependent pathway during regression of lipid-storing cells.
  publication-title: J Lipid Res
  doi: 10.1194/jlr.M500170-JLR200
– volume: 54
  start-page: 522
  year: 2005
  ident: key 2019041113594579900_R31
  article-title: Age and muscle-type modulated role of intramyocellular lipids in the progression of insulin resistance in nondiabetic Zucker rats.
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2004.11.006
– volume: 51
  start-page: 797
  year: 2002
  ident: key 2019041113594579900_R35
  article-title: The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes.
  publication-title: Diabetes
  doi: 10.2337/diabetes.51.3.797
– volume: 93
  start-page: 2917
  year: 2008
  ident: key 2019041113594579900_R36
  article-title: The insulin-sensitizing effect of rosiglitazone in type 2 diabetes mellitus patients does not require improved in vivo muscle mitochondrial function.
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2008-0267
– volume: 48
  start-page: 2751
  year: 2007
  ident: key 2019041113594579900_R20
  article-title: Adipocyte differentiation-related protein reduces the lipid droplet association of adipose triglyceride lipase and slows triacylglycerol turnover.
  publication-title: J Lipid Res
  doi: 10.1194/jlr.M700359-JLR200
– volume: 38
  start-page: 2249
  year: 1997
  ident: key 2019041113594579900_R14
  article-title: Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein.
  publication-title: J Lipid Res
  doi: 10.1016/S0022-2275(20)34939-7
– volume: 89
  start-page: 7856
  year: 1992
  ident: key 2019041113594579900_R13
  article-title: Isolation and characterization of a full-length cDNA coding for an adipose differentiation-related protein.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.89.17.7856
– volume: 50
  start-page: 123
  year: 2001
  ident: key 2019041113594579900_R7
  article-title: Prolonged inhibition of muscle carnitine palmitoyltransferase-1 promotes intramyocellular lipid accumulation and insulin resistance in rats.
  publication-title: Diabetes
  doi: 10.2337/diabetes.50.1.123
– volume: 132
  start-page: 1947
  year: 2007
  ident: key 2019041113594579900_R33
  article-title: Reduction of hepatosteatosis and lipid levels by an adipose differentiation-related protein antisense oligonucleotide.
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2007.02.046
– volume: 116
  start-page: 63
  year: 2001
  ident: key 2019041113594579900_R26
  article-title: Optimisation of oil red O staining permits combination with immunofluorescence and automated quantification of lipids.
  publication-title: Histochem Cell Biol
  doi: 10.1007/s004180100297
– volume: 1771
  start-page: 210
  year: 2007
  ident: key 2019041113594579900_R22
  article-title: LSDP5 is a PAT protein specifically expressed in fatty acid oxidizing tissues.
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbalip.2006.11.011
– volume: 14
  start-page: 34S
  issue: Suppl 1
  year: 2006
  ident: key 2019041113594579900_R8
  article-title: New insights into the pathogenesis of insulin resistance in humans using magnetic resonance spectroscopy
  publication-title: Obesity (Silver Spring)
  doi: 10.1038/oby.2006.280
– volume: 53
  start-page: 1275
  year: 2005
  ident: key 2019041113594579900_R5
  article-title: Correlation between insulin resistance and intramyocellular lipid levels in rats.
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20501
– volume: 71
  start-page: 140
  year: 1967
  ident: key 2019041113594579900_R24
  article-title: Diet, muscle glycogen and physical performance.
  publication-title: Acta Physiol Scand
  doi: 10.1111/j.1748-1716.1967.tb03720.x
– volume: 278
  start-page: 37713
  year: 2003
  ident: key 2019041113594579900_R12
  article-title: Adipocyte protein S3–12 coats nascent lipid droplets.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M304025200
– volume: 13
  start-page: 1321
  year: 2005
  ident: key 2019041113594579900_R16
  article-title: Adipocyte differentiation-related protein in human skeletal muscle: relationship to insulin sensitivity.
  publication-title: Obes Res
  doi: 10.1038/oby.2005.160
– volume: 274
  start-page: 16825
  year: 1999
  ident: key 2019041113594579900_R32
  article-title: Adipose differentiation related protein (ADRP) expressed in transfected COS-7 cells selectively stimulates long chain fatty acid uptake.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.274.24.16825
– volume: 18
  start-page: 499
  year: 1972
  ident: key 2019041113594579900_R25
  article-title: Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge.
  publication-title: Clin Chem
  doi: 10.1093/clinchem/18.6.499
– volume: 48
  start-page: 1600
  year: 1999
  ident: key 2019041113594579900_R4
  article-title: Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H–13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents.
  publication-title: Diabetes
  doi: 10.2337/diabetes.48.8.1600
– volume: 283
  start-page: E775
  year: 2002
  ident: key 2019041113594579900_R19
  article-title: ADRP stimulates lipid accumulation and lipid droplet formation in murine fibroblasts
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00040.2002
– volume: 55
  start-page: 3418
  year: 2006
  ident: key 2019041113594579900_R11
  article-title: OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization.
  publication-title: Diabetes
  doi: 10.2337/db06-0399
– volume: 49
  start-page: 684
  year: 2000
  ident: key 2019041113594579900_R27
  article-title: Profiling of Zucker diabetic fatty rats in their progression to the overt diabetic state.
  publication-title: Metabolism
  doi: 10.1016/S0026-0495(00)80049-9
– volume: 46
  start-page: 983
  year: 1997
  ident: key 2019041113594579900_R3
  article-title: Skeletal muscle triglyceride levels are inversely related to insulin action.
  publication-title: Diabetes
  doi: 10.2337/diab.46.6.983
– volume: 52
  start-page: 138
  year: 2003
  ident: key 2019041113594579900_R6
  article-title: Intramyocellular lipid and insulin resistance: a longitudinal in vivo 1H-spectroscopic study in Zucker diabetic fatty rats.
  publication-title: Diabetes
  doi: 10.2337/diabetes.52.1.138
– volume: 48
  start-page: 2547
  year: 2007
  ident: key 2019041113594579900_R9
  article-title: Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis.
  publication-title: J Lipid Res
  doi: 10.1194/jlr.R700014-JLR200
– volume: 294
  start-page: E203
  year: 2008
  ident: key 2019041113594579900_R37
  article-title: Determinants of intramyocellular triglyceride turnover: implications for insulin sensitivity
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00624.2007
SSID ssj0014453
Score 2.2761543
Snippet Setting: A disordered lipid metabolism is implicated in the development of skeletal muscle insulin resistance. Lipid droplet proteins of the PAT [perilipin,...
A disordered lipid metabolism is implicated in the development of skeletal muscle insulin resistance. Lipid droplet proteins of the PAT [perilipin, adipocyte...
SourceID wageningen
proquest
pubmed
pascalfrancis
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4077
SubjectTerms Adipocytes
Animals
Biological and medical sciences
Biomarkers - metabolism
Carrier Proteins
Diabetes
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - metabolism
Diabetes. Impaired glucose tolerance
DNA-Binding Proteins - metabolism
droplets
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Etiopathogenesis. Screening. Investigations. Target tissue resistance
fatty rats
Feeding. Feeding behavior
Fundamental and applied biological sciences. Psychology
Humans
Hypoglycemic Agents - pharmacology
inhibition
Insulin resistance
Intracellular Signaling Peptides and Proteins - metabolism
Intracellular Signaling Peptides and Proteins - physiology
Lipid Metabolism
Lipids
magnetic-resonance-spectroscopy
Medical sciences
Membrane Proteins - chemical synthesis
Membrane Proteins - metabolism
Metabolism
Muscle Proteins - metabolism
Muscle, Skeletal - metabolism
Musculoskeletal system
pathogenesis
Perilipin-1
Perilipin-2
Perilipin-3
Perilipin-5
Phosphoproteins - metabolism
Pregnancy Proteins - metabolism
progression
Protein folding
Protein turnover
Proteins
Rats
Rosiglitazone
sensitivity
Skeletal muscle
Thiazolidinediones - pharmacology
triglyceride content
Vertebrates: anatomy and physiology, studies on body, several organs or systems
Vertebrates: endocrinology
Vesicular Transport Proteins
Title Adipocyte Differentiation-Related Protein and OXPAT in Rat and Human Skeletal Muscle: Involvement in Lipid Accumulation and Type 2 Diabetes Mellitus
URI https://www.ncbi.nlm.nih.gov/pubmed/19602560
https://www.proquest.com/docview/3164392327
https://www.proquest.com/docview/67683787
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F395241
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkNAQQnxTGMMP8ISC2sZJat4q2BjVuqGtk_pmOU6ifXRO1Saq4O_gn-S_4M520kxqJ-AlbZOL6_Z-vvNd7oOQdyoJ-ipk0ksCHnoszBgsKaY8kINcsb6KU4nZyKOj8OCMDSfBpNX63YhaKov4o_q5Nq_kf7gK54CvmCX7D5ytB4UT8B74C0fgMBz_iseD5GKWqx9FCpLL9jkp7D_tmRi31OQBYDtL84jgePJ9MEb_xom0YeXWgX96BZoHUyJH5QLGRxfBNw1CyxQSNw0EsL91gn0lymvX7MvcPrbe2y-V93aEtT0L50i4XKGwUZyizsNMdZKDvNKrClDXMIc4n1YVDU2aotZS2tD7k1zrixqDp-p8LsullZi2ycBV4xrcVFh__7wO6hmi6187d9MwP5cwtvPjVj4PXkfPFbflUjblPAaeRKZRO2g5K9o5CzxAYNSU_bbBcoXxTkOSg6EbNXYFWAhurcYBkxk1jqmGyT2sLrvSrFU0wdGx2D87PBTjvcn4DrnbA4sGdcjXSR2NBGatK5jqJu5yNDDBqjn2jd2Tzch8MJMLYFxm-7CsM5Tuk-0l_AZtsvUau6fxI_LQmT10YDH8mLRS_YTcG7nAjqfkVw1lugHK1EGZAliogTKFDwBlc8JAmVZQphbKn2gDyEhtgEybQDY3I5Bpj1ZAphWQn5Gz_b3x5wPPNQzxFPM7hScluvLCnur0VdBLIh7EYceXCWdZV0qWZlngq04GNkA3TrMoUSHQKBBKqNgYC_3nZEvnOn1JKFDAXjmDUXjIOlnMgzTm3Qh2uyrqJz5vkw8VI4Ry1fSxqctUoFUNbBOXClu8coFsa5P3NfXMVpHZQEeBp5tIPEuye4PhNXEPQwoAOm2yUyFAuAW-EH4XLQ-wnqI2eVtfBk2CjwelTvNyIcIoxO4SQPHC4mY1Dx4a06hN_BWQhMZmZwuB9emdx1ksy7nQU3yBEeBbeQAGwqvbJ_SabK-W-A7ZKuZl-gY2-kW8a5bIH1E-A9g
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adipocyte+Differentiation-Related+Protein+and+OXPAT+in+Rat+and+Human+Skeletal+Muscle%3A+Involvement+in+Lipid+Accumulation+and+Type+2+Diabetes+Mellitus&rft.jtitle=The+journal+of+clinical+endocrinology+and+metabolism&rft.au=Minnaard%2C+Ronnie&rft.au=Schrauwen%2C+Patrick&rft.au=Schaart%2C+Gert&rft.au=Jorgensen%2C+Johanna+A&rft.date=2009-10-01&rft.pub=Oxford+University+Press&rft.issn=0021-972X&rft.eissn=1945-7197&rft.volume=94&rft.issue=10&rft.spage=4077&rft.epage=4085&rft_id=info:doi/10.1210%2Fjc.2009-0352&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-972X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-972X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-972X&client=summon