Promoted ion conductivity of sodium salt–poly(ethylene oxide) polymer electrolyte induced by adding conductive beta-alumina and application in all-solid-state sodium batteries
Solid polymer electrolytes can significantly improve the safety and energy density of sodium-ion batteries compared with the liquid electrolytes. However, the low ionic conductivity and poor mechanical properties inhibit the practical application. In this paper, poly(ethylene oxide) (PEO) solid poly...
Saved in:
Published in | Journal of materials science Vol. 56; no. 16; pp. 9951 - 9960 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2021
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solid polymer electrolytes can significantly improve the safety and energy density of sodium-ion batteries compared with the liquid electrolytes. However, the low ionic conductivity and poor mechanical properties inhibit the practical application. In this paper, poly(ethylene oxide) (PEO) solid polymer electrolytes with enhanced ion conductivity are demonstrated by introducing inorganic solid electrolyte (beta-alumina) filler. With the presence of conductive beta-alumina filler, the ion conductivity of the resultant PEO polymer electrolyte is enhanced from 2.5*10
–4
to 3.95*10
–4
S cm
−1
. Applied in sodium-ion batteries (SIBs), the cell delivers an initial discharge capacity of 93.1 mAh g
−1
and acceptable cycling performance (77.8 mAh g
−1
after 100 cycles), which are significantly superior to that of the PEO solid polymer electrolyte without beta-alumina filler modification. The presented results prove that the ion conductivity of PEO polymer electrolyte can be enhanced by adding conductive beta-alumina, promoting its practical application in Na-ion all-solid-state batteries or other electrochemical energy storage systems. |
---|---|
AbstractList | Solid polymer electrolytes can significantly improve the safety and energy density of sodium-ion batteries compared with the liquid electrolytes. However, the low ionic conductivity and poor mechanical properties inhibit the practical application. In this paper, poly(ethylene oxide) (PEO) solid polymer electrolytes with enhanced ion conductivity are demonstrated by introducing inorganic solid electrolyte (beta-alumina) filler. With the presence of conductive beta-alumina filler, the ion conductivity of the resultant PEO polymer electrolyte is enhanced from 2.5*10–⁴ to 3.95*10–⁴ S cm⁻¹. Applied in sodium-ion batteries (SIBs), the cell delivers an initial discharge capacity of 93.1 mAh g⁻¹ and acceptable cycling performance (77.8 mAh g⁻¹ after 100 cycles), which are significantly superior to that of the PEO solid polymer electrolyte without beta-alumina filler modification. The presented results prove that the ion conductivity of PEO polymer electrolyte can be enhanced by adding conductive beta-alumina, promoting its practical application in Na-ion all-solid-state batteries or other electrochemical energy storage systems. Solid polymer electrolytes can significantly improve the safety and energy density of sodium-ion batteries compared with the liquid electrolytes. However, the low ionic conductivity and poor mechanical properties inhibit the practical application. In this paper, poly(ethylene oxide) (PEO) solid polymer electrolytes with enhanced ion conductivity are demonstrated by introducing inorganic solid electrolyte (beta-alumina) filler. With the presence of conductive beta-alumina filler, the ion conductivity of the resultant PEO polymer electrolyte is enhanced from 2.5*10.sup.-4 to 3.95*10.sup.-4 S cm.sup.-1. Applied in sodium-ion batteries (SIBs), the cell delivers an initial discharge capacity of 93.1 mAh g.sup.-1 and acceptable cycling performance (77.8 mAh g.sup.-1 after 100 cycles), which are significantly superior to that of the PEO solid polymer electrolyte without beta-alumina filler modification. The presented results prove that the ion conductivity of PEO polymer electrolyte can be enhanced by adding conductive beta-alumina, promoting its practical application in Na-ion all-solid-state batteries or other electrochemical energy storage systems. Solid polymer electrolytes can significantly improve the safety and energy density of sodium-ion batteries compared with the liquid electrolytes. However, the low ionic conductivity and poor mechanical properties inhibit the practical application. In this paper, poly(ethylene oxide) (PEO) solid polymer electrolytes with enhanced ion conductivity are demonstrated by introducing inorganic solid electrolyte (beta-alumina) filler. With the presence of conductive beta-alumina filler, the ion conductivity of the resultant PEO polymer electrolyte is enhanced from 2.5*10 –4 to 3.95*10 –4 S cm −1 . Applied in sodium-ion batteries (SIBs), the cell delivers an initial discharge capacity of 93.1 mAh g −1 and acceptable cycling performance (77.8 mAh g −1 after 100 cycles), which are significantly superior to that of the PEO solid polymer electrolyte without beta-alumina filler modification. The presented results prove that the ion conductivity of PEO polymer electrolyte can be enhanced by adding conductive beta-alumina, promoting its practical application in Na-ion all-solid-state batteries or other electrochemical energy storage systems. Solid polymer electrolytes can significantly improve the safety and energy density of sodium-ion batteries compared with the liquid electrolytes. However, the low ionic conductivity and poor mechanical properties inhibit the practical application. In this paper, poly(ethylene oxide) (PEO) solid polymer electrolytes with enhanced ion conductivity are demonstrated by introducing inorganic solid electrolyte (beta-alumina) filler. With the presence of conductive beta-alumina filler, the ion conductivity of the resultant PEO polymer electrolyte is enhanced from 2.5*10–4 to 3.95*10–4 S cm−1. Applied in sodium-ion batteries (SIBs), the cell delivers an initial discharge capacity of 93.1 mAh g−1 and acceptable cycling performance (77.8 mAh g−1 after 100 cycles), which are significantly superior to that of the PEO solid polymer electrolyte without beta-alumina filler modification. The presented results prove that the ion conductivity of PEO polymer electrolyte can be enhanced by adding conductive beta-alumina, promoting its practical application in Na-ion all-solid-state batteries or other electrochemical energy storage systems. |
Audience | Academic |
Author | Wang, Xiaotong Liu, Zehua Chen, Jingjing Wang, Xinxin Wang, Dajian Mao, Zhiyong Yao, Yiwei |
Author_xml | – sequence: 1 givenname: Yiwei surname: Yao fullname: Yao, Yiwei organization: Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology – sequence: 2 givenname: Zehua surname: Liu fullname: Liu, Zehua organization: Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology – sequence: 3 givenname: Xinxin surname: Wang fullname: Wang, Xinxin organization: Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology – sequence: 4 givenname: Jingjing surname: Chen fullname: Chen, Jingjing email: cj313313@email.tjut.edu.cn organization: Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology – sequence: 5 givenname: Xiaotong surname: Wang fullname: Wang, Xiaotong organization: Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin University of Technology – sequence: 6 givenname: Dajian surname: Wang fullname: Wang, Dajian organization: Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin University of Technology – sequence: 7 givenname: Zhiyong orcidid: 0000-0003-0125-3408 surname: Mao fullname: Mao, Zhiyong email: mzhy1984@163.com organization: Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology |
BookMark | eNp9kc9qHSEUxoeSQm_SvkBXQjfpwlSdPzrLEPoPAu2iXcsZPXNrcPRWndK7yzv0SfpKfZJ6cwOBLIKCePh-3zn6nTYnIQZsmtecXXDG5LvMmepbygSnrFeqp-2zZsN72dJOsfak2TAmBBXdwF80pznfMMZ6Kfim-fs1xSUWtMTFQEwMdjXF_XJlT-JMcrRuXUgGX_7d_tlFvz_H8mPvMSCJv53Ft-RQXDAR9GhKqpeCxB1cquW0J2CtC9sHYyQTFqDg18UFIBAsgd3OOwPlMIALBLynOXpnaS5Qze5nmKAUTA7zy-b5DD7jq_vzrPn-4f23q0_0-svHz1eX19R0LSsUlJGzscwAZ1M_dTgaw1EomLFuIxgOFlBNA2utEINUHU6SoVQcgfNRtGfN-dF3l-LPFXPRi8sGvYeAcc1a9D0fpVSMV-mbR9KbuKZQp9OiG8ehH5WQVXVxVG3Bo3ZhjiWBqcvi4uoH4exq_XLoa0pCdm0FxBEwKeaccNa75BZIe82ZPsSuj7HrGru-i10fIPUIMq7cfW7t5vzTaHtEc-0TtpgenvEE9R_Aysn4 |
CitedBy_id | crossref_primary_10_1002_anie_202417778 crossref_primary_10_1002_ange_202417778 crossref_primary_10_1021_acsaem_4c02012 crossref_primary_10_1007_s10008_023_05523_9 crossref_primary_10_1002_cssc_202202152 crossref_primary_10_1002_anie_202318822 crossref_primary_10_1002_ange_202318822 crossref_primary_10_3390_batteries10030073 crossref_primary_10_1021_acs_langmuir_4c01845 crossref_primary_10_1149_1945_7111_ac4bf6 crossref_primary_10_1016_j_electacta_2022_139936 crossref_primary_10_1016_j_cej_2022_135816 crossref_primary_10_1002_smtd_202201032 crossref_primary_10_1039_D3EE02082G crossref_primary_10_1039_D4EE05966B crossref_primary_10_1002_admt_202200822 crossref_primary_10_1002_est2_636 crossref_primary_10_1021_acsaem_3c01170 crossref_primary_10_1007_s41918_023_00196_4 crossref_primary_10_1016_j_jallcom_2025_179544 crossref_primary_10_1016_j_colsurfa_2023_131704 crossref_primary_10_1016_j_optmat_2022_112815 |
Cites_doi | 10.1021/ja407393y 10.1021/acs.nanolett.5b00600 10.1039/C6TA07590H 10.1016/j.electacta.2017.03.118 10.3390/en11102559 10.1016/j.ssi.2008.04.006 10.1016/j.nanoen.2017.12.037 10.1016/0167-2738(82)90072-8 10.1016/j.ensm.2018.03.016 10.1016/j.ensm.2019.08.019 10.1038/natrevmats.2016.103 10.1016/j.ceramint.2019.12.074 10.1038/s41928-018-0048-6 10.1166/jnn.2008.18257 10.1021/acsomega.9b00885 10.1016/0167-2738(90)90081-2 10.1002/anie.200701144 10.1016/j.jpowsour.2013.09.137 10.1021/acs.jpcb.7b03985 10.1039/C7TA00314E 10.1016/j.jpowsour.2014.10.078 10.1039/C7SE00441A 10.1016/j.ensm.2019.07.012 10.1021/acsmaterialslett.9b00103 10.1038/srep06272 10.1039/b514346b 10.1038/srep21771 10.1021/acsenergylett.8b00948 10.1007/BF02708607 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 COPYRIGHT 2021 Springer The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 – notice: COPYRIGHT 2021 Springer – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 |
DOI | 10.1007/s10853-021-05885-3 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) Engineering Collection AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA ProQuest Materials Science Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-4803 |
EndPage | 9960 |
ExternalDocumentID | A654612743 10_1007_s10853_021_05885_3 |
GrantInformation_xml | – fundername: Natural Science Foundation of Tianjin City grantid: 18JCZDJC99700; 18JCYBJC87400; 18JCQNJC73900 funderid: http://dx.doi.org/10.13039/501100006606 – fundername: National Natural Science Foundation of China grantid: 51777138 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -4Y -58 -5G -BR -EM -XW -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 29K 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDEX ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAGR AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D-I D1I DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IFM IGS IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P9N PDBOC PF- PKN PT4 PT5 PTHSS QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T9H TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WH7 WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z Z91 Z92 ZE2 ZMTXR ZY4 ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 |
ID | FETCH-LOGICAL-c430t-a8c7fcd0ca10b5b4e9cc1e28afeafec20e6dae8b603d226784eb70e781ea11923 |
IEDL.DBID | BENPR |
ISSN | 0022-2461 |
IngestDate | Thu Jul 10 18:57:50 EDT 2025 Fri Jul 25 11:03:19 EDT 2025 Tue Jun 10 20:22:23 EDT 2025 Tue Jul 01 01:40:08 EDT 2025 Thu Apr 24 23:04:32 EDT 2025 Fri Feb 21 02:48:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c430t-a8c7fcd0ca10b5b4e9cc1e28afeafec20e6dae8b603d226784eb70e781ea11923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0125-3408 |
PQID | 2499659827 |
PQPubID | 2043599 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2551977801 proquest_journals_2499659827 gale_infotracacademiconefile_A654612743 crossref_primary_10_1007_s10853_021_05885_3 crossref_citationtrail_10_1007_s10853_021_05885_3 springer_journals_10_1007_s10853_021_05885_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of materials science |
PublicationTitleAbbrev | J Mater Sci |
PublicationYear | 2021 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Miao, Yang, Xu, Wang, Nuli, Sun (CR25) 2016; 6 Rajendran, Uma (CR8) 2000; 23 Zhou, Bag, Thangadurai (CR3) 2018; 3 Lim, Jung, Hwang (CR9) 2018; 11 Yang, Lin, Wang, Wang, Zhou, Liu (CR14) 1990; 40–41 Shojaatalhosseini, Elamin, Swenson (CR13) 2017; 121 Wang, Li, Yang, You, Xu, Wang, Ma, Gao (CR6) 2018; 2 Wu, Yu, Wang, Guo (CR11) 2020; 24 Raut, Li, Chen, Zhu, Jana (CR5) 2019; 4 Choi, Lee, Yu, Doh, Lee (CR26) 2015; 274 Cao, Zhang, Tao, Zhang (CR4) 2020; 46 Yu, Xue, Goodenough, Manthiram (CR10) 2019; 1 Zhang, Yue, Hu, Liu, Qin, Zhang, Wang, Ding, Zhang, Zhou, Yao, Cui, Chen (CR19) 2014; 4 Bhattacharya, Ghosh (CR23) 2008; 8 Goodenough (CR2) 2018; 1 Weston, Steele (CR15) 1982; 7 Murugan, Thangadurai, Weppner (CR16) 2007; 46 Chen, Li, Li, Fan, Nan, Goodenough (CR27) 2018; 46 Gao, Tan, Han, Zhao, Pan (CR20) 2017; 5 Bae, Li, Zhao, Zhou, Ding, Yu (CR29) 2018; 15 Manthiram, Yu, Wang (CR1) 2017; 2 Bag, Zhou, Kim, Pol, Thangadurai (CR7) 2020; 24 Jinisha, Anil Kumar, Manoh, Pradeep, Jayalekshmi (CR18) 2017; 235 Philipp, Sebastian, Klaus, JöRn, Stefanie, Bernhard (CR17) 2013; 135 Pandey, Hashmi, Agrawal (CR22) 2008; 179 Xiong, Wang, Xie, Cheng, Xia (CR24) 2006; 16 Liu, Liu, Sun, Hsu, Li, Lee, Cui (CR28) 2016; 15 Zhang, Zhang, Ren, Luo, Ma, Hu, Zhou, Li, Huang, Chen (CR12) 2016; 4 Moreno, Armand, Berman, Greenbaum, Scrosati, Panero (CR21) 2014; 248 P Raut (5885_CR5) 2019; 4 B Philipp (5885_CR17) 2013; 135 JH Choi (5885_CR26) 2015; 274 S Bhattacharya (5885_CR23) 2008; 8 J Zhang (5885_CR19) 2014; 4 X Yu (5885_CR10) 2019; 1 S Rajendran (5885_CR8) 2000; 23 J Bae (5885_CR29) 2018; 15 C Zhou (5885_CR3) 2018; 3 L Yang (5885_CR14) 1990; 40–41 R Gao (5885_CR20) 2017; 5 S Bag (5885_CR7) 2020; 24 HM Xiong (5885_CR24) 2006; 16 W Liu (5885_CR28) 2016; 15 F Wang (5885_CR6) 2018; 2 R Miao (5885_CR25) 2016; 6 JE Weston (5885_CR15) 1982; 7 R Murugan (5885_CR16) 2007; 46 XG Cao (5885_CR4) 2020; 46 L Chen (5885_CR27) 2018; 46 Z Zhang (5885_CR12) 2016; 4 Y Lim (5885_CR9) 2018; 11 J-F Wu (5885_CR11) 2020; 24 M Shojaatalhosseini (5885_CR13) 2017; 121 JS Moreno (5885_CR21) 2014; 248 JB Goodenough (5885_CR2) 2018; 1 A Manthiram (5885_CR1) 2017; 2 B Jinisha (5885_CR18) 2017; 235 GP Pandey (5885_CR22) 2008; 179 |
References_xml | – volume: 135 start-page: 15694 issue: 42 year: 2013 end-page: 15697 ident: CR17 article-title: Li SnP S - an affordable lithium superionic conductor publication-title: J Am Chem Soc doi: 10.1021/ja407393y – volume: 15 start-page: 2740 issue: 4 year: 2016 end-page: 2745 ident: CR28 article-title: Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers publication-title: Nano Lett doi: 10.1021/acs.nanolett.5b00600 – volume: 4 start-page: 15823 year: 2016 end-page: 15828 ident: CR12 article-title: A ceramic/polymer composite solid electrolyte for sodium batteries publication-title: J Mater Chem A doi: 10.1039/C6TA07590H – volume: 235 start-page: 210 year: 2017 end-page: 222 ident: CR18 article-title: Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide) (PEO)/poly (vinyl pyrrolidone) (PVP) blend polymer publication-title: Electrochim Acta doi: 10.1016/j.electacta.2017.03.118 – volume: 11 start-page: 2559 issue: 10 year: 2018 ident: CR9 article-title: Fabrication of PEO-PMMA-LiClO -based solid polymer electrolytes containing silica aerogel particles for all-solid-state lithium batteries publication-title: Energies doi: 10.3390/en11102559 – volume: 179 start-page: 543 issue: 15–16 year: 2008 end-page: 549 ident: CR22 article-title: Hot-press synthesized polyethylene oxide based proton conducting nanocomposite polymer electrolyte dispersed with SiO nanoparticles publication-title: Solid State Ionics Diffus React doi: 10.1016/j.ssi.2008.04.006 – volume: 46 start-page: 176 year: 2018 end-page: 184 ident: CR27 article-title: PEO/garnet composite electrolytes for solid-state lithium batteries: from "ceramic-in-polymer" to "polymer-in-ceramic" publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.037 – volume: 7 start-page: 75 issue: 1 year: 1982 end-page: 79 ident: CR15 article-title: Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes publication-title: Solid State Ionics doi: 10.1016/0167-2738(82)90072-8 – volume: 15 start-page: 46 year: 2018 end-page: 52 ident: CR29 article-title: Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2018.03.016 – volume: 24 start-page: 198 year: 2020 end-page: 207 ident: CR7 article-title: LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li–S batteries publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2019.08.019 – volume: 2 start-page: 16103 year: 2017 ident: CR1 article-title: Lithium battery chemistries enabled by solid-state electrolytes publication-title: Nat Rev Mater doi: 10.1038/natrevmats.2016.103 – volume: 46 start-page: 8405 issue: 6 year: 2020 end-page: 8412 ident: CR4 article-title: Effects of antimony tin oxide (ATO) additive on the properties of Na Zr Si PO ceramic electrolytes publication-title: Ceram Int doi: 10.1016/j.ceramint.2019.12.074 – volume: 1 start-page: 204 issue: 3 year: 2018 end-page: 204 ident: CR2 article-title: How we made the Li-ion rechargeable battery publication-title: Nat Electron doi: 10.1038/s41928-018-0048-6 – volume: 8 start-page: 1922 issue: 4 year: 2008 end-page: 1926 ident: CR23 article-title: Effect of ZnO Nanoparticles on the structure and ionic relaxation of poly(ethylene oxide)-LiI polymer electrolyte nanocomposites publication-title: J Nanosci Nanotechnol doi: 10.1166/jnn.2008.18257 – volume: 4 start-page: 18203 issue: 19 year: 2019 end-page: 18209 ident: CR5 article-title: Strong and flexible composite solid polymer electrolyte membranes for Li-ion batteries publication-title: ACS Omega doi: 10.1021/acsomega.9b00885 – volume: 40–41 start-page: 616 year: 1990 end-page: 619 ident: CR14 article-title: Effects of plasticizers on properties of poly(ethylene oxide) complex electrolytes publication-title: Solid State Ionics doi: 10.1016/0167-2738(90)90081-2 – volume: 46 start-page: 7778 issue: 41 year: 2007 end-page: 7781 ident: CR16 article-title: Fast lithium ion conduction in garnet-type Li La Zr O publication-title: Angew Chem Int Ed doi: 10.1002/anie.200701144 – volume: 248 start-page: 695 year: 2014 end-page: 702 ident: CR21 article-title: Composite PEOn:NaTFSI polymer electrolyte: preparation, thermal and electrochemical characterization publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.09.137 – volume: 121 start-page: 9699 issue: 41 year: 2017 end-page: 9707 ident: CR13 article-title: Conductivity—relaxation relations in nanocomposite polymer electrolytes containing ionic liquid publication-title: J Phys Chem B doi: 10.1021/acs.jpcb.7b03985 – volume: 5 start-page: 5273 issue: 11 year: 2017 end-page: 5277 ident: CR20 article-title: Nanofiber networks of Na V (PO ) as a cathode material for high performance all-solid-state sodium-ion batteries publication-title: J Mater Chem A doi: 10.1039/C7TA00314E – volume: 274 start-page: 458 year: 2015 end-page: 463 ident: CR26 article-title: Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li La Zr O into a polyethylene oxide matrix publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.10.078 – volume: 2 start-page: 492 year: 2018 end-page: 498 ident: CR6 article-title: Influence of additives in a PVDF-based solid polymer electrolyte on conductivity and Li-ion battery performance publication-title: Sustain Energy Fuels doi: 10.1039/C7SE00441A – volume: 24 start-page: 467 year: 2020 end-page: 471 ident: CR11 article-title: High performance all-solid-state sodium batteries actualized by polyethylene oxide/Na Zn TeO composite solid electrolytes publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2019.07.012 – volume: 1 start-page: 132 issue: 1 year: 2019 end-page: 138 ident: CR10 article-title: A high-performance all-solid-state sodium battery with a poly(ethylene oxide)–Na Zr Si PO composite electrolyte publication-title: ACS Mater Lett doi: 10.1021/acsmaterialslett.9b00103 – volume: 4 start-page: 6272 issue: 1 year: 2014 ident: CR19 article-title: Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries publication-title: Sci Rep doi: 10.1038/srep06272 – volume: 16 start-page: 1345 issue: 14 year: 2006 end-page: 1349 ident: CR24 article-title: Stable polymer electrolytes based on polyether-grafted ZnO nanoparticles for all-solid-state lithium batteries publication-title: J Mater Chem doi: 10.1039/b514346b – volume: 6 start-page: 21771 year: 2016 ident: CR25 article-title: A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries publication-title: Sci Rep doi: 10.1038/srep21771 – volume: 3 start-page: 2181 issue: 9 year: 2018 end-page: 2198 ident: CR3 article-title: Engineering materials for progressive all-solid-state Na batteries publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.8b00948 – volume: 23 start-page: 27 issue: 1 year: 2000 end-page: 29 ident: CR8 article-title: Characterization of plasticized PMMA-LiBF based solid polymer electrolytes publication-title: Bull Mater Sci doi: 10.1007/BF02708607 – volume: 274 start-page: 458 year: 2015 ident: 5885_CR26 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.10.078 – volume: 135 start-page: 15694 issue: 42 year: 2013 ident: 5885_CR17 publication-title: J Am Chem Soc doi: 10.1021/ja407393y – volume: 121 start-page: 9699 issue: 41 year: 2017 ident: 5885_CR13 publication-title: J Phys Chem B doi: 10.1021/acs.jpcb.7b03985 – volume: 15 start-page: 2740 issue: 4 year: 2016 ident: 5885_CR28 publication-title: Nano Lett doi: 10.1021/acs.nanolett.5b00600 – volume: 179 start-page: 543 issue: 15–16 year: 2008 ident: 5885_CR22 publication-title: Solid State Ionics Diffus React doi: 10.1016/j.ssi.2008.04.006 – volume: 5 start-page: 5273 issue: 11 year: 2017 ident: 5885_CR20 publication-title: J Mater Chem A doi: 10.1039/C7TA00314E – volume: 4 start-page: 6272 issue: 1 year: 2014 ident: 5885_CR19 publication-title: Sci Rep doi: 10.1038/srep06272 – volume: 6 start-page: 21771 year: 2016 ident: 5885_CR25 publication-title: Sci Rep doi: 10.1038/srep21771 – volume: 24 start-page: 198 year: 2020 ident: 5885_CR7 publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2019.08.019 – volume: 23 start-page: 27 issue: 1 year: 2000 ident: 5885_CR8 publication-title: Bull Mater Sci doi: 10.1007/BF02708607 – volume: 2 start-page: 16103 year: 2017 ident: 5885_CR1 publication-title: Nat Rev Mater doi: 10.1038/natrevmats.2016.103 – volume: 46 start-page: 8405 issue: 6 year: 2020 ident: 5885_CR4 publication-title: Ceram Int doi: 10.1016/j.ceramint.2019.12.074 – volume: 8 start-page: 1922 issue: 4 year: 2008 ident: 5885_CR23 publication-title: J Nanosci Nanotechnol doi: 10.1166/jnn.2008.18257 – volume: 1 start-page: 204 issue: 3 year: 2018 ident: 5885_CR2 publication-title: Nat Electron doi: 10.1038/s41928-018-0048-6 – volume: 11 start-page: 2559 issue: 10 year: 2018 ident: 5885_CR9 publication-title: Energies doi: 10.3390/en11102559 – volume: 24 start-page: 467 year: 2020 ident: 5885_CR11 publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2019.07.012 – volume: 46 start-page: 7778 issue: 41 year: 2007 ident: 5885_CR16 publication-title: Angew Chem Int Ed doi: 10.1002/anie.200701144 – volume: 46 start-page: 176 year: 2018 ident: 5885_CR27 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.037 – volume: 15 start-page: 46 year: 2018 ident: 5885_CR29 publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2018.03.016 – volume: 235 start-page: 210 year: 2017 ident: 5885_CR18 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2017.03.118 – volume: 2 start-page: 492 year: 2018 ident: 5885_CR6 publication-title: Sustain Energy Fuels doi: 10.1039/C7SE00441A – volume: 3 start-page: 2181 issue: 9 year: 2018 ident: 5885_CR3 publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.8b00948 – volume: 248 start-page: 695 year: 2014 ident: 5885_CR21 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.09.137 – volume: 1 start-page: 132 issue: 1 year: 2019 ident: 5885_CR10 publication-title: ACS Mater Lett doi: 10.1021/acsmaterialslett.9b00103 – volume: 40–41 start-page: 616 year: 1990 ident: 5885_CR14 publication-title: Solid State Ionics doi: 10.1016/0167-2738(90)90081-2 – volume: 16 start-page: 1345 issue: 14 year: 2006 ident: 5885_CR24 publication-title: J Mater Chem doi: 10.1039/b514346b – volume: 7 start-page: 75 issue: 1 year: 1982 ident: 5885_CR15 publication-title: Solid State Ionics doi: 10.1016/0167-2738(82)90072-8 – volume: 4 start-page: 18203 issue: 19 year: 2019 ident: 5885_CR5 publication-title: ACS Omega doi: 10.1021/acsomega.9b00885 – volume: 4 start-page: 15823 year: 2016 ident: 5885_CR12 publication-title: J Mater Chem A doi: 10.1039/C6TA07590H |
SSID | ssj0005721 |
Score | 2.4668634 |
Snippet | Solid polymer electrolytes can significantly improve the safety and energy density of sodium-ion batteries compared with the liquid electrolytes. However, the... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9951 |
SubjectTerms | Alumina Aluminum oxide Batteries Characterization and Evaluation of Materials Chemical compounds Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Electric properties Electrochemistry Electrolytes energy energy density Energy Materials Energy storage Ethylene oxide Fillers Flux density Ion currents liquids Lithium Materials Science Mechanical properties Molten salt electrolytes Polyelectrolytes Polyethylene oxide Polymer Sciences Polymers Rechargeable batteries Sodium Sodium salts Solid electrolytes Solid Mechanics Solid state Storage batteries Storage systems |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9xADB7a9NIeSp9027RModCWdsCv8YyPS0gIhZYeupDbMA-5GBw7ZL2QveU_5Jf0L-WXRJrY2e0TCj7ZshgszUiypE-MvXGqqgoglM9Ce1GEOhNO5k5YJ8sq9YWuSmpO_vylPFwUn47k0dgUtpyq3aeUZDypt5rd0LQIKilIpNZS5LfZHUmxO2rxIptvCjtUlk4Y4YSWNrbK_JnHT-bo10P5t-xoNDoHD9j90Vvk82vxPmS3oHvE7m1hCD5mP77GgjoIHL8wx-iWAFzjRAje13zZh2Z1zJe2HS7PL076dv0OUDRoaoD3Z02A95xuHsMpHwfitOsBeENckKVbcyo46r5vGAN3MFhh8VBrOsttF_hWEhzf5LZtBWp0E0TsVprW4CKSJwbmT9jiYP_b3qEY5zAIX-TJIKz2qvYh8TZNnHQoWu9TyLStAS-fJVAGC9qVSR7Qm1O6AKcSUDoFm5IH-ZTtdH0HzxgPypU5QY-CRdcl1C4vZMCQp9BQ2ypUM5ZO4jB-BCmnWRmt2cArkwgNitBEEZp8xj7cvHNyDdHxT-q3JGVD-xc5ezu2IeD6CAnLzKm7K8VYHSl3J0Uw48ZeGoxWCYJRZ2rGXt88xi1JeRbbQb9CGkndwApt_4x9nBRow-Lva3v-f-Qv2N0sqjL9E9plO8PpCl6iizS4V3FHXAGmrAy7 priority: 102 providerName: Springer Nature |
Title | Promoted ion conductivity of sodium salt–poly(ethylene oxide) polymer electrolyte induced by adding conductive beta-alumina and application in all-solid-state sodium batteries |
URI | https://link.springer.com/article/10.1007/s10853-021-05885-3 https://www.proquest.com/docview/2499659827 https://www.proquest.com/docview/2551977801 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fa9RAEF9s70UfxL94Wo8VBBVdzP9snuTUuxa1pagH9Snsn0kJpMnZy4H35nfwk_iV_CTOpJumKhYCgexmsmRmZ2d2Z37D2GOdZlkEhPIZSSMiWwRCx6EWSsdJ5ptIZgklJ-8fJHuL6N1RfOQ23FYurLLXiZ2ito2hPfKX6CYQ9p0M0lfLr4KqRtHpqiuhscVGqIIlOl-j17ODw49DkEca-D1eOCGnubQZlzyHS5WgEAUvljIW4R9L098K-p-T0m4Bmt9g153lyKdnrL7JrkB9i127gCd4m_087ILrwHL82xw9XQJz7apD8Kbgq8aW6xO-UlX76_uPZVNtngKyCZcd4M230sIzTg9P4JS74jjVpgVeEhUkqTecgo_q44EwcA2tEgoVXFkrrmrLLxyI45tcVZVA6S6t6DKX-jHoDtUTnfQ7bDGffX6zJ1xNBmGi0GuFkiYtjPWM8j0da2SzMT4EUhWAlwk8SKwCqRMvtGjZpTICnXqQSh-UT9bkXbZdNzXcY9ymOgkJhhQUmjG20GEUW3R_IgmFymw2Zn7Pjtw4wHKqm1HlA9QysTBHFuYdC_NwzJ6fv7M8g-u4tPcT4nJOcxkpG-VSEnB8hIqVTynTy0e_HXvu9IKQu0m-ygeRHLNH5804PenMRdXQrLFPTJnBKdoBY_aiF6CBxP_Hdv_yLz5gV4NOdGk_aIdtt6dreIjmUasnbEvOdydsNH27_-ET3Xe_vJ9N3MzA1kUw_Q14qRZL |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEG2FcAAOiFU4BGgkECBo4d3tA0IRMEzIIg6JlJvppYwsOfYk9gjmxj_wH0j8El9ClceOA4jcIvnkpVxSrd1d9YqxRzpJ0xAI5TOURoQ294WOAi2UjuLUM6FMY2pO3tmNp_vhh4PoYIX9GHphqKxy8Imdo7a1oT3yl7hMIOw76SevZ0eCpkbR6eowQmOpFluw-IJLtubV5luU72Pfn7zbezMV_VQBYcLAbYWSJsmNdY3yXB1pZNQYD3ypcsDL-C7EVoHUsRtYzE0SGYJOXEikB8qjfAjpXmAXwyBIyaLk5P1YUpL43oBOTjhtfZNO36qHgVFQQYQbSRmJ4I9A-Hc4-Odctgt3k2vsap-n8o2lYl1nK1DdYFdOoRfeZD8_dqV8YDnKluO6mqBju1kUvM55U9tifsgbVba_vn2f1eXiKaBSYJADXn8tLDzjdPMQjnk_iqdctMALooIk9YJTqVP1eSQMXEOrhEJ3WlSKq8ryU8fv-CVXZSnQlgoruj6pgQfdYYgW0Nxi--ciq9tstaoruMO4TXQcEOgpKEyabK6DMLK42Aol5Cq1qcO8QRyZ6eHRaUpHmY3AziTCDEWYdSLMAoc9P_lmtgQHOfPtJyTljDwHUjaqb4BA_giDK9ugvjLPR-4ctj4oQta7lCYbDcBhD08eozOgEx5VQT3HdyLqQ04w63DYi0GBRhL_523t7D8-YJemezvb2fbm7tZddtnv1Jh2otbZans8h3uYmLX6fmcNnH06b_P7DVhwTwo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwELWgSAgeqnITS1swEhIgsBrn6jyuCqtyq_rASn2zfJlUkdJk1c1K7Bv_wJfwS3xJZ7JJd7lKSHlKxiMnM7bH8ZwzjD2zWZ7HQCyfsXIi9kUobBJZYWyS5tLFKk8JnPzpOD2axu9Pk9MNFH-X7T4cSa4wDcTSVLcHM18cbADfcJkRlF4QJEolIrrObuB0LMmvp-F4neSRhXLgCyfmtB4282cdPy1Nv07Qv52UdgvQZIdt95EjH69MfYddg_ouu73BJ3iPfT_pkuvAc_zaHF-JyFy76hC8Kfi88eXinM9N1f74-m3WVMsXgGbCZQd486X08JLTzXO44H1xnGrZAi9JC6q0S07JR_XZWjFwC60RBie4sjbc1J5vHIhjS26qSqB3l150yKWhD7Zj9cRN-n02nbz9fHgk-poMwsVR0AqjXFY4HzgjA5tYNLNzEkJlCsDLhQGk3oCyaRB5jOwyFYPNAsiUBCMpmnzAtuqmhoeM-8ymEdGQgsEwxhc2ihOP259YQWFyn4-YHMyhXU9YTnUzKr2mWiYTajSh7kyooxF7ddVmtqLr-Kf0c7KyprGMmp3pIQnYP2LF0mNCeknct6Pk3uAIuh_kc407V6JjVGE2Yk-vHuPwpDMXU0OzQJmEkMEZxgEj9npwoLWKv_ft0f-JP2E3T95M9Md3xx922a2w82r6VbTHttqLBexj5NTax93guASbmxPq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Promoted+ion+conductivity+of+sodium+salt%E2%80%93poly%28ethylene+oxide%29+polymer+electrolyte+induced+by+adding+conductive+beta-alumina+and+application+in+all-solid-state+sodium+batteries&rft.jtitle=Journal+of+materials+science&rft.au=Yao+Yiwei&rft.au=Liu+Zehua&rft.au=Wang%2C+Xinxin&rft.au=Chen%2C+Jingjing&rft.date=2021-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0022-2461&rft.eissn=1573-4803&rft.volume=56&rft.issue=16&rft.spage=9951&rft.epage=9960&rft_id=info:doi/10.1007%2Fs10853-021-05885-3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2461&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2461&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2461&client=summon |