Promoted ion conductivity of sodium salt–poly(ethylene oxide) polymer electrolyte induced by adding conductive beta-alumina and application in all-solid-state sodium batteries

Solid polymer electrolytes can significantly improve the safety and energy density of sodium-ion batteries compared with the liquid electrolytes. However, the low ionic conductivity and poor mechanical properties inhibit the practical application. In this paper, poly(ethylene oxide) (PEO) solid poly...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science Vol. 56; no. 16; pp. 9951 - 9960
Main Authors Yao, Yiwei, Liu, Zehua, Wang, Xinxin, Chen, Jingjing, Wang, Xiaotong, Wang, Dajian, Mao, Zhiyong
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2021
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solid polymer electrolytes can significantly improve the safety and energy density of sodium-ion batteries compared with the liquid electrolytes. However, the low ionic conductivity and poor mechanical properties inhibit the practical application. In this paper, poly(ethylene oxide) (PEO) solid polymer electrolytes with enhanced ion conductivity are demonstrated by introducing inorganic solid electrolyte (beta-alumina) filler. With the presence of conductive beta-alumina filler, the ion conductivity of the resultant PEO polymer electrolyte is enhanced from 2.5*10 –4 to 3.95*10 –4 S cm −1 . Applied in sodium-ion batteries (SIBs), the cell delivers an initial discharge capacity of 93.1 mAh g −1 and acceptable cycling performance (77.8 mAh g −1 after 100 cycles), which are significantly superior to that of the PEO solid polymer electrolyte without beta-alumina filler modification. The presented results prove that the ion conductivity of PEO polymer electrolyte can be enhanced by adding conductive beta-alumina, promoting its practical application in Na-ion all-solid-state batteries or other electrochemical energy storage systems.
AbstractList Solid polymer electrolytes can significantly improve the safety and energy density of sodium-ion batteries compared with the liquid electrolytes. However, the low ionic conductivity and poor mechanical properties inhibit the practical application. In this paper, poly(ethylene oxide) (PEO) solid polymer electrolytes with enhanced ion conductivity are demonstrated by introducing inorganic solid electrolyte (beta-alumina) filler. With the presence of conductive beta-alumina filler, the ion conductivity of the resultant PEO polymer electrolyte is enhanced from 2.5*10–⁴ to 3.95*10–⁴ S cm⁻¹. Applied in sodium-ion batteries (SIBs), the cell delivers an initial discharge capacity of 93.1 mAh g⁻¹ and acceptable cycling performance (77.8 mAh g⁻¹ after 100 cycles), which are significantly superior to that of the PEO solid polymer electrolyte without beta-alumina filler modification. The presented results prove that the ion conductivity of PEO polymer electrolyte can be enhanced by adding conductive beta-alumina, promoting its practical application in Na-ion all-solid-state batteries or other electrochemical energy storage systems.
Solid polymer electrolytes can significantly improve the safety and energy density of sodium-ion batteries compared with the liquid electrolytes. However, the low ionic conductivity and poor mechanical properties inhibit the practical application. In this paper, poly(ethylene oxide) (PEO) solid polymer electrolytes with enhanced ion conductivity are demonstrated by introducing inorganic solid electrolyte (beta-alumina) filler. With the presence of conductive beta-alumina filler, the ion conductivity of the resultant PEO polymer electrolyte is enhanced from 2.5*10.sup.-4 to 3.95*10.sup.-4 S cm.sup.-1. Applied in sodium-ion batteries (SIBs), the cell delivers an initial discharge capacity of 93.1 mAh g.sup.-1 and acceptable cycling performance (77.8 mAh g.sup.-1 after 100 cycles), which are significantly superior to that of the PEO solid polymer electrolyte without beta-alumina filler modification. The presented results prove that the ion conductivity of PEO polymer electrolyte can be enhanced by adding conductive beta-alumina, promoting its practical application in Na-ion all-solid-state batteries or other electrochemical energy storage systems.
Solid polymer electrolytes can significantly improve the safety and energy density of sodium-ion batteries compared with the liquid electrolytes. However, the low ionic conductivity and poor mechanical properties inhibit the practical application. In this paper, poly(ethylene oxide) (PEO) solid polymer electrolytes with enhanced ion conductivity are demonstrated by introducing inorganic solid electrolyte (beta-alumina) filler. With the presence of conductive beta-alumina filler, the ion conductivity of the resultant PEO polymer electrolyte is enhanced from 2.5*10 –4 to 3.95*10 –4 S cm −1 . Applied in sodium-ion batteries (SIBs), the cell delivers an initial discharge capacity of 93.1 mAh g −1 and acceptable cycling performance (77.8 mAh g −1 after 100 cycles), which are significantly superior to that of the PEO solid polymer electrolyte without beta-alumina filler modification. The presented results prove that the ion conductivity of PEO polymer electrolyte can be enhanced by adding conductive beta-alumina, promoting its practical application in Na-ion all-solid-state batteries or other electrochemical energy storage systems.
Solid polymer electrolytes can significantly improve the safety and energy density of sodium-ion batteries compared with the liquid electrolytes. However, the low ionic conductivity and poor mechanical properties inhibit the practical application. In this paper, poly(ethylene oxide) (PEO) solid polymer electrolytes with enhanced ion conductivity are demonstrated by introducing inorganic solid electrolyte (beta-alumina) filler. With the presence of conductive beta-alumina filler, the ion conductivity of the resultant PEO polymer electrolyte is enhanced from 2.5*10–4 to 3.95*10–4 S cm−1. Applied in sodium-ion batteries (SIBs), the cell delivers an initial discharge capacity of 93.1 mAh g−1 and acceptable cycling performance (77.8 mAh g−1 after 100 cycles), which are significantly superior to that of the PEO solid polymer electrolyte without beta-alumina filler modification. The presented results prove that the ion conductivity of PEO polymer electrolyte can be enhanced by adding conductive beta-alumina, promoting its practical application in Na-ion all-solid-state batteries or other electrochemical energy storage systems.
Audience Academic
Author Wang, Xiaotong
Liu, Zehua
Chen, Jingjing
Wang, Xinxin
Wang, Dajian
Mao, Zhiyong
Yao, Yiwei
Author_xml – sequence: 1
  givenname: Yiwei
  surname: Yao
  fullname: Yao, Yiwei
  organization: Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology
– sequence: 2
  givenname: Zehua
  surname: Liu
  fullname: Liu, Zehua
  organization: Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology
– sequence: 3
  givenname: Xinxin
  surname: Wang
  fullname: Wang, Xinxin
  organization: Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology
– sequence: 4
  givenname: Jingjing
  surname: Chen
  fullname: Chen, Jingjing
  email: cj313313@email.tjut.edu.cn
  organization: Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology
– sequence: 5
  givenname: Xiaotong
  surname: Wang
  fullname: Wang, Xiaotong
  organization: Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin University of Technology
– sequence: 6
  givenname: Dajian
  surname: Wang
  fullname: Wang, Dajian
  organization: Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin University of Technology
– sequence: 7
  givenname: Zhiyong
  orcidid: 0000-0003-0125-3408
  surname: Mao
  fullname: Mao, Zhiyong
  email: mzhy1984@163.com
  organization: Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology
BookMark eNp9kc9qHSEUxoeSQm_SvkBXQjfpwlSdPzrLEPoPAu2iXcsZPXNrcPRWndK7yzv0SfpKfZJ6cwOBLIKCePh-3zn6nTYnIQZsmtecXXDG5LvMmepbygSnrFeqp-2zZsN72dJOsfak2TAmBBXdwF80pznfMMZ6Kfim-fs1xSUWtMTFQEwMdjXF_XJlT-JMcrRuXUgGX_7d_tlFvz_H8mPvMSCJv53Ft-RQXDAR9GhKqpeCxB1cquW0J2CtC9sHYyQTFqDg18UFIBAsgd3OOwPlMIALBLynOXpnaS5Qze5nmKAUTA7zy-b5DD7jq_vzrPn-4f23q0_0-svHz1eX19R0LSsUlJGzscwAZ1M_dTgaw1EomLFuIxgOFlBNA2utEINUHU6SoVQcgfNRtGfN-dF3l-LPFXPRi8sGvYeAcc1a9D0fpVSMV-mbR9KbuKZQp9OiG8ehH5WQVXVxVG3Bo3ZhjiWBqcvi4uoH4exq_XLoa0pCdm0FxBEwKeaccNa75BZIe82ZPsSuj7HrGru-i10fIPUIMq7cfW7t5vzTaHtEc-0TtpgenvEE9R_Aysn4
CitedBy_id crossref_primary_10_1002_anie_202417778
crossref_primary_10_1002_ange_202417778
crossref_primary_10_1021_acsaem_4c02012
crossref_primary_10_1007_s10008_023_05523_9
crossref_primary_10_1002_cssc_202202152
crossref_primary_10_1002_anie_202318822
crossref_primary_10_1002_ange_202318822
crossref_primary_10_3390_batteries10030073
crossref_primary_10_1021_acs_langmuir_4c01845
crossref_primary_10_1149_1945_7111_ac4bf6
crossref_primary_10_1016_j_electacta_2022_139936
crossref_primary_10_1016_j_cej_2022_135816
crossref_primary_10_1002_smtd_202201032
crossref_primary_10_1039_D3EE02082G
crossref_primary_10_1039_D4EE05966B
crossref_primary_10_1002_admt_202200822
crossref_primary_10_1002_est2_636
crossref_primary_10_1021_acsaem_3c01170
crossref_primary_10_1007_s41918_023_00196_4
crossref_primary_10_1016_j_jallcom_2025_179544
crossref_primary_10_1016_j_colsurfa_2023_131704
crossref_primary_10_1016_j_optmat_2022_112815
Cites_doi 10.1021/ja407393y
10.1021/acs.nanolett.5b00600
10.1039/C6TA07590H
10.1016/j.electacta.2017.03.118
10.3390/en11102559
10.1016/j.ssi.2008.04.006
10.1016/j.nanoen.2017.12.037
10.1016/0167-2738(82)90072-8
10.1016/j.ensm.2018.03.016
10.1016/j.ensm.2019.08.019
10.1038/natrevmats.2016.103
10.1016/j.ceramint.2019.12.074
10.1038/s41928-018-0048-6
10.1166/jnn.2008.18257
10.1021/acsomega.9b00885
10.1016/0167-2738(90)90081-2
10.1002/anie.200701144
10.1016/j.jpowsour.2013.09.137
10.1021/acs.jpcb.7b03985
10.1039/C7TA00314E
10.1016/j.jpowsour.2014.10.078
10.1039/C7SE00441A
10.1016/j.ensm.2019.07.012
10.1021/acsmaterialslett.9b00103
10.1038/srep06272
10.1039/b514346b
10.1038/srep21771
10.1021/acsenergylett.8b00948
10.1007/BF02708607
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
COPYRIGHT 2021 Springer
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
– notice: COPYRIGHT 2021 Springer
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOI 10.1007/s10853-021-05885-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


ProQuest Materials Science Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-4803
EndPage 9960
ExternalDocumentID A654612743
10_1007_s10853_021_05885_3
GrantInformation_xml – fundername: Natural Science Foundation of Tianjin City
  grantid: 18JCZDJC99700; 18JCYBJC87400; 18JCQNJC73900
  funderid: http://dx.doi.org/10.13039/501100006606
– fundername: National Natural Science Foundation of China
  grantid: 51777138
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Y
-58
-5G
-BR
-EM
-XW
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
29K
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDEX
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IFM
IGS
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P9N
PDBOC
PF-
PKN
PT4
PT5
PTHSS
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T9H
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z91
Z92
ZE2
ZMTXR
ZY4
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
ID FETCH-LOGICAL-c430t-a8c7fcd0ca10b5b4e9cc1e28afeafec20e6dae8b603d226784eb70e781ea11923
IEDL.DBID BENPR
ISSN 0022-2461
IngestDate Thu Jul 10 18:57:50 EDT 2025
Fri Jul 25 11:03:19 EDT 2025
Tue Jun 10 20:22:23 EDT 2025
Tue Jul 01 01:40:08 EDT 2025
Thu Apr 24 23:04:32 EDT 2025
Fri Feb 21 02:48:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-a8c7fcd0ca10b5b4e9cc1e28afeafec20e6dae8b603d226784eb70e781ea11923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0125-3408
PQID 2499659827
PQPubID 2043599
PageCount 10
ParticipantIDs proquest_miscellaneous_2551977801
proquest_journals_2499659827
gale_infotracacademiconefile_A654612743
crossref_primary_10_1007_s10853_021_05885_3
crossref_citationtrail_10_1007_s10853_021_05885_3
springer_journals_10_1007_s10853_021_05885_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of materials science
PublicationTitleAbbrev J Mater Sci
PublicationYear 2021
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Miao, Yang, Xu, Wang, Nuli, Sun (CR25) 2016; 6
Rajendran, Uma (CR8) 2000; 23
Zhou, Bag, Thangadurai (CR3) 2018; 3
Lim, Jung, Hwang (CR9) 2018; 11
Yang, Lin, Wang, Wang, Zhou, Liu (CR14) 1990; 40–41
Shojaatalhosseini, Elamin, Swenson (CR13) 2017; 121
Wang, Li, Yang, You, Xu, Wang, Ma, Gao (CR6) 2018; 2
Wu, Yu, Wang, Guo (CR11) 2020; 24
Raut, Li, Chen, Zhu, Jana (CR5) 2019; 4
Choi, Lee, Yu, Doh, Lee (CR26) 2015; 274
Cao, Zhang, Tao, Zhang (CR4) 2020; 46
Yu, Xue, Goodenough, Manthiram (CR10) 2019; 1
Zhang, Yue, Hu, Liu, Qin, Zhang, Wang, Ding, Zhang, Zhou, Yao, Cui, Chen (CR19) 2014; 4
Bhattacharya, Ghosh (CR23) 2008; 8
Goodenough (CR2) 2018; 1
Weston, Steele (CR15) 1982; 7
Murugan, Thangadurai, Weppner (CR16) 2007; 46
Chen, Li, Li, Fan, Nan, Goodenough (CR27) 2018; 46
Gao, Tan, Han, Zhao, Pan (CR20) 2017; 5
Bae, Li, Zhao, Zhou, Ding, Yu (CR29) 2018; 15
Manthiram, Yu, Wang (CR1) 2017; 2
Bag, Zhou, Kim, Pol, Thangadurai (CR7) 2020; 24
Jinisha, Anil Kumar, Manoh, Pradeep, Jayalekshmi (CR18) 2017; 235
Philipp, Sebastian, Klaus, JöRn, Stefanie, Bernhard (CR17) 2013; 135
Pandey, Hashmi, Agrawal (CR22) 2008; 179
Xiong, Wang, Xie, Cheng, Xia (CR24) 2006; 16
Liu, Liu, Sun, Hsu, Li, Lee, Cui (CR28) 2016; 15
Zhang, Zhang, Ren, Luo, Ma, Hu, Zhou, Li, Huang, Chen (CR12) 2016; 4
Moreno, Armand, Berman, Greenbaum, Scrosati, Panero (CR21) 2014; 248
P Raut (5885_CR5) 2019; 4
B Philipp (5885_CR17) 2013; 135
JH Choi (5885_CR26) 2015; 274
S Bhattacharya (5885_CR23) 2008; 8
J Zhang (5885_CR19) 2014; 4
X Yu (5885_CR10) 2019; 1
S Rajendran (5885_CR8) 2000; 23
J Bae (5885_CR29) 2018; 15
C Zhou (5885_CR3) 2018; 3
L Yang (5885_CR14) 1990; 40–41
R Gao (5885_CR20) 2017; 5
S Bag (5885_CR7) 2020; 24
HM Xiong (5885_CR24) 2006; 16
W Liu (5885_CR28) 2016; 15
F Wang (5885_CR6) 2018; 2
R Miao (5885_CR25) 2016; 6
JE Weston (5885_CR15) 1982; 7
R Murugan (5885_CR16) 2007; 46
XG Cao (5885_CR4) 2020; 46
L Chen (5885_CR27) 2018; 46
Z Zhang (5885_CR12) 2016; 4
Y Lim (5885_CR9) 2018; 11
J-F Wu (5885_CR11) 2020; 24
M Shojaatalhosseini (5885_CR13) 2017; 121
JS Moreno (5885_CR21) 2014; 248
JB Goodenough (5885_CR2) 2018; 1
A Manthiram (5885_CR1) 2017; 2
B Jinisha (5885_CR18) 2017; 235
GP Pandey (5885_CR22) 2008; 179
References_xml – volume: 135
  start-page: 15694
  issue: 42
  year: 2013
  end-page: 15697
  ident: CR17
  article-title: Li SnP S - an affordable lithium superionic conductor
  publication-title: J Am Chem Soc
  doi: 10.1021/ja407393y
– volume: 15
  start-page: 2740
  issue: 4
  year: 2016
  end-page: 2745
  ident: CR28
  article-title: Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.5b00600
– volume: 4
  start-page: 15823
  year: 2016
  end-page: 15828
  ident: CR12
  article-title: A ceramic/polymer composite solid electrolyte for sodium batteries
  publication-title: J Mater Chem A
  doi: 10.1039/C6TA07590H
– volume: 235
  start-page: 210
  year: 2017
  end-page: 222
  ident: CR18
  article-title: Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide) (PEO)/poly (vinyl pyrrolidone) (PVP) blend polymer
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2017.03.118
– volume: 11
  start-page: 2559
  issue: 10
  year: 2018
  ident: CR9
  article-title: Fabrication of PEO-PMMA-LiClO -based solid polymer electrolytes containing silica aerogel particles for all-solid-state lithium batteries
  publication-title: Energies
  doi: 10.3390/en11102559
– volume: 179
  start-page: 543
  issue: 15–16
  year: 2008
  end-page: 549
  ident: CR22
  article-title: Hot-press synthesized polyethylene oxide based proton conducting nanocomposite polymer electrolyte dispersed with SiO nanoparticles
  publication-title: Solid State Ionics Diffus React
  doi: 10.1016/j.ssi.2008.04.006
– volume: 46
  start-page: 176
  year: 2018
  end-page: 184
  ident: CR27
  article-title: PEO/garnet composite electrolytes for solid-state lithium batteries: from "ceramic-in-polymer" to "polymer-in-ceramic"
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.037
– volume: 7
  start-page: 75
  issue: 1
  year: 1982
  end-page: 79
  ident: CR15
  article-title: Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(82)90072-8
– volume: 15
  start-page: 46
  year: 2018
  end-page: 52
  ident: CR29
  article-title: Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2018.03.016
– volume: 24
  start-page: 198
  year: 2020
  end-page: 207
  ident: CR7
  article-title: LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li–S batteries
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2019.08.019
– volume: 2
  start-page: 16103
  year: 2017
  ident: CR1
  article-title: Lithium battery chemistries enabled by solid-state electrolytes
  publication-title: Nat Rev Mater
  doi: 10.1038/natrevmats.2016.103
– volume: 46
  start-page: 8405
  issue: 6
  year: 2020
  end-page: 8412
  ident: CR4
  article-title: Effects of antimony tin oxide (ATO) additive on the properties of Na Zr Si PO ceramic electrolytes
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2019.12.074
– volume: 1
  start-page: 204
  issue: 3
  year: 2018
  end-page: 204
  ident: CR2
  article-title: How we made the Li-ion rechargeable battery
  publication-title: Nat Electron
  doi: 10.1038/s41928-018-0048-6
– volume: 8
  start-page: 1922
  issue: 4
  year: 2008
  end-page: 1926
  ident: CR23
  article-title: Effect of ZnO Nanoparticles on the structure and ionic relaxation of poly(ethylene oxide)-LiI polymer electrolyte nanocomposites
  publication-title: J Nanosci Nanotechnol
  doi: 10.1166/jnn.2008.18257
– volume: 4
  start-page: 18203
  issue: 19
  year: 2019
  end-page: 18209
  ident: CR5
  article-title: Strong and flexible composite solid polymer electrolyte membranes for Li-ion batteries
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b00885
– volume: 40–41
  start-page: 616
  year: 1990
  end-page: 619
  ident: CR14
  article-title: Effects of plasticizers on properties of poly(ethylene oxide) complex electrolytes
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(90)90081-2
– volume: 46
  start-page: 7778
  issue: 41
  year: 2007
  end-page: 7781
  ident: CR16
  article-title: Fast lithium ion conduction in garnet-type Li La Zr O
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200701144
– volume: 248
  start-page: 695
  year: 2014
  end-page: 702
  ident: CR21
  article-title: Composite PEOn:NaTFSI polymer electrolyte: preparation, thermal and electrochemical characterization
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.09.137
– volume: 121
  start-page: 9699
  issue: 41
  year: 2017
  end-page: 9707
  ident: CR13
  article-title: Conductivity—relaxation relations in nanocomposite polymer electrolytes containing ionic liquid
  publication-title: J Phys Chem B
  doi: 10.1021/acs.jpcb.7b03985
– volume: 5
  start-page: 5273
  issue: 11
  year: 2017
  end-page: 5277
  ident: CR20
  article-title: Nanofiber networks of Na V (PO ) as a cathode material for high performance all-solid-state sodium-ion batteries
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA00314E
– volume: 274
  start-page: 458
  year: 2015
  end-page: 463
  ident: CR26
  article-title: Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li La Zr O into a polyethylene oxide matrix
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.10.078
– volume: 2
  start-page: 492
  year: 2018
  end-page: 498
  ident: CR6
  article-title: Influence of additives in a PVDF-based solid polymer electrolyte on conductivity and Li-ion battery performance
  publication-title: Sustain Energy Fuels
  doi: 10.1039/C7SE00441A
– volume: 24
  start-page: 467
  year: 2020
  end-page: 471
  ident: CR11
  article-title: High performance all-solid-state sodium batteries actualized by polyethylene oxide/Na Zn TeO composite solid electrolytes
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2019.07.012
– volume: 1
  start-page: 132
  issue: 1
  year: 2019
  end-page: 138
  ident: CR10
  article-title: A high-performance all-solid-state sodium battery with a poly(ethylene oxide)–Na Zr Si PO composite electrolyte
  publication-title: ACS Mater Lett
  doi: 10.1021/acsmaterialslett.9b00103
– volume: 4
  start-page: 6272
  issue: 1
  year: 2014
  ident: CR19
  article-title: Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries
  publication-title: Sci Rep
  doi: 10.1038/srep06272
– volume: 16
  start-page: 1345
  issue: 14
  year: 2006
  end-page: 1349
  ident: CR24
  article-title: Stable polymer electrolytes based on polyether-grafted ZnO nanoparticles for all-solid-state lithium batteries
  publication-title: J Mater Chem
  doi: 10.1039/b514346b
– volume: 6
  start-page: 21771
  year: 2016
  ident: CR25
  article-title: A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries
  publication-title: Sci Rep
  doi: 10.1038/srep21771
– volume: 3
  start-page: 2181
  issue: 9
  year: 2018
  end-page: 2198
  ident: CR3
  article-title: Engineering materials for progressive all-solid-state Na batteries
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.8b00948
– volume: 23
  start-page: 27
  issue: 1
  year: 2000
  end-page: 29
  ident: CR8
  article-title: Characterization of plasticized PMMA-LiBF based solid polymer electrolytes
  publication-title: Bull Mater Sci
  doi: 10.1007/BF02708607
– volume: 274
  start-page: 458
  year: 2015
  ident: 5885_CR26
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.10.078
– volume: 135
  start-page: 15694
  issue: 42
  year: 2013
  ident: 5885_CR17
  publication-title: J Am Chem Soc
  doi: 10.1021/ja407393y
– volume: 121
  start-page: 9699
  issue: 41
  year: 2017
  ident: 5885_CR13
  publication-title: J Phys Chem B
  doi: 10.1021/acs.jpcb.7b03985
– volume: 15
  start-page: 2740
  issue: 4
  year: 2016
  ident: 5885_CR28
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.5b00600
– volume: 179
  start-page: 543
  issue: 15–16
  year: 2008
  ident: 5885_CR22
  publication-title: Solid State Ionics Diffus React
  doi: 10.1016/j.ssi.2008.04.006
– volume: 5
  start-page: 5273
  issue: 11
  year: 2017
  ident: 5885_CR20
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA00314E
– volume: 4
  start-page: 6272
  issue: 1
  year: 2014
  ident: 5885_CR19
  publication-title: Sci Rep
  doi: 10.1038/srep06272
– volume: 6
  start-page: 21771
  year: 2016
  ident: 5885_CR25
  publication-title: Sci Rep
  doi: 10.1038/srep21771
– volume: 24
  start-page: 198
  year: 2020
  ident: 5885_CR7
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2019.08.019
– volume: 23
  start-page: 27
  issue: 1
  year: 2000
  ident: 5885_CR8
  publication-title: Bull Mater Sci
  doi: 10.1007/BF02708607
– volume: 2
  start-page: 16103
  year: 2017
  ident: 5885_CR1
  publication-title: Nat Rev Mater
  doi: 10.1038/natrevmats.2016.103
– volume: 46
  start-page: 8405
  issue: 6
  year: 2020
  ident: 5885_CR4
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2019.12.074
– volume: 8
  start-page: 1922
  issue: 4
  year: 2008
  ident: 5885_CR23
  publication-title: J Nanosci Nanotechnol
  doi: 10.1166/jnn.2008.18257
– volume: 1
  start-page: 204
  issue: 3
  year: 2018
  ident: 5885_CR2
  publication-title: Nat Electron
  doi: 10.1038/s41928-018-0048-6
– volume: 11
  start-page: 2559
  issue: 10
  year: 2018
  ident: 5885_CR9
  publication-title: Energies
  doi: 10.3390/en11102559
– volume: 24
  start-page: 467
  year: 2020
  ident: 5885_CR11
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2019.07.012
– volume: 46
  start-page: 7778
  issue: 41
  year: 2007
  ident: 5885_CR16
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200701144
– volume: 46
  start-page: 176
  year: 2018
  ident: 5885_CR27
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.037
– volume: 15
  start-page: 46
  year: 2018
  ident: 5885_CR29
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2018.03.016
– volume: 235
  start-page: 210
  year: 2017
  ident: 5885_CR18
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2017.03.118
– volume: 2
  start-page: 492
  year: 2018
  ident: 5885_CR6
  publication-title: Sustain Energy Fuels
  doi: 10.1039/C7SE00441A
– volume: 3
  start-page: 2181
  issue: 9
  year: 2018
  ident: 5885_CR3
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.8b00948
– volume: 248
  start-page: 695
  year: 2014
  ident: 5885_CR21
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.09.137
– volume: 1
  start-page: 132
  issue: 1
  year: 2019
  ident: 5885_CR10
  publication-title: ACS Mater Lett
  doi: 10.1021/acsmaterialslett.9b00103
– volume: 40–41
  start-page: 616
  year: 1990
  ident: 5885_CR14
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(90)90081-2
– volume: 16
  start-page: 1345
  issue: 14
  year: 2006
  ident: 5885_CR24
  publication-title: J Mater Chem
  doi: 10.1039/b514346b
– volume: 7
  start-page: 75
  issue: 1
  year: 1982
  ident: 5885_CR15
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(82)90072-8
– volume: 4
  start-page: 18203
  issue: 19
  year: 2019
  ident: 5885_CR5
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b00885
– volume: 4
  start-page: 15823
  year: 2016
  ident: 5885_CR12
  publication-title: J Mater Chem A
  doi: 10.1039/C6TA07590H
SSID ssj0005721
Score 2.4668634
Snippet Solid polymer electrolytes can significantly improve the safety and energy density of sodium-ion batteries compared with the liquid electrolytes. However, the...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9951
SubjectTerms Alumina
Aluminum oxide
Batteries
Characterization and Evaluation of Materials
Chemical compounds
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Electric properties
Electrochemistry
Electrolytes
energy
energy density
Energy Materials
Energy storage
Ethylene oxide
Fillers
Flux density
Ion currents
liquids
Lithium
Materials Science
Mechanical properties
Molten salt electrolytes
Polyelectrolytes
Polyethylene oxide
Polymer Sciences
Polymers
Rechargeable batteries
Sodium
Sodium salts
Solid electrolytes
Solid Mechanics
Solid state
Storage batteries
Storage systems
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9xADB7a9NIeSp9027RModCWdsCv8YyPS0gIhZYeupDbMA-5GBw7ZL2QveU_5Jf0L-WXRJrY2e0TCj7ZshgszUiypE-MvXGqqgoglM9Ce1GEOhNO5k5YJ8sq9YWuSmpO_vylPFwUn47k0dgUtpyq3aeUZDypt5rd0LQIKilIpNZS5LfZHUmxO2rxIptvCjtUlk4Y4YSWNrbK_JnHT-bo10P5t-xoNDoHD9j90Vvk82vxPmS3oHvE7m1hCD5mP77GgjoIHL8wx-iWAFzjRAje13zZh2Z1zJe2HS7PL076dv0OUDRoaoD3Z02A95xuHsMpHwfitOsBeENckKVbcyo46r5vGAN3MFhh8VBrOsttF_hWEhzf5LZtBWp0E0TsVprW4CKSJwbmT9jiYP_b3qEY5zAIX-TJIKz2qvYh8TZNnHQoWu9TyLStAS-fJVAGC9qVSR7Qm1O6AKcSUDoFm5IH-ZTtdH0HzxgPypU5QY-CRdcl1C4vZMCQp9BQ2ypUM5ZO4jB-BCmnWRmt2cArkwgNitBEEZp8xj7cvHNyDdHxT-q3JGVD-xc5ezu2IeD6CAnLzKm7K8VYHSl3J0Uw48ZeGoxWCYJRZ2rGXt88xi1JeRbbQb9CGkndwApt_4x9nBRow-Lva3v-f-Qv2N0sqjL9E9plO8PpCl6iizS4V3FHXAGmrAy7
  priority: 102
  providerName: Springer Nature
Title Promoted ion conductivity of sodium salt–poly(ethylene oxide) polymer electrolyte induced by adding conductive beta-alumina and application in all-solid-state sodium batteries
URI https://link.springer.com/article/10.1007/s10853-021-05885-3
https://www.proquest.com/docview/2499659827
https://www.proquest.com/docview/2551977801
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fa9RAEF9s70UfxL94Wo8VBBVdzP9snuTUuxa1pagH9Snsn0kJpMnZy4H35nfwk_iV_CTOpJumKhYCgexmsmRmZ2d2Z37D2GOdZlkEhPIZSSMiWwRCx6EWSsdJ5ptIZgklJ-8fJHuL6N1RfOQ23FYurLLXiZ2ito2hPfKX6CYQ9p0M0lfLr4KqRtHpqiuhscVGqIIlOl-j17ODw49DkEca-D1eOCGnubQZlzyHS5WgEAUvljIW4R9L098K-p-T0m4Bmt9g153lyKdnrL7JrkB9i127gCd4m_087ILrwHL82xw9XQJz7apD8Kbgq8aW6xO-UlX76_uPZVNtngKyCZcd4M230sIzTg9P4JS74jjVpgVeEhUkqTecgo_q44EwcA2tEgoVXFkrrmrLLxyI45tcVZVA6S6t6DKX-jHoDtUTnfQ7bDGffX6zJ1xNBmGi0GuFkiYtjPWM8j0da2SzMT4EUhWAlwk8SKwCqRMvtGjZpTICnXqQSh-UT9bkXbZdNzXcY9ymOgkJhhQUmjG20GEUW3R_IgmFymw2Zn7Pjtw4wHKqm1HlA9QysTBHFuYdC_NwzJ6fv7M8g-u4tPcT4nJOcxkpG-VSEnB8hIqVTynTy0e_HXvu9IKQu0m-ygeRHLNH5804PenMRdXQrLFPTJnBKdoBY_aiF6CBxP_Hdv_yLz5gV4NOdGk_aIdtt6dreIjmUasnbEvOdydsNH27_-ET3Xe_vJ9N3MzA1kUw_Q14qRZL
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEG2FcAAOiFU4BGgkECBo4d3tA0IRMEzIIg6JlJvppYwsOfYk9gjmxj_wH0j8El9ClceOA4jcIvnkpVxSrd1d9YqxRzpJ0xAI5TOURoQ294WOAi2UjuLUM6FMY2pO3tmNp_vhh4PoYIX9GHphqKxy8Imdo7a1oT3yl7hMIOw76SevZ0eCpkbR6eowQmOpFluw-IJLtubV5luU72Pfn7zbezMV_VQBYcLAbYWSJsmNdY3yXB1pZNQYD3ypcsDL-C7EVoHUsRtYzE0SGYJOXEikB8qjfAjpXmAXwyBIyaLk5P1YUpL43oBOTjhtfZNO36qHgVFQQYQbSRmJ4I9A-Hc4-Odctgt3k2vsap-n8o2lYl1nK1DdYFdOoRfeZD8_dqV8YDnKluO6mqBju1kUvM55U9tifsgbVba_vn2f1eXiKaBSYJADXn8tLDzjdPMQjnk_iqdctMALooIk9YJTqVP1eSQMXEOrhEJ3WlSKq8ryU8fv-CVXZSnQlgoruj6pgQfdYYgW0Nxi--ciq9tstaoruMO4TXQcEOgpKEyabK6DMLK42Aol5Cq1qcO8QRyZ6eHRaUpHmY3AziTCDEWYdSLMAoc9P_lmtgQHOfPtJyTljDwHUjaqb4BA_giDK9ugvjLPR-4ctj4oQta7lCYbDcBhD08eozOgEx5VQT3HdyLqQ04w63DYi0GBRhL_523t7D8-YJemezvb2fbm7tZddtnv1Jh2otbZans8h3uYmLX6fmcNnH06b_P7DVhwTwo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwELWgSAgeqnITS1swEhIgsBrn6jyuCqtyq_rASn2zfJlUkdJk1c1K7Bv_wJfwS3xJZ7JJd7lKSHlKxiMnM7bH8ZwzjD2zWZ7HQCyfsXIi9kUobBJZYWyS5tLFKk8JnPzpOD2axu9Pk9MNFH-X7T4cSa4wDcTSVLcHM18cbADfcJkRlF4QJEolIrrObuB0LMmvp-F4neSRhXLgCyfmtB4282cdPy1Nv07Qv52UdgvQZIdt95EjH69MfYddg_ouu73BJ3iPfT_pkuvAc_zaHF-JyFy76hC8Kfi88eXinM9N1f74-m3WVMsXgGbCZQd486X08JLTzXO44H1xnGrZAi9JC6q0S07JR_XZWjFwC60RBie4sjbc1J5vHIhjS26qSqB3l150yKWhD7Zj9cRN-n02nbz9fHgk-poMwsVR0AqjXFY4HzgjA5tYNLNzEkJlCsDLhQGk3oCyaRB5jOwyFYPNAsiUBCMpmnzAtuqmhoeM-8ymEdGQgsEwxhc2ihOP259YQWFyn4-YHMyhXU9YTnUzKr2mWiYTajSh7kyooxF7ddVmtqLr-Kf0c7KyprGMmp3pIQnYP2LF0mNCeknct6Pk3uAIuh_kc407V6JjVGE2Yk-vHuPwpDMXU0OzQJmEkMEZxgEj9npwoLWKv_ft0f-JP2E3T95M9Md3xx922a2w82r6VbTHttqLBexj5NTax93guASbmxPq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Promoted+ion+conductivity+of+sodium+salt%E2%80%93poly%28ethylene+oxide%29+polymer+electrolyte+induced+by+adding+conductive+beta-alumina+and+application+in+all-solid-state+sodium+batteries&rft.jtitle=Journal+of+materials+science&rft.au=Yao+Yiwei&rft.au=Liu+Zehua&rft.au=Wang%2C+Xinxin&rft.au=Chen%2C+Jingjing&rft.date=2021-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0022-2461&rft.eissn=1573-4803&rft.volume=56&rft.issue=16&rft.spage=9951&rft.epage=9960&rft_id=info:doi/10.1007%2Fs10853-021-05885-3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2461&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2461&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2461&client=summon