A bioinspired and hierarchically structured shape-memory material

Shape-memory polymeric materials lack long-range molecular order that enables more controlled and efficient actuation mechanisms. Here, we develop a hierarchical structured keratin-based system that has long-range molecular order and shape-memory properties in response to hydration. We explore the m...

Full description

Saved in:
Bibliographic Details
Published inNature materials Vol. 20; no. 2; pp. 242 - 249
Main Authors Cera, Luca, Gonzalez, Grant M., Liu, Qihan, Choi, Suji, Chantre, Christophe O., Lee, Juncheol, Gabardi, Rudy, Choi, Myung Chul, Shin, Kwanwoo, Parker, Kevin Kit
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.02.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Shape-memory polymeric materials lack long-range molecular order that enables more controlled and efficient actuation mechanisms. Here, we develop a hierarchical structured keratin-based system that has long-range molecular order and shape-memory properties in response to hydration. We explore the metastable reconfiguration of the keratin secondary structure, the transition from α-helix to β-sheet, as an actuation mechanism to design a high-strength shape-memory material that is biocompatible and processable through fibre spinning and three-dimensional (3D) printing. We extract keratin protofibrils from animal hair and subject them to shear stress to induce their self-organization into a nematic phase, which recapitulates the native hierarchical organization of the protein. This self-assembly process can be tuned to create materials with desired anisotropic structuring and responsiveness. Our combination of bottom-up assembly and top-down manufacturing allows for the scalable fabrication of strong and hierarchically structured shape-memory fibres and 3D-printed scaffolds with potential applications in bioengineering and smart textiles. Shear-aligned keratin protofibres are used to fabricate shape-memory fibres and three-dimensional scaffolds that respond to water.
AbstractList Shape-memory polymeric materials lack long-range molecular order that enables more controlled and efficient actuation mechanisms. Here, we develop a hierarchical structured keratin-based system that has long-range molecular order and shape-memory properties in response to hydration. We explore the metastable reconfiguration of the keratin secondary structure, the transition from α-helix to β-sheet, as an actuation mechanism to design a high-strength shape-memory material that is biocompatible and processable through fibre spinning and three-dimensional (3D) printing. We extract keratin protofibrils from animal hair and subject them to shear stress to induce their self-organization into a nematic phase, which recapitulates the native hierarchical organization of the protein. This self-assembly process can be tuned to create materials with desired anisotropic structuring and responsiveness. Our combination of bottom-up assembly and top-down manufacturing allows for the scalable fabrication of strong and hierarchically structured shape-memory fibres and 3D-printed scaffolds with potential applications in bioengineering and smart textiles.Shape-memory polymeric materials lack long-range molecular order that enables more controlled and efficient actuation mechanisms. Here, we develop a hierarchical structured keratin-based system that has long-range molecular order and shape-memory properties in response to hydration. We explore the metastable reconfiguration of the keratin secondary structure, the transition from α-helix to β-sheet, as an actuation mechanism to design a high-strength shape-memory material that is biocompatible and processable through fibre spinning and three-dimensional (3D) printing. We extract keratin protofibrils from animal hair and subject them to shear stress to induce their self-organization into a nematic phase, which recapitulates the native hierarchical organization of the protein. This self-assembly process can be tuned to create materials with desired anisotropic structuring and responsiveness. Our combination of bottom-up assembly and top-down manufacturing allows for the scalable fabrication of strong and hierarchically structured shape-memory fibres and 3D-printed scaffolds with potential applications in bioengineering and smart textiles.
Shape-memory polymeric materials lack long-range molecular order that enables more controlled and efficient actuation mechanisms. Here, we develop a hierarchical structured keratin-based system that has long-range molecular order and shape-memory properties in response to hydration. We explore the metastable reconfiguration of the keratin secondary structure, the transition from α-helix to β-sheet, as an actuation mechanism to design a high-strength shape-memory material that is biocompatible and processable through fibre spinning and three-dimensional (3D) printing. We extract keratin protofibrils from animal hair and subject them to shear stress to induce their self-organization into a nematic phase, which recapitulates the native hierarchical organization of the protein. This self-assembly process can be tuned to create materials with desired anisotropic structuring and responsiveness. Our combination of bottom-up assembly and top-down manufacturing allows for the scalable fabrication of strong and hierarchically structured shape-memory fibres and 3D-printed scaffolds with potential applications in bioengineering and smart textiles. Shear-aligned keratin protofibres are used to fabricate shape-memory fibres and three-dimensional scaffolds that respond to water.
Shape-memory polymeric materials lack long-range molecular order that enables more controlled and efficient actuation mechanisms. Here, we develop a hierarchical structured keratin-based system that has long-range molecular order and shape-memory properties in response to hydration. We explore the metastable reconfiguration of the keratin secondary structure, the transition from α-helix to β-sheet, as an actuation mechanism to design a high-strength shape-memory material that is biocompatible and processable through fibre spinning and three-dimensional (3D) printing. We extract keratin protofibrils from animal hair and subject them to shear stress to induce their self-organization into a nematic phase, which recapitulates the native hierarchical organization of the protein. This self-assembly process can be tuned to create materials with desired anisotropic structuring and responsiveness. Our combination of bottom-up assembly and top-down manufacturing allows for the scalable fabrication of strong and hierarchically structured shape-memory fibres and 3D-printed scaffolds with potential applications in bioengineering and smart textiles.
Shape-memory polymeric materials lack long-range molecular order that enables more controlled and efficient actuation mechanisms. Here, we develop a hierarchical structured keratin-based system that has long-range molecular order and shape-memory properties in response to hydration. We explore the metastable reconfiguration of the keratin secondary structure, the transition from α-helix to β-sheet, as an actuation mechanism to design a high-strength shape-memory material that is biocompatible and processable through fibre spinning and three-dimensional (3D) printing. We extract keratin protofibrils from animal hair and subject them to shear stress to induce their self-organization into a nematic phase, which recapitulates the native hierarchical organization of the protein. This self-assembly process can be tuned to create materials with desired anisotropic structuring and responsiveness. Our combination of bottom-up assembly and top-down manufacturing allows for the scalable fabrication of strong and hierarchically structured shape-memory fibres and 3D-printed scaffolds with potential applications in bioengineering and smart textiles.Shear-aligned keratin protofibres are used to fabricate shape-memory fibres and three-dimensional scaffolds that respond to water.
Author Gonzalez, Grant M.
Choi, Suji
Parker, Kevin Kit
Lee, Juncheol
Gabardi, Rudy
Shin, Kwanwoo
Cera, Luca
Liu, Qihan
Choi, Myung Chul
Chantre, Christophe O.
Author_xml – sequence: 1
  givenname: Luca
  surname: Cera
  fullname: Cera, Luca
  organization: Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University
– sequence: 2
  givenname: Grant M.
  surname: Gonzalez
  fullname: Gonzalez, Grant M.
  organization: Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University
– sequence: 3
  givenname: Qihan
  surname: Liu
  fullname: Liu, Qihan
  organization: Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University
– sequence: 4
  givenname: Suji
  surname: Choi
  fullname: Choi, Suji
  organization: Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University
– sequence: 5
  givenname: Christophe O.
  surname: Chantre
  fullname: Chantre, Christophe O.
  organization: Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University
– sequence: 6
  givenname: Juncheol
  orcidid: 0000-0002-7218-2072
  surname: Lee
  fullname: Lee, Juncheol
  organization: Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 7
  givenname: Rudy
  surname: Gabardi
  fullname: Gabardi, Rudy
  organization: Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University
– sequence: 8
  givenname: Myung Chul
  surname: Choi
  fullname: Choi, Myung Chul
  organization: Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 9
  givenname: Kwanwoo
  surname: Shin
  fullname: Shin, Kwanwoo
  organization: Department of Chemistry and Institute of Biological Interfaces, Sogang University
– sequence: 10
  givenname: Kevin Kit
  orcidid: 0000-0002-5968-7535
  surname: Parker
  fullname: Parker, Kevin Kit
  email: kkparker@seas.harvard.edu
  organization: Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32868876$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLxDAQx4MoPlY_gBcpePFSnTyapMdFfIHgRc8hTaZulj7WpD3st7fL7iIIyhwykN9vGOZ_Rg67vkNCLincUuD6LglaSJ4DgxyULnN2QE6pUDIXUsLhrqeUsRNyltISgNGikMfkhDMttVbylMznWRX60KVViOgz2_lsETDa6BbB2aZZZ2mIoxvGzW9a2BXmLbZ9XGetHTAG25yTo9o2CS9274x8PD683z_nr29PL_fz19wJDkNudVm4mgrwNdiy0NwLilhVUpbeO6uUcADIhXZKFEICQqk886KoSl0LRfmM3GznrmL_NWIaTBuSw6axHfZjMkzwUjIO02Vm5PoXuuzH2E3bTZSmYlNioq521Fi16M0qhtbGtdkfZwLUFnCxTylibVwY7BD6bog2NIaC2cRgtjGYKQazicGwyaS_zP3w_xy2ddLEdp8Yf5b-W_oG9XSYBg
CitedBy_id crossref_primary_10_1016_j_bioactmat_2021_12_032
crossref_primary_10_1002_anie_202310879
crossref_primary_10_1002_aelm_202200782
crossref_primary_10_1016_j_mattod_2024_09_003
crossref_primary_10_1021_acsanm_1c01408
crossref_primary_10_1021_acssuschemeng_3c08075
crossref_primary_10_1016_j_bioorg_2024_107162
crossref_primary_10_1063_5_0238817
crossref_primary_10_1002_advs_202407596
crossref_primary_10_1063_5_0024006
crossref_primary_10_1016_j_biomaterials_2025_123261
crossref_primary_10_1016_j_ijbiomac_2021_10_227
crossref_primary_10_1002_jbm_a_37268
crossref_primary_10_1007_s10924_022_02383_8
crossref_primary_10_1016_j_jclepro_2023_138239
crossref_primary_10_1007_s42765_022_00254_4
crossref_primary_10_1007_s11998_022_00690_2
crossref_primary_10_1039_D3NR00281K
crossref_primary_10_1002_adfm_202406934
crossref_primary_10_1002_adfm_202401005
crossref_primary_10_3390_gels10040270
crossref_primary_10_1002_advs_202104697
crossref_primary_10_1126_sciadv_abl7506
crossref_primary_10_1016_j_compositesa_2022_106997
crossref_primary_10_1016_j_compstruct_2021_114729
crossref_primary_10_1021_acssuschemeng_2c06865
crossref_primary_10_1021_acssuschemeng_2c05411
crossref_primary_10_1002_advs_202402196
crossref_primary_10_1016_j_matt_2024_04_033
crossref_primary_10_1038_s41467_022_28901_9
crossref_primary_10_1134_S1070363224060276
crossref_primary_10_1021_acsapm_2c00390
crossref_primary_10_1016_j_carbpol_2022_119836
crossref_primary_10_1021_acsami_0c22377
crossref_primary_10_1002_adfm_202206912
crossref_primary_10_1002_cssc_202401567
crossref_primary_10_3390_polym16050700
crossref_primary_10_1021_acsami_1c03150
crossref_primary_10_1080_00405000_2021_1940018
crossref_primary_10_1016_j_matt_2021_06_033
crossref_primary_10_1021_acsbiomaterials_1c01477
crossref_primary_10_1021_accountsmr_4c00065
crossref_primary_10_3390_pharmaceutics15092356
crossref_primary_10_1021_acsnano_3c03607
crossref_primary_10_1021_acsapm_2c02163
crossref_primary_10_29147_datjournal_v9i4_832
crossref_primary_10_1007_s10311_024_01726_2
crossref_primary_10_1002_adfm_202416526
crossref_primary_10_1016_j_matlet_2022_132047
crossref_primary_10_1021_acs_accounts_3c00372
crossref_primary_10_1557_s43579_020_00003_x
crossref_primary_10_1021_jacsau_2c00427
crossref_primary_10_1002_sus2_46
crossref_primary_10_1021_acs_chemrev_2c00621
crossref_primary_10_1016_j_cej_2024_149167
crossref_primary_10_1016_j_ijmecsci_2024_109781
crossref_primary_10_1021_acsnano_0c10431
crossref_primary_10_1002_adma_202405892
crossref_primary_10_1016_j_cirp_2023_05_005
crossref_primary_10_1016_j_scp_2024_101511
crossref_primary_10_1016_j_ijbiomac_2024_139255
crossref_primary_10_1016_j_rechem_2024_101997
crossref_primary_10_1177_00405175211060083
crossref_primary_10_1016_j_isci_2021_102798
crossref_primary_10_5650_jos_ess23203
crossref_primary_10_1016_j_scitotenv_2025_178911
crossref_primary_10_1016_j_cej_2025_159708
crossref_primary_10_1002_adfm_202316301
crossref_primary_10_3390_textiles3020017
crossref_primary_10_1002_adfm_202401732
crossref_primary_10_1021_acssuschemeng_0c06530
crossref_primary_10_1002_adfm_202301447
crossref_primary_10_1007_s40964_025_00981_1
crossref_primary_10_1016_j_coco_2022_101131
crossref_primary_10_1016_j_matt_2023_12_002
crossref_primary_10_1038_s41586_023_06732_y
crossref_primary_10_1016_j_susmat_2025_e01346
crossref_primary_10_1021_acsapm_4c01511
crossref_primary_10_1002_adfm_202418721
crossref_primary_10_1002_adma_202302066
crossref_primary_10_1021_acs_chemrev_2c00005
crossref_primary_10_1002_adfm_202314353
crossref_primary_10_1038_s41467_023_44481_8
crossref_primary_10_1021_acsnano_0c08713
crossref_primary_10_1016_j_foodchem_2024_140858
crossref_primary_10_1002_adhm_202200290
crossref_primary_10_1021_acsbiomaterials_0c01507
crossref_primary_10_1002_adma_202312263
crossref_primary_10_1002_adhm_202303167
crossref_primary_10_1021_acsbiomaterials_0c00892
crossref_primary_10_1039_D2TB00046F
crossref_primary_10_1088_1748_605X_ac7f15
crossref_primary_10_1016_j_bpj_2022_04_029
crossref_primary_10_1016_j_compscitech_2021_109248
crossref_primary_10_1016_j_biomaterials_2024_122878
crossref_primary_10_1016_j_matt_2023_12_027
crossref_primary_10_1002_adfm_202213644
crossref_primary_10_1016_j_xcrp_2022_100793
crossref_primary_10_3390_ijms22115892
crossref_primary_10_1016_j_jclepro_2024_144389
crossref_primary_10_1021_acsomega_3c00189
crossref_primary_10_1016_j_eng_2024_12_030
crossref_primary_10_1016_j_jmbbm_2024_106748
crossref_primary_10_1038_s41467_023_41084_1
crossref_primary_10_1016_j_ijbiomac_2024_138806
crossref_primary_10_1126_sciadv_abf3804
crossref_primary_10_1021_acs_jpcb_3c05681
crossref_primary_10_1002_app_52416
crossref_primary_10_1039_D2TB01328B
crossref_primary_10_1002_adma_202105174
crossref_primary_10_1021_acs_nanolett_4c03276
crossref_primary_10_1002_adma_202201914
crossref_primary_10_1002_agt2_446
crossref_primary_10_1002_ange_202310879
crossref_primary_10_1039_D2MA00953F
crossref_primary_10_1002_adfm_202104737
crossref_primary_10_1002_anbr_202300040
crossref_primary_10_1039_D3TA02644B
crossref_primary_10_1021_acssuschemeng_4c01055
crossref_primary_10_1021_acsnano_2c07971
crossref_primary_10_1021_acs_nanolett_2c02530
crossref_primary_10_1073_pnas_2115523119
crossref_primary_10_1016_j_mattod_2022_08_011
crossref_primary_10_1126_sciadv_abk0543
crossref_primary_10_1021_acs_nanolett_4c05181
crossref_primary_10_1007_s10570_023_05605_x
crossref_primary_10_3390_mi14091786
Cites_doi 10.1038/nmat2547
10.1021/acs.langmuir.7b04127
10.1038/s41586-018-0671-4
10.1038/190440a0
10.1006/jsbi.1999.4082
10.1039/C7TB00014F
10.1002/(SICI)1097-0282(2000)57:1<19::AID-BIP4>3.0.CO;2-Z
10.1021/jo00422a034
10.1016/S0006-3495(03)74629-3
10.1039/b604537p
10.1039/C2CS35294J
10.1002/jrs.1672
10.1039/c3ra41337c
10.1529/biophysj.103.036749
10.1016/j.proeng.2014.11.124
10.1088/1367-2630/15/6/065004
10.1038/srep26393
10.1038/s41467-019-13312-0
10.1039/C9PY00502A
10.1103/PhysRevE.73.011917
10.1039/C7PY01525A
10.1088/0964-1726/21/5/053001
10.1073/pnas.1802692115
10.1016/j.conbuildmat.2014.04.032
10.1557/S0883769400066707
10.1039/C8TB02462F
10.1021/acs.biomac.7b01687
10.1002/adhm.201700694
10.1021/la303924e
10.1038/s41551-018-0321-z
10.1021/ja00867a010
10.1002/adma.201305506
10.1007/s40684-015-0024-9
10.1038/s41578-018-0078-8
10.1039/b615954k
10.1002/jps.20253
10.1038/nmat4956
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
The Author(s), under exclusive licence to Springer Nature Limited 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7SR
7X7
7XB
88E
88I
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
L6V
M0S
M1P
M2P
M7S
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
DOI 10.1038/s41563-020-0789-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Engineered Materials Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Engineering Database
Materials Science Collection (ProQuest)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Engineered Materials Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1476-4660
EndPage 249
ExternalDocumentID 32868876
10_1038_s41563_020_0789_2
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Harvard University | Materials Research Science and Engineering Center, Harvard University (Materials Research Science and Engineering Center)
  grantid: DMR-1420570
  funderid: https://doi.org/10.13039/100013111
GroupedDBID ---
0R~
29M
39C
3V.
4.4
5BI
70F
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFS
ACGOD
ACIWK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
CCPQU
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
KC.
L6V
M1P
M2P
M7S
MK~
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RIG
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7XB
8BQ
8FD
8FK
JG9
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c430t-a895cf140df0a9583d41eebb669ddca774c00e348c745460e097d2d45b98f4713
IEDL.DBID 7X7
ISSN 1476-1122
1476-4660
IngestDate Fri Jul 11 05:24:30 EDT 2025
Sat Aug 23 13:31:30 EDT 2025
Wed Feb 19 02:28:04 EST 2025
Tue Jul 01 02:14:01 EDT 2025
Thu Apr 24 22:58:33 EDT 2025
Fri Feb 21 02:40:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-a895cf140df0a9583d41eebb669ddca774c00e348c745460e097d2d45b98f4713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7218-2072
0000-0002-5968-7535
PMID 32868876
PQID 2481414144
PQPubID 27576
PageCount 8
ParticipantIDs proquest_miscellaneous_2439623010
proquest_journals_2481414144
pubmed_primary_32868876
crossref_citationtrail_10_1038_s41563_020_0789_2
crossref_primary_10_1038_s41563_020_0789_2
springer_journals_10_1038_s41563_020_0789_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature materials
PublicationTitleAbbrev Nat. Mater
PublicationTitleAlternate Nat Mater
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Whitesides, Lilburn, Szajewski (CR23) 1977; 42
Luo, Scott, Anderson (CR28) 2005; 94
Fischer, Harrington, Fratzl (CR9) 2013; 15
Busson, Briki, Doucet (CR31) 1999; 125
Guo (CR20) 2019; 7
Falk, James (CR12) 2006; 73
Khoury, Popa (CR19) 2019; 10
Montgomery (CR5) 2017; 16
Miserez, Wasko, Carpenter, Waite (CR13) 2009; 8
Schwierz, Horinek, Netz (CR25) 2013; 29
Cladera (CR1) 2014; 63
Hu, Meng, Li, Ibekwe (CR3) 2012; 21
Peterson, Dobrynin, Becker (CR7) 2017; 6
Alavijeh, Shokrollahi, Barzin (CR17) 2017; 5
Miserez, Guerette (CR11) 2013; 42
Kreplak, Doucet, Dumas, Briki (CR30) 2004; 87
Fudge, Gardner, Forsyth, Riekel, Gosline (CR10) 2003; 85
Gu, Mather (CR18) 2013; 3
Davidson, Penisson, Constantin, Gabriel (CR24) 2018; 15
Latorre (CR14) 2018; 563
Tian (CR16) 2019; 10
Popescu, Höcker (CR21) 2007; 36
Adams, Eby (CR34) 1987; 12
Kolesky (CR37) 2014; 26
Opie (CR4) 2018; 2
Mandelkern, Halpin, Diorio, Posner (CR22) 1962; 84
Bello, Bello (CR26) 1961; 190
Rintoul, Carter, Stewart, Fredericks (CR29) 2000; 57
L. Santo, Quadrini, Accettura, Villadei (CR2) 2014; 88
Abitbol, Kam, Levi-Kalisman, Gray, Shoseyov (CR27) 2018; 34
Kim (CR32) 2015; 2
Xiao, Hu (CR15) 2016; 6
Liu, Qin, Mather (CR6) 2007; 17
Pang (CR36) 2018; 9
Lendlein, Gould (CR8) 2019; 4
Guo (CR35) 2018; 19
Paquin, Colomban (CR33) 2007; 38
X Xiao (789_CR15) 2016; 6
NL Opie (789_CR4) 2018; 2
FD Fischer (789_CR9) 2013; 15
L Rintoul (789_CR29) 2000; 57
Y Guo (789_CR20) 2019; 7
DB Kolesky (789_CR37) 2014; 26
WW Adams (789_CR34) 1987; 12
T Abitbol (789_CR27) 2018; 34
J Hu (789_CR3) 2012; 21
J-H Kim (789_CR32) 2015; 2
A Miserez (789_CR13) 2009; 8
J Bello (789_CR26) 1961; 190
GI Peterson (789_CR7) 2017; 6
RZ Alavijeh (789_CR17) 2017; 5
B Pang (789_CR36) 2018; 9
R Paquin (789_CR33) 2007; 38
T Tian (789_CR16) 2019; 10
L Mandelkern (789_CR22) 1962; 84
B Busson (789_CR31) 1999; 125
A Lendlein (789_CR8) 2019; 4
E Latorre (789_CR14) 2018; 563
X Gu (789_CR18) 2013; 3
DS Fudge (789_CR10) 2003; 85
C Guo (789_CR35) 2018; 19
W Falk (789_CR12) 2006; 73
GM Whitesides (789_CR23) 1977; 42
LR Khoury (789_CR19) 2019; 10
P Davidson (789_CR24) 2018; 15
M Montgomery (789_CR5) 2017; 16
C Popescu (789_CR21) 2007; 36
L Kreplak (789_CR30) 2004; 87
A Cladera (789_CR1) 2014; 63
L L. Santo (789_CR2) 2014; 88
N Schwierz (789_CR25) 2013; 29
A Miserez (789_CR11) 2013; 42
D Luo (789_CR28) 2005; 94
C Liu (789_CR6) 2007; 17
References_xml – volume: 8
  start-page: 910
  year: 2009
  end-page: 916
  ident: CR13
  article-title: Non-entropic and reversible long-range deformation of an encapsulating bioelastomer
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2547
– volume: 34
  start-page: 3925
  year: 2018
  end-page: 3933
  ident: CR27
  article-title: Surface charge influence on the phase separation and viscosity of cellulose nanocrystals
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b04127
– volume: 563
  start-page: 203
  year: 2018
  end-page: 208
  ident: CR14
  article-title: Active superelasticity in three-dimensional epithelia of controlled shape
  publication-title: Nature
  doi: 10.1038/s41586-018-0671-4
– volume: 190
  start-page: 440
  year: 1961
  end-page: 441
  ident: CR26
  article-title: Interaction of model peptides with water and lithium bromide
  publication-title: Nature
  doi: 10.1038/190440a0
– volume: 125
  start-page: 1
  year: 1999
  end-page: 10
  ident: CR31
  article-title: Side-chains configurations in coiled coils revealed by the 5.15-Å meridional reflection on hard α-keratin X-ray diffraction patterns
  publication-title: J. Struct. Biol.
  doi: 10.1006/jsbi.1999.4082
– volume: 5
  start-page: 2302
  year: 2017
  end-page: 2314
  ident: CR17
  article-title: A thermally and water activated shape memory gelatin physical hydrogel, with a gel point above the physiological temperature, for biomedical applications
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C7TB00014F
– volume: 57
  start-page: 19
  year: 2000
  end-page: 28
  ident: CR29
  article-title: Keratin orientation in wool and feathers by polarized Raman spectroscopy
  publication-title: Biopolymers
  doi: 10.1002/(SICI)1097-0282(2000)57:1<19::AID-BIP4>3.0.CO;2-Z
– volume: 42
  start-page: 332
  year: 1977
  end-page: 338
  ident: CR23
  article-title: Rates of thiol-disulfide interchange reactions between mono- and dithiols and Ellman’s reagent
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00422a034
– volume: 85
  start-page: 2015
  year: 2003
  end-page: 2027
  ident: CR10
  article-title: The mechanical properties of hydrated intermediate filaments: insights from hagfish slime threads
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(03)74629-3
– volume: 36
  start-page: 1282
  year: 2007
  end-page: 1291
  ident: CR21
  article-title: Hair—the most sophisticated biological composite material
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b604537p
– volume: 42
  start-page: 1973
  year: 2013
  end-page: 1995
  ident: CR11
  article-title: Phase transition-induced elasticity of α-helical bioelastomeric fibres and networks
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35294J
– volume: 38
  start-page: 504
  year: 2007
  end-page: 514
  ident: CR33
  article-title: Nanomechanics of single keratin fibres: a Raman study of the α-helix→β-sheet transition and the effect of water
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.1672
– volume: 3
  start-page: 15783
  year: 2013
  end-page: 15791
  ident: CR18
  article-title: Water-triggered shape memory of multiblock thermoplastic polyurethanes (TPUs)
  publication-title: RSC Adv.
  doi: 10.1039/c3ra41337c
– volume: 87
  start-page: 640
  year: 2004
  end-page: 647
  ident: CR30
  article-title: New aspects of the α-helix to β-sheet transition in stretched hard α-keratin fibers
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.103.036749
– volume: 88
  start-page: 42
  year: 2014
  end-page: 47
  ident: CR2
  article-title: Shape memory composites for self-deployable structures in aerospace applications
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2014.11.124
– volume: 15
  start-page: 065004
  year: 2013
  ident: CR9
  article-title: Thermodynamic modeling of a phase transformation in protein filaments with mechanical function
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/15/6/065004
– volume: 6
  year: 2016
  ident: CR15
  article-title: Animal hairs as water-stimulated shape memory materials: mechanism and structural networks in molecular assemblies
  publication-title: Sci. Rep.
  doi: 10.1038/srep26393
– volume: 10
  year: 2019
  ident: CR19
  article-title: Chemical unfolding of protein domains induces shape change in programmed protein hydrogels
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13312-0
– volume: 10
  start-page: 3488
  year: 2019
  end-page: 3496
  ident: CR16
  article-title: A body temperature and water-induced shape memory hydrogel with excellent mechanical properties
  publication-title: Polym. Chem.
  doi: 10.1039/C9PY00502A
– volume: 73
  start-page: 011917
  year: 2006
  ident: CR12
  article-title: Elasticity theory for self-assembled protein lattices with application to the martensitic phase transition in bacteriophage T4 tail sheath
  publication-title: Phy. Rev. E
  doi: 10.1103/PhysRevE.73.011917
– volume: 9
  start-page: 869
  year: 2018
  end-page: 877
  ident: CR36
  article-title: Design and preparation of a new polyurea-polysiloxane–polyether copolymer with a block soft segment prepared by utilizing aza-Michael addition reaction
  publication-title: Polym. Chem.
  doi: 10.1039/C7PY01525A
– volume: 21
  start-page: 053001
  year: 2012
  ident: CR3
  article-title: A review of stimuli-responsive polymers for smart textile applications
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/21/5/053001
– volume: 15
  start-page: 6662
  year: 2018
  end-page: 6667
  ident: CR24
  article-title: Isotropic, nematic, and lamellar phases in colloidal suspensions of nanosheets
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1802692115
– volume: 63
  start-page: 281
  year: 2014
  end-page: 293
  ident: CR1
  article-title: Iron-based shape memory alloys for civil engineering structures: an overview
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2014.04.032
– volume: 12
  start-page: 22
  year: 1987
  end-page: 26
  ident: CR34
  article-title: High-performance polymer fibers
  publication-title: MRS Bull.
  doi: 10.1557/S0883769400066707
– volume: 7
  start-page: 123
  year: 2019
  end-page: 132
  ident: CR20
  article-title: A biodegradable functional water-responsive shape memory polymer for biomedical applications
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB02462F
– volume: 19
  start-page: 906
  year: 2018
  end-page: 917
  ident: CR35
  article-title: Structural comparison of various silkworm silks: an insight into the structure–property relationship
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b01687
– volume: 6
  start-page: 1700694
  year: 2017
  ident: CR7
  article-title: Biodegradable shape memory polymers in medicine
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201700694
– volume: 29
  start-page: 2602
  year: 2013
  end-page: 2614
  ident: CR25
  article-title: Anionic and cationic Hofmeister effects on hydrophobic and hydrophilic surfaces
  publication-title: Langmuir
  doi: 10.1021/la303924e
– volume: 2
  start-page: 907
  year: 2018
  end-page: 914
  ident: CR4
  article-title: Focal stimulation of the sheep motor cortex with a chronically implanted minimally invasive electrode array mounted on an endovascular stent
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0321-z
– volume: 84
  start-page: 1383
  year: 1962
  end-page: 1391
  ident: CR22
  article-title: Dimensional changes in fibrous macromolecules: the system α-keratin-lithium bromide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00867a010
– volume: 26
  start-page: 3124
  year: 2014
  end-page: 3130
  ident: CR37
  article-title: 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305506
– volume: 2
  start-page: 197
  year: 2015
  end-page: 213
  ident: CR32
  article-title: Review of nanocellulose for sustainable future materials
  publication-title: Int. J. of Precis. Eng. and Manuf.–Green Tech.
  doi: 10.1007/s40684-015-0024-9
– volume: 4
  start-page: 116
  year: 2019
  end-page: 133
  ident: CR8
  article-title: Reprogrammable recovery and actuation behaviour of shape-memory polymers
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-018-0078-8
– volume: 17
  start-page: 1543
  year: 2007
  end-page: 1558
  ident: CR6
  article-title: Review of progress in shape-memory polymers
  publication-title: J. Mater. Chem.
  doi: 10.1039/b615954k
– volume: 94
  start-page: 304
  year: 2005
  end-page: 316
  ident: CR28
  article-title: Kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.20253
– volume: 16
  start-page: 1038
  year: 2017
  end-page: 1046
  ident: CR5
  article-title: Flexible shape-memory scaffold for minimally invasive delivery of functional tissues
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4956
– volume: 15
  start-page: 6662
  year: 2018
  ident: 789_CR24
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1802692115
– volume: 2
  start-page: 197
  year: 2015
  ident: 789_CR32
  publication-title: Int. J. of Precis. Eng. and Manuf.–Green Tech.
  doi: 10.1007/s40684-015-0024-9
– volume: 29
  start-page: 2602
  year: 2013
  ident: 789_CR25
  publication-title: Langmuir
  doi: 10.1021/la303924e
– volume: 9
  start-page: 869
  year: 2018
  ident: 789_CR36
  publication-title: Polym. Chem.
  doi: 10.1039/C7PY01525A
– volume: 190
  start-page: 440
  year: 1961
  ident: 789_CR26
  publication-title: Nature
  doi: 10.1038/190440a0
– volume: 94
  start-page: 304
  year: 2005
  ident: 789_CR28
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.20253
– volume: 19
  start-page: 906
  year: 2018
  ident: 789_CR35
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b01687
– volume: 4
  start-page: 116
  year: 2019
  ident: 789_CR8
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-018-0078-8
– volume: 84
  start-page: 1383
  year: 1962
  ident: 789_CR22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00867a010
– volume: 36
  start-page: 1282
  year: 2007
  ident: 789_CR21
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b604537p
– volume: 63
  start-page: 281
  year: 2014
  ident: 789_CR1
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2014.04.032
– volume: 12
  start-page: 22
  year: 1987
  ident: 789_CR34
  publication-title: MRS Bull.
  doi: 10.1557/S0883769400066707
– volume: 38
  start-page: 504
  year: 2007
  ident: 789_CR33
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.1672
– volume: 21
  start-page: 053001
  year: 2012
  ident: 789_CR3
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/21/5/053001
– volume: 88
  start-page: 42
  year: 2014
  ident: 789_CR2
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2014.11.124
– volume: 17
  start-page: 1543
  year: 2007
  ident: 789_CR6
  publication-title: J. Mater. Chem.
  doi: 10.1039/b615954k
– volume: 16
  start-page: 1038
  year: 2017
  ident: 789_CR5
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4956
– volume: 15
  start-page: 065004
  year: 2013
  ident: 789_CR9
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/15/6/065004
– volume: 26
  start-page: 3124
  year: 2014
  ident: 789_CR37
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305506
– volume: 42
  start-page: 332
  year: 1977
  ident: 789_CR23
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00422a034
– volume: 57
  start-page: 19
  year: 2000
  ident: 789_CR29
  publication-title: Biopolymers
  doi: 10.1002/(SICI)1097-0282(2000)57:1<19::AID-BIP4>3.0.CO;2-Z
– volume: 563
  start-page: 203
  year: 2018
  ident: 789_CR14
  publication-title: Nature
  doi: 10.1038/s41586-018-0671-4
– volume: 42
  start-page: 1973
  year: 2013
  ident: 789_CR11
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35294J
– volume: 73
  start-page: 011917
  year: 2006
  ident: 789_CR12
  publication-title: Phy. Rev. E
  doi: 10.1103/PhysRevE.73.011917
– volume: 2
  start-page: 907
  year: 2018
  ident: 789_CR4
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0321-z
– volume: 87
  start-page: 640
  year: 2004
  ident: 789_CR30
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.103.036749
– volume: 10
  year: 2019
  ident: 789_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13312-0
– volume: 34
  start-page: 3925
  year: 2018
  ident: 789_CR27
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b04127
– volume: 8
  start-page: 910
  year: 2009
  ident: 789_CR13
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2547
– volume: 10
  start-page: 3488
  year: 2019
  ident: 789_CR16
  publication-title: Polym. Chem.
  doi: 10.1039/C9PY00502A
– volume: 6
  start-page: 1700694
  year: 2017
  ident: 789_CR7
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201700694
– volume: 3
  start-page: 15783
  year: 2013
  ident: 789_CR18
  publication-title: RSC Adv.
  doi: 10.1039/c3ra41337c
– volume: 125
  start-page: 1
  year: 1999
  ident: 789_CR31
  publication-title: J. Struct. Biol.
  doi: 10.1006/jsbi.1999.4082
– volume: 6
  year: 2016
  ident: 789_CR15
  publication-title: Sci. Rep.
  doi: 10.1038/srep26393
– volume: 7
  start-page: 123
  year: 2019
  ident: 789_CR20
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB02462F
– volume: 5
  start-page: 2302
  year: 2017
  ident: 789_CR17
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C7TB00014F
– volume: 85
  start-page: 2015
  year: 2003
  ident: 789_CR10
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(03)74629-3
SSID ssj0021556
Score 2.6429012
Snippet Shape-memory polymeric materials lack long-range molecular order that enables more controlled and efficient actuation mechanisms. Here, we develop a...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 242
SubjectTerms 639/301/54
639/638
Actuation
Biocompatibility
Bioengineering
Biomaterials
Biomimetics
Chemistry and Materials Science
Condensed Matter Physics
Fabrication
Fibers
Keratin
Keratins - chemistry
Materials Science
Nanotechnology
Optical and Electronic Materials
Printing, Three-Dimensional
Reconfiguration
Scaffolds
Self-assembly
Shape memory
Shear stress
Smart materials
Smart Materials - chemistry
Spinning (materials)
Structural hierarchy
Textiles
Three dimensional printing
Tissue Engineering
Tissue Scaffolds - chemistry
Title A bioinspired and hierarchically structured shape-memory material
URI https://link.springer.com/article/10.1038/s41563-020-0789-2
https://www.ncbi.nlm.nih.gov/pubmed/32868876
https://www.proquest.com/docview/2481414144
https://www.proquest.com/docview/2439623010
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS-QwEB9OfdEHuQ_1eudJBZ-UYDdJ0-Tp2D3ckwMXORT2reSrKGh3j9UH_3tn-rHrIUqhfUjahpl08pv8pjMAR6owLgoq7qJjwaSyA-Zs4ViOBlkMXFWZporCxUSdX8s_03zabbgturDK3iY2hjrMPO2Rn3KpB5IO-XP-j1HVKGJXuxIaa7BBqctoVhfTlcOFa2X7d1GhGOIK3rOaQp8uyHEhBjNjlHCd8f_XpVdg8xVR2qw_44-w3QHHdNhq-hN8iPVn2HqRTvALDIepu53d1kSex5DaOqRU6brhClAVd09pmy32kVoXN3Ye2T0F2j6lCFubmbgD1-Ozq1_nrCuRwLwU2QOz2uS-QicpVJk1uRZBDmJ0TikTgreI7XyWRSG1L2QuVRYzUwQeZO6MrnBdEruwXs_q-BVSXViOcNAHJysZLLfor0Zvohc-IIgJCWS9gErf5Q-nMhZ3ZcNjC122Mi1RpiXJtOQJHC9vmbfJM97rvN9Lvey-o0W50noCh8tm_AKI1rB1nD1SH2EQxKFjmcBeq63l2wTXCs2oSuCkV9_q4W8O5dv7Q_kOm5wiW5rY7X1YR9XFHwhNHtxBM__wrMe_D2BjOB6NJngdnU0u_z4D7XTh1w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeUHmVlAJBggvIatZ2HPuAqhWwbOnj1Eq9Gb8iKrXZrbYV2j_Fb2Qm2WxBFb1VOdpxrJnxzDeZ8QzAO1UZnwQ1d9GpYlK5AfOu8qxEhSwGvq5N20Xh4FCNj-X3k_JkBX73d2EorbLXia2ijpNA_8i3udQDSY_cmV4w6hpF0dW-hUYnFntp_gtdttmn3S_I3_ecj74efR6zRVcBFqQoLpnTpgw1-hWxLpwptYhykJL3SpkYg0M4FIoiCalDJUupilSYKvIoS290japc4Lr34L4UaMnpZvro29LBQ9vc3WaqFEMcw_soqtDbM3KUKGJaMCrwzvi_dvAGuL0RmG3t3WgdHi2Aaj7sJOsxrKTmCaz9Vb7wKQyHuT-dnDYUrE8xd03MqbN2G5tA1p_N86467RWNzn66aWLnlNg7zxEmt5L_DI7vhHjPYbWZNOkF5LpyHOFniF7WMjru0D9OwaQgQkTQFDMoegLZsKhXTm0zzmwbNxfadjS1SFNLNLU8gw_LV6ZdsY7bJm_1VLeLczuz11KWwdvlMJ44CqO4Jk2uaI4wCBrRkc1go-PW8muCa4VqW2XwsWff9eL_3crm7Vt5Aw_GRwf7dn_3cO8lPOSUVdPmjW_BKrIxvUJYdOlft7KYw4-7Fv4_QPoaRg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB_qFUQfpH6vrbqCvijh9pJsNnmQctoerdWjiIW-rflaLNS9k2uR-9f61zmzH1el2Leyj8lmw2Qy-c3-JjMAr1VhXBRU3EXHgkllR8zZwrEcDbIYuaoyTRWFL1O1dyQ_HefHa3DR34WhsMreJjaGOsw8_SMfcqlHkh45rLqwiMOdyfb8F6MKUsS09uU0WhU5iMvf6L4t3u_v4Fq_4Xyy--3jHusqDDAvRXbGrDa5r9DHCFVmTa5FkKMYnVPKhOAtQiOfZVFI7QuZS5XFzBSBB5k7oys06wLHvQXrBXlFA1j_sDs9_Lpy9_Ckbu82FYohquE9pyr0cEFuE_GnGaN074z_eypegbpXaNrm9JtswL0OtqbjVs_uw1qsH8Ddv5IZPoTxOHUns5OaqPsYUluHlOpsN0wFKsLpMm1z1Z5T6-KHnUf2k8J8lymC5mYfPIKjGxHfYxjUszo-hVQXliMY9cHJSgbLLXrL0ZvohQ8IoUICWS-g0nfZy6mIxmnZsOhCl61MS5RpSTIteQJvV6_M29Qd13Xe6qVedrt4UV7qXAKvVs24_4hUsXWcnVMfYRBColubwJN2tVZfE1wrNOIqgXf98l0O_t-pPLt-Ki_hNip--Xl_erAJdziF2DRB5FswwFWMzxEjnbkXnTKm8P2m9f8PVFgf2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+bioinspired+and+hierarchically+structured+shape-memory+material&rft.jtitle=Nature+materials&rft.au=Cera%2C+Luca&rft.au=Gonzalez%2C+Grant+M&rft.au=Liu%2C+Qihan&rft.au=Choi%2C+Suji&rft.date=2021-02-01&rft.issn=1476-1122&rft.volume=20&rft.issue=2&rft.spage=242&rft_id=info:doi/10.1038%2Fs41563-020-0789-2&rft_id=info%3Apmid%2F32868876&rft.externalDocID=32868876
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon