Development of a Video Tampering Dataset for Forensic Investigation

Highlights • Due to the limited resources in the statistics of available digital video datasets, a new dataset of video tampering is proposed. • Three different techniques of videos tampering are considered in this work, one of these techniques (Splicing) is never been used in the existing dataset....

Full description

Saved in:
Bibliographic Details
Published inForensic science international Vol. 266; pp. 565 - 572
Main Authors Ismael Al-Sanjary, Omar, Ahmed, Ahmed Abdullah, Sulong, Ghazali
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.09.2016
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights • Due to the limited resources in the statistics of available digital video datasets, a new dataset of video tampering is proposed. • Three different techniques of videos tampering are considered in this work, one of these techniques (Splicing) is never been used in the existing dataset. • Designed and developed a ground truth of this dataset, which is aimed to provide complete information for each type of video tampering. • This work provides a great opportunity to the researchers in video tampering area to evaluate their methods
AbstractList Highlights • Due to the limited resources in the statistics of available digital video datasets, a new dataset of video tampering is proposed. • Three different techniques of videos tampering are considered in this work, one of these techniques (Splicing) is never been used in the existing dataset. • Designed and developed a ground truth of this dataset, which is aimed to provide complete information for each type of video tampering. • This work provides a great opportunity to the researchers in video tampering area to evaluate their methods
⿢Due to the limited resources in digital video datasets, a new dataset of video tampering is proposed.⿢Three different techniques of videos tampering are considered in this work, one of these techniques (splicing) is never been used in the existing dataset.⿢This work provides a great opportunity to the researchers in video tampering area to evaluate their methods by designing and developing a ground truth Forgery is an act of modifying a document, product, image or video, among other media. Video tampering detection research requires an inclusive database of video modification. This paper aims to discuss a comprehensive proposal to create a dataset composed of modified videos for forensic investigation, in order to standardize existing techniques for detecting video tampering. The primary purpose of developing and designing this new video library is for usage in video forensics, which can be consciously associated with reliable verification using dynamic and static camera recognition. To the best of the author⿿s knowledge, there exists no similar library among the research community. Videos were sourced from YouTube and by exploring social networking sites extensively by observing posted videos and rating their feedback. The video tampering dataset (VTD) comprises a total of 33 videos, divided among three categories in video tampering: (1) copy⿿move, (2) splicing, and (3) swapping-frames. Compared to existing datasets, this is a higher number of tampered videos, and with longer durations. The duration of every video is 16s, with a 1280ÿ720 resolution, and a frame rate of 30 frames per second. Moreover, all videos possess the same formatting quality (720pHD.avi). Both temporal and spatial video features were considered carefully during selection of the videos, and there exists complete information related to the doctored regions in every modified video in the VTD dataset. This database has been made publically available for research on splicing, Swapping frames, and copy⿿move tampering, and, as such, various video tampering detection issues with ground truth. The database has been utilised by many international researchers and groups of researchers.
Forgery is an act of modifying a document, product, image or video, among other media. Video tampering detection research requires an inclusive database of video modification. This paper aims to discuss a comprehensive proposal to create a dataset composed of modified videos for forensic investigation, in order to standardize existing techniques for detecting video tampering. The primary purpose of developing and designing this new video library is for usage in video forensics, which can be consciously associated with reliable verification using dynamic and static camera recognition. To the best of the author's knowledge, there exists no similar library among the research community. Videos were sourced from YouTube and by exploring social networking sites extensively by observing posted videos and rating their feedback. The video tampering dataset (VTD) comprises a total of 33 videos, divided among three categories in video tampering: (1) copy-move, (2) splicing, and (3) swapping-frames. Compared to existing datasets, this is a higher number of tampered videos, and with longer durations. The duration of every video is 16s, with a 1280x720 resolution, and a frame rate of 30 frames per second. Moreover, all videos possess the same formatting quality (720pHD.avi). Both temporal and spatial video features were considered carefully during selection of the videos, and there exists complete information related to the doctored regions in every modified video in the VTD dataset. This database has been made publically available for research on splicing, Swapping frames, and copy-move tampering, and, as such, various video tampering detection issues with ground truth. The database has been utilised by many international researchers and groups of researchers.
Forgery is an act of modifying a document, product, image or video, among other media. Video tampering detection research requires an inclusive database of video modification. This paper aims to discuss a comprehensive proposal to create a dataset composed of modified videos for forensic investigation, in order to standardize existing techniques for detecting video tampering. The primary purpose of developing and designing this new video library is for usage in video forensics, which can be consciously associated with reliable verification using dynamic and static camera recognition. To the best of the author's knowledge, there exists no similar library among the research community. Videos were sourced from YouTube and by exploring social networking sites extensively by observing posted videos and rating their feedback. The video tampering dataset (VTD) comprises a total of 33 videos, divided among three categories in video tampering: (1) copy-move, (2) splicing, and (3) swapping-frames. Compared to existing datasets, this is a higher number of tampered videos, and with longer durations. The duration of every video is 16s, with a 1280×720 resolution, and a frame rate of 30 frames per second. Moreover, all videos possess the same formatting quality (720p(HD).avi). Both temporal and spatial video features were considered carefully during selection of the videos, and there exists complete information related to the doctored regions in every modified video in the VTD dataset. This database has been made publically available for research on splicing, Swapping frames, and copy-move tampering, and, as such, various video tampering detection issues with ground truth. The database has been utilised by many international researchers and groups of researchers.
Forgery is an act of modifying a document, product, image or video, among other media. Video tampering detection research requires an inclusive database of video modification. This paper aims to discuss a comprehensive proposal to create a dataset composed of modified videos for forensic investigation, in order to standardize existing techniques for detecting video tampering. The primary purpose of developing and designing this new video library is for usage in video forensics, which can be consciously associated with reliable verification using dynamic and static camera recognition. To the best of the author's knowledge, there exists no similar library among the research community. Videos were sourced from YouTube and by exploring social networking sites extensively by observing posted videos and rating their feedback. The video tampering dataset (VTD) comprises a total of 33 videos, divided among three categories in video tampering: (1) copy-move, (2) splicing, and (3) swapping-frames. Compared to existing datasets, this is a higher number of tampered videos, and with longer durations. The duration of every video is 16s, with a 1280720 resolution, and a frame rate of 30 frames per second. Moreover, all videos possess the same formatting quality (720pHD.avi). Both temporal and spatial video features were considered carefully during selection of the videos, and there exists complete information related to the doctored regions in every modified video in the VTD dataset. This database has been made publically available for research on splicing, Swapping frames, and copy-move tampering, and, as such, various video tampering detection issues with ground truth. The database has been utilised by many international researchers and groups of researchers.
Forgery is an act of modifying a document, product, image or video, among other media. Video tampering detection research requires an inclusive database of video modification. This paper aims to discuss a comprehensive proposal to create a dataset composed of modified videos for forensic investigation, in order to standardize existing techniques for detecting video tampering. The primary purpose of developing and designing this new video library is for usage in video forensics, which can be consciously associated with reliable verification using dynamic and static camera recognition. To the best of the author⿿s knowledge, there exists no similar library among the research community. Videos were sourced from YouTube and by exploring social networking sites extensively by observing posted videos and rating their feedback. The video tampering dataset (VTD) comprises a total of 33 videos, divided among three categories in video tampering: (1) copy⿿move, (2) splicing, and (3) swapping-frames. Compared to existing datasets, this is a higher number of tampered videos, and with longer durations. The duration of every video is 16s, with a 1280ÿ720 resolution, and a frame rate of 30 frames per second. Moreover, all videos possess the same formatting quality (720pHD.avi). Both temporal and spatial video features were considered carefully during selection of the videos, and there exists complete information related to the doctored regions in every modified video in the VTD dataset. This database has been made publically available for research on splicing, Swapping frames, and copy⿿move tampering, and, as such, various video tampering detection issues with ground truth. The database has been utilised by many international researchers and groups of researchers.
Author Sulong, Ghazali
Ismael Al-Sanjary, Omar
Ahmed, Ahmed Abdullah
Author_xml – sequence: 1
  fullname: Ismael Al-Sanjary, Omar
– sequence: 2
  fullname: Ahmed, Ahmed Abdullah
– sequence: 3
  fullname: Sulong, Ghazali
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27574113$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9P3DAQxa0KVBbar9BG6oVLUv93cqmElkKRkDgAvVqOPUHeJvbWzq7Et6-XpVTi0FY-2Br95j3NPB-jgxADIPSR4IZgIj-vmiGmbL0Pc0NLocGqwYS9QQvSKlpL2rIDtMBMdTVWrD1CxzmvMMZCUPkWHVElFCeELdDyHLYwxvUEYa7iUJnqu3cQqzszrSH58FCdm9lkmKtiWF3EBCF7W12FLeTZP5jZx_AOHQ5mzPD--T5B9xdf75bf6uuby6vl2XVtOcNzbWhxtE5y04vBWA5i6Hqm6NA51zPGoTxh4GaQDlvieiFLuVW2NT03naPsBJ3uddcp_twUfz35bGEcTYC4yZq0TEgseVnEv1HScUY62hX00yt0FTcplEE0xYII2ilG_0aRlhLBSDmFUnvKpphzgkGvk59MetQE611weqVfgtO74DRWGj91fnjW3_QTuJe-30kV4GwPQNnw1kPSRQWCBecT2Fm76P_D5MsrDTv64K0Zf8Aj5D8T6Uw11re7_7P7PkQyzIiS7BdPLsMa
CitedBy_id crossref_primary_10_1007_s11277_024_10996_6
crossref_primary_10_1007_s11042_021_11126_1
crossref_primary_10_3233_JCS_200105
crossref_primary_10_3390_infrastructures6040054
crossref_primary_10_1007_s42044_023_00165_6
crossref_primary_10_1016_j_eswa_2024_123756
crossref_primary_10_1016_j_compeleceng_2020_106929
crossref_primary_10_1155_2023_6661192
crossref_primary_10_3390_math10020168
crossref_primary_10_1117_1_JEI_33_3_033027
crossref_primary_10_1007_s11042_022_13100_x
crossref_primary_10_1007_s00530_021_00873_8
crossref_primary_10_3390_sym12111811
crossref_primary_10_1109_JIOT_2022_3165365
crossref_primary_10_1007_s11277_021_08964_5
crossref_primary_10_1007_s11042_023_15609_1
crossref_primary_10_1007_s00521_019_04272_z
crossref_primary_10_1007_s11042_020_09974_4
crossref_primary_10_1007_s11042_022_14303_y
crossref_primary_10_1109_ACCESS_2020_2980951
crossref_primary_10_1007_s11042_022_13001_z
crossref_primary_10_1109_ACCESS_2019_2933871
crossref_primary_10_1007_s11042_020_09205_w
crossref_primary_10_1109_TPAMI_2021_3093446
crossref_primary_10_1007_s11042_023_14870_8
crossref_primary_10_1186_s13635_017_0067_2
crossref_primary_10_1016_j_diin_2019_03_006
crossref_primary_10_1007_s00530_020_00749_3
crossref_primary_10_1016_j_fsidi_2020_301024
crossref_primary_10_1016_j_fsidi_2021_301264
crossref_primary_10_1007_s00530_023_01123_9
crossref_primary_10_1109_ACCESS_2023_3267743
Cites_doi 10.1109/AVSS.2010.87
10.1142/S0218001412500176
10.1080/15567281.2010.531500
10.1109/BWCCA.2012.47
10.1109/MMSP.2012.6343421
10.1145/1597817.1597826
10.1109/ChinaSIP.2013.6625374
10.1007/s11042-014-1915-4
10.1007/s11042-006-0074-7
10.4236/jcc.2014.24008
10.1145/1631081.1631093
10.1109/CISP.2013.6745286
ContentType Journal Article
Copyright 2016 Elsevier Ireland Ltd
Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Copyright Elsevier Limited Sep 1, 2016
Copyright Elsevier Limited Sep 2016
Copyright_xml – notice: 2016 Elsevier Ireland Ltd
– notice: Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
– notice: Copyright Elsevier Limited Sep 1, 2016
– notice: Copyright Elsevier Limited Sep 2016
DBID NPM
AAYXX
CITATION
3V.
7QP
7RV
7U7
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
KB0
LK8
M0S
M1P
M2O
M7P
MBDVC
NAPCQ
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
7U5
8FD
L7M
DOI 10.1016/j.forsciint.2016.07.013
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Nursing & Allied Health Database (ProQuest)
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle PubMed
CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Research Library
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList

Research Library Prep
PubMed
Technology Research Database
Research Library Prep
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1872-6283
EndPage 572
ExternalDocumentID 4188206151
10_1016_j_forsciint_2016_07_013
27574113
S0379073816303176
1_s2_0_S0379073816303176
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.4L
.FO
.GJ
.~1
04C
0R~
186
1B1
1P~
1RT
1~.
1~5
29H
3O-
3V.
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
7RV
7X7
88E
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXKI
AAXUO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABMMH
ABMZM
ABOCM
ABUDA
ABUWG
ABXDB
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ADBBV
ADECG
ADEZE
ADFRT
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEVXI
AFCTW
AFFNX
AFJKZ
AFKRA
AFKWA
AFRAH
AFRHN
AFTJW
AFXIZ
AFZHZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHMBA
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
AJSZI
AJUYK
AKRWK
ALCLG
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKEYQ
BKOJK
BLXMC
BMSDO
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBD
EBS
EFJIC
EIHBH
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HDY
HMK
HMO
HVGLF
HZ~
I-F
IAO
IEA
IHE
ILT
IOF
ITC
J1W
KOM
LK8
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OG0
OGGZJ
OS0
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
PROAC
PSQYO
Q38
R2-
RIG
RNS
ROL
RPZ
SAE
SCB
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSB
SSH
SSK
SSO
SSP
SSU
SSZ
T5K
TAE
TN5
ULE
WH7
WOW
WUQ
Z5R
ZGI
~02
~G-
AAIAV
AATCM
ABLVK
ABYKQ
AJBFU
AKYCK
DOVZS
EFLBG
HMCUK
LCYCR
UKHRP
NPM
AAYXX
ACRPL
CITATION
7QP
7U7
7XB
8FK
C1K
K9.
MBDVC
PQEST
PQUKI
PRINS
Q9U
7X8
7U5
8FD
L7M
ID FETCH-LOGICAL-c430t-a2113cd64ab5fac4e5f9b372f9ddb334e72fef4af6d0c1db56db387c8ab4a9d23
IEDL.DBID AIKHN
ISSN 0379-0738
IngestDate Mon Nov 04 12:57:56 EST 2024
Wed Dec 04 07:17:41 EST 2024
Thu Oct 10 22:12:42 EDT 2024
Thu Oct 10 22:18:04 EDT 2024
Fri Dec 06 00:29:42 EST 2024
Sat Sep 28 08:45:59 EDT 2024
Fri Feb 23 02:16:39 EST 2024
Tue Oct 15 22:53:14 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords video investigation
reference
forgery
copy-move
VTD
splicing
swapping-frame
Forgery
Splicing
Swapping-frame
Video investigation
Copy⿿move
Copy–move
Language English
License Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-a2113cd64ab5fac4e5f9b372f9ddb334e72fef4af6d0c1db56db387c8ab4a9d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3036-5495
PMID 27574113
PQID 1821531313
PQPubID 1226354
PageCount 8
ParticipantIDs proquest_miscellaneous_1835606401
proquest_miscellaneous_1819431929
proquest_journals_2051529732
proquest_journals_1821531313
crossref_primary_10_1016_j_forsciint_2016_07_013
pubmed_primary_27574113
elsevier_sciencedirect_doi_10_1016_j_forsciint_2016_07_013
elsevier_clinicalkeyesjournals_1_s2_0_S0379073816303176
PublicationCentury 2000
PublicationDate 2016-09-01
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
– name: Amsterdam
PublicationTitle Forensic science international
PublicationTitleAlternate Forensic Sci Int
PublicationYear 2016
Publisher Elsevier B.V
Elsevier Limited
Publisher_xml – name: Elsevier B.V
– name: Elsevier Limited
References Gloe, Böhme (bib0030) 2010; 3
Subramanyam, Emmanuel (bib0090) 2012
Dezfoli, Dehghantanha, Mahmoud, Sani, Daryabar (bib0010) 2013; 2
Chowdhury, Makaroff (bib0005) 2012
Al-Sanjary, Sulong (bib0020) 2015; 74
Chao, Jiang, Sun (bib0055) 2012
Liao, Huang (bib0070) 2013
Upadhyay, Singh (bib0095) 2011
Atrey, Yan, Kankanhalli (bib0080) 2007; 34
Thakur (bib0015) 2013
Wang, Li, Zhang, Ma (bib0065) 2014; 2
Schaefer, Stich (bib0040) 2003
Conte, Foggia, Percannella, Vento (bib0075) 2010
Qadir, Yahaya, Ho (bib0050) 2012
Lin, Chang (bib0105) 2012; 26
Upadhyay, Singh (bib0085) 2012; 9
Zhang, Su, Zhang (bib0100) 2009
Tralic, Zupancic, Grgic, Grgic (bib0045) 2013
Wang, Farid (bib0025) 2009
Dong, Wang, Tan (bib0035) 2013
Su, Huang, Yang (bib0060) 2015; 74
Upadhyay (10.1016/j.forsciint.2016.07.013_bib0095) 2011
Liao (10.1016/j.forsciint.2016.07.013_bib0070) 2013
Lin (10.1016/j.forsciint.2016.07.013_bib0105) 2012; 26
Thakur (10.1016/j.forsciint.2016.07.013_bib0015) 2013
Chowdhury (10.1016/j.forsciint.2016.07.013_bib0005) 2012
Atrey (10.1016/j.forsciint.2016.07.013_bib0080) 2007; 34
Chao (10.1016/j.forsciint.2016.07.013_bib0055) 2012
Wang (10.1016/j.forsciint.2016.07.013_bib0065) 2014; 2
Dezfoli (10.1016/j.forsciint.2016.07.013_bib0010) 2013; 2
Wang (10.1016/j.forsciint.2016.07.013_bib0025) 2009
Conte (10.1016/j.forsciint.2016.07.013_bib0075) 2010
Subramanyam (10.1016/j.forsciint.2016.07.013_bib0090) 2012
Upadhyay (10.1016/j.forsciint.2016.07.013_bib0085) 2012; 9
Su (10.1016/j.forsciint.2016.07.013_bib0060) 2015; 74
Zhang (10.1016/j.forsciint.2016.07.013_bib0100) 2009
Dong (10.1016/j.forsciint.2016.07.013_bib0035) 2013
Al-Sanjary (10.1016/j.forsciint.2016.07.013_bib0020) 2015; 74
Gloe (10.1016/j.forsciint.2016.07.013_bib0030) 2010; 3
Tralic (10.1016/j.forsciint.2016.07.013_bib0045) 2013
Qadir (10.1016/j.forsciint.2016.07.013_bib0050) 2012
Schaefer (10.1016/j.forsciint.2016.07.013_bib0040) 2003
References_xml – start-page: 39
  year: 2009
  end-page: 48
  ident: bib0025
  article-title: Exposing digital forgeries in video by detecting double quantization
  publication-title: Proceedings of the 11th ACM Workshop on Multimedia and Security
  contributor:
    fullname: Farid
– start-page: 1
  year: 2012
  end-page: 6
  ident: bib0050
  article-title: Surrey university library for forensic analysis (SULFA) of video content
  publication-title: IET Conference on Image Processing (IPR 2012)
  contributor:
    fullname: Ho
– volume: 74
  start-page: 6641
  year: 2015
  end-page: 6656
  ident: bib0060
  article-title: A video forgery detection algorithm based on compressive sensing
  publication-title: Multimed. Tools Appl.
  contributor:
    fullname: Yang
– volume: 26
  start-page: 1250017
  year: 2012
  ident: bib0105
  article-title: Detection of frame duplication forgery in videos based on spatial and temporal analysis
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  contributor:
    fullname: Chang
– start-page: 472
  year: 2003
  end-page: 480
  ident: bib0040
  article-title: UCID: an uncompressed color image database
  publication-title: Electronic Imaging 2004
  contributor:
    fullname: Stich
– start-page: 89
  year: 2012
  end-page: 94
  ident: bib0090
  article-title: Video forgery detection using HOG features and compression properties
  publication-title: 2012 IEEE 14th International Workshop on Multimedia Signal Processing (MMSP)
  contributor:
    fullname: Emmanuel
– start-page: 1
  year: 2011
  end-page: 6
  ident: bib0095
  article-title: Learning based video authentication using statistical local information
  publication-title: 2011 International Conference on Image Information Processing (ICIIP)
  contributor:
    fullname: Singh
– start-page: 422
  year: 2013
  end-page: 426
  ident: bib0035
  article-title: Casia image tampering detection evaluation database
  publication-title: 2013 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)
  contributor:
    fullname: Tan
– volume: 9
  year: 2012
  ident: bib0085
  article-title: Video authentication: issues and challenges
  publication-title: Int. J. Comput. Sci. Issues
  contributor:
    fullname: Singh
– year: 2013
  ident: bib0015
  article-title: Tampered Videos: Detection and Quality Assessment
  contributor:
    fullname: Thakur
– volume: 34
  start-page: 107
  year: 2007
  end-page: 135
  ident: bib0080
  article-title: A scalable signature scheme for video authentication
  publication-title: Multimed. Tools Appl.
  contributor:
    fullname: Kankanhalli
– start-page: 49
  year: 2013
  end-page: 54
  ident: bib0045
  article-title: CoMoFoD⿿new database for copy⿿move forgery detection
  publication-title: ELMAR, 2013 55th International Symposium
  contributor:
    fullname: Grgic
– volume: 74
  start-page: 207
  year: 2015
  end-page: 220
  ident: bib0020
  article-title: Detection of video forgery: a review of literature
  publication-title: J. Theor. Appl. Inf. Technol.
  contributor:
    fullname: Sulong
– start-page: 267
  year: 2012
  end-page: 281
  ident: bib0055
  article-title: A novel video inter-frame forgery model detection scheme based on optical flow consistency
  publication-title: International Workshop on Digital Watermarking
  contributor:
    fullname: Sun
– volume: 2
  start-page: 48
  year: 2013
  end-page: 76
  ident: bib0010
  article-title: Digital forensic trends and future
  publication-title: Int. J. Cybersecur. Digit. Forensics
  contributor:
    fullname: Daryabar
– start-page: 864
  year: 2013
  end-page: 868
  ident: bib0070
  article-title: Video copy⿿move forgery detection and localization based on Tamura texture features
  publication-title: 2013 6th International Congress on Image and Signal Processing (CISP)
  contributor:
    fullname: Huang
– volume: 3
  start-page: 150
  year: 2010
  end-page: 159
  ident: bib0030
  article-title: The dresden image database for benchmarking digital image forensics
  publication-title: J. Digit. Forensic Pract.
  contributor:
    fullname: Böhme
– volume: 2
  start-page: 51
  year: 2014
  ident: bib0065
  article-title: Video inter-frame forgery identification based on consistency of correlation coefficients of gray values
  publication-title: J. Comput. Commun.
  contributor:
    fullname: Ma
– start-page: 49
  year: 2009
  end-page: 54
  ident: bib0100
  article-title: Exposing digital video forgery by ghost shadow artifact
  publication-title: Proceedings of the First ACM Workshop on Multimedia in Forensics
  contributor:
    fullname: Zhang
– start-page: 119
  year: 2010
  end-page: 126
  ident: bib0075
  article-title: Performance evaluation of a people tracking system on PETS2009 database
  publication-title: 2010 Seventh IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)
  contributor:
    fullname: Vento
– start-page: 244
  year: 2012
  end-page: 251
  ident: bib0005
  article-title: Characterizing videos and users in YouTube: a survey
  publication-title: 2012 Seventh International Conference on Broadband, Wireless Computing, Communication and Applications (BWCCA)
  contributor:
    fullname: Makaroff
– start-page: 119
  year: 2010
  ident: 10.1016/j.forsciint.2016.07.013_bib0075
  article-title: Performance evaluation of a people tracking system on PETS2009 database
  publication-title: 2010 Seventh IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)
  doi: 10.1109/AVSS.2010.87
  contributor:
    fullname: Conte
– volume: 26
  start-page: 1250017
  year: 2012
  ident: 10.1016/j.forsciint.2016.07.013_bib0105
  article-title: Detection of frame duplication forgery in videos based on spatial and temporal analysis
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001412500176
  contributor:
    fullname: Lin
– volume: 3
  start-page: 150
  year: 2010
  ident: 10.1016/j.forsciint.2016.07.013_bib0030
  article-title: The dresden image database for benchmarking digital image forensics
  publication-title: J. Digit. Forensic Pract.
  doi: 10.1080/15567281.2010.531500
  contributor:
    fullname: Gloe
– start-page: 244
  year: 2012
  ident: 10.1016/j.forsciint.2016.07.013_bib0005
  article-title: Characterizing videos and users in YouTube: a survey
  publication-title: 2012 Seventh International Conference on Broadband, Wireless Computing, Communication and Applications (BWCCA)
  doi: 10.1109/BWCCA.2012.47
  contributor:
    fullname: Chowdhury
– start-page: 89
  year: 2012
  ident: 10.1016/j.forsciint.2016.07.013_bib0090
  article-title: Video forgery detection using HOG features and compression properties
  publication-title: 2012 IEEE 14th International Workshop on Multimedia Signal Processing (MMSP)
  doi: 10.1109/MMSP.2012.6343421
  contributor:
    fullname: Subramanyam
– start-page: 1
  year: 2012
  ident: 10.1016/j.forsciint.2016.07.013_bib0050
  article-title: Surrey university library for forensic analysis (SULFA) of video content
  publication-title: IET Conference on Image Processing (IPR 2012)
  contributor:
    fullname: Qadir
– start-page: 39
  year: 2009
  ident: 10.1016/j.forsciint.2016.07.013_bib0025
  article-title: Exposing digital forgeries in video by detecting double quantization
  publication-title: Proceedings of the 11th ACM Workshop on Multimedia and Security
  doi: 10.1145/1597817.1597826
  contributor:
    fullname: Wang
– volume: 9
  year: 2012
  ident: 10.1016/j.forsciint.2016.07.013_bib0085
  article-title: Video authentication: issues and challenges
  publication-title: Int. J. Comput. Sci. Issues
  contributor:
    fullname: Upadhyay
– start-page: 1
  year: 2011
  ident: 10.1016/j.forsciint.2016.07.013_bib0095
  article-title: Learning based video authentication using statistical local information
  publication-title: 2011 International Conference on Image Information Processing (ICIIP)
  contributor:
    fullname: Upadhyay
– start-page: 422
  year: 2013
  ident: 10.1016/j.forsciint.2016.07.013_bib0035
  article-title: Casia image tampering detection evaluation database
  publication-title: 2013 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)
  doi: 10.1109/ChinaSIP.2013.6625374
  contributor:
    fullname: Dong
– start-page: 472
  year: 2003
  ident: 10.1016/j.forsciint.2016.07.013_bib0040
  article-title: UCID: an uncompressed color image database
  contributor:
    fullname: Schaefer
– start-page: 49
  year: 2013
  ident: 10.1016/j.forsciint.2016.07.013_bib0045
  article-title: CoMoFoD⿿new database for copy⿿move forgery detection
  publication-title: ELMAR, 2013 55th International Symposium
  contributor:
    fullname: Tralic
– volume: 74
  start-page: 6641
  year: 2015
  ident: 10.1016/j.forsciint.2016.07.013_bib0060
  article-title: A video forgery detection algorithm based on compressive sensing
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-014-1915-4
  contributor:
    fullname: Su
– volume: 34
  start-page: 107
  year: 2007
  ident: 10.1016/j.forsciint.2016.07.013_bib0080
  article-title: A scalable signature scheme for video authentication
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-006-0074-7
  contributor:
    fullname: Atrey
– volume: 2
  start-page: 51
  year: 2014
  ident: 10.1016/j.forsciint.2016.07.013_bib0065
  article-title: Video inter-frame forgery identification based on consistency of correlation coefficients of gray values
  publication-title: J. Comput. Commun.
  doi: 10.4236/jcc.2014.24008
  contributor:
    fullname: Wang
– volume: 2
  start-page: 48
  year: 2013
  ident: 10.1016/j.forsciint.2016.07.013_bib0010
  article-title: Digital forensic trends and future
  publication-title: Int. J. Cybersecur. Digit. Forensics
  contributor:
    fullname: Dezfoli
– start-page: 49
  year: 2009
  ident: 10.1016/j.forsciint.2016.07.013_bib0100
  article-title: Exposing digital video forgery by ghost shadow artifact
  publication-title: Proceedings of the First ACM Workshop on Multimedia in Forensics
  doi: 10.1145/1631081.1631093
  contributor:
    fullname: Zhang
– start-page: 864
  year: 2013
  ident: 10.1016/j.forsciint.2016.07.013_bib0070
  article-title: Video copy⿿move forgery detection and localization based on Tamura texture features
  publication-title: 2013 6th International Congress on Image and Signal Processing (CISP)
  doi: 10.1109/CISP.2013.6745286
  contributor:
    fullname: Liao
– volume: 74
  start-page: 207
  year: 2015
  ident: 10.1016/j.forsciint.2016.07.013_bib0020
  article-title: Detection of video forgery: a review of literature
  publication-title: J. Theor. Appl. Inf. Technol.
  contributor:
    fullname: Al-Sanjary
– start-page: 267
  year: 2012
  ident: 10.1016/j.forsciint.2016.07.013_bib0055
  article-title: A novel video inter-frame forgery model detection scheme based on optical flow consistency
  publication-title: International Workshop on Digital Watermarking
  contributor:
    fullname: Chao
– year: 2013
  ident: 10.1016/j.forsciint.2016.07.013_bib0015
  contributor:
    fullname: Thakur
SSID ssj0005526
Score 2.4487267
Snippet Highlights • Due to the limited resources in the statistics of available digital video datasets, a new dataset of video tampering is proposed. • Three...
⿢Due to the limited resources in digital video datasets, a new dataset of video tampering is proposed.⿢Three different techniques of videos tampering are...
Forgery is an act of modifying a document, product, image or video, among other media. Video tampering detection research requires an inclusive database of...
SourceID proquest
crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 565
SubjectTerms Algorithms
Categories
Computer forensics
Copy⿿move
Data processing
Datasets
Digital cameras
Digital video
Feedback
Forensic engineering
Forensic science
Forensic sciences
Forgery
Frames
Frames (data processing)
Frames per second
Ground truth
Image databases
Image detection
Libraries
Pathology
Proposals
Researchers
Social networks
Social organization
Splicing
Studies
Swapping-frame
Video data
Video investigation
VTD
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9wwEB7a9FIoJX27TYoKvRqst91LKSEhFNpLG9ibGD0MKdTe1M7_78iP3fawycFgLNmSRyPNJ-mbEcBHa0NjRYxlCl6XyqAqvRW6bGONqGueKswOzt--m8sr9XWjN8uC27DQKtcxcRqoYx_yGjlN0sny5oOWxOftTZlPjcq7q8sRGg_hEacMWcPtxu4pHlqY_zhdhAPJsFx3mUTJ56idXB6ySIcQ52R5Lo7h6QIZ2Ze5jZ_Bg9Q9hyfzehub3YhewNk_7B_WtwxZdrDr2Yi_t1O0QZa5oEMaGdUuX5m4Htj1PsxG372Eq4vzn2eX5XJAQhmUrMYSafYmQzQKvW4xqKTbxksr2iZGL6VKdJtaha2JVeDRa0OPaxtq9AqbKOQrOOr6Lr0BhhU2cloPMp6mXAI9SuuTkEok2wZfQLUKyW3nOBhuJYj9cju5uixXV1lHci3ArsJ0q5snDUxpWHrJ4LgbhKvcj0pamqPnLUwyqNyaAj7t3lyAwGzgHY3z9xd7sjac25dUE7SRXB5I3itXAR92ydTR8u4Jdqm_zZ_gDaEtgpN35ZGEIA0JsIDXs87spCWsJvTG5du7K_AOHuefmWlsJ3A0_rlNp4R7Rv9-Uu6_OB0EJQ
  priority: 102
  providerName: ProQuest
Title Development of a Video Tampering Dataset for Forensic Investigation
URI https://www.clinicalkey.es/playcontent/1-s2.0-S0379073816303176
https://dx.doi.org/10.1016/j.forsciint.2016.07.013
https://www.ncbi.nlm.nih.gov/pubmed/27574113
https://www.proquest.com/docview/1821531313
https://www.proquest.com/docview/2051529732
https://search.proquest.com/docview/1819431929
https://search.proquest.com/docview/1835606401
Volume 266
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jj9MwFH6a5YKEEDuBYWQkrqHxFifchmpGBUSFgJF6s7xF6kgkFc1c57fPc520jFDhwCGbndjOs_382f6eDfBWKVcr5n0enJW5KI3IrWIyb3xljKxoKEw0cP4yL2eX4tNCLg5gOtrCRFrloPuTTt9o68FlMkhzslouJ98LrrBnFye-UA1TVR7CMTZHca72-Ozj59l8x_SQLE1Zqmivw6s7NC-Ehhj6so28SpoW8qR8XyO1D4RuGqOLh_BgQJHkLCX0ERyE9jHcT0NwJFkWPYHpb4Qg0jXEkGhz15He_FxtFiAkkR66Dj3B1MUjctkdWe5W3ujap3B5cf5jOsuHPRNyJ3jR5wY7dNz5UhgrG-NEkE1tuWJN7b3lXAS8DY0wTekLR72VJTpXylXGClN7xp_BUdu14QUQU5iab4aISou9MGas4coGxgULqnE2g2IUkl6lpTH0yBm70lu56ihXXSiNcs1AjcLUo-Un6qqwHirOWlO9ZrrQf2RuBu-3X94pHxpV_7-jPRkzTu9iqhDtcMr3eLO4-U3c2Itl8GbrjXUvTqiYNnTXMQhaIwBDhPm3dziCyhIFmMHzVGa20mJKIqCj_OX__NwruBefEu_tBI76X9fhNQKl3p7C4bsbime1UKdDpcDrh_P512-3Is8V8Q
link.rule.ids 314,780,784,4502,12056,21388,24116,27924,27925,31719,31720,33744,33745,43310,43805,45585,45679,73745,74302
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB7B9gASQuUdKGAkrpHid8IFQdVqgXaFoJV6s_yK1Eok2yb9_4w3yW572PYQKYqT2Bk7M5_Hn2cAPmvtK81CyKN3MhfKitxpJvM6lNbKksbCpg3Oxws1PxU_z-TZ6HDrRlrlpBNXijq0PvnIcZKOljclWmJfl5d5yhqVVlfHFBoPYSdFTpcz2Pl-sPj9Z0PykEzdYnUhEkTTct4kGiUd4nZSvs0mbcOcK9tzuAtPR9BIvg29_AwexOY5PBk8bmTYSPQC9m_wf0hbE0vSFruW9PbfchVvkCQ2aBd7gq1LR6Kue3K-CbTRNi_h9PDgZH-ejykSci940ecW52_cByWsk7X1Isq6clyzugrBcS4insZa2FqFwtPgpMLLpfaldcJWgfFXMGvaJr4BYgtb8ZVHSDmcdDHrLNcuMi5Y1LV3GRSTkMxyiIRhJorYhVnL1SS5mkIblGsGehKmmTZ6omqK3fifdIaajpnC_C24xll6WsREk0q1yuDL-skRCgwm3qCmv7_avanjzKamEsENp3xL8WZ4ZfBpXYy_Wlo_sU1sr9MraIV4CwHlXfdwxJAKBZjB62HMrKXFtET8RvnbuxvwER7NT46PzNGPxa938Dh92EBq24NZf3Ud3yMK6t2Hcaj_BwL3CHs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB7BVkJICJVXCbRgJK4R8StOuCBouyqvVQVU6s3yK1KRSLZN-v8Zb5xdethyiBTFSWyPx57P9jcegLdKuVox7_PgrMxFaURuFZN54ytjZEVDYaKD8_dFeXImvpzL88R_6hOtchoTVwO171xcI8dJOlreGGiJvWsSLeL0aP5heZnHCFJxpzWF07gLO2gVCzaDnU_Hi9MfG8KHZOUNhheiQjQzF22kVNLxDE_Kt9mnbfhzZYfmu_AwAUjycWzxR3AntI_hwbj6Rkanoidw-A8XiHQNMSS623VkMH-Wq7MHSWSG9mEgWLp4RRq7IxebQze69imczY9_HZ7kKVxC7rC-Q25wLsedL4WxsjFOBNnUlivW1N5bzkXA29AI05S-cNRbWeLjSrnKWGFqz_gzmLVdG54DMYWp-Wp1qLQ4AWPGGq5sYFywoBpnMygmIenleCqGnuhiv_VarjrKVRdKo1wzUJMw9eT0icNU6FOf6TXVPdOF_llwhTP2uKGJ5pWqMoP36y8TLBjNvcZR___Z7k8Npzc5VQh0OOVbkjeqlsGbdTJ2u7iXYtrQXcdf0BqxF4LL297hiCdLFGAGe6POrKXFlEQsR_mL2wvwGu6hlutvnxdfX8L9WK-R37YPs-HqOhwgIBrsq6TpfwE7rAyo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+video+tampering+dataset+for+forensic+investigation&rft.jtitle=Forensic+science+international&rft.au=Ismael+Al-Sanjary%2C+Omar&rft.au=Ahmed%2C+Ahmed+Abdullah&rft.au=Sulong%2C+Ghazali&rft.date=2016-09-01&rft.issn=0379-0738&rft.volume=266&rft.spage=565&rft.epage=572&rft_id=info:doi/10.1016%2Fj.forsciint.2016.07.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_forsciint_2016_07_013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0379-0738&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0379-0738&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0379-0738&client=summon