A flexible 12-channel transceiver array of transmission line resonators for 7 T MRI
[Display omitted] •A flexible transceiver array based on TLRs is fabricated for cardiac MRI at 7 T.•Array elements are decoupled using a decoupling-ring based technique.•Acceleration factors up to 3 in bent configuration are demonstrated.•The fabricated array is compatible with parallel transmission...
Saved in:
Published in | Journal of magnetic resonance (1997) Vol. 296; pp. 47 - 59 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.11.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•A flexible transceiver array based on TLRs is fabricated for cardiac MRI at 7 T.•Array elements are decoupled using a decoupling-ring based technique.•Acceleration factors up to 3 in bent configuration are demonstrated.•The fabricated array is compatible with parallel transmission techniques.•The array enables geometrical conformity to bodies within a large range of size.
A flexible transceiver array based on transmission line resonators (TLRs) combining the advantages of coil arrays with the possibility of form-fitting targeting cardiac MRI at 7 T is presented. The design contains 12 elements which are fabricated on a flexible substrate with rigid PCBs attached on the center of each element to place the interface components, i.e. transmit/receive (T/R) switch, power splitter, pre-amplifier and capacitive tuning/matching circuitry. The mutual coupling between elements is cancelled using a decoupling ring-based technique. The performance of the developed array is evaluated by 3D electromagnetic simulations, bench tests, and MR measurements using phantoms. Efficient inter-element decoupling is demonstrated in flat configuration on a box-shaped phantom (Sij < −19 dB), and bent on a human torso phantom (Sij < −16 dB). Acceleration factors up to 3 can be employed in bent configuration with reasonable g-factors (<1.7) in an ROI at the position of the heart. The array enables geometrical conformity to bodies within a large range of size and shape and is compatible with parallel imaging and parallel transmission techniques. |
---|---|
AbstractList | A flexible transceiver array based on transmission line resonators (TLRs) combining the advantages of coil arrays with the possibility of form-fitting targeting cardiac MRI at 7 T is presented. The design contains 12 elements which are fabricated on a flexible substrate with rigid PCBs attached on the center of each element to place the interface components, i.e. transmit/receive (T/R) switch, power splitter, pre-amplifier and capacitive tuning/matching circuitry. The mutual coupling between elements is cancelled using a decoupling ring-based technique. The performance of the developed array is evaluated by 3D electromagnetic simulations, bench tests, and MR measurements using phantoms. Efficient inter-element decoupling is demonstrated in flat configuration on a box-shaped phantom (S
< -19 dB), and bent on a human torso phantom (S
< -16 dB). Acceleration factors up to 3 can be employed in bent configuration with reasonable g-factors (<1.7) in an ROI at the position of the heart. The array enables geometrical conformity to bodies within a large range of size and shape and is compatible with parallel imaging and parallel transmission techniques. [Display omitted] •A flexible transceiver array based on TLRs is fabricated for cardiac MRI at 7 T.•Array elements are decoupled using a decoupling-ring based technique.•Acceleration factors up to 3 in bent configuration are demonstrated.•The fabricated array is compatible with parallel transmission techniques.•The array enables geometrical conformity to bodies within a large range of size. A flexible transceiver array based on transmission line resonators (TLRs) combining the advantages of coil arrays with the possibility of form-fitting targeting cardiac MRI at 7 T is presented. The design contains 12 elements which are fabricated on a flexible substrate with rigid PCBs attached on the center of each element to place the interface components, i.e. transmit/receive (T/R) switch, power splitter, pre-amplifier and capacitive tuning/matching circuitry. The mutual coupling between elements is cancelled using a decoupling ring-based technique. The performance of the developed array is evaluated by 3D electromagnetic simulations, bench tests, and MR measurements using phantoms. Efficient inter-element decoupling is demonstrated in flat configuration on a box-shaped phantom (Sij < −19 dB), and bent on a human torso phantom (Sij < −16 dB). Acceleration factors up to 3 can be employed in bent configuration with reasonable g-factors (<1.7) in an ROI at the position of the heart. The array enables geometrical conformity to bodies within a large range of size and shape and is compatible with parallel imaging and parallel transmission techniques. A flexible transceiver array based on transmission line resonators (TLRs) combining the advantages of coil arrays with the possibility of form-fitting targeting cardiac MRI at 7 T is presented. The design contains 12 elements which are fabricated on a flexible substrate with rigid PCBs attached on the center of each element to place the interface components, i.e. transmit/receive (T/R) switch, power splitter, pre-amplifier and capacitive tuning/matching circuitry. The mutual coupling between elements is cancelled using a decoupling ring-based technique. The performance of the developed array is evaluated by 3D electromagnetic simulations, bench tests, and MR measurements using phantoms. Efficient inter-element decoupling is demonstrated in flat configuration on a box-shaped phantom (Sij < -19 dB), and bent on a human torso phantom (Sij < -16 dB). Acceleration factors up to 3 can be employed in bent configuration with reasonable g-factors (<1.7) in an ROI at the position of the heart. The array enables geometrical conformity to bodies within a large range of size and shape and is compatible with parallel imaging and parallel transmission techniques. A flexible transceiver array based on transmission line resonators (TLRs) combining the advantages of coil arrays with the possibility of form-fitting targeting cardiac MRI at 7 T is presented. The design contains 12 elements which are fabricated on a flexible substrate with rigid PCBs attached on the center of each element to place the interface components, i.e. transmit/receive (T/R) switch, power splitter, pre-amplifier and capacitive tuning/matching circuitry. The mutual coupling between elements is cancelled using a decoupling ring-based technique. The performance of the developed array is evaluated by 3D electromagnetic simulations, bench tests, and MR measurements using phantoms. Efficient inter-element decoupling is demonstrated in flat configuration on a box-shaped phantom (Sij < -19 dB), and bent on a human torso phantom (Sij < -16 dB). Acceleration factors up to 3 can be employed in bent configuration with reasonable g-factors (<1.7) in an ROI at the position of the heart. The array enables geometrical conformity to bodies within a large range of size and shape and is compatible with parallel imaging and parallel transmission techniques.A flexible transceiver array based on transmission line resonators (TLRs) combining the advantages of coil arrays with the possibility of form-fitting targeting cardiac MRI at 7 T is presented. The design contains 12 elements which are fabricated on a flexible substrate with rigid PCBs attached on the center of each element to place the interface components, i.e. transmit/receive (T/R) switch, power splitter, pre-amplifier and capacitive tuning/matching circuitry. The mutual coupling between elements is cancelled using a decoupling ring-based technique. The performance of the developed array is evaluated by 3D electromagnetic simulations, bench tests, and MR measurements using phantoms. Efficient inter-element decoupling is demonstrated in flat configuration on a box-shaped phantom (Sij < -19 dB), and bent on a human torso phantom (Sij < -16 dB). Acceleration factors up to 3 can be employed in bent configuration with reasonable g-factors (<1.7) in an ROI at the position of the heart. The array enables geometrical conformity to bodies within a large range of size and shape and is compatible with parallel imaging and parallel transmission techniques. |
Author | Hosseinnezhadian, Sajad Poirier-Quinot, Marie Sieg, Jürgen Pichler, Michael Darrasse, Luc Ginefri, Jean-Christophe Moser, Ewald Laistler, Elmar Goluch-Roat, Sigrun Vít, Martin Frass-Kriegl, Roberta |
Author_xml | – sequence: 1 givenname: Sajad surname: Hosseinnezhadian fullname: Hosseinnezhadian, Sajad organization: Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria – sequence: 2 givenname: Roberta surname: Frass-Kriegl fullname: Frass-Kriegl, Roberta organization: Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria – sequence: 3 givenname: Sigrun surname: Goluch-Roat fullname: Goluch-Roat, Sigrun organization: Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria – sequence: 4 givenname: Michael surname: Pichler fullname: Pichler, Michael organization: Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria – sequence: 5 givenname: Jürgen surname: Sieg fullname: Sieg, Jürgen organization: Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria – sequence: 6 givenname: Martin surname: Vít fullname: Vít, Martin organization: Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria – sequence: 7 givenname: Marie surname: Poirier-Quinot fullname: Poirier-Quinot, Marie organization: IR4M (Imagerie par Résonance Magnétique Médicale et Multi-Modalités), Bât 220, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France – sequence: 8 givenname: Luc surname: Darrasse fullname: Darrasse, Luc organization: IR4M (Imagerie par Résonance Magnétique Médicale et Multi-Modalités), Bât 220, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France – sequence: 9 givenname: Ewald surname: Moser fullname: Moser, Ewald organization: Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria – sequence: 10 givenname: Jean-Christophe surname: Ginefri fullname: Ginefri, Jean-Christophe organization: IR4M (Imagerie par Résonance Magnétique Médicale et Multi-Modalités), Bât 220, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France – sequence: 11 givenname: Elmar orcidid: 0000-0002-8344-8307 surname: Laistler fullname: Laistler, Elmar email: elmar.laistler@meduniwien.ac.at organization: Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30205313$$D View this record in MEDLINE/PubMed https://hal.science/hal-02416476$$DView record in HAL |
BookMark | eNp9kU1qHDEQhYWxiX-SA3gTtEwWPalSt_qHrAaTxIYJhmCvhVpdwhp6JEfqGexdbpQ75STRuO0ssjAUknh8r0DvnbJDHzwxdo6wQMD603qx3sSFAGwXkAfLA3aC0NUFtLI-fHpD0bTQHLPTlNYAiLKBN-y4BAGyxPKE3S65HenB9SNxFIW5097TyKeofTLkdhS5jlE_8mBnceNScsHz0XnikVLwegoxcRsib_78-n3Dv_-4esuOrB4TvXu-z9jt1y83F5fF6vrb1cVyVZiqhKno7NCgbG1nsallU-vW9HKoK0PQoxHDoCVCVuXQku46sFbKAcpKdAKxF6Y8Yx_nvXd6VPfRbXR8VEE7dblcqb0GosK6auodZvbDzN7H8HNLaVL5K4bGUXsK26QEguiwy2dG3z-j235Dw7_NL7FloJkBE0NKkawybtJTziVn5EaFoPYFqbXKBal9QQryPDnxP-fL8tc8n2cP5Sh3jqJKxpE3NLhIZlJDcK-4_wLyaqcm |
CitedBy_id | crossref_primary_10_1109_RBME_2023_3244132 crossref_primary_10_3390_ma17133325 crossref_primary_10_1016_j_mri_2024_02_007 crossref_primary_10_3389_fphy_2020_00080 crossref_primary_10_1002_jmri_27865 crossref_primary_10_3389_fphy_2020_00092 crossref_primary_10_1002_mrm_30274 crossref_primary_10_1109_ACCESS_2024_3416869 crossref_primary_10_3390_s24113390 crossref_primary_10_1002_mrm_29147 crossref_primary_10_1038_s41598_021_81833_0 crossref_primary_10_3390_s23177588 crossref_primary_10_1002_mrm_30428 crossref_primary_10_1093_psyrad_kkae013 crossref_primary_10_1109_JERM_2021_3136090 crossref_primary_10_1002_mrm_28307 crossref_primary_10_1109_TMI_2021_3051390 crossref_primary_10_1371_journal_pone_0255341 crossref_primary_10_1109_TIM_2025_3529573 crossref_primary_10_1038_s41598_021_95335_6 |
Cites_doi | 10.4329/wjr.v2.i1.37 10.1038/ncomms10839 10.1016/j.jmr.2017.09.015 10.1002/mrm.23240 10.1007/s10334-017-0665-5 10.1002/cmr.10047 10.1109/EMBC.2016.7592157 10.1002/mrm.1910060313 10.1002/mrm.21488 10.1002/mrm.21948 10.1002/jmri.21806 10.1002/mrm.22886 10.1002/jmri.23724 10.1002/mrm.25260 10.1063/1.1144573 10.1016/j.jmr.2009.06.014 10.1002/mrm.25596 10.1002/mrm.20870 10.1002/cmr.b.20185 10.1002/mrm.25493 10.1016/j.jmr.2009.06.005 10.1109/IMWS-BIO.2013.6756145 10.1002/mrm.24121 10.3389/fphy.2017.00033 10.1002/mrm.21895 10.1016/j.jmr.2016.10.008 10.1002/mrm.22574 10.1002/mrm.1910160203 10.1002/mrm.24778 10.1002/mrm.22423 10.1002/jmri.21463 10.1002/mrm.25339 10.1002/mrm.1156 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1016/j.biochi.2003.09.016 10.1002/jmri.22451 10.1002/mrm.24176 10.1002/1099-0534(2000)12:6<361::AID-CMR1>3.0.CO;2-L 10.1109/8.138836 10.1002/mrm.21598 10.1002/mrm.1910380414 10.1109/22.310584 10.1016/S0730-725X(01)00467-2 10.1016/j.mri.2010.03.026 10.1002/mrm.22066 10.1002/mrm.1910380424 10.1002/mrm.21728 10.1002/mrm.25840 10.1002/mrm.24903 10.1007/s00542-006-0277-x 10.1002/1099-0534(2000)12:4<173::AID-CMR1>3.0.CO;2-Q 10.1016/j.jmr.2014.04.001 10.1002/nbm.1794 10.1109/MMM.2010.936405 10.1016/0730-725X(90)90061-6 |
ContentType | Journal Article |
Copyright | 2018 Copyright © 2018. Published by Elsevier Inc. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2018 – notice: Copyright © 2018. Published by Elsevier Inc. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 1XC |
DOI | 10.1016/j.jmr.2018.08.013 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-0856 |
EndPage | 59 |
ExternalDocumentID | oai_HAL_hal_02416476v1 30205313 10_1016_j_jmr_2018_08_013 S1090780718302180 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABBQC ABFNM ABGSF ABJNI ABLJU ABLVK ABMAC ABMZM ABNEU ABUDA ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ADBBV ADECG ADEZE ADFGL ADMUD ADUVX AEBSH AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJRQY AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 D-I DM4 DOVZS DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q G8K GBLVA HVGLF HZ~ IHE J1W KOM LCYCR LG5 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SPC SPCBC SSH SSK SSQ SSU SSZ T5K UPT UQL XPP YQT ZA5 ZCG ZGI ZXP ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION NPM 7X8 EFKBS 1XC |
ID | FETCH-LOGICAL-c430t-9fd7158f9f176576a8cb5d64ce0b1c2dda5106a85d8ea990ff55d03429211b2c3 |
IEDL.DBID | .~1 |
ISSN | 1090-7807 1096-0856 |
IngestDate | Fri May 09 12:19:33 EDT 2025 Tue Aug 05 09:33:19 EDT 2025 Thu Apr 03 06:53:36 EDT 2025 Thu Apr 24 23:08:40 EDT 2025 Tue Jul 01 02:06:29 EDT 2025 Fri Feb 23 02:24:17 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | RF coil Mechanical flexibility Transmission line resonators Ultra high field MRI Transceiver coil |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2018. Published by Elsevier Inc. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c430t-9fd7158f9f176576a8cb5d64ce0b1c2dda5106a85d8ea990ff55d03429211b2c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8344-8307 0000-0003-3199-7432 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1090780718302180 |
PMID | 30205313 |
PQID | 2102919102 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | hal_primary_oai_HAL_hal_02416476v1 proquest_miscellaneous_2102919102 pubmed_primary_30205313 crossref_citationtrail_10_1016_j_jmr_2018_08_013 crossref_primary_10_1016_j_jmr_2018_08_013 elsevier_sciencedirect_doi_10_1016_j_jmr_2018_08_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of magnetic resonance (1997) |
PublicationTitleAlternate | J Magn Reson |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | T. Niendorf, Multi-channel transmit/receive RF coil arrays for cardiac MRI at ultrahigh fields: design, validation and clinical application, in: 2013 IEEE MTT-S Int. Microw. Work Ser. RF Wirel. Technol. Biomed. Healthc. Appl., IEEE, 2013, pp. 1–3. Jurgens, Taflove, Umashankar, Moore (b0280) 1992; 40 Graessl, Renz, Hezel, Dieringer, Winter, Oezerdem, Rieger, Kellman, Santoro, Lindel, Frauenrath, Pfeiffer, Niendorf (b0125) 2014; 72 Goense, Logothetis, Merkle (b0085) 2010; 28 Aussenhofer, Webb (b0130) 2014; 243 Ruytenberg, Webb (b0135) 2017; 284 Sodickson, Manning (b0040) 1997; 38 Kriegl, Ginefri, Poirier-Quinot, Darrasse, Goluch, Kuehne, Moser, Laistler (b0205) 2015; 73 Hardy, Cline, Giaquinto, Niendorf, Grant, Sodickson (b0235) 2006; 55 Nordmeyer-Massner, De Zanche, Pruessmann (b0090) 2012; 67 Tang, Hue, Ibrahim (b0055) 2011; 39B Gonord, Kan, Leroy-Willig (b0175) 1988; 6 Raaijmakers, Ipek, Klomp, Possanzini, Harvey, Lagendijk, van den Berg (b0155) 2011; 66 Versluis, Tsekos, Smith, Webb (b0110) 2009; 200 Hardy, Giaquinto, Piel, Rohling, Marinelli, Blezek, Fiveland, Darrow, Foo (b0075) 2008; 28 Kenneth C. Ong, Han Wen, A.S. Chesnick, Stefan Duewell, Farouc A. Jaffer, Robert S. Balaban, Radiofrequency Shielding of Surface Coils at 4.0 T, 1995, pp. 773–777. doi Vaughan, Garwood, Collins, Liu, DelaBarre, Adriany, Andersen, Merkle, Goebel, Smith, Ugurbil (b0020) 2001; 46 Remcom, XFdtd Reference Manual Release 7.2.2.2, REMCOM, Inc, 2011. Robitaille, Berliner (b0190) 2006 Corea, Flynn, Lechêne, Scott, Reed, Shin, Lustig, Arias (b0100) 2016; 7 Li, Kriegl, Hosseinnezhadian, Poirier-Quinot, Laistler, Darrasse, Ginefri (b0230) 2015 . A.J.E. Raaijmakers, H. El Aidi, M. Versluis, A. Webb, H.J. Lamb, P.R. Luijten, C.A.T. Van Den Berg, T. Leiner, Comprehensice coronary artery imaging at 7.0 T: proof of feasibility, in: Proc 22th Sci Meet Int Soc Magn Reson Med Milan, 3660. 7 (2014) 4923. Raaijmakers, Italiaander, Voogt, Luijten, Hoogduin, Klomp, Van Den Berg (b0160) 2016; 75 Clare, Alecci, Jezzard (b0045) 2001; 19 Thalhammer, Renz, Winter, Seifert, Hoffmann, Von Knobelsdorff (b0120) 2012; 36 Schmitt, Potthast, Sosnovik, Polimeni, Wiggins, Triantafyllou, Wald (b0240) 2008; 59 Frass-Kriegl, Laistler, Hosseinnezhadian, Schmid, Moser, Poirier-Quinot, Darrasse, Ginefri (b0210) 2016; 273 Wu, Zhang, Wang, Li, Pang, Lu, Xu, Majumdar, Nelson, Vigneron (b0095) 2012; 68 Adriany, van de Moortele, Ritter, Moeller, Auerbach, Akgün, Snyder, Vaughan, Uğurbil (b0080) 2008; 59 Zhang, Sodickson, Cloos (b0215) 2018 Robson, Grant, Madhuranthakam, Lattanzi, Sodickson, McKenzie (b0270) 2008; 60 J.V. Rispoli, M.D. Wilcox, S. By, S.M. Wright, M.P. McDougall, Effects of coplanar shielding for high field MRI, in: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, 2016–October 2016, 6250–6253. doi Darrasse, Ginefri (b0320) 2003; 85 Brink, Webb (b0170) 2014; 71 Moser (b0015) 2010; 2 Haase, Odoj, von Kienlin, Warnking, Fidler, Weisser, Nittka, Rommel, Lanz, Kalusche, Griswold (b0325) 2000; 12 Hoult, Tomanek (b0220) 2002; 15 Roemer, Edelstein, Hayes, Souza, Mueller (b0030) 1990; 16 van den Bergen, van den Berg, Klomp, Lagendijk (b0050) 2009; 30 Woytasik, Ginefri, Raynaud, Poirier-Quinot, Dufour-Gergam, Grandchamp, Girard, Robert, Gilles, Martincic, Darrasse (b0200) 2006; 13 Chung, Kim, Breton, Axel (b0260) 2010; 64 Pruessmann, Weiger, Scheidegger, Boesiger (b0035) 1999; 42 Kamon, Ttsuk, White (b0255) 1994; 42 Moser, Laistler, Schmitt, Kontaxis (b0005) 2017; 5 Hoult (b0025) 2000; 12 Kuehne, Goluch, Waxmann, Seifert, Ittermann, Moser, Laistler (b0265) 2015; 74 Kozlov, Turner (b0290) 2009; 200 Mispelter, Lupu, Briguet (b0195) 2006 Teeuwisse, Brink, Haines, Webb (b0165) 2012; 67 Kumar, Edelstein, Bottomley (b0250) 2009; 61 Breuer, Kannengiesser, Blaimer, Seiberlich, Jakob, Griswold (b0275) 2009; 62 Gilbert, Curtis, Gati, Klassen, Villemaire, Menon (b0330) 2010; 64 Malko, McClees, Braun, Davis, Hoffman (b0065) 1986; 7 J. Belliveau, K.M. Gilbert, M. Abou-khousa, R.S. Menon, Analysis of circumferential shielding as a method to decouple radiofrequency coils for high-field MRI, Concepts Magn. Reson. Part B Magnet. Reson. Eng. 43B (2013) 11–21. doi:10.1002/cmr.b. Goluch, Kuehne, Meyerspeer, Kriegl, Schmid, Fiedler, Herrmann, Mallow, Hong, Cho, Bernarding, Moser, Laistler (b0060) 2015; 73 Rousseau, Lecouffe, Marchandise (b0070) 1990; 8 Snyder, DelaBarre, Metzger, van de Moortele, Akgun, Ugurbil, Vaughan (b0105) 2009; 61 Dieringer, Renz, Lindel, Seifert, Frauenrath, Von Knobelsdorff-Brenkenhoff, Waiczies, Hoffmann, Rieger, Pfeiffer, Ittermann, Schulz-Menger, Niendorf (b0115) 2011; 33 Serfaty, Haziza, Darrasse, Kan (b0185) 1997; 38 Oezerdem, Winter, Graessl, Paul, Els, Weinberger, Rieger, Kuehne, Dieringer, Hezel, Voit, Frahm, Niendorf (b0145) 2016; 75 Moser, Stahlberg, Ladd, Trattnig (b0010) 2012; 25 T. Lanz, M.A. Griswold, Concentrically shielded surface coils – a new method for decoupling phased array elements, in: Proc. Intl. Soc. Mag. Reson. Med., 2006, p. 217. Gonord, Kan, Leroy-Willig, Wary (b0180) 1994; 65 McDougall, Wright, Rispoli, Carillo, Dimitrov, Cheshkov, Malloy (b0300) 2011; 19 G. Adriany, E. Yacoub, I. Tkac, P. Andersen, H. Merkle, J.T. Vaughan, K. Ugurbil, Shielded surface coils and halfvolume cavity resonators for imaging and spectroscopy applications at 7 Tesla, 8th Annu. Meet. ISMRM, vol. 8, 2000, p. 563. Steensma, Voogt, Leiner, Luijten, Habets, Klomp, van den Berg, Raaijmakers (b0150) 2018; 31 10.1016/j.jmr.2018.08.013_b0285 10.1016/j.jmr.2018.08.013_b0245 Clare (10.1016/j.jmr.2018.08.013_b0045) 2001; 19 Moser (10.1016/j.jmr.2018.08.013_b0010) 2012; 25 Hoult (10.1016/j.jmr.2018.08.013_b0220) 2002; 15 Serfaty (10.1016/j.jmr.2018.08.013_b0185) 1997; 38 Aussenhofer (10.1016/j.jmr.2018.08.013_b0130) 2014; 243 Schmitt (10.1016/j.jmr.2018.08.013_b0240) 2008; 59 Hardy (10.1016/j.jmr.2018.08.013_b0075) 2008; 28 Robson (10.1016/j.jmr.2018.08.013_b0270) 2008; 60 Roemer (10.1016/j.jmr.2018.08.013_b0030) 1990; 16 Graessl (10.1016/j.jmr.2018.08.013_b0125) 2014; 72 10.1016/j.jmr.2018.08.013_b0315 Robitaille (10.1016/j.jmr.2018.08.013_b0190) 2006 Thalhammer (10.1016/j.jmr.2018.08.013_b0120) 2012; 36 Moser (10.1016/j.jmr.2018.08.013_b0005) 2017; 5 Kozlov (10.1016/j.jmr.2018.08.013_b0290) 2009; 200 Raaijmakers (10.1016/j.jmr.2018.08.013_b0155) 2011; 66 Moser (10.1016/j.jmr.2018.08.013_b0015) 2010; 2 10.1016/j.jmr.2018.08.013_b0310 Gonord (10.1016/j.jmr.2018.08.013_b0180) 1994; 65 Zhang (10.1016/j.jmr.2018.08.013_b0215) 2018 Corea (10.1016/j.jmr.2018.08.013_b0100) 2016; 7 Rousseau (10.1016/j.jmr.2018.08.013_b0070) 1990; 8 Brink (10.1016/j.jmr.2018.08.013_b0170) 2014; 71 Oezerdem (10.1016/j.jmr.2018.08.013_b0145) 2016; 75 Gonord (10.1016/j.jmr.2018.08.013_b0175) 1988; 6 Kumar (10.1016/j.jmr.2018.08.013_b0250) 2009; 61 Goense (10.1016/j.jmr.2018.08.013_b0085) 2010; 28 10.1016/j.jmr.2018.08.013_b0305 Goluch (10.1016/j.jmr.2018.08.013_b0060) 2015; 73 Teeuwisse (10.1016/j.jmr.2018.08.013_b0165) 2012; 67 Mispelter (10.1016/j.jmr.2018.08.013_b0195) 2006 van den Bergen (10.1016/j.jmr.2018.08.013_b0050) 2009; 30 Darrasse (10.1016/j.jmr.2018.08.013_b0320) 2003; 85 Ruytenberg (10.1016/j.jmr.2018.08.013_b0135) 2017; 284 Breuer (10.1016/j.jmr.2018.08.013_b0275) 2009; 62 Vaughan (10.1016/j.jmr.2018.08.013_b0020) 2001; 46 Li (10.1016/j.jmr.2018.08.013_b0230) 2015 Sodickson (10.1016/j.jmr.2018.08.013_b0040) 1997; 38 10.1016/j.jmr.2018.08.013_b0225 Steensma (10.1016/j.jmr.2018.08.013_b0150) 2018; 31 Tang (10.1016/j.jmr.2018.08.013_b0055) 2011; 39B 10.1016/j.jmr.2018.08.013_b0140 Jurgens (10.1016/j.jmr.2018.08.013_b0280) 1992; 40 Adriany (10.1016/j.jmr.2018.08.013_b0080) 2008; 59 Wu (10.1016/j.jmr.2018.08.013_b0095) 2012; 68 Kriegl (10.1016/j.jmr.2018.08.013_b0205) 2015; 73 Frass-Kriegl (10.1016/j.jmr.2018.08.013_b0210) 2016; 273 Versluis (10.1016/j.jmr.2018.08.013_b0110) 2009; 200 Dieringer (10.1016/j.jmr.2018.08.013_b0115) 2011; 33 Hardy (10.1016/j.jmr.2018.08.013_b0235) 2006; 55 Woytasik (10.1016/j.jmr.2018.08.013_b0200) 2006; 13 Haase (10.1016/j.jmr.2018.08.013_b0325) 2000; 12 Kamon (10.1016/j.jmr.2018.08.013_b0255) 1994; 42 Malko (10.1016/j.jmr.2018.08.013_b0065) 1986; 7 Pruessmann (10.1016/j.jmr.2018.08.013_b0035) 1999; 42 Raaijmakers (10.1016/j.jmr.2018.08.013_b0160) 2016; 75 Gilbert (10.1016/j.jmr.2018.08.013_b0330) 2010; 64 10.1016/j.jmr.2018.08.013_b0295 Snyder (10.1016/j.jmr.2018.08.013_b0105) 2009; 61 Hoult (10.1016/j.jmr.2018.08.013_b0025) 2000; 12 Chung (10.1016/j.jmr.2018.08.013_b0260) 2010; 64 McDougall (10.1016/j.jmr.2018.08.013_b0300) 2011; 19 Nordmeyer-Massner (10.1016/j.jmr.2018.08.013_b0090) 2012; 67 Kuehne (10.1016/j.jmr.2018.08.013_b0265) 2015; 74 |
References_xml | – volume: 284 start-page: 94 year: 2017 end-page: 98 ident: b0135 article-title: Design of a dielectric resonator receive array at 7 Tesla using detunable ceramic resonators publication-title: J. Magn. Reson. – volume: 16 start-page: 192 year: 1990 end-page: 225 ident: b0030 article-title: The NMR phased array publication-title: Magn. Reson. Med. – volume: 28 start-page: 1183 year: 2010 end-page: 1191 ident: b0085 article-title: Flexible, phase-matched, linear receive arrays for high-field MRI in monkeys publication-title: Magn. Reson. Imag. – volume: 33 start-page: 736 year: 2011 end-page: 741 ident: b0115 article-title: Design and application of a four-channel transmit/receive surface coil for functional cardiac imaging at 7T publication-title: J. Magn. Reson. Imag. – reference: Kenneth C. Ong, Han Wen, A.S. Chesnick, Stefan Duewell, Farouc A. Jaffer, Robert S. Balaban, Radiofrequency Shielding of Surface Coils at 4.0 T, 1995, pp. 773–777. doi: – volume: 40 start-page: 357 year: 1992 end-page: 366 ident: b0280 article-title: Finite-difference time-domain modeling of curved surfaces (EM scattering) publication-title: IEEE Trans. Antennas Propag. – volume: 59 start-page: 590 year: 2008 end-page: 597 ident: b0080 article-title: A geometrically adjustable 16-channel transmit/receive transmission line array for improved RF efficiency and parallel imaging performance at 7 Tesla publication-title: Magn. Reson. Med. – volume: 64 start-page: 439 year: 2010 end-page: 446 ident: b0260 article-title: Rapid B1+ mapping using a preconditioning RF pulse with turboFLASH readout publication-title: Magn. Reson. Med. – volume: 61 start-page: 1201 year: 2009 end-page: 1209 ident: b0250 article-title: Noise figure limits for circular loop MR coils publication-title: Magn. Reson. Med. – volume: 31 start-page: 7 year: 2018 end-page: 18 ident: b0150 article-title: An 8-channel Tx/Rx dipole array combined with 16 Rx loops for high-resolution functional cardiac imaging at 7 T publication-title: Magn. Reson. Mater. Phys., Biol. Med. – volume: 15 start-page: 262 year: 2002 end-page: 285 ident: b0220 article-title: Use of mutually inductive coupling in probe design publication-title: Concepts Magn. Reson. – reference: T. Lanz, M.A. Griswold, Concentrically shielded surface coils – a new method for decoupling phased array elements, in: Proc. Intl. Soc. Mag. Reson. Med., 2006, p. 217. – volume: 5 start-page: 33 year: 2017 ident: b0005 article-title: Ultra-high field NMR and MRI—the role of magnet technology to increase sensitivity and specificity publication-title: Front. Phys. – volume: 38 start-page: 687 year: 1997 end-page: 689 ident: b0185 article-title: Multi-turn split-conductor transmission-line resonators publication-title: Magn Reson Med. – volume: 36 start-page: 847 year: 2012 end-page: 857 ident: b0120 article-title: A two-dimensional sixteen channel transmit/receive coil array for cardiac MRI at 7.0 Tesla: design, evaluation and application publication-title: J. Magn. Reson. Imag. – volume: 12 start-page: 361 year: 2000 end-page: 388 ident: b0325 article-title: NMR probeheads for in vivo applications publication-title: Concepts Magn. Reson. – year: 2006 ident: b0195 article-title: NMR probeheads for biophysical and biomedical experiments: theoretical principles & practical guidelines – volume: 59 start-page: 1431 year: 2008 end-page: 1439 ident: b0240 article-title: A 128-channel receive-only cardiac coil for highly accelerated cardiac MRI at 3 Tesla publication-title: Magn Reson Med. – volume: 30 start-page: 194 year: 2009 end-page: 202 ident: b0050 article-title: SAR and power implications of different RF shimming strategies in the pelvis for 7T MRI publication-title: J. Magn. Reson. Imag. – reference: Remcom, XFdtd Reference Manual Release 7.2.2.2, REMCOM, Inc, 2011. – volume: 38 start-page: 591 year: 1997 end-page: 603 ident: b0040 article-title: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays publication-title: Magn. Reson. Med. – volume: 68 start-page: 1332 year: 2012 end-page: 1338 ident: b0095 article-title: Flexible transceiver array for ultrahigh field human MR imaging publication-title: Magn. Reson. Med. – volume: 72 start-page: 276 year: 2014 end-page: 290 ident: b0125 article-title: Modular 32-channel transceiver coil array for cardiac MRI at 7.0T publication-title: Magn. Reson. Med. – volume: 19 start-page: 1875 year: 2011 ident: b0300 article-title: A printed loop element with integrated capacitors and co-planar shield for 7 Tesla publication-title: Proc. Intl. Soc. Mag. Reson. Med. – reference: J. Belliveau, K.M. Gilbert, M. Abou-khousa, R.S. Menon, Analysis of circumferential shielding as a method to decouple radiofrequency coils for high-field MRI, Concepts Magn. Reson. Part B Magnet. Reson. Eng. 43B (2013) 11–21. doi:10.1002/cmr.b. – volume: 67 start-page: 912 year: 2012 end-page: 918 ident: b0165 article-title: Simulations of high permittivity materials for 7 T neuroimaging and evaluation of a new barium titanate-based dielectric publication-title: Magn. Reson. Med. – reference: A.J.E. Raaijmakers, H. El Aidi, M. Versluis, A. Webb, H.J. Lamb, P.R. Luijten, C.A.T. Van Den Berg, T. Leiner, Comprehensice coronary artery imaging at 7.0 T: proof of feasibility, in: Proc 22th Sci Meet Int Soc Magn Reson Med Milan, 3660. 7 (2014) 4923. – volume: 28 start-page: 1219 year: 2008 end-page: 1225 ident: b0075 article-title: 128-channel body MRI with a flexible high-density receiver-coil array publication-title: J. Magn. Reson. Imag. – volume: 273 start-page: 65 year: 2016 end-page: 72 ident: b0210 article-title: Multi-turn multi-gap transmission line resonators – concept, design and first implementation at 4.7 T and 7 T publication-title: J. Magn. Reson. – volume: 243 start-page: 122 year: 2014 end-page: 129 ident: b0130 article-title: An eight-channel transmit/receive array of TE01mode high permittivity ceramic resonators for human imaging at 7 T publication-title: J Magn Reson. – volume: 64 start-page: 1640 year: 2010 end-page: 1651 ident: b0330 article-title: Transmit/receive radiofrequency coil with individually shielded elements publication-title: Magn. Reson. Med. – volume: 8 start-page: 517 year: 1990 end-page: 523 ident: b0070 article-title: A new, fully versatile surface coil for MRI publication-title: Magn. Reson. Imag. – volume: 55 start-page: 1142 year: 2006 end-page: 1149 ident: b0235 article-title: 32-Element receiver-coil array for cardiac imaging publication-title: Magn. Reson. Med. – volume: 46 start-page: 24 year: 2001 end-page: 30 ident: b0020 article-title: 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images publication-title: Magn. Reson. Med. – volume: 39B start-page: 11 year: 2011 end-page: 25 ident: b0055 article-title: Studies of RF shimming techniques with minimization of RF power deposition and their associated temperature changes publication-title: Concepts Magn. Reson. Part B Magn. Reson. Eng. – reference: J.V. Rispoli, M.D. Wilcox, S. By, S.M. Wright, M.P. McDougall, Effects of coplanar shielding for high field MRI, in: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, 2016–October 2016, 6250–6253. doi: – volume: 67 start-page: 872 year: 2012 end-page: 879 ident: b0090 article-title: Stretchable coil arrays: application to knee imaging under varying flexion angles publication-title: Magn. Reson. Med. – volume: 75 start-page: 2553 year: 2016 end-page: 2565 ident: b0145 article-title: 16-channel bow tie antenna transceiver array for cardiac MR at 7.0 tesla publication-title: Magn. Reson. Med. – volume: 65 start-page: 3363 year: 1994 end-page: 3366 ident: b0180 article-title: Multigap parallel-plate bracelet resonator frequency determination and applications publication-title: Rev. Sci. Instrum. – volume: 200 start-page: 147 year: 2009 end-page: 152 ident: b0290 article-title: Fast MRI coil analysis based on 3-D electromagnetic and RF circuit co-simulation publication-title: J. Magn. Reson. – volume: 13 start-page: 1575 year: 2006 end-page: 1580 ident: b0200 article-title: Characterization of flexible RF microcoils dedicated to local MRI publication-title: Microsyst. Technol. – volume: 60 start-page: 895 year: 2008 end-page: 907 ident: b0270 article-title: Comprehensive quantification of signal-to-noise ratio and g -factor for image-based and k -space-based parallel imaging reconstructions publication-title: Magn. Reson. Med. – volume: 42 start-page: 1750 year: 1994 end-page: 1758 ident: b0255 article-title: FASTHENRY: a multipole-accelerated 3-D inductance extraction program publication-title: IEEE Trans. Microw. Theory Tech. – volume: 25 start-page: 695 year: 2012 end-page: 716 ident: b0010 article-title: 7-T MR–from research to clinical applications? publication-title: NMR Biomed. – volume: 73 start-page: 1669 year: 2015 end-page: 1681 ident: b0205 article-title: Novel inductive decoupling technique for flexible transceiver arrays of monolithic transmission line resonators publication-title: Magn. Reson. Med. – start-page: 1 year: 2018 ident: b0215 article-title: A high-impedance detector-array glove for magnetic resonance imaging of the hand publication-title: Nat. Biomed. Eng. – reference: G. Adriany, E. Yacoub, I. Tkac, P. Andersen, H. Merkle, J.T. Vaughan, K. Ugurbil, Shielded surface coils and halfvolume cavity resonators for imaging and spectroscopy applications at 7 Tesla, 8th Annu. Meet. ISMRM, vol. 8, 2000, p. 563. – volume: 61 start-page: 517 year: 2009 end-page: 524 ident: b0105 article-title: Initial results of cardiac imaging at 7 Tesla publication-title: Magn. Reson. Med. – volume: 19 start-page: 1349 year: 2001 end-page: 1352 ident: b0045 article-title: Compensating for B1 inhomogeneity using active transmit power modulation publication-title: Magn. Reson. Imaging. – volume: 7 start-page: 246 year: 1986 end-page: 247 ident: b0065 article-title: A flexible mercury-filled surface coil for MR imaging publication-title: AJNR Am. J. Neuroradiol. – reference: T. Niendorf, Multi-channel transmit/receive RF coil arrays for cardiac MRI at ultrahigh fields: design, validation and clinical application, in: 2013 IEEE MTT-S Int. Microw. Work Ser. RF Wirel. Technol. Biomed. Healthc. Appl., IEEE, 2013, pp. 1–3. – volume: 62 start-page: 739 year: 2009 end-page: 746 ident: b0275 article-title: General formulation for quantitative G-factor calculation in GRAPPA reconstructions publication-title: Magn. Reson. Med. – volume: 75 start-page: 1366 year: 2016 end-page: 1374 ident: b0160 article-title: The fractionated dipole antenna: a new antenna for body imaging at 7 Tesla publication-title: Magn. Reson. Med. – volume: 2 start-page: 37 year: 2010 end-page: 40 ident: b0015 article-title: Ultra-high-field magnetic resonance: why and when? publication-title: World J. Radiol. – volume: 74 start-page: 1165 year: 2015 end-page: 1176 ident: b0265 article-title: Power balance and loss mechanism analysis in RF transmit coil arrays publication-title: Magn. Reson. Med. – volume: 200 start-page: 161 year: 2009 end-page: 166 ident: b0110 article-title: Simple RF design for human functional and morphological cardiac imaging at 7 tesla publication-title: J. Magn. Reson. – reference: . – year: 2006 ident: b0190 article-title: Ultra High Field Magnetic Resonance Imaging – volume: 73 start-page: 2376 year: 2015 end-page: 2389 ident: b0060 article-title: A form-fitted three channel 31P, two channel 1H transceiver coil array for calf muscle studies at 7 T publication-title: Magn. Reson. Med. – volume: 6 start-page: 353 year: 1988 end-page: 358 ident: b0175 article-title: Parallel-plate split-conductor surface coil: analysis and design publication-title: Magn. Reson. Med. – volume: 71 start-page: 1632 year: 2014 end-page: 1640 ident: b0170 article-title: High permittivity pads reduce specific absorption rate, improve B1homogeneity, and increase contrast-to-noise ratio for functional cardiac MRI at 3 T publication-title: Magn. Reson. Med. – volume: 12 start-page: 173 year: 2000 end-page: 187 ident: b0025 article-title: The principle of reciprocity in signal strength calculations – a mathematical guide publication-title: Concepts Magn. Reson. – volume: 66 start-page: 1488 year: 2011 end-page: 1497 ident: b0155 article-title: Design of a radiative surface coil array element at 7 T: the single-side adapted dipole antenna publication-title: Magn. Reson. Med. – volume: 85 start-page: 915 year: 2003 end-page: 937 ident: b0320 article-title: Perspectives with cryogenic RF probes in biomedical MRI publication-title: Biochimie – start-page: 1 year: 2015 end-page: 135 ident: b0230 article-title: Design of a four-element array of small monolithic RF coils with shielding-rings decoupling publication-title: Magn. Reson. Mater. Phys., Biol. Med. ESMRMB – volume: 7 start-page: 10839 year: 2016 ident: b0100 article-title: Screen-printed flexible MRI receive coils publication-title: Nat. Commun. – volume: 42 start-page: 952 year: 1999 end-page: 962 ident: b0035 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn. Reson. Med. – volume: 2 start-page: 37 year: 2010 ident: 10.1016/j.jmr.2018.08.013_b0015 article-title: Ultra-high-field magnetic resonance: why and when? publication-title: World J. Radiol. doi: 10.4329/wjr.v2.i1.37 – volume: 7 start-page: 10839 year: 2016 ident: 10.1016/j.jmr.2018.08.013_b0100 article-title: Screen-printed flexible MRI receive coils publication-title: Nat. Commun. doi: 10.1038/ncomms10839 – volume: 284 start-page: 94 year: 2017 ident: 10.1016/j.jmr.2018.08.013_b0135 article-title: Design of a dielectric resonator receive array at 7 Tesla using detunable ceramic resonators publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2017.09.015 – volume: 67 start-page: 872 year: 2012 ident: 10.1016/j.jmr.2018.08.013_b0090 article-title: Stretchable coil arrays: application to knee imaging under varying flexion angles publication-title: Magn. Reson. Med. doi: 10.1002/mrm.23240 – volume: 31 start-page: 7 year: 2018 ident: 10.1016/j.jmr.2018.08.013_b0150 article-title: An 8-channel Tx/Rx dipole array combined with 16 Rx loops for high-resolution functional cardiac imaging at 7 T publication-title: Magn. Reson. Mater. Phys., Biol. Med. doi: 10.1007/s10334-017-0665-5 – volume: 15 start-page: 262 year: 2002 ident: 10.1016/j.jmr.2018.08.013_b0220 article-title: Use of mutually inductive coupling in probe design publication-title: Concepts Magn. Reson. doi: 10.1002/cmr.10047 – ident: 10.1016/j.jmr.2018.08.013_b0310 doi: 10.1109/EMBC.2016.7592157 – volume: 6 start-page: 353 year: 1988 ident: 10.1016/j.jmr.2018.08.013_b0175 article-title: Parallel-plate split-conductor surface coil: analysis and design publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910060313 – volume: 59 start-page: 590 year: 2008 ident: 10.1016/j.jmr.2018.08.013_b0080 article-title: A geometrically adjustable 16-channel transmit/receive transmission line array for improved RF efficiency and parallel imaging performance at 7 Tesla publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21488 – volume: 61 start-page: 1201 year: 2009 ident: 10.1016/j.jmr.2018.08.013_b0250 article-title: Noise figure limits for circular loop MR coils publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21948 – volume: 30 start-page: 194 year: 2009 ident: 10.1016/j.jmr.2018.08.013_b0050 article-title: SAR and power implications of different RF shimming strategies in the pelvis for 7T MRI publication-title: J. Magn. Reson. Imag. doi: 10.1002/jmri.21806 – volume: 66 start-page: 1488 year: 2011 ident: 10.1016/j.jmr.2018.08.013_b0155 article-title: Design of a radiative surface coil array element at 7 T: the single-side adapted dipole antenna publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22886 – year: 2006 ident: 10.1016/j.jmr.2018.08.013_b0190 – volume: 36 start-page: 847 year: 2012 ident: 10.1016/j.jmr.2018.08.013_b0120 article-title: A two-dimensional sixteen channel transmit/receive coil array for cardiac MRI at 7.0 Tesla: design, evaluation and application publication-title: J. Magn. Reson. Imag. doi: 10.1002/jmri.23724 – volume: 73 start-page: 1669 year: 2015 ident: 10.1016/j.jmr.2018.08.013_b0205 article-title: Novel inductive decoupling technique for flexible transceiver arrays of monolithic transmission line resonators publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25260 – volume: 65 start-page: 3363 year: 1994 ident: 10.1016/j.jmr.2018.08.013_b0180 article-title: Multigap parallel-plate bracelet resonator frequency determination and applications publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1144573 – volume: 200 start-page: 161 year: 2009 ident: 10.1016/j.jmr.2018.08.013_b0110 article-title: Simple RF design for human functional and morphological cardiac imaging at 7 tesla publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2009.06.014 – volume: 7 start-page: 246 year: 1986 ident: 10.1016/j.jmr.2018.08.013_b0065 article-title: A flexible mercury-filled surface coil for MR imaging publication-title: AJNR Am. J. Neuroradiol. – volume: 75 start-page: 1366 year: 2016 ident: 10.1016/j.jmr.2018.08.013_b0160 article-title: The fractionated dipole antenna: a new antenna for body imaging at 7 Tesla publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25596 – volume: 55 start-page: 1142 year: 2006 ident: 10.1016/j.jmr.2018.08.013_b0235 article-title: 32-Element receiver-coil array for cardiac imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20870 – volume: 39B start-page: 11 year: 2011 ident: 10.1016/j.jmr.2018.08.013_b0055 article-title: Studies of RF shimming techniques with minimization of RF power deposition and their associated temperature changes publication-title: Concepts Magn. Reson. Part B Magn. Reson. Eng. doi: 10.1002/cmr.b.20185 – volume: 74 start-page: 1165 year: 2015 ident: 10.1016/j.jmr.2018.08.013_b0265 article-title: Power balance and loss mechanism analysis in RF transmit coil arrays publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25493 – volume: 200 start-page: 147 year: 2009 ident: 10.1016/j.jmr.2018.08.013_b0290 article-title: Fast MRI coil analysis based on 3-D electromagnetic and RF circuit co-simulation publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2009.06.005 – ident: 10.1016/j.jmr.2018.08.013_b0245 doi: 10.1109/IMWS-BIO.2013.6756145 – volume: 68 start-page: 1332 year: 2012 ident: 10.1016/j.jmr.2018.08.013_b0095 article-title: Flexible transceiver array for ultrahigh field human MR imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24121 – volume: 5 start-page: 33 year: 2017 ident: 10.1016/j.jmr.2018.08.013_b0005 article-title: Ultra-high field NMR and MRI—the role of magnet technology to increase sensitivity and specificity publication-title: Front. Phys. doi: 10.3389/fphy.2017.00033 – volume: 61 start-page: 517 year: 2009 ident: 10.1016/j.jmr.2018.08.013_b0105 article-title: Initial results of cardiac imaging at 7 Tesla publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21895 – volume: 273 start-page: 65 year: 2016 ident: 10.1016/j.jmr.2018.08.013_b0210 article-title: Multi-turn multi-gap transmission line resonators – concept, design and first implementation at 4.7 T and 7 T publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2016.10.008 – ident: 10.1016/j.jmr.2018.08.013_b0315 – volume: 64 start-page: 1640 year: 2010 ident: 10.1016/j.jmr.2018.08.013_b0330 article-title: Transmit/receive radiofrequency coil with individually shielded elements publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22574 – volume: 16 start-page: 192 year: 1990 ident: 10.1016/j.jmr.2018.08.013_b0030 article-title: The NMR phased array publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910160203 – volume: 71 start-page: 1632 year: 2014 ident: 10.1016/j.jmr.2018.08.013_b0170 article-title: High permittivity pads reduce specific absorption rate, improve B1homogeneity, and increase contrast-to-noise ratio for functional cardiac MRI at 3 T publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24778 – ident: 10.1016/j.jmr.2018.08.013_b0305 – volume: 64 start-page: 439 year: 2010 ident: 10.1016/j.jmr.2018.08.013_b0260 article-title: Rapid B1+ mapping using a preconditioning RF pulse with turboFLASH readout publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22423 – volume: 28 start-page: 1219 year: 2008 ident: 10.1016/j.jmr.2018.08.013_b0075 article-title: 128-channel body MRI with a flexible high-density receiver-coil array publication-title: J. Magn. Reson. Imag. doi: 10.1002/jmri.21463 – volume: 73 start-page: 2376 year: 2015 ident: 10.1016/j.jmr.2018.08.013_b0060 article-title: A form-fitted three channel 31P, two channel 1H transceiver coil array for calf muscle studies at 7 T publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25339 – volume: 46 start-page: 24 year: 2001 ident: 10.1016/j.jmr.2018.08.013_b0020 article-title: 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1156 – volume: 42 start-page: 952 year: 1999 ident: 10.1016/j.jmr.2018.08.013_b0035 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – volume: 85 start-page: 915 year: 2003 ident: 10.1016/j.jmr.2018.08.013_b0320 article-title: Perspectives with cryogenic RF probes in biomedical MRI publication-title: Biochimie doi: 10.1016/j.biochi.2003.09.016 – volume: 33 start-page: 736 year: 2011 ident: 10.1016/j.jmr.2018.08.013_b0115 article-title: Design and application of a four-channel transmit/receive surface coil for functional cardiac imaging at 7T publication-title: J. Magn. Reson. Imag. doi: 10.1002/jmri.22451 – ident: 10.1016/j.jmr.2018.08.013_b0225 – volume: 67 start-page: 912 year: 2012 ident: 10.1016/j.jmr.2018.08.013_b0165 article-title: Simulations of high permittivity materials for 7 T neuroimaging and evaluation of a new barium titanate-based dielectric publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24176 – volume: 12 start-page: 361 year: 2000 ident: 10.1016/j.jmr.2018.08.013_b0325 article-title: NMR probeheads for in vivo applications publication-title: Concepts Magn. Reson. doi: 10.1002/1099-0534(2000)12:6<361::AID-CMR1>3.0.CO;2-L – volume: 40 start-page: 357 year: 1992 ident: 10.1016/j.jmr.2018.08.013_b0280 article-title: Finite-difference time-domain modeling of curved surfaces (EM scattering) publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/8.138836 – start-page: 1 year: 2015 ident: 10.1016/j.jmr.2018.08.013_b0230 article-title: Design of a four-element array of small monolithic RF coils with shielding-rings decoupling publication-title: Magn. Reson. Mater. Phys., Biol. Med. ESMRMB – volume: 59 start-page: 1431 year: 2008 ident: 10.1016/j.jmr.2018.08.013_b0240 article-title: A 128-channel receive-only cardiac coil for highly accelerated cardiac MRI at 3 Tesla publication-title: Magn Reson Med. doi: 10.1002/mrm.21598 – volume: 38 start-page: 591 year: 1997 ident: 10.1016/j.jmr.2018.08.013_b0040 article-title: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910380414 – volume: 42 start-page: 1750 year: 1994 ident: 10.1016/j.jmr.2018.08.013_b0255 article-title: FASTHENRY: a multipole-accelerated 3-D inductance extraction program publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/22.310584 – ident: 10.1016/j.jmr.2018.08.013_b0140 – volume: 19 start-page: 1349 year: 2001 ident: 10.1016/j.jmr.2018.08.013_b0045 article-title: Compensating for B1 inhomogeneity using active transmit power modulation publication-title: Magn. Reson. Imaging. doi: 10.1016/S0730-725X(01)00467-2 – year: 2006 ident: 10.1016/j.jmr.2018.08.013_b0195 – ident: 10.1016/j.jmr.2018.08.013_b0295 – volume: 28 start-page: 1183 year: 2010 ident: 10.1016/j.jmr.2018.08.013_b0085 article-title: Flexible, phase-matched, linear receive arrays for high-field MRI in monkeys publication-title: Magn. Reson. Imag. doi: 10.1016/j.mri.2010.03.026 – volume: 62 start-page: 739 year: 2009 ident: 10.1016/j.jmr.2018.08.013_b0275 article-title: General formulation for quantitative G-factor calculation in GRAPPA reconstructions publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22066 – volume: 38 start-page: 687 year: 1997 ident: 10.1016/j.jmr.2018.08.013_b0185 article-title: Multi-turn split-conductor transmission-line resonators publication-title: Magn Reson Med. doi: 10.1002/mrm.1910380424 – volume: 60 start-page: 895 year: 2008 ident: 10.1016/j.jmr.2018.08.013_b0270 article-title: Comprehensive quantification of signal-to-noise ratio and g -factor for image-based and k -space-based parallel imaging reconstructions publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21728 – volume: 75 start-page: 2553 year: 2016 ident: 10.1016/j.jmr.2018.08.013_b0145 article-title: 16-channel bow tie antenna transceiver array for cardiac MR at 7.0 tesla publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25840 – start-page: 1 year: 2018 ident: 10.1016/j.jmr.2018.08.013_b0215 article-title: A high-impedance detector-array glove for magnetic resonance imaging of the hand publication-title: Nat. Biomed. Eng. – volume: 72 start-page: 276 year: 2014 ident: 10.1016/j.jmr.2018.08.013_b0125 article-title: Modular 32-channel transceiver coil array for cardiac MRI at 7.0T publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24903 – volume: 13 start-page: 1575 year: 2006 ident: 10.1016/j.jmr.2018.08.013_b0200 article-title: Characterization of flexible RF microcoils dedicated to local MRI publication-title: Microsyst. Technol. doi: 10.1007/s00542-006-0277-x – volume: 12 start-page: 173 year: 2000 ident: 10.1016/j.jmr.2018.08.013_b0025 article-title: The principle of reciprocity in signal strength calculations – a mathematical guide publication-title: Concepts Magn. Reson. doi: 10.1002/1099-0534(2000)12:4<173::AID-CMR1>3.0.CO;2-Q – volume: 243 start-page: 122 year: 2014 ident: 10.1016/j.jmr.2018.08.013_b0130 article-title: An eight-channel transmit/receive array of TE01mode high permittivity ceramic resonators for human imaging at 7 T publication-title: J Magn Reson. doi: 10.1016/j.jmr.2014.04.001 – volume: 25 start-page: 695 year: 2012 ident: 10.1016/j.jmr.2018.08.013_b0010 article-title: 7-T MR–from research to clinical applications? publication-title: NMR Biomed. doi: 10.1002/nbm.1794 – ident: 10.1016/j.jmr.2018.08.013_b0285 doi: 10.1109/MMM.2010.936405 – volume: 8 start-page: 517 year: 1990 ident: 10.1016/j.jmr.2018.08.013_b0070 article-title: A new, fully versatile surface coil for MRI publication-title: Magn. Reson. Imag. doi: 10.1016/0730-725X(90)90061-6 – volume: 19 start-page: 1875 year: 2011 ident: 10.1016/j.jmr.2018.08.013_b0300 article-title: A printed loop element with integrated capacitors and co-planar shield for 7 Tesla publication-title: Proc. Intl. Soc. Mag. Reson. Med. |
SSID | ssj0011570 |
Score | 2.3564956 |
Snippet | [Display omitted]
•A flexible transceiver array based on TLRs is fabricated for cardiac MRI at 7 T.•Array elements are decoupled using a decoupling-ring based... A flexible transceiver array based on transmission line resonators (TLRs) combining the advantages of coil arrays with the possibility of form-fitting... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 47 |
SubjectTerms | Bioengineering Engineering Sciences Imaging Life Sciences Mechanical flexibility RF coil Transceiver coil Transmission line resonators Ultra high field MRI |
Title | A flexible 12-channel transceiver array of transmission line resonators for 7 T MRI |
URI | https://dx.doi.org/10.1016/j.jmr.2018.08.013 https://www.ncbi.nlm.nih.gov/pubmed/30205313 https://www.proquest.com/docview/2102919102 https://hal.science/hal-02416476 |
Volume | 296 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VogouVekDAqUyiFOlbdZZe9d7jCKiFGgP0Ei9WV4_1ERhEyUpEhfUf8R_4pcws49IHNIDx7XWljX2vOzP3wB8EFmOFi-1URZLG6EmokolTkXOpCY2RgZRXRdcXaejsfh0K293YNC-hSFYZWP7a5teWeumpdtIs7uYTLrfCFKYKXSRRGHFFeXtQmS0yy9-bWAexCVTMxLkhJyLs_Zms8J4Tb8TJShXFYsnT7b5pid3BJLcFoFWnmh4APtNCMn69SxfwI4vD-HZoK3cdgh7FazTro5g3GeBGC-LmWe8F9Er39LP2JoclPUEyWBmuTQ_2TzUjTgEHZ8xCj4ZZuJ0tj5frhiGtiz78_D7hl19vTyG8fDjzWAUNYUUIiuSeB3lwWVcqpAHnqWYYBhlC-lSYX1ccNtzzqBmYqt0yht0TyFI6YgbMMf0sOjZ5AR2y3npXwEzBcYfEtUe0zThpDKOhzjNFfeYG9ncdSBuRahtwzJOxS5muoWTTTVKXZPUNRXA5EkHzjddFjXFxmM_i3Zd9D_7RKMLeKzbe1zDzfDEqT3qf9HUhkEKcaqlP3gH3rVLrFHcdHNiSj-_X2nKi3PMbONeB17Wa78ZCzcfGbLk9f_N7A08p6_6eeMp7K6X9_4txjnr4qzayGfwtH_5eXT9F-op-Mg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB61Rai9ICiPhqdBcEFaYu-u93HgEBWqhCY9QCL1Zrx-qK3STZWkoF5Q_1EP_CN-CTP7iMShPSD16l2PVjP2PNafvwF4G6c5erzEBCmXJsCdiFsqsllgdaK51tLH1XHB6CDpT-Ivh_JwDX63d2EIVtn4_tqnV966Gek22uyeHR93vxGkMM0wRBKFlch4g6zcdxc_sW5bfBx8QiO_C8O9z-PdftC0FghMHPFlkHubCpn53Is0wZRbZ6aQNomN44UwobUa1yqOSps5jQ7beyktseXlWDAVoYlQ7jrcidFdUNuED79WuBIir6kpEHKC6vG0PUqtQGUnp8RBKrKKNlRE1wXD9SNCZV6X8lahb-8-3GtyVtar1fIA1ly5DZu7bau4bbhb4UjN4iFMeswTxWYxdUyEAV0rLt2ULSkiGkcYEKbnc33BZr4eRBH0v45Rtsuw9Kef-bP5gmEuzdI_l1djNvo6eASTW1HvY9goZ6XbAaYLTHgk-hmsC2MrM22F50meCYfFmMltB3irQmUaWnPqrjFVLX7tRKHWFWldUcdNEXXg_WrKWc3pcdPLcWsX9c_CVBhzbpr2Bm24Ek8k3v3eUNEYZkVE4pb8EB143ZpYobrpqEaXbna-UFSI51hK87ADT2rbr2ThaifPGT39vy97BZv98WiohoOD_WewRU_qu5XPYWM5P3cvMMlaFi-rRc3g-23vor8mCTRB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+flexible+12-channel+transceiver+array+of+transmission+line+resonators+for+7%E2%80%AFT+MRI&rft.jtitle=Journal+of+magnetic+resonance+%281997%29&rft.au=Hosseinnezhadian%2C+Sajad&rft.au=Frass-Kriegl%2C+Roberta&rft.au=Goluch-Roat%2C+Sigrun&rft.au=Pichler%2C+Michael&rft.date=2018-11-01&rft.issn=1090-7807&rft.volume=296&rft.spage=47&rft.epage=59&rft_id=info:doi/10.1016%2Fj.jmr.2018.08.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmr_2018_08_013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1090-7807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1090-7807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1090-7807&client=summon |