A flexible 12-channel transceiver array of transmission line resonators for 7 T MRI

[Display omitted] •A flexible transceiver array based on TLRs is fabricated for cardiac MRI at 7 T.•Array elements are decoupled using a decoupling-ring based technique.•Acceleration factors up to 3 in bent configuration are demonstrated.•The fabricated array is compatible with parallel transmission...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance (1997) Vol. 296; pp. 47 - 59
Main Authors Hosseinnezhadian, Sajad, Frass-Kriegl, Roberta, Goluch-Roat, Sigrun, Pichler, Michael, Sieg, Jürgen, Vít, Martin, Poirier-Quinot, Marie, Darrasse, Luc, Moser, Ewald, Ginefri, Jean-Christophe, Laistler, Elmar
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2018
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •A flexible transceiver array based on TLRs is fabricated for cardiac MRI at 7 T.•Array elements are decoupled using a decoupling-ring based technique.•Acceleration factors up to 3 in bent configuration are demonstrated.•The fabricated array is compatible with parallel transmission techniques.•The array enables geometrical conformity to bodies within a large range of size. A flexible transceiver array based on transmission line resonators (TLRs) combining the advantages of coil arrays with the possibility of form-fitting targeting cardiac MRI at 7 T is presented. The design contains 12 elements which are fabricated on a flexible substrate with rigid PCBs attached on the center of each element to place the interface components, i.e. transmit/receive (T/R) switch, power splitter, pre-amplifier and capacitive tuning/matching circuitry. The mutual coupling between elements is cancelled using a decoupling ring-based technique. The performance of the developed array is evaluated by 3D electromagnetic simulations, bench tests, and MR measurements using phantoms. Efficient inter-element decoupling is demonstrated in flat configuration on a box-shaped phantom (Sij < −19 dB), and bent on a human torso phantom (Sij < −16 dB). Acceleration factors up to 3 can be employed in bent configuration with reasonable g-factors (<1.7) in an ROI at the position of the heart. The array enables geometrical conformity to bodies within a large range of size and shape and is compatible with parallel imaging and parallel transmission techniques.
AbstractList A flexible transceiver array based on transmission line resonators (TLRs) combining the advantages of coil arrays with the possibility of form-fitting targeting cardiac MRI at 7 T is presented. The design contains 12 elements which are fabricated on a flexible substrate with rigid PCBs attached on the center of each element to place the interface components, i.e. transmit/receive (T/R) switch, power splitter, pre-amplifier and capacitive tuning/matching circuitry. The mutual coupling between elements is cancelled using a decoupling ring-based technique. The performance of the developed array is evaluated by 3D electromagnetic simulations, bench tests, and MR measurements using phantoms. Efficient inter-element decoupling is demonstrated in flat configuration on a box-shaped phantom (S  < -19 dB), and bent on a human torso phantom (S  < -16 dB). Acceleration factors up to 3 can be employed in bent configuration with reasonable g-factors (<1.7) in an ROI at the position of the heart. The array enables geometrical conformity to bodies within a large range of size and shape and is compatible with parallel imaging and parallel transmission techniques.
[Display omitted] •A flexible transceiver array based on TLRs is fabricated for cardiac MRI at 7 T.•Array elements are decoupled using a decoupling-ring based technique.•Acceleration factors up to 3 in bent configuration are demonstrated.•The fabricated array is compatible with parallel transmission techniques.•The array enables geometrical conformity to bodies within a large range of size. A flexible transceiver array based on transmission line resonators (TLRs) combining the advantages of coil arrays with the possibility of form-fitting targeting cardiac MRI at 7 T is presented. The design contains 12 elements which are fabricated on a flexible substrate with rigid PCBs attached on the center of each element to place the interface components, i.e. transmit/receive (T/R) switch, power splitter, pre-amplifier and capacitive tuning/matching circuitry. The mutual coupling between elements is cancelled using a decoupling ring-based technique. The performance of the developed array is evaluated by 3D electromagnetic simulations, bench tests, and MR measurements using phantoms. Efficient inter-element decoupling is demonstrated in flat configuration on a box-shaped phantom (Sij < −19 dB), and bent on a human torso phantom (Sij < −16 dB). Acceleration factors up to 3 can be employed in bent configuration with reasonable g-factors (<1.7) in an ROI at the position of the heart. The array enables geometrical conformity to bodies within a large range of size and shape and is compatible with parallel imaging and parallel transmission techniques.
A flexible transceiver array based on transmission line resonators (TLRs) combining the advantages of coil arrays with the possibility of form-fitting targeting cardiac MRI at 7 T is presented. The design contains 12 elements which are fabricated on a flexible substrate with rigid PCBs attached on the center of each element to place the interface components, i.e. transmit/receive (T/R) switch, power splitter, pre-amplifier and capacitive tuning/matching circuitry. The mutual coupling between elements is cancelled using a decoupling ring-based technique. The performance of the developed array is evaluated by 3D electromagnetic simulations, bench tests, and MR measurements using phantoms. Efficient inter-element decoupling is demonstrated in flat configuration on a box-shaped phantom (Sij < -19 dB), and bent on a human torso phantom (Sij < -16 dB). Acceleration factors up to 3 can be employed in bent configuration with reasonable g-factors (<1.7) in an ROI at the position of the heart. The array enables geometrical conformity to bodies within a large range of size and shape and is compatible with parallel imaging and parallel transmission techniques.
A flexible transceiver array based on transmission line resonators (TLRs) combining the advantages of coil arrays with the possibility of form-fitting targeting cardiac MRI at 7 T is presented. The design contains 12 elements which are fabricated on a flexible substrate with rigid PCBs attached on the center of each element to place the interface components, i.e. transmit/receive (T/R) switch, power splitter, pre-amplifier and capacitive tuning/matching circuitry. The mutual coupling between elements is cancelled using a decoupling ring-based technique. The performance of the developed array is evaluated by 3D electromagnetic simulations, bench tests, and MR measurements using phantoms. Efficient inter-element decoupling is demonstrated in flat configuration on a box-shaped phantom (Sij < -19 dB), and bent on a human torso phantom (Sij < -16 dB). Acceleration factors up to 3 can be employed in bent configuration with reasonable g-factors (<1.7) in an ROI at the position of the heart. The array enables geometrical conformity to bodies within a large range of size and shape and is compatible with parallel imaging and parallel transmission techniques.A flexible transceiver array based on transmission line resonators (TLRs) combining the advantages of coil arrays with the possibility of form-fitting targeting cardiac MRI at 7 T is presented. The design contains 12 elements which are fabricated on a flexible substrate with rigid PCBs attached on the center of each element to place the interface components, i.e. transmit/receive (T/R) switch, power splitter, pre-amplifier and capacitive tuning/matching circuitry. The mutual coupling between elements is cancelled using a decoupling ring-based technique. The performance of the developed array is evaluated by 3D electromagnetic simulations, bench tests, and MR measurements using phantoms. Efficient inter-element decoupling is demonstrated in flat configuration on a box-shaped phantom (Sij < -19 dB), and bent on a human torso phantom (Sij < -16 dB). Acceleration factors up to 3 can be employed in bent configuration with reasonable g-factors (<1.7) in an ROI at the position of the heart. The array enables geometrical conformity to bodies within a large range of size and shape and is compatible with parallel imaging and parallel transmission techniques.
Author Hosseinnezhadian, Sajad
Poirier-Quinot, Marie
Sieg, Jürgen
Pichler, Michael
Darrasse, Luc
Ginefri, Jean-Christophe
Moser, Ewald
Laistler, Elmar
Goluch-Roat, Sigrun
Vít, Martin
Frass-Kriegl, Roberta
Author_xml – sequence: 1
  givenname: Sajad
  surname: Hosseinnezhadian
  fullname: Hosseinnezhadian, Sajad
  organization: Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
– sequence: 2
  givenname: Roberta
  surname: Frass-Kriegl
  fullname: Frass-Kriegl, Roberta
  organization: Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
– sequence: 3
  givenname: Sigrun
  surname: Goluch-Roat
  fullname: Goluch-Roat, Sigrun
  organization: Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
– sequence: 4
  givenname: Michael
  surname: Pichler
  fullname: Pichler, Michael
  organization: Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
– sequence: 5
  givenname: Jürgen
  surname: Sieg
  fullname: Sieg, Jürgen
  organization: Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
– sequence: 6
  givenname: Martin
  surname: Vít
  fullname: Vít, Martin
  organization: Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
– sequence: 7
  givenname: Marie
  surname: Poirier-Quinot
  fullname: Poirier-Quinot, Marie
  organization: IR4M (Imagerie par Résonance Magnétique Médicale et Multi-Modalités), Bât 220, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
– sequence: 8
  givenname: Luc
  surname: Darrasse
  fullname: Darrasse, Luc
  organization: IR4M (Imagerie par Résonance Magnétique Médicale et Multi-Modalités), Bât 220, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
– sequence: 9
  givenname: Ewald
  surname: Moser
  fullname: Moser, Ewald
  organization: Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
– sequence: 10
  givenname: Jean-Christophe
  surname: Ginefri
  fullname: Ginefri, Jean-Christophe
  organization: IR4M (Imagerie par Résonance Magnétique Médicale et Multi-Modalités), Bât 220, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
– sequence: 11
  givenname: Elmar
  orcidid: 0000-0002-8344-8307
  surname: Laistler
  fullname: Laistler, Elmar
  email: elmar.laistler@meduniwien.ac.at
  organization: Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30205313$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02416476$$DView record in HAL
BookMark eNp9kU1qHDEQhYWxiX-SA3gTtEwWPalSt_qHrAaTxIYJhmCvhVpdwhp6JEfqGexdbpQ75STRuO0ssjAUknh8r0DvnbJDHzwxdo6wQMD603qx3sSFAGwXkAfLA3aC0NUFtLI-fHpD0bTQHLPTlNYAiLKBN-y4BAGyxPKE3S65HenB9SNxFIW5097TyKeofTLkdhS5jlE_8mBnceNScsHz0XnikVLwegoxcRsib_78-n3Dv_-4esuOrB4TvXu-z9jt1y83F5fF6vrb1cVyVZiqhKno7NCgbG1nsallU-vW9HKoK0PQoxHDoCVCVuXQku46sFbKAcpKdAKxF6Y8Yx_nvXd6VPfRbXR8VEE7dblcqb0GosK6auodZvbDzN7H8HNLaVL5K4bGUXsK26QEguiwy2dG3z-j235Dw7_NL7FloJkBE0NKkawybtJTziVn5EaFoPYFqbXKBal9QQryPDnxP-fL8tc8n2cP5Sh3jqJKxpE3NLhIZlJDcK-4_wLyaqcm
CitedBy_id crossref_primary_10_1109_RBME_2023_3244132
crossref_primary_10_3390_ma17133325
crossref_primary_10_1016_j_mri_2024_02_007
crossref_primary_10_3389_fphy_2020_00080
crossref_primary_10_1002_jmri_27865
crossref_primary_10_3389_fphy_2020_00092
crossref_primary_10_1002_mrm_30274
crossref_primary_10_1109_ACCESS_2024_3416869
crossref_primary_10_3390_s24113390
crossref_primary_10_1002_mrm_29147
crossref_primary_10_1038_s41598_021_81833_0
crossref_primary_10_3390_s23177588
crossref_primary_10_1002_mrm_30428
crossref_primary_10_1093_psyrad_kkae013
crossref_primary_10_1109_JERM_2021_3136090
crossref_primary_10_1002_mrm_28307
crossref_primary_10_1109_TMI_2021_3051390
crossref_primary_10_1371_journal_pone_0255341
crossref_primary_10_1109_TIM_2025_3529573
crossref_primary_10_1038_s41598_021_95335_6
Cites_doi 10.4329/wjr.v2.i1.37
10.1038/ncomms10839
10.1016/j.jmr.2017.09.015
10.1002/mrm.23240
10.1007/s10334-017-0665-5
10.1002/cmr.10047
10.1109/EMBC.2016.7592157
10.1002/mrm.1910060313
10.1002/mrm.21488
10.1002/mrm.21948
10.1002/jmri.21806
10.1002/mrm.22886
10.1002/jmri.23724
10.1002/mrm.25260
10.1063/1.1144573
10.1016/j.jmr.2009.06.014
10.1002/mrm.25596
10.1002/mrm.20870
10.1002/cmr.b.20185
10.1002/mrm.25493
10.1016/j.jmr.2009.06.005
10.1109/IMWS-BIO.2013.6756145
10.1002/mrm.24121
10.3389/fphy.2017.00033
10.1002/mrm.21895
10.1016/j.jmr.2016.10.008
10.1002/mrm.22574
10.1002/mrm.1910160203
10.1002/mrm.24778
10.1002/mrm.22423
10.1002/jmri.21463
10.1002/mrm.25339
10.1002/mrm.1156
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1016/j.biochi.2003.09.016
10.1002/jmri.22451
10.1002/mrm.24176
10.1002/1099-0534(2000)12:6<361::AID-CMR1>3.0.CO;2-L
10.1109/8.138836
10.1002/mrm.21598
10.1002/mrm.1910380414
10.1109/22.310584
10.1016/S0730-725X(01)00467-2
10.1016/j.mri.2010.03.026
10.1002/mrm.22066
10.1002/mrm.1910380424
10.1002/mrm.21728
10.1002/mrm.25840
10.1002/mrm.24903
10.1007/s00542-006-0277-x
10.1002/1099-0534(2000)12:4<173::AID-CMR1>3.0.CO;2-Q
10.1016/j.jmr.2014.04.001
10.1002/nbm.1794
10.1109/MMM.2010.936405
10.1016/0730-725X(90)90061-6
ContentType Journal Article
Copyright 2018
Copyright © 2018. Published by Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018
– notice: Copyright © 2018. Published by Elsevier Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
1XC
DOI 10.1016/j.jmr.2018.08.013
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1096-0856
EndPage 59
ExternalDocumentID oai_HAL_hal_02416476v1
30205313
10_1016_j_jmr_2018_08_013
S1090780718302180
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABBQC
ABFNM
ABGSF
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABNEU
ABUDA
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADFGL
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJRQY
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
D-I
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSK
SSQ
SSU
SSZ
T5K
UPT
UQL
XPP
YQT
ZA5
ZCG
ZGI
ZXP
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
NPM
7X8
EFKBS
1XC
ID FETCH-LOGICAL-c430t-9fd7158f9f176576a8cb5d64ce0b1c2dda5106a85d8ea990ff55d03429211b2c3
IEDL.DBID .~1
ISSN 1090-7807
1096-0856
IngestDate Fri May 09 12:19:33 EDT 2025
Tue Aug 05 09:33:19 EDT 2025
Thu Apr 03 06:53:36 EDT 2025
Thu Apr 24 23:08:40 EDT 2025
Tue Jul 01 02:06:29 EDT 2025
Fri Feb 23 02:24:17 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords RF coil
Mechanical flexibility
Transmission line resonators
Ultra high field MRI
Transceiver coil
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2018. Published by Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-9fd7158f9f176576a8cb5d64ce0b1c2dda5106a85d8ea990ff55d03429211b2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8344-8307
0000-0003-3199-7432
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1090780718302180
PMID 30205313
PQID 2102919102
PQPubID 23479
PageCount 13
ParticipantIDs hal_primary_oai_HAL_hal_02416476v1
proquest_miscellaneous_2102919102
pubmed_primary_30205313
crossref_citationtrail_10_1016_j_jmr_2018_08_013
crossref_primary_10_1016_j_jmr_2018_08_013
elsevier_sciencedirect_doi_10_1016_j_jmr_2018_08_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of magnetic resonance (1997)
PublicationTitleAlternate J Magn Reson
PublicationYear 2018
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References T. Niendorf, Multi-channel transmit/receive RF coil arrays for cardiac MRI at ultrahigh fields: design, validation and clinical application, in: 2013 IEEE MTT-S Int. Microw. Work Ser. RF Wirel. Technol. Biomed. Healthc. Appl., IEEE, 2013, pp. 1–3.
Jurgens, Taflove, Umashankar, Moore (b0280) 1992; 40
Graessl, Renz, Hezel, Dieringer, Winter, Oezerdem, Rieger, Kellman, Santoro, Lindel, Frauenrath, Pfeiffer, Niendorf (b0125) 2014; 72
Goense, Logothetis, Merkle (b0085) 2010; 28
Aussenhofer, Webb (b0130) 2014; 243
Ruytenberg, Webb (b0135) 2017; 284
Sodickson, Manning (b0040) 1997; 38
Kriegl, Ginefri, Poirier-Quinot, Darrasse, Goluch, Kuehne, Moser, Laistler (b0205) 2015; 73
Hardy, Cline, Giaquinto, Niendorf, Grant, Sodickson (b0235) 2006; 55
Nordmeyer-Massner, De Zanche, Pruessmann (b0090) 2012; 67
Tang, Hue, Ibrahim (b0055) 2011; 39B
Gonord, Kan, Leroy-Willig (b0175) 1988; 6
Raaijmakers, Ipek, Klomp, Possanzini, Harvey, Lagendijk, van den Berg (b0155) 2011; 66
Versluis, Tsekos, Smith, Webb (b0110) 2009; 200
Hardy, Giaquinto, Piel, Rohling, Marinelli, Blezek, Fiveland, Darrow, Foo (b0075) 2008; 28
Kenneth C. Ong, Han Wen, A.S. Chesnick, Stefan Duewell, Farouc A. Jaffer, Robert S. Balaban, Radiofrequency Shielding of Surface Coils at 4.0 T, 1995, pp. 773–777. doi
Vaughan, Garwood, Collins, Liu, DelaBarre, Adriany, Andersen, Merkle, Goebel, Smith, Ugurbil (b0020) 2001; 46
Remcom, XFdtd Reference Manual Release 7.2.2.2, REMCOM, Inc, 2011.
Robitaille, Berliner (b0190) 2006
Corea, Flynn, Lechêne, Scott, Reed, Shin, Lustig, Arias (b0100) 2016; 7
Li, Kriegl, Hosseinnezhadian, Poirier-Quinot, Laistler, Darrasse, Ginefri (b0230) 2015
.
A.J.E. Raaijmakers, H. El Aidi, M. Versluis, A. Webb, H.J. Lamb, P.R. Luijten, C.A.T. Van Den Berg, T. Leiner, Comprehensice coronary artery imaging at 7.0 T: proof of feasibility, in: Proc 22th Sci Meet Int Soc Magn Reson Med Milan, 3660. 7 (2014) 4923.
Raaijmakers, Italiaander, Voogt, Luijten, Hoogduin, Klomp, Van Den Berg (b0160) 2016; 75
Clare, Alecci, Jezzard (b0045) 2001; 19
Thalhammer, Renz, Winter, Seifert, Hoffmann, Von Knobelsdorff (b0120) 2012; 36
Schmitt, Potthast, Sosnovik, Polimeni, Wiggins, Triantafyllou, Wald (b0240) 2008; 59
Frass-Kriegl, Laistler, Hosseinnezhadian, Schmid, Moser, Poirier-Quinot, Darrasse, Ginefri (b0210) 2016; 273
Wu, Zhang, Wang, Li, Pang, Lu, Xu, Majumdar, Nelson, Vigneron (b0095) 2012; 68
Adriany, van de Moortele, Ritter, Moeller, Auerbach, Akgün, Snyder, Vaughan, Uğurbil (b0080) 2008; 59
Zhang, Sodickson, Cloos (b0215) 2018
Robson, Grant, Madhuranthakam, Lattanzi, Sodickson, McKenzie (b0270) 2008; 60
J.V. Rispoli, M.D. Wilcox, S. By, S.M. Wright, M.P. McDougall, Effects of coplanar shielding for high field MRI, in: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, 2016–October 2016, 6250–6253. doi
Darrasse, Ginefri (b0320) 2003; 85
Brink, Webb (b0170) 2014; 71
Moser (b0015) 2010; 2
Haase, Odoj, von Kienlin, Warnking, Fidler, Weisser, Nittka, Rommel, Lanz, Kalusche, Griswold (b0325) 2000; 12
Hoult, Tomanek (b0220) 2002; 15
Roemer, Edelstein, Hayes, Souza, Mueller (b0030) 1990; 16
van den Bergen, van den Berg, Klomp, Lagendijk (b0050) 2009; 30
Woytasik, Ginefri, Raynaud, Poirier-Quinot, Dufour-Gergam, Grandchamp, Girard, Robert, Gilles, Martincic, Darrasse (b0200) 2006; 13
Chung, Kim, Breton, Axel (b0260) 2010; 64
Pruessmann, Weiger, Scheidegger, Boesiger (b0035) 1999; 42
Kamon, Ttsuk, White (b0255) 1994; 42
Moser, Laistler, Schmitt, Kontaxis (b0005) 2017; 5
Hoult (b0025) 2000; 12
Kuehne, Goluch, Waxmann, Seifert, Ittermann, Moser, Laistler (b0265) 2015; 74
Kozlov, Turner (b0290) 2009; 200
Mispelter, Lupu, Briguet (b0195) 2006
Teeuwisse, Brink, Haines, Webb (b0165) 2012; 67
Kumar, Edelstein, Bottomley (b0250) 2009; 61
Breuer, Kannengiesser, Blaimer, Seiberlich, Jakob, Griswold (b0275) 2009; 62
Gilbert, Curtis, Gati, Klassen, Villemaire, Menon (b0330) 2010; 64
Malko, McClees, Braun, Davis, Hoffman (b0065) 1986; 7
J. Belliveau, K.M. Gilbert, M. Abou-khousa, R.S. Menon, Analysis of circumferential shielding as a method to decouple radiofrequency coils for high-field MRI, Concepts Magn. Reson. Part B Magnet. Reson. Eng. 43B (2013) 11–21. doi:10.1002/cmr.b.
Goluch, Kuehne, Meyerspeer, Kriegl, Schmid, Fiedler, Herrmann, Mallow, Hong, Cho, Bernarding, Moser, Laistler (b0060) 2015; 73
Rousseau, Lecouffe, Marchandise (b0070) 1990; 8
Snyder, DelaBarre, Metzger, van de Moortele, Akgun, Ugurbil, Vaughan (b0105) 2009; 61
Dieringer, Renz, Lindel, Seifert, Frauenrath, Von Knobelsdorff-Brenkenhoff, Waiczies, Hoffmann, Rieger, Pfeiffer, Ittermann, Schulz-Menger, Niendorf (b0115) 2011; 33
Serfaty, Haziza, Darrasse, Kan (b0185) 1997; 38
Oezerdem, Winter, Graessl, Paul, Els, Weinberger, Rieger, Kuehne, Dieringer, Hezel, Voit, Frahm, Niendorf (b0145) 2016; 75
Moser, Stahlberg, Ladd, Trattnig (b0010) 2012; 25
T. Lanz, M.A. Griswold, Concentrically shielded surface coils – a new method for decoupling phased array elements, in: Proc. Intl. Soc. Mag. Reson. Med., 2006, p. 217.
Gonord, Kan, Leroy-Willig, Wary (b0180) 1994; 65
McDougall, Wright, Rispoli, Carillo, Dimitrov, Cheshkov, Malloy (b0300) 2011; 19
G. Adriany, E. Yacoub, I. Tkac, P. Andersen, H. Merkle, J.T. Vaughan, K. Ugurbil, Shielded surface coils and halfvolume cavity resonators for imaging and spectroscopy applications at 7 Tesla, 8th Annu. Meet. ISMRM, vol. 8, 2000, p. 563.
Steensma, Voogt, Leiner, Luijten, Habets, Klomp, van den Berg, Raaijmakers (b0150) 2018; 31
10.1016/j.jmr.2018.08.013_b0285
10.1016/j.jmr.2018.08.013_b0245
Clare (10.1016/j.jmr.2018.08.013_b0045) 2001; 19
Moser (10.1016/j.jmr.2018.08.013_b0010) 2012; 25
Hoult (10.1016/j.jmr.2018.08.013_b0220) 2002; 15
Serfaty (10.1016/j.jmr.2018.08.013_b0185) 1997; 38
Aussenhofer (10.1016/j.jmr.2018.08.013_b0130) 2014; 243
Schmitt (10.1016/j.jmr.2018.08.013_b0240) 2008; 59
Hardy (10.1016/j.jmr.2018.08.013_b0075) 2008; 28
Robson (10.1016/j.jmr.2018.08.013_b0270) 2008; 60
Roemer (10.1016/j.jmr.2018.08.013_b0030) 1990; 16
Graessl (10.1016/j.jmr.2018.08.013_b0125) 2014; 72
10.1016/j.jmr.2018.08.013_b0315
Robitaille (10.1016/j.jmr.2018.08.013_b0190) 2006
Thalhammer (10.1016/j.jmr.2018.08.013_b0120) 2012; 36
Moser (10.1016/j.jmr.2018.08.013_b0005) 2017; 5
Kozlov (10.1016/j.jmr.2018.08.013_b0290) 2009; 200
Raaijmakers (10.1016/j.jmr.2018.08.013_b0155) 2011; 66
Moser (10.1016/j.jmr.2018.08.013_b0015) 2010; 2
10.1016/j.jmr.2018.08.013_b0310
Gonord (10.1016/j.jmr.2018.08.013_b0180) 1994; 65
Zhang (10.1016/j.jmr.2018.08.013_b0215) 2018
Corea (10.1016/j.jmr.2018.08.013_b0100) 2016; 7
Rousseau (10.1016/j.jmr.2018.08.013_b0070) 1990; 8
Brink (10.1016/j.jmr.2018.08.013_b0170) 2014; 71
Oezerdem (10.1016/j.jmr.2018.08.013_b0145) 2016; 75
Gonord (10.1016/j.jmr.2018.08.013_b0175) 1988; 6
Kumar (10.1016/j.jmr.2018.08.013_b0250) 2009; 61
Goense (10.1016/j.jmr.2018.08.013_b0085) 2010; 28
10.1016/j.jmr.2018.08.013_b0305
Goluch (10.1016/j.jmr.2018.08.013_b0060) 2015; 73
Teeuwisse (10.1016/j.jmr.2018.08.013_b0165) 2012; 67
Mispelter (10.1016/j.jmr.2018.08.013_b0195) 2006
van den Bergen (10.1016/j.jmr.2018.08.013_b0050) 2009; 30
Darrasse (10.1016/j.jmr.2018.08.013_b0320) 2003; 85
Ruytenberg (10.1016/j.jmr.2018.08.013_b0135) 2017; 284
Breuer (10.1016/j.jmr.2018.08.013_b0275) 2009; 62
Vaughan (10.1016/j.jmr.2018.08.013_b0020) 2001; 46
Li (10.1016/j.jmr.2018.08.013_b0230) 2015
Sodickson (10.1016/j.jmr.2018.08.013_b0040) 1997; 38
10.1016/j.jmr.2018.08.013_b0225
Steensma (10.1016/j.jmr.2018.08.013_b0150) 2018; 31
Tang (10.1016/j.jmr.2018.08.013_b0055) 2011; 39B
10.1016/j.jmr.2018.08.013_b0140
Jurgens (10.1016/j.jmr.2018.08.013_b0280) 1992; 40
Adriany (10.1016/j.jmr.2018.08.013_b0080) 2008; 59
Wu (10.1016/j.jmr.2018.08.013_b0095) 2012; 68
Kriegl (10.1016/j.jmr.2018.08.013_b0205) 2015; 73
Frass-Kriegl (10.1016/j.jmr.2018.08.013_b0210) 2016; 273
Versluis (10.1016/j.jmr.2018.08.013_b0110) 2009; 200
Dieringer (10.1016/j.jmr.2018.08.013_b0115) 2011; 33
Hardy (10.1016/j.jmr.2018.08.013_b0235) 2006; 55
Woytasik (10.1016/j.jmr.2018.08.013_b0200) 2006; 13
Haase (10.1016/j.jmr.2018.08.013_b0325) 2000; 12
Kamon (10.1016/j.jmr.2018.08.013_b0255) 1994; 42
Malko (10.1016/j.jmr.2018.08.013_b0065) 1986; 7
Pruessmann (10.1016/j.jmr.2018.08.013_b0035) 1999; 42
Raaijmakers (10.1016/j.jmr.2018.08.013_b0160) 2016; 75
Gilbert (10.1016/j.jmr.2018.08.013_b0330) 2010; 64
10.1016/j.jmr.2018.08.013_b0295
Snyder (10.1016/j.jmr.2018.08.013_b0105) 2009; 61
Hoult (10.1016/j.jmr.2018.08.013_b0025) 2000; 12
Chung (10.1016/j.jmr.2018.08.013_b0260) 2010; 64
McDougall (10.1016/j.jmr.2018.08.013_b0300) 2011; 19
Nordmeyer-Massner (10.1016/j.jmr.2018.08.013_b0090) 2012; 67
Kuehne (10.1016/j.jmr.2018.08.013_b0265) 2015; 74
References_xml – volume: 284
  start-page: 94
  year: 2017
  end-page: 98
  ident: b0135
  article-title: Design of a dielectric resonator receive array at 7 Tesla using detunable ceramic resonators
  publication-title: J. Magn. Reson.
– volume: 16
  start-page: 192
  year: 1990
  end-page: 225
  ident: b0030
  article-title: The NMR phased array
  publication-title: Magn. Reson. Med.
– volume: 28
  start-page: 1183
  year: 2010
  end-page: 1191
  ident: b0085
  article-title: Flexible, phase-matched, linear receive arrays for high-field MRI in monkeys
  publication-title: Magn. Reson. Imag.
– volume: 33
  start-page: 736
  year: 2011
  end-page: 741
  ident: b0115
  article-title: Design and application of a four-channel transmit/receive surface coil for functional cardiac imaging at 7T
  publication-title: J. Magn. Reson. Imag.
– reference: Kenneth C. Ong, Han Wen, A.S. Chesnick, Stefan Duewell, Farouc A. Jaffer, Robert S. Balaban, Radiofrequency Shielding of Surface Coils at 4.0 T, 1995, pp. 773–777. doi:
– volume: 40
  start-page: 357
  year: 1992
  end-page: 366
  ident: b0280
  article-title: Finite-difference time-domain modeling of curved surfaces (EM scattering)
  publication-title: IEEE Trans. Antennas Propag.
– volume: 59
  start-page: 590
  year: 2008
  end-page: 597
  ident: b0080
  article-title: A geometrically adjustable 16-channel transmit/receive transmission line array for improved RF efficiency and parallel imaging performance at 7 Tesla
  publication-title: Magn. Reson. Med.
– volume: 64
  start-page: 439
  year: 2010
  end-page: 446
  ident: b0260
  article-title: Rapid B1+ mapping using a preconditioning RF pulse with turboFLASH readout
  publication-title: Magn. Reson. Med.
– volume: 61
  start-page: 1201
  year: 2009
  end-page: 1209
  ident: b0250
  article-title: Noise figure limits for circular loop MR coils
  publication-title: Magn. Reson. Med.
– volume: 31
  start-page: 7
  year: 2018
  end-page: 18
  ident: b0150
  article-title: An 8-channel Tx/Rx dipole array combined with 16 Rx loops for high-resolution functional cardiac imaging at 7 T
  publication-title: Magn. Reson. Mater. Phys., Biol. Med.
– volume: 15
  start-page: 262
  year: 2002
  end-page: 285
  ident: b0220
  article-title: Use of mutually inductive coupling in probe design
  publication-title: Concepts Magn. Reson.
– reference: T. Lanz, M.A. Griswold, Concentrically shielded surface coils – a new method for decoupling phased array elements, in: Proc. Intl. Soc. Mag. Reson. Med., 2006, p. 217.
– volume: 5
  start-page: 33
  year: 2017
  ident: b0005
  article-title: Ultra-high field NMR and MRI—the role of magnet technology to increase sensitivity and specificity
  publication-title: Front. Phys.
– volume: 38
  start-page: 687
  year: 1997
  end-page: 689
  ident: b0185
  article-title: Multi-turn split-conductor transmission-line resonators
  publication-title: Magn Reson Med.
– volume: 36
  start-page: 847
  year: 2012
  end-page: 857
  ident: b0120
  article-title: A two-dimensional sixteen channel transmit/receive coil array for cardiac MRI at 7.0 Tesla: design, evaluation and application
  publication-title: J. Magn. Reson. Imag.
– volume: 12
  start-page: 361
  year: 2000
  end-page: 388
  ident: b0325
  article-title: NMR probeheads for in vivo applications
  publication-title: Concepts Magn. Reson.
– year: 2006
  ident: b0195
  article-title: NMR probeheads for biophysical and biomedical experiments: theoretical principles & practical guidelines
– volume: 59
  start-page: 1431
  year: 2008
  end-page: 1439
  ident: b0240
  article-title: A 128-channel receive-only cardiac coil for highly accelerated cardiac MRI at 3 Tesla
  publication-title: Magn Reson Med.
– volume: 30
  start-page: 194
  year: 2009
  end-page: 202
  ident: b0050
  article-title: SAR and power implications of different RF shimming strategies in the pelvis for 7T MRI
  publication-title: J. Magn. Reson. Imag.
– reference: Remcom, XFdtd Reference Manual Release 7.2.2.2, REMCOM, Inc, 2011.
– volume: 38
  start-page: 591
  year: 1997
  end-page: 603
  ident: b0040
  article-title: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays
  publication-title: Magn. Reson. Med.
– volume: 68
  start-page: 1332
  year: 2012
  end-page: 1338
  ident: b0095
  article-title: Flexible transceiver array for ultrahigh field human MR imaging
  publication-title: Magn. Reson. Med.
– volume: 72
  start-page: 276
  year: 2014
  end-page: 290
  ident: b0125
  article-title: Modular 32-channel transceiver coil array for cardiac MRI at 7.0T
  publication-title: Magn. Reson. Med.
– volume: 19
  start-page: 1875
  year: 2011
  ident: b0300
  article-title: A printed loop element with integrated capacitors and co-planar shield for 7 Tesla
  publication-title: Proc. Intl. Soc. Mag. Reson. Med.
– reference: J. Belliveau, K.M. Gilbert, M. Abou-khousa, R.S. Menon, Analysis of circumferential shielding as a method to decouple radiofrequency coils for high-field MRI, Concepts Magn. Reson. Part B Magnet. Reson. Eng. 43B (2013) 11–21. doi:10.1002/cmr.b.
– volume: 67
  start-page: 912
  year: 2012
  end-page: 918
  ident: b0165
  article-title: Simulations of high permittivity materials for 7 T neuroimaging and evaluation of a new barium titanate-based dielectric
  publication-title: Magn. Reson. Med.
– reference: A.J.E. Raaijmakers, H. El Aidi, M. Versluis, A. Webb, H.J. Lamb, P.R. Luijten, C.A.T. Van Den Berg, T. Leiner, Comprehensice coronary artery imaging at 7.0 T: proof of feasibility, in: Proc 22th Sci Meet Int Soc Magn Reson Med Milan, 3660. 7 (2014) 4923.
– volume: 28
  start-page: 1219
  year: 2008
  end-page: 1225
  ident: b0075
  article-title: 128-channel body MRI with a flexible high-density receiver-coil array
  publication-title: J. Magn. Reson. Imag.
– volume: 273
  start-page: 65
  year: 2016
  end-page: 72
  ident: b0210
  article-title: Multi-turn multi-gap transmission line resonators – concept, design and first implementation at 4.7 T and 7 T
  publication-title: J. Magn. Reson.
– volume: 243
  start-page: 122
  year: 2014
  end-page: 129
  ident: b0130
  article-title: An eight-channel transmit/receive array of TE01mode high permittivity ceramic resonators for human imaging at 7 T
  publication-title: J Magn Reson.
– volume: 64
  start-page: 1640
  year: 2010
  end-page: 1651
  ident: b0330
  article-title: Transmit/receive radiofrequency coil with individually shielded elements
  publication-title: Magn. Reson. Med.
– volume: 8
  start-page: 517
  year: 1990
  end-page: 523
  ident: b0070
  article-title: A new, fully versatile surface coil for MRI
  publication-title: Magn. Reson. Imag.
– volume: 55
  start-page: 1142
  year: 2006
  end-page: 1149
  ident: b0235
  article-title: 32-Element receiver-coil array for cardiac imaging
  publication-title: Magn. Reson. Med.
– volume: 46
  start-page: 24
  year: 2001
  end-page: 30
  ident: b0020
  article-title: 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images
  publication-title: Magn. Reson. Med.
– volume: 39B
  start-page: 11
  year: 2011
  end-page: 25
  ident: b0055
  article-title: Studies of RF shimming techniques with minimization of RF power deposition and their associated temperature changes
  publication-title: Concepts Magn. Reson. Part B Magn. Reson. Eng.
– reference: J.V. Rispoli, M.D. Wilcox, S. By, S.M. Wright, M.P. McDougall, Effects of coplanar shielding for high field MRI, in: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, 2016–October 2016, 6250–6253. doi:
– volume: 67
  start-page: 872
  year: 2012
  end-page: 879
  ident: b0090
  article-title: Stretchable coil arrays: application to knee imaging under varying flexion angles
  publication-title: Magn. Reson. Med.
– volume: 75
  start-page: 2553
  year: 2016
  end-page: 2565
  ident: b0145
  article-title: 16-channel bow tie antenna transceiver array for cardiac MR at 7.0 tesla
  publication-title: Magn. Reson. Med.
– volume: 65
  start-page: 3363
  year: 1994
  end-page: 3366
  ident: b0180
  article-title: Multigap parallel-plate bracelet resonator frequency determination and applications
  publication-title: Rev. Sci. Instrum.
– volume: 200
  start-page: 147
  year: 2009
  end-page: 152
  ident: b0290
  article-title: Fast MRI coil analysis based on 3-D electromagnetic and RF circuit co-simulation
  publication-title: J. Magn. Reson.
– volume: 13
  start-page: 1575
  year: 2006
  end-page: 1580
  ident: b0200
  article-title: Characterization of flexible RF microcoils dedicated to local MRI
  publication-title: Microsyst. Technol.
– volume: 60
  start-page: 895
  year: 2008
  end-page: 907
  ident: b0270
  article-title: Comprehensive quantification of signal-to-noise ratio and g -factor for image-based and k -space-based parallel imaging reconstructions
  publication-title: Magn. Reson. Med.
– volume: 42
  start-page: 1750
  year: 1994
  end-page: 1758
  ident: b0255
  article-title: FASTHENRY: a multipole-accelerated 3-D inductance extraction program
  publication-title: IEEE Trans. Microw. Theory Tech.
– volume: 25
  start-page: 695
  year: 2012
  end-page: 716
  ident: b0010
  article-title: 7-T MR–from research to clinical applications?
  publication-title: NMR Biomed.
– volume: 73
  start-page: 1669
  year: 2015
  end-page: 1681
  ident: b0205
  article-title: Novel inductive decoupling technique for flexible transceiver arrays of monolithic transmission line resonators
  publication-title: Magn. Reson. Med.
– start-page: 1
  year: 2018
  ident: b0215
  article-title: A high-impedance detector-array glove for magnetic resonance imaging of the hand
  publication-title: Nat. Biomed. Eng.
– reference: G. Adriany, E. Yacoub, I. Tkac, P. Andersen, H. Merkle, J.T. Vaughan, K. Ugurbil, Shielded surface coils and halfvolume cavity resonators for imaging and spectroscopy applications at 7 Tesla, 8th Annu. Meet. ISMRM, vol. 8, 2000, p. 563.
– volume: 61
  start-page: 517
  year: 2009
  end-page: 524
  ident: b0105
  article-title: Initial results of cardiac imaging at 7 Tesla
  publication-title: Magn. Reson. Med.
– volume: 19
  start-page: 1349
  year: 2001
  end-page: 1352
  ident: b0045
  article-title: Compensating for B1 inhomogeneity using active transmit power modulation
  publication-title: Magn. Reson. Imaging.
– volume: 7
  start-page: 246
  year: 1986
  end-page: 247
  ident: b0065
  article-title: A flexible mercury-filled surface coil for MR imaging
  publication-title: AJNR Am. J. Neuroradiol.
– reference: T. Niendorf, Multi-channel transmit/receive RF coil arrays for cardiac MRI at ultrahigh fields: design, validation and clinical application, in: 2013 IEEE MTT-S Int. Microw. Work Ser. RF Wirel. Technol. Biomed. Healthc. Appl., IEEE, 2013, pp. 1–3.
– volume: 62
  start-page: 739
  year: 2009
  end-page: 746
  ident: b0275
  article-title: General formulation for quantitative G-factor calculation in GRAPPA reconstructions
  publication-title: Magn. Reson. Med.
– volume: 75
  start-page: 1366
  year: 2016
  end-page: 1374
  ident: b0160
  article-title: The fractionated dipole antenna: a new antenna for body imaging at 7 Tesla
  publication-title: Magn. Reson. Med.
– volume: 2
  start-page: 37
  year: 2010
  end-page: 40
  ident: b0015
  article-title: Ultra-high-field magnetic resonance: why and when?
  publication-title: World J. Radiol.
– volume: 74
  start-page: 1165
  year: 2015
  end-page: 1176
  ident: b0265
  article-title: Power balance and loss mechanism analysis in RF transmit coil arrays
  publication-title: Magn. Reson. Med.
– volume: 200
  start-page: 161
  year: 2009
  end-page: 166
  ident: b0110
  article-title: Simple RF design for human functional and morphological cardiac imaging at 7 tesla
  publication-title: J. Magn. Reson.
– reference: .
– year: 2006
  ident: b0190
  article-title: Ultra High Field Magnetic Resonance Imaging
– volume: 73
  start-page: 2376
  year: 2015
  end-page: 2389
  ident: b0060
  article-title: A form-fitted three channel 31P, two channel 1H transceiver coil array for calf muscle studies at 7 T
  publication-title: Magn. Reson. Med.
– volume: 6
  start-page: 353
  year: 1988
  end-page: 358
  ident: b0175
  article-title: Parallel-plate split-conductor surface coil: analysis and design
  publication-title: Magn. Reson. Med.
– volume: 71
  start-page: 1632
  year: 2014
  end-page: 1640
  ident: b0170
  article-title: High permittivity pads reduce specific absorption rate, improve B1homogeneity, and increase contrast-to-noise ratio for functional cardiac MRI at 3 T
  publication-title: Magn. Reson. Med.
– volume: 12
  start-page: 173
  year: 2000
  end-page: 187
  ident: b0025
  article-title: The principle of reciprocity in signal strength calculations – a mathematical guide
  publication-title: Concepts Magn. Reson.
– volume: 66
  start-page: 1488
  year: 2011
  end-page: 1497
  ident: b0155
  article-title: Design of a radiative surface coil array element at 7 T: the single-side adapted dipole antenna
  publication-title: Magn. Reson. Med.
– volume: 85
  start-page: 915
  year: 2003
  end-page: 937
  ident: b0320
  article-title: Perspectives with cryogenic RF probes in biomedical MRI
  publication-title: Biochimie
– start-page: 1
  year: 2015
  end-page: 135
  ident: b0230
  article-title: Design of a four-element array of small monolithic RF coils with shielding-rings decoupling
  publication-title: Magn. Reson. Mater. Phys., Biol. Med. ESMRMB
– volume: 7
  start-page: 10839
  year: 2016
  ident: b0100
  article-title: Screen-printed flexible MRI receive coils
  publication-title: Nat. Commun.
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  ident: b0035
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn. Reson. Med.
– volume: 2
  start-page: 37
  year: 2010
  ident: 10.1016/j.jmr.2018.08.013_b0015
  article-title: Ultra-high-field magnetic resonance: why and when?
  publication-title: World J. Radiol.
  doi: 10.4329/wjr.v2.i1.37
– volume: 7
  start-page: 10839
  year: 2016
  ident: 10.1016/j.jmr.2018.08.013_b0100
  article-title: Screen-printed flexible MRI receive coils
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10839
– volume: 284
  start-page: 94
  year: 2017
  ident: 10.1016/j.jmr.2018.08.013_b0135
  article-title: Design of a dielectric resonator receive array at 7 Tesla using detunable ceramic resonators
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2017.09.015
– volume: 67
  start-page: 872
  year: 2012
  ident: 10.1016/j.jmr.2018.08.013_b0090
  article-title: Stretchable coil arrays: application to knee imaging under varying flexion angles
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.23240
– volume: 31
  start-page: 7
  year: 2018
  ident: 10.1016/j.jmr.2018.08.013_b0150
  article-title: An 8-channel Tx/Rx dipole array combined with 16 Rx loops for high-resolution functional cardiac imaging at 7 T
  publication-title: Magn. Reson. Mater. Phys., Biol. Med.
  doi: 10.1007/s10334-017-0665-5
– volume: 15
  start-page: 262
  year: 2002
  ident: 10.1016/j.jmr.2018.08.013_b0220
  article-title: Use of mutually inductive coupling in probe design
  publication-title: Concepts Magn. Reson.
  doi: 10.1002/cmr.10047
– ident: 10.1016/j.jmr.2018.08.013_b0310
  doi: 10.1109/EMBC.2016.7592157
– volume: 6
  start-page: 353
  year: 1988
  ident: 10.1016/j.jmr.2018.08.013_b0175
  article-title: Parallel-plate split-conductor surface coil: analysis and design
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910060313
– volume: 59
  start-page: 590
  year: 2008
  ident: 10.1016/j.jmr.2018.08.013_b0080
  article-title: A geometrically adjustable 16-channel transmit/receive transmission line array for improved RF efficiency and parallel imaging performance at 7 Tesla
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21488
– volume: 61
  start-page: 1201
  year: 2009
  ident: 10.1016/j.jmr.2018.08.013_b0250
  article-title: Noise figure limits for circular loop MR coils
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21948
– volume: 30
  start-page: 194
  year: 2009
  ident: 10.1016/j.jmr.2018.08.013_b0050
  article-title: SAR and power implications of different RF shimming strategies in the pelvis for 7T MRI
  publication-title: J. Magn. Reson. Imag.
  doi: 10.1002/jmri.21806
– volume: 66
  start-page: 1488
  year: 2011
  ident: 10.1016/j.jmr.2018.08.013_b0155
  article-title: Design of a radiative surface coil array element at 7 T: the single-side adapted dipole antenna
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22886
– year: 2006
  ident: 10.1016/j.jmr.2018.08.013_b0190
– volume: 36
  start-page: 847
  year: 2012
  ident: 10.1016/j.jmr.2018.08.013_b0120
  article-title: A two-dimensional sixteen channel transmit/receive coil array for cardiac MRI at 7.0 Tesla: design, evaluation and application
  publication-title: J. Magn. Reson. Imag.
  doi: 10.1002/jmri.23724
– volume: 73
  start-page: 1669
  year: 2015
  ident: 10.1016/j.jmr.2018.08.013_b0205
  article-title: Novel inductive decoupling technique for flexible transceiver arrays of monolithic transmission line resonators
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25260
– volume: 65
  start-page: 3363
  year: 1994
  ident: 10.1016/j.jmr.2018.08.013_b0180
  article-title: Multigap parallel-plate bracelet resonator frequency determination and applications
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1144573
– volume: 200
  start-page: 161
  year: 2009
  ident: 10.1016/j.jmr.2018.08.013_b0110
  article-title: Simple RF design for human functional and morphological cardiac imaging at 7 tesla
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2009.06.014
– volume: 7
  start-page: 246
  year: 1986
  ident: 10.1016/j.jmr.2018.08.013_b0065
  article-title: A flexible mercury-filled surface coil for MR imaging
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 75
  start-page: 1366
  year: 2016
  ident: 10.1016/j.jmr.2018.08.013_b0160
  article-title: The fractionated dipole antenna: a new antenna for body imaging at 7 Tesla
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25596
– volume: 55
  start-page: 1142
  year: 2006
  ident: 10.1016/j.jmr.2018.08.013_b0235
  article-title: 32-Element receiver-coil array for cardiac imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20870
– volume: 39B
  start-page: 11
  year: 2011
  ident: 10.1016/j.jmr.2018.08.013_b0055
  article-title: Studies of RF shimming techniques with minimization of RF power deposition and their associated temperature changes
  publication-title: Concepts Magn. Reson. Part B Magn. Reson. Eng.
  doi: 10.1002/cmr.b.20185
– volume: 74
  start-page: 1165
  year: 2015
  ident: 10.1016/j.jmr.2018.08.013_b0265
  article-title: Power balance and loss mechanism analysis in RF transmit coil arrays
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25493
– volume: 200
  start-page: 147
  year: 2009
  ident: 10.1016/j.jmr.2018.08.013_b0290
  article-title: Fast MRI coil analysis based on 3-D electromagnetic and RF circuit co-simulation
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2009.06.005
– ident: 10.1016/j.jmr.2018.08.013_b0245
  doi: 10.1109/IMWS-BIO.2013.6756145
– volume: 68
  start-page: 1332
  year: 2012
  ident: 10.1016/j.jmr.2018.08.013_b0095
  article-title: Flexible transceiver array for ultrahigh field human MR imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24121
– volume: 5
  start-page: 33
  year: 2017
  ident: 10.1016/j.jmr.2018.08.013_b0005
  article-title: Ultra-high field NMR and MRI—the role of magnet technology to increase sensitivity and specificity
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2017.00033
– volume: 61
  start-page: 517
  year: 2009
  ident: 10.1016/j.jmr.2018.08.013_b0105
  article-title: Initial results of cardiac imaging at 7 Tesla
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21895
– volume: 273
  start-page: 65
  year: 2016
  ident: 10.1016/j.jmr.2018.08.013_b0210
  article-title: Multi-turn multi-gap transmission line resonators – concept, design and first implementation at 4.7 T and 7 T
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2016.10.008
– ident: 10.1016/j.jmr.2018.08.013_b0315
– volume: 64
  start-page: 1640
  year: 2010
  ident: 10.1016/j.jmr.2018.08.013_b0330
  article-title: Transmit/receive radiofrequency coil with individually shielded elements
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22574
– volume: 16
  start-page: 192
  year: 1990
  ident: 10.1016/j.jmr.2018.08.013_b0030
  article-title: The NMR phased array
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910160203
– volume: 71
  start-page: 1632
  year: 2014
  ident: 10.1016/j.jmr.2018.08.013_b0170
  article-title: High permittivity pads reduce specific absorption rate, improve B1homogeneity, and increase contrast-to-noise ratio for functional cardiac MRI at 3 T
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24778
– ident: 10.1016/j.jmr.2018.08.013_b0305
– volume: 64
  start-page: 439
  year: 2010
  ident: 10.1016/j.jmr.2018.08.013_b0260
  article-title: Rapid B1+ mapping using a preconditioning RF pulse with turboFLASH readout
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22423
– volume: 28
  start-page: 1219
  year: 2008
  ident: 10.1016/j.jmr.2018.08.013_b0075
  article-title: 128-channel body MRI with a flexible high-density receiver-coil array
  publication-title: J. Magn. Reson. Imag.
  doi: 10.1002/jmri.21463
– volume: 73
  start-page: 2376
  year: 2015
  ident: 10.1016/j.jmr.2018.08.013_b0060
  article-title: A form-fitted three channel 31P, two channel 1H transceiver coil array for calf muscle studies at 7 T
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25339
– volume: 46
  start-page: 24
  year: 2001
  ident: 10.1016/j.jmr.2018.08.013_b0020
  article-title: 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1156
– volume: 42
  start-page: 952
  year: 1999
  ident: 10.1016/j.jmr.2018.08.013_b0035
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– volume: 85
  start-page: 915
  year: 2003
  ident: 10.1016/j.jmr.2018.08.013_b0320
  article-title: Perspectives with cryogenic RF probes in biomedical MRI
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2003.09.016
– volume: 33
  start-page: 736
  year: 2011
  ident: 10.1016/j.jmr.2018.08.013_b0115
  article-title: Design and application of a four-channel transmit/receive surface coil for functional cardiac imaging at 7T
  publication-title: J. Magn. Reson. Imag.
  doi: 10.1002/jmri.22451
– ident: 10.1016/j.jmr.2018.08.013_b0225
– volume: 67
  start-page: 912
  year: 2012
  ident: 10.1016/j.jmr.2018.08.013_b0165
  article-title: Simulations of high permittivity materials for 7 T neuroimaging and evaluation of a new barium titanate-based dielectric
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24176
– volume: 12
  start-page: 361
  year: 2000
  ident: 10.1016/j.jmr.2018.08.013_b0325
  article-title: NMR probeheads for in vivo applications
  publication-title: Concepts Magn. Reson.
  doi: 10.1002/1099-0534(2000)12:6<361::AID-CMR1>3.0.CO;2-L
– volume: 40
  start-page: 357
  year: 1992
  ident: 10.1016/j.jmr.2018.08.013_b0280
  article-title: Finite-difference time-domain modeling of curved surfaces (EM scattering)
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/8.138836
– start-page: 1
  year: 2015
  ident: 10.1016/j.jmr.2018.08.013_b0230
  article-title: Design of a four-element array of small monolithic RF coils with shielding-rings decoupling
  publication-title: Magn. Reson. Mater. Phys., Biol. Med. ESMRMB
– volume: 59
  start-page: 1431
  year: 2008
  ident: 10.1016/j.jmr.2018.08.013_b0240
  article-title: A 128-channel receive-only cardiac coil for highly accelerated cardiac MRI at 3 Tesla
  publication-title: Magn Reson Med.
  doi: 10.1002/mrm.21598
– volume: 38
  start-page: 591
  year: 1997
  ident: 10.1016/j.jmr.2018.08.013_b0040
  article-title: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910380414
– volume: 42
  start-page: 1750
  year: 1994
  ident: 10.1016/j.jmr.2018.08.013_b0255
  article-title: FASTHENRY: a multipole-accelerated 3-D inductance extraction program
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/22.310584
– ident: 10.1016/j.jmr.2018.08.013_b0140
– volume: 19
  start-page: 1349
  year: 2001
  ident: 10.1016/j.jmr.2018.08.013_b0045
  article-title: Compensating for B1 inhomogeneity using active transmit power modulation
  publication-title: Magn. Reson. Imaging.
  doi: 10.1016/S0730-725X(01)00467-2
– year: 2006
  ident: 10.1016/j.jmr.2018.08.013_b0195
– ident: 10.1016/j.jmr.2018.08.013_b0295
– volume: 28
  start-page: 1183
  year: 2010
  ident: 10.1016/j.jmr.2018.08.013_b0085
  article-title: Flexible, phase-matched, linear receive arrays for high-field MRI in monkeys
  publication-title: Magn. Reson. Imag.
  doi: 10.1016/j.mri.2010.03.026
– volume: 62
  start-page: 739
  year: 2009
  ident: 10.1016/j.jmr.2018.08.013_b0275
  article-title: General formulation for quantitative G-factor calculation in GRAPPA reconstructions
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22066
– volume: 38
  start-page: 687
  year: 1997
  ident: 10.1016/j.jmr.2018.08.013_b0185
  article-title: Multi-turn split-conductor transmission-line resonators
  publication-title: Magn Reson Med.
  doi: 10.1002/mrm.1910380424
– volume: 60
  start-page: 895
  year: 2008
  ident: 10.1016/j.jmr.2018.08.013_b0270
  article-title: Comprehensive quantification of signal-to-noise ratio and g -factor for image-based and k -space-based parallel imaging reconstructions
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21728
– volume: 75
  start-page: 2553
  year: 2016
  ident: 10.1016/j.jmr.2018.08.013_b0145
  article-title: 16-channel bow tie antenna transceiver array for cardiac MR at 7.0 tesla
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25840
– start-page: 1
  year: 2018
  ident: 10.1016/j.jmr.2018.08.013_b0215
  article-title: A high-impedance detector-array glove for magnetic resonance imaging of the hand
  publication-title: Nat. Biomed. Eng.
– volume: 72
  start-page: 276
  year: 2014
  ident: 10.1016/j.jmr.2018.08.013_b0125
  article-title: Modular 32-channel transceiver coil array for cardiac MRI at 7.0T
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24903
– volume: 13
  start-page: 1575
  year: 2006
  ident: 10.1016/j.jmr.2018.08.013_b0200
  article-title: Characterization of flexible RF microcoils dedicated to local MRI
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-006-0277-x
– volume: 12
  start-page: 173
  year: 2000
  ident: 10.1016/j.jmr.2018.08.013_b0025
  article-title: The principle of reciprocity in signal strength calculations – a mathematical guide
  publication-title: Concepts Magn. Reson.
  doi: 10.1002/1099-0534(2000)12:4<173::AID-CMR1>3.0.CO;2-Q
– volume: 243
  start-page: 122
  year: 2014
  ident: 10.1016/j.jmr.2018.08.013_b0130
  article-title: An eight-channel transmit/receive array of TE01mode high permittivity ceramic resonators for human imaging at 7 T
  publication-title: J Magn Reson.
  doi: 10.1016/j.jmr.2014.04.001
– volume: 25
  start-page: 695
  year: 2012
  ident: 10.1016/j.jmr.2018.08.013_b0010
  article-title: 7-T MR–from research to clinical applications?
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1794
– ident: 10.1016/j.jmr.2018.08.013_b0285
  doi: 10.1109/MMM.2010.936405
– volume: 8
  start-page: 517
  year: 1990
  ident: 10.1016/j.jmr.2018.08.013_b0070
  article-title: A new, fully versatile surface coil for MRI
  publication-title: Magn. Reson. Imag.
  doi: 10.1016/0730-725X(90)90061-6
– volume: 19
  start-page: 1875
  year: 2011
  ident: 10.1016/j.jmr.2018.08.013_b0300
  article-title: A printed loop element with integrated capacitors and co-planar shield for 7 Tesla
  publication-title: Proc. Intl. Soc. Mag. Reson. Med.
SSID ssj0011570
Score 2.3564956
Snippet [Display omitted] •A flexible transceiver array based on TLRs is fabricated for cardiac MRI at 7 T.•Array elements are decoupled using a decoupling-ring based...
A flexible transceiver array based on transmission line resonators (TLRs) combining the advantages of coil arrays with the possibility of form-fitting...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 47
SubjectTerms Bioengineering
Engineering Sciences
Imaging
Life Sciences
Mechanical flexibility
RF coil
Transceiver coil
Transmission line resonators
Ultra high field MRI
Title A flexible 12-channel transceiver array of transmission line resonators for 7 T MRI
URI https://dx.doi.org/10.1016/j.jmr.2018.08.013
https://www.ncbi.nlm.nih.gov/pubmed/30205313
https://www.proquest.com/docview/2102919102
https://hal.science/hal-02416476
Volume 296
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VogouVekDAqUyiFOlbdZZe9d7jCKiFGgP0Ei9WV4_1ERhEyUpEhfUf8R_4pcws49IHNIDx7XWljX2vOzP3wB8EFmOFi-1URZLG6EmokolTkXOpCY2RgZRXRdcXaejsfh0K293YNC-hSFYZWP7a5teWeumpdtIs7uYTLrfCFKYKXSRRGHFFeXtQmS0yy9-bWAexCVTMxLkhJyLs_Zms8J4Tb8TJShXFYsnT7b5pid3BJLcFoFWnmh4APtNCMn69SxfwI4vD-HZoK3cdgh7FazTro5g3GeBGC-LmWe8F9Er39LP2JoclPUEyWBmuTQ_2TzUjTgEHZ8xCj4ZZuJ0tj5frhiGtiz78_D7hl19vTyG8fDjzWAUNYUUIiuSeB3lwWVcqpAHnqWYYBhlC-lSYX1ccNtzzqBmYqt0yht0TyFI6YgbMMf0sOjZ5AR2y3npXwEzBcYfEtUe0zThpDKOhzjNFfeYG9ncdSBuRahtwzJOxS5muoWTTTVKXZPUNRXA5EkHzjddFjXFxmM_i3Zd9D_7RKMLeKzbe1zDzfDEqT3qf9HUhkEKcaqlP3gH3rVLrFHcdHNiSj-_X2nKi3PMbONeB17Wa78ZCzcfGbLk9f_N7A08p6_6eeMp7K6X9_4txjnr4qzayGfwtH_5eXT9F-op-Mg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB61Rai9ICiPhqdBcEFaYu-u93HgEBWqhCY9QCL1Zrx-qK3STZWkoF5Q_1EP_CN-CTP7iMShPSD16l2PVjP2PNafvwF4G6c5erzEBCmXJsCdiFsqsllgdaK51tLH1XHB6CDpT-Ivh_JwDX63d2EIVtn4_tqnV966Gek22uyeHR93vxGkMM0wRBKFlch4g6zcdxc_sW5bfBx8QiO_C8O9z-PdftC0FghMHPFlkHubCpn53Is0wZRbZ6aQNomN44UwobUa1yqOSps5jQ7beyktseXlWDAVoYlQ7jrcidFdUNuED79WuBIir6kpEHKC6vG0PUqtQGUnp8RBKrKKNlRE1wXD9SNCZV6X8lahb-8-3GtyVtar1fIA1ly5DZu7bau4bbhb4UjN4iFMeswTxWYxdUyEAV0rLt2ULSkiGkcYEKbnc33BZr4eRBH0v45Rtsuw9Kef-bP5gmEuzdI_l1djNvo6eASTW1HvY9goZ6XbAaYLTHgk-hmsC2MrM22F50meCYfFmMltB3irQmUaWnPqrjFVLX7tRKHWFWldUcdNEXXg_WrKWc3pcdPLcWsX9c_CVBhzbpr2Bm24Ek8k3v3eUNEYZkVE4pb8EB143ZpYobrpqEaXbna-UFSI51hK87ADT2rbr2ThaifPGT39vy97BZv98WiohoOD_WewRU_qu5XPYWM5P3cvMMlaFi-rRc3g-23vor8mCTRB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+flexible+12-channel+transceiver+array+of+transmission+line+resonators+for+7%E2%80%AFT+MRI&rft.jtitle=Journal+of+magnetic+resonance+%281997%29&rft.au=Hosseinnezhadian%2C+Sajad&rft.au=Frass-Kriegl%2C+Roberta&rft.au=Goluch-Roat%2C+Sigrun&rft.au=Pichler%2C+Michael&rft.date=2018-11-01&rft.issn=1090-7807&rft.volume=296&rft.spage=47&rft.epage=59&rft_id=info:doi/10.1016%2Fj.jmr.2018.08.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmr_2018_08_013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1090-7807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1090-7807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1090-7807&client=summon