Humanin G (HNG) protects age-related macular degeneration (AMD) transmitochondrial ARPE-19 cybrids from mitochondrial and cellular damage
Age-related macular degeneration (AMD) ranks third among the leading causes of visual impairment with a blindness prevalence rate of 8.7%. Despite several treatment regimens, such as anti-angiogenic drugs, laser therapy, and vitamin supplementation, being available for wet AMD, to date there are no...
Saved in:
Published in | Cell death & disease Vol. 8; no. 7; p. e2951 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
20.07.2017
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2041-4889 2041-4889 |
DOI | 10.1038/cddis.2017.348 |
Cover
Loading…
Abstract | Age-related macular degeneration (AMD) ranks third among the leading causes of visual impairment with a blindness prevalence rate of 8.7%. Despite several treatment regimens, such as anti-angiogenic drugs, laser therapy, and vitamin supplementation, being available for wet AMD, to date there are no FDA-approved therapies for dry AMD. Substantial evidence implicates mitochondrial damage and retinal pigment epithelium (RPE) cell death in the pathogenesis of AMD. However, the effects of AMD mitochondria and Humanin G (HNG), a more potent variant of the mitochondrial-derived peptide (MDP) Humanin, on retinal cell survival have not been elucidated. In this study, we characterized mitochondrial and cellular damage in transmitochondrial cybrid cell lines that contain identical nuclei but possess mitochondria from either AMD or age-matched normal (Older-normal (NL)) subjects. AMD cybrids showed (1) reduced levels of cell viability, lower mtDNA copy numbers, and downregulation of mitochondrial replication/transcription genes and antioxidant enzyme genes; and (2) elevated levels of genes related to apoptosis, autophagy and ER-stress along with increased mtDNA fragmentation and higher susceptibility to amyloid-
β
-induced toxicity compared to NL cybrids. In AMD cybrids, HNG protected the AMD mitochondria, reduced pro-apoptosis gene and protein levels, upregulated gp130 (a component of the HN receptor complex), and increased the protection against amyloid-
β
-induced damage. In summary, in cybrids, damaged AMD mitochondria mediate cell death that can be reversed by HNG treatment. Our results also provide evidence of Humanin playing a pivotal role in protecting cells with AMD mitochondria. In the future, it may be possible that AMD patient’s blood samples containing damaged mitochondria may be useful as biomarkers for this condition. In conclusion, HNG may be a potential therapeutic target for treatment of dry AMD, a debilitating eye disease that currently has no available treatment. Further studies are needed to establish HNG as a viable mitochondria-targeting therapy for dry AMD. |
---|---|
AbstractList | Age-related macular degeneration (AMD) ranks third among the leading causes of visual impairment with a blindness prevalence rate of 8.7%. Despite several treatment regimens, such as anti-angiogenic drugs, laser therapy, and vitamin supplementation, being available for wet AMD, to date there are no FDA-approved therapies for dry AMD. Substantial evidence implicates mitochondrial damage and retinal pigment epithelium (RPE) cell death in the pathogenesis of AMD. However, the effects of AMD mitochondria and Humanin G (HNG), a more potent variant of the mitochondrial-derived peptide (MDP) Humanin, on retinal cell survival have not been elucidated. In this study, we characterized mitochondrial and cellular damage in transmitochondrial cybrid cell lines that contain identical nuclei but possess mitochondria from either AMD or age-matched normal (Older-normal (NL)) subjects. AMD cybrids showed (1) reduced levels of cell viability, lower mtDNA copy numbers, and downregulation of mitochondrial replication/transcription genes and antioxidant enzyme genes; and (2) elevated levels of genes related to apoptosis, autophagy and ER-stress along with increased mtDNA fragmentation and higher susceptibility to amyloid-
β
-induced toxicity compared to NL cybrids. In AMD cybrids, HNG protected the AMD mitochondria, reduced pro-apoptosis gene and protein levels, upregulated gp130 (a component of the HN receptor complex), and increased the protection against amyloid-
β
-induced damage. In summary, in cybrids, damaged AMD mitochondria mediate cell death that can be reversed by HNG treatment. Our results also provide evidence of Humanin playing a pivotal role in protecting cells with AMD mitochondria. In the future, it may be possible that AMD patient’s blood samples containing damaged mitochondria may be useful as biomarkers for this condition. In conclusion, HNG may be a potential therapeutic target for treatment of dry AMD, a debilitating eye disease that currently has no available treatment. Further studies are needed to establish HNG as a viable mitochondria-targeting therapy for dry AMD. Age-related macular degeneration (AMD) ranks third among the leading causes of visual impairment with a blindness prevalence rate of 8.7%. Despite several treatment regimens, such as anti-angiogenic drugs, laser therapy, and vitamin supplementation, being available for wet AMD, to date there are no FDA-approved therapies for dry AMD. Substantial evidence implicates mitochondrial damage and retinal pigment epithelium (RPE) cell death in the pathogenesis of AMD. However, the effects of AMD mitochondria and Humanin G (HNG), a more potent variant of the mitochondrial-derived peptide (MDP) Humanin, on retinal cell survival have not been elucidated. In this study, we characterized mitochondrial and cellular damage in transmitochondrial cybrid cell lines that contain identical nuclei but possess mitochondria from either AMD or age-matched normal (Older-normal (NL)) subjects. AMD cybrids showed (1) reduced levels of cell viability, lower mtDNA copy numbers, and downregulation of mitochondrial replication/transcription genes and antioxidant enzyme genes; and (2) elevated levels of genes related to apoptosis, autophagy and ER-stress along with increased mtDNA fragmentation and higher susceptibility to amyloid-β-induced toxicity compared to NL cybrids. In AMD cybrids, HNG protected the AMD mitochondria, reduced pro-apoptosis gene and protein levels, upregulated gp130 (a component of the HN receptor complex), and increased the protection against amyloid-β-induced damage. In summary, in cybrids, damaged AMD mitochondria mediate cell death that can be reversed by HNG treatment. Our results also provide evidence of Humanin playing a pivotal role in protecting cells with AMD mitochondria. In the future, it may be possible that AMD patient's blood samples containing damaged mitochondria may be useful as biomarkers for this condition. In conclusion, HNG may be a potential therapeutic target for treatment of dry AMD, a debilitating eye disease that currently has no available treatment. Further studies are needed to establish HNG as a viable mitochondria-targeting therapy for dry AMD.Age-related macular degeneration (AMD) ranks third among the leading causes of visual impairment with a blindness prevalence rate of 8.7%. Despite several treatment regimens, such as anti-angiogenic drugs, laser therapy, and vitamin supplementation, being available for wet AMD, to date there are no FDA-approved therapies for dry AMD. Substantial evidence implicates mitochondrial damage and retinal pigment epithelium (RPE) cell death in the pathogenesis of AMD. However, the effects of AMD mitochondria and Humanin G (HNG), a more potent variant of the mitochondrial-derived peptide (MDP) Humanin, on retinal cell survival have not been elucidated. In this study, we characterized mitochondrial and cellular damage in transmitochondrial cybrid cell lines that contain identical nuclei but possess mitochondria from either AMD or age-matched normal (Older-normal (NL)) subjects. AMD cybrids showed (1) reduced levels of cell viability, lower mtDNA copy numbers, and downregulation of mitochondrial replication/transcription genes and antioxidant enzyme genes; and (2) elevated levels of genes related to apoptosis, autophagy and ER-stress along with increased mtDNA fragmentation and higher susceptibility to amyloid-β-induced toxicity compared to NL cybrids. In AMD cybrids, HNG protected the AMD mitochondria, reduced pro-apoptosis gene and protein levels, upregulated gp130 (a component of the HN receptor complex), and increased the protection against amyloid-β-induced damage. In summary, in cybrids, damaged AMD mitochondria mediate cell death that can be reversed by HNG treatment. Our results also provide evidence of Humanin playing a pivotal role in protecting cells with AMD mitochondria. In the future, it may be possible that AMD patient's blood samples containing damaged mitochondria may be useful as biomarkers for this condition. In conclusion, HNG may be a potential therapeutic target for treatment of dry AMD, a debilitating eye disease that currently has no available treatment. Further studies are needed to establish HNG as a viable mitochondria-targeting therapy for dry AMD. Age-related macular degeneration (AMD) ranks third among the leading causes of visual impairment with a blindness prevalence rate of 8.7%. Despite several treatment regimens, such as anti-angiogenic drugs, laser therapy, and vitamin supplementation, being available for wet AMD, to date there are no FDA-approved therapies for dry AMD. Substantial evidence implicates mitochondrial damage and retinal pigment epithelium (RPE) cell death in the pathogenesis of AMD. However, the effects of AMD mitochondria and Humanin G (HNG), a more potent variant of the mitochondrial-derived peptide (MDP) Humanin, on retinal cell survival have not been elucidated. In this study, we characterized mitochondrial and cellular damage in transmitochondrial cybrid cell lines that contain identical nuclei but possess mitochondria from either AMD or age-matched normal (Older-normal (NL)) subjects. AMD cybrids showed (1) reduced levels of cell viability, lower mtDNA copy numbers, and downregulation of mitochondrial replication/transcription genes and antioxidant enzyme genes; and (2) elevated levels of genes related to apoptosis, autophagy and ER-stress along with increased mtDNA fragmentation and higher susceptibility to amyloid-β-induced toxicity compared to NL cybrids. In AMD cybrids, HNG protected the AMD mitochondria, reduced pro-apoptosis gene and protein levels, upregulated gp130 (a component of the HN receptor complex), and increased the protection against amyloid-β-induced damage. In summary, in cybrids, damaged AMD mitochondria mediate cell death that can be reversed by HNG treatment. Our results also provide evidence of Humanin playing a pivotal role in protecting cells with AMD mitochondria. In the future, it may be possible that AMD patient's blood samples containing damaged mitochondria may be useful as biomarkers for this condition. In conclusion, HNG may be a potential therapeutic target for treatment of dry AMD, a debilitating eye disease that currently has no available treatment. Further studies are needed to establish HNG as a viable mitochondria-targeting therapy for dry AMD. |
Author | Kuppermann, Baruch D Kenney, M Cristina Cohen, Pinchas Nashine, Sonali Chwa, Marilyn Nesburn, Anthony B Lu, Stephanie |
Author_xml | – sequence: 1 givenname: Sonali surname: Nashine fullname: Nashine, Sonali organization: Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine – sequence: 2 givenname: Pinchas surname: Cohen fullname: Cohen, Pinchas organization: Davis School of Gerontology, University of Southern California – sequence: 3 givenname: Marilyn surname: Chwa fullname: Chwa, Marilyn organization: Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine – sequence: 4 givenname: Stephanie surname: Lu fullname: Lu, Stephanie organization: Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, VA Medical Center Long Beach Hospital – sequence: 5 givenname: Anthony B surname: Nesburn fullname: Nesburn, Anthony B organization: Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Cedars-Sinai Medical Center – sequence: 6 givenname: Baruch D surname: Kuppermann fullname: Kuppermann, Baruch D organization: Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine – sequence: 7 givenname: M Cristina surname: Kenney fullname: Kenney, M Cristina email: mkenney@uci.edu organization: Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Department of Pathology and Laboratory Medicine, University of California Irvine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28726777$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UUtP3DAQtiqq8ijXHisfl0MWv5I4l0orCruVKFRVe7Yce7IYJfbWTirxE_jXeFmKoBJz8Uj-HjPzHaI9Hzwg9ImSOSVcnhprXZozQus5F_IdOmBE0EJI2ey96PfRcUq3JBfnhJXVB7TPZM2quq4P0P1qGrR3Hi_xbHW1PMGbGEYwY8J6DUWEXo9g8aDN1OuILazBQ9SjCx7PFt-_nuAxap8GNwZzE7yNTvd48fPHeUEbbO7a6GzCXQwDfg3R3mIDfb9T1UM2-4jed7pPcPz0HqHfF-e_zlbF5fXy29nisjCCk7FoWgDOpGFNWwpKLGUVJRU1vK1Mw8uW2lZUuhTQGd4YLUF2raiFEIyYrtWCH6EvO93N1A5gDfi8Qq820Q063qmgnXr9492NWoe_qixLIqXMArMngRj-TJBGNbi0XUZ7CFNStGGUcl4LnqGfX3o9m_y7fwbMdwATQ0oRumcIJWqbsXrMWG0zVjnjTBD_EYwbH_PIs7r-bdrpjpayvl9DVLdhij7f-S3GAzz9vRQ |
CitedBy_id | crossref_primary_10_3390_jcm11113003 crossref_primary_10_18632_aging_103164 crossref_primary_10_1007_s12035_019_01834_z crossref_primary_10_3389_fphar_2021_727870 crossref_primary_10_3390_ijms20102374 crossref_primary_10_1016_j_biopha_2018_11_059 crossref_primary_10_18632_aging_101820 crossref_primary_10_3390_antiox12071326 crossref_primary_10_1111_andr_12614 crossref_primary_10_3390_cells12232668 crossref_primary_10_1155_2021_6655372 crossref_primary_10_1002_bies_201900046 crossref_primary_10_1038_s41419_024_06790_8 crossref_primary_10_1167_tvst_10_8_4 crossref_primary_10_1186_s10020_022_00554_w crossref_primary_10_23868_201808024 crossref_primary_10_1016_j_rbmo_2023_103330 crossref_primary_10_1016_j_yfrne_2024_101144 crossref_primary_10_1016_j_ijpharm_2025_125494 crossref_primary_10_1016_j_mito_2021_08_010 crossref_primary_10_3390_biom13060901 crossref_primary_10_1097_SHK_0000000000002134 crossref_primary_10_1007_s11306_019_1549_7 crossref_primary_10_1038_s41598_018_33290_5 crossref_primary_10_1186_s40942_023_00476_7 crossref_primary_10_1242_dmm_032698 crossref_primary_10_3389_fimmu_2021_628062 crossref_primary_10_1016_j_compbiomed_2021_105116 crossref_primary_10_17116_repro20243005135 crossref_primary_10_3389_fimmu_2022_850494 crossref_primary_10_3390_biomedicines12112615 crossref_primary_10_3390_jcm13010295 crossref_primary_10_1016_j_pharmthera_2021_107995 crossref_primary_10_1016_j_exer_2023_109626 crossref_primary_10_1016_j_mito_2023_11_001 crossref_primary_10_1021_acs_jproteome_4c00195 crossref_primary_10_3390_biology12121534 crossref_primary_10_1242_dev_175786 crossref_primary_10_18632_aging_102179 crossref_primary_10_1002_iub_1869 crossref_primary_10_1016_j_ijbiomac_2021_12_139 crossref_primary_10_18632_aging_204917 crossref_primary_10_1016_j_exer_2019_107701 crossref_primary_10_3389_fphar_2024_1410998 crossref_primary_10_1007_s00018_019_03420_x crossref_primary_10_1007_s00109_019_01758_0 crossref_primary_10_1016_j_jconrel_2023_04_003 crossref_primary_10_1016_j_jacbts_2020_04_015 crossref_primary_10_1007_s10989_023_10558_7 crossref_primary_10_18632_aging_204074 crossref_primary_10_3390_antiox10081170 crossref_primary_10_1021_acs_jproteome_0c00036 crossref_primary_10_3389_fragi_2022_926627 crossref_primary_10_3390_biom13030515 crossref_primary_10_1007_s11357_020_00262_5 crossref_primary_10_3390_nu12010159 crossref_primary_10_1016_j_phrs_2020_105248 crossref_primary_10_1038_s41420_024_02215_9 crossref_primary_10_1016_j_foohum_2024_100462 crossref_primary_10_3390_ijms22052360 crossref_primary_10_1016_j_exer_2020_108287 crossref_primary_10_1167_iovs_18_25583 crossref_primary_10_3390_ijms19082317 crossref_primary_10_1007_s13577_025_01188_w crossref_primary_10_3390_cells9051102 crossref_primary_10_3390_ijms242216406 crossref_primary_10_1016_j_arr_2022_101735 crossref_primary_10_1016_j_bbagen_2021_130023 crossref_primary_10_1093_humrep_dead196 crossref_primary_10_1007_s00441_019_03049_z crossref_primary_10_3390_cells10092483 crossref_primary_10_1080_17469899_2020_1767597 crossref_primary_10_1016_j_rbmo_2018_11_002 crossref_primary_10_1155_2022_2233223 crossref_primary_10_3390_biom9040119 |
Cites_doi | 10.1016/S0005-2728(98)00161-3 10.1016/j.cmet.2015.02.009 10.1016/j.exer.2003.10.011 10.1073/pnas.101133498 10.1016/j.bbadis.2009.08.013 10.7554/eLife.14319 10.1167/iovs.10-5429 10.3389/fendo.2014.00210 10.1016/j.bbamcr.2015.08.012 10.1016/j.bbadis.2009.10.006 10.3341/kjo.2003.17.1.19 10.1167/iovs.07-0918 10.2217/epi.11.109 10.1093/jnci/djt459 10.1093/hmg/ddv173 10.1016/j.mcn.2003.09.017 10.1093/jmcb/mjq005 10.1016/j.tem.2013.01.005 10.1007/s10522-015-9562-3 10.1073/pnas.2135111100 10.1136/bjophthalmol-2016-309434 10.1038/ng912 10.1038/nature01627 10.1038/sj.bjp.0704429 10.1371/journal.pone.0006334 10.1586/eop.11.44 10.2174/092986708785747616 10.1016/j.mam.2012.03.009 10.1091/mbc.e09-02-0168 10.1001/archophthalmol.2010.318 10.1016/j.bbrc.2016.07.055 10.1016/j.neuron.2012.06.018 10.1056/NEJMra0801537 10.1371/journal.pone.0063205 10.1074/jbc.M809393200 10.4161/auto.36184 10.1161/01.STR.0000242772.94277.1f 10.1210/en.2015-1542 10.1016/S0196-9781(03)00106-2 10.18632/aging.100943 10.1167/iovs.15-17053 10.1016/j.neuint.2009.11.015 10.1523/JNEUROSCI.0190-15.2015 10.1006/bbrc.2001.4765 10.1038/eye.2015.100 10.1016/j.pbb.2011.09.012 10.1016/j.neurobiolaging.2005.05.012 10.1167/iovs.14-15447 10.1001/archopht.120.11.1435 10.1016/j.preteyeres.2008.10.001 10.1167/iovs.04-1327 10.1001/archophthalmol.2010.87 10.1016/j.bbadis.2015.08.001 10.1159/000119862 10.2174/157015906776359577 10.1161/ATVBAHA.110.205997 10.1371/journal.pone.0159828 10.1111/j.1474-9726.2009.00456.x 10.1016/j.clindermatol.2015.11.009 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Copyright © 2017 The Author(s) 2017 The Author(s) |
Copyright_xml | – notice: The Author(s) 2017 – notice: Copyright © 2017 The Author(s) 2017 The Author(s) |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1038/cddis.2017.348 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Humanin G protects AMD ARPE-19 cybrids from death |
EISSN | 2041-4889 |
EndPage | e2951 |
ExternalDocumentID | PMC5550888 28726777 10_1038_cddis_2017_348 |
Genre | Clinical Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 3V. 53G 5VS 70F 7X7 88A 88I 8FE 8FH 8FI 8FJ AAJSJ ABAWZ ABUWG ACGFS ACSMW ADBBV ADRAZ AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CAG CCPQU COF DIK DWQXO E3Z EBLON EBS EJD EMOBN FRP FYUFA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HYE HZ~ IPNFZ KQ8 LK8 M0L M2P M48 M7P M~E NAO O5R O5S O9- OK1 PIMPY PQQKQ PROAC RIG RNT RPM SNYQT TR2 UKHRP W2D AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7X8 AARCD PQGLB 5PM |
ID | FETCH-LOGICAL-c430t-9bee328c29b5410d1261061c3b6c935b1db46a54efc39ca8e8fb4744420cfba43 |
IEDL.DBID | M48 |
ISSN | 2041-4889 |
IngestDate | Thu Aug 21 18:20:09 EDT 2025 Tue Aug 05 11:10:07 EDT 2025 Wed Feb 19 02:42:53 EST 2025 Tue Jul 01 01:10:51 EDT 2025 Thu Apr 24 23:12:20 EDT 2025 Fri Feb 21 02:37:03 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c430t-9bee328c29b5410d1261061c3b6c935b1db46a54efc39ca8e8fb4744420cfba43 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/cddis.2017.348 |
PMID | 28726777 |
PQID | 1921133743 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5550888 proquest_miscellaneous_1921133743 pubmed_primary_28726777 crossref_primary_10_1038_cddis_2017_348 crossref_citationtrail_10_1038_cddis_2017_348 springer_journals_10_1038_cddis_2017_348 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-20 |
PublicationDateYYYYMMDD | 2017-07-20 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Cell death & disease |
PublicationTitleAbbrev | Cell Death Dis |
PublicationTitleAlternate | Cell Death Dis |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Mamiya, Ukai (CR18) 2001; 134 Feher, Kovacs, Artico, Cavallotti, Papale, Balacco Gabrieli (CR48) 2006; 27 Bazan (CR44) 2007; 48 P Pickering, Cook, Warren, Bygrave, Moss, Walport (CR35) 2002; 31 Nashine, Liu, Kim, Clark, Pang (CR46) 2014; 56 Hashimoto, Ito, Niikura, Shao, Hata, Oyama (CR55) 2001; 283 Au, Parikh, Singh, Ehlers, Yuan, Rachitskaya (CR3) 2016; 101 Kurihara, Westenskow, Gantner, Usui, Schultz, Bravo (CR34) 2016; 5 Muzumdar, Huffman, Calvert, Jha, Weinberg, Cui (CR20) 2010; 30 Hashimoto, Kurita, Aiso, Nishimoto, Matsuoka (CR60) 2009; 20 Jager, Mieler, Miller (CR37) 2008; 358 Sreekumar, Ishikawa, Spee, Mehta, Wan, Yen (CR24) 2016; 57 Kowluru, Mishra (CR9) 2015; 1852 Hashimoto, Niikura, Tajima, Yasukawa, Sudo, Ito (CR54) 2001; 98 Miceli, Jazwinski (CR30) 2005; 46 Bruban, Glotin, Dinet, Chalour, Sennlaub, Jonet (CR51) 2009; 8 Ambati, Fowler (CR31) 2012; 75 Yu, Cringle, Yu, Su (CR5) 2014; 6 Lee, Yen, Cohen (CR13) 2013; 24 Muzumdar, Huffman, Atzmon, Buettner, Cobb, Fishman (CR57) 2009; 4 Ikonen, Liu, Hashimoto, Ma, Lee, Niikura (CR21) 2003; 100 Terluk, Kapphahn, Soukup, Gong, Gallardo, Montezuma (CR49) 2015; 35 Arakawa, Kita, Niikura (CR16) 2008; 15 Bellizzi, D'Aquila, Giordano, Montesanto, Passarino (CR40) 2012; 4 Gong, Tas, Muzumdar (CR53) 2014; 5 Sponne, Fifre, Koziel, Kriem, Oster, Pillot (CR23) 2004; 25 Zhu, Wu, Spee, Ryan, Hinton (CR33) 2009; 284 Takahashi, Katada, Onodera (CR22) 2010; 2 Mitter, Song, Qi, Mao, Rao, Akin (CR45) 2014; 10 Atilano, Malik, Chwa, Cáceres-Del-Carpio, Nesburn, Boyer (CR29) 2015; 24 Izzotti, Saccà, Longobardi, Cartiglia (CR8) 2010; 128 Jin, Liu, Wang, Xu, Yang, Lu (CR26) 2010; 56 Carrì, D'Ambrosi, Cozzolino (CR12) 2016; 483 Guo, Zhai, Cabezas, Welsh, Nouraini, Satterthwait (CR59) 2003; 423 Klein, Chou, Klein, Zhang, Meuer, Saaddine (CR1) 2011; 129 Dib, Lin, Maidana, Tian, Miller, Bouzika (CR42) 2015; 1853 Nashine, Bhootada, Lewin, Gorbatyuk (CR47) 2013; 8 Eriksson, Wickström, Perup, Johnsen, Eksborg, Kogner (CR58) 2014; 106 Yamagishi, Hashimoto, Niikura, Nishimoto (CR25) 2003; 24 Xu, Chua, Gao, Hamdy, Chua (CR19) 2006; 37 Kim, Chung, Yang, Chung, Kwag, Yoo (CR32) 2003; 17 Moreira, Carvalho, Zhu, Smith, Perry (CR10) 2010; 1802 Winklhofer, Haass (CR11) 2010; 1802 Niikura, Tajima, Kita (CR17) 2006; 4 Ding, Patel, Chan (CR2) 2009; 28 Lue, Swerdloff, Wan, Xiao, French, Atienza (CR27) 2015; 156 Taanman (CR6) 1999; 1410 Jarrett, Boulton (CR39) 2012; 33 Cobb, Lee, Xiao, Yen, Wong, Nakamura (CR15) 2016; 8 Ratnayaka, Serpell, Lotery (CR52) 2015; 29 Anderson, Talaga, Rivest, Barron, Hageman, Johnson (CR50) 2004; 78 Zhang, Zhang, Li, Hao, Zhang, Liu (CR56) 2012; 100 McCusker, Durrani, Payette, Suchecki (CR4) 2016; 34 Lee, Zeng, Drew, Sallam, Martin-Montalvo, Wan (CR14) 2015; 21 Romano, Serviddio, de Matthaeis, Bellanti, Vendemiale (CR38) 2010; 23 Dunaief, Dentchev, Ying, Milam (CR43) 2002; 120 Nashine, Chwa, Kazemian, Thaker, Lu, Nesburn (CR28) 2016; 11 D'Aquila, Bellizzi, Passarino (CR41) 2015; 16 Chan, Ross, Shen, Ding, Majumdar, Bojanowski (CR36) 2008; 40 Karunadharma, Nordgaard, Olsen, Ferrington, Mitochondrial (CR7) 2010; 51 B Guo (BFcddis2017348_CR59) 2003; 423 RH Muzumdar (BFcddis2017348_CR57) 2009; 4 KF Winklhofer (BFcddis2017348_CR11) 2010; 1802 D Bellizzi (BFcddis2017348_CR40) 2012; 4 P D'Aquila (BFcddis2017348_CR41) 2015; 16 PG Sreekumar (BFcddis2017348_CR24) 2016; 57 T Kurihara (BFcddis2017348_CR34) 2016; 5 B Dib (BFcddis2017348_CR42) 2015; 1853 MM McCusker (BFcddis2017348_CR4) 2016; 34 MR Terluk (BFcddis2017348_CR49) 2015; 35 Y Hashimoto (BFcddis2017348_CR55) 2001; 283 PI Moreira (BFcddis2017348_CR10) 2010; 1802 A Au (BFcddis2017348_CR3) 2016; 101 C Lee (BFcddis2017348_CR14) 2015; 21 D Zhu (BFcddis2017348_CR33) 2009; 284 JL Dunaief (BFcddis2017348_CR43) 2002; 120 Z Gong (BFcddis2017348_CR53) 2014; 5 J Feher (BFcddis2017348_CR48) 2006; 27 S Nashine (BFcddis2017348_CR47) 2013; 8 S Nashine (BFcddis2017348_CR28) 2016; 11 Dao-Yi Yu (BFcddis2017348_CR5) 2014; 6 H Jin (BFcddis2017348_CR26) 2010; 56 SK Mitter (BFcddis2017348_CR45) 2014; 10 X Ding (BFcddis2017348_CR2) 2009; 28 E Eriksson (BFcddis2017348_CR58) 2014; 106 X Xu (BFcddis2017348_CR19) 2006; 37 A Izzotti (BFcddis2017348_CR8) 2010; 128 I Sponne (BFcddis2017348_CR23) 2004; 25 R Klein (BFcddis2017348_CR1) 2011; 129 JW Taanman (BFcddis2017348_CR6) 1999; 1410 RA Kowluru (BFcddis2017348_CR9) 2015; 1852 RH Muzumdar (BFcddis2017348_CR20) 2010; 30 PP Karunadharma (BFcddis2017348_CR7) 2010; 51 T Arakawa (BFcddis2017348_CR16) 2008; 15 Y Hashimoto (BFcddis2017348_CR54) 2001; 98 SR Atilano (BFcddis2017348_CR29) 2015; 24 Y Yamagishi (BFcddis2017348_CR25) 2003; 24 JA Ratnayaka (BFcddis2017348_CR52) 2015; 29 CC Chan (BFcddis2017348_CR36) 2008; 40 NG Bazan (BFcddis2017348_CR44) 2007; 48 DH Anderson (BFcddis2017348_CR50) 2004; 78 J Ambati (BFcddis2017348_CR31) 2012; 75 LJ Cobb (BFcddis2017348_CR15) 2016; 8 Y Hashimoto (BFcddis2017348_CR60) 2009; 20 RD Jager (BFcddis2017348_CR37) 2008; 358 J Bruban (BFcddis2017348_CR51) 2009; 8 W Zhang (BFcddis2017348_CR56) 2012; 100 T Takahashi (BFcddis2017348_CR22) 2010; 2 M Ikonen (BFcddis2017348_CR21) 2003; 100 C Lee (BFcddis2017348_CR13) 2013; 24 MV Miceli (BFcddis2017348_CR30) 2005; 46 MH Kim (BFcddis2017348_CR32) 2003; 17 S Nashine (BFcddis2017348_CR46) 2014; 56 T Niikura (BFcddis2017348_CR17) 2006; 4 T Mamiya (BFcddis2017348_CR18) 2001; 134 Y Lue (BFcddis2017348_CR27) 2015; 156 SG Jarrett (BFcddis2017348_CR39) 2012; 33 MT Carrì (BFcddis2017348_CR12) 2016; 483 AD Romano (BFcddis2017348_CR38) 2010; 23 MC P Pickering (BFcddis2017348_CR35) 2002; 31 26990160 - Invest Ophthalmol Vis Sci. 2016 Mar;57(3):1238-53 27070352 - Aging (Albany NY). 2016 Apr;8(4):796-809 14561895 - Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):13042-7 11371646 - Proc Natl Acad Sci U S A. 2001 May 22;98 (11):6336-41 23402768 - Trends Endocrinol Metab. 2013 May;24(5):222-8 25711915 - Biogerontology. 2015 Oct;16(5):569-85 14962743 - Mol Cell Neurosci. 2004 Jan;25(1):95-102 12732850 - Nature. 2003 May 22;423(6938):456-61 19941922 - Neurochem Int. 2010 Feb;56(3):417-23 26903189 - Clin Dermatol. 2016 Mar-Apr;34(2):276-85 25948278 - J Neurosci. 2015 May 6;35(18):7304-11 18550876 - N Engl J Med. 2008 Jun 12;358(24):2606-17 25738459 - Cell Metab. 2015 Mar 3;21(3):443-54 22510306 - Mol Aspects Med. 2012 Aug;33(4):399-417 25484094 - Autophagy. 2014;10(11):1989-2005 11327724 - Biochem Biophys Res Commun. 2001 May 4;283(2):460-8 26248057 - Biochim Biophys Acta. 2015 Nov;1852(11):2474-83 14729357 - Exp Eye Res. 2004 Feb;78(2):243-56 23646198 - PLoS One. 2013 Apr 30;8(4):e63205 21993310 - Pharmacol Biochem Behav. 2012 Jan;100(3):361-9 19853658 - Biochim Biophys Acta. 2010 Jan;1802(1):2-10 15851580 - Invest Ophthalmol Vis Sci. 2005 May;46(5):1765-73 20505194 - Invest Ophthalmol Vis Sci. 2010 Nov;51(11):5470-9 19026761 - Prog Retin Eye Res. 2009 Jan;28(1):1-18 17962433 - Invest Ophthalmol Vis Sci. 2007 Nov;48(11):4866-81; biography 4864-5 19733240 - Biochim Biophys Acta. 2010 Jan;1802(1):29-44 26978795 - Elife. 2016 Mar 15;5:null 24586107 - J Natl Cancer Inst. 2014 Mar;106(3):djt459 26305120 - Biochim Biophys Acta. 2015 Nov;1853(11 Pt A):2897-906 19158083 - J Biol Chem. 2009 Apr 3;284(14):9529-39 18781936 - Curr Med Chem. 2008;15(21):2086-98 11739234 - Br J Pharmacol. 2001 Dec;134(8):1597-9 15979212 - Neurobiol Aging. 2006 Jul;27(7):983-93 25538685 - Front Endocrinol (Lausanne). 2014 Dec 04;5:210 22794258 - Neuron. 2012 Jul 12;75(1):26-39 20547950 - Arch Ophthalmol. 2010 Jun;128(6):724-30 27486856 - PLoS One. 2016 Aug 03;11(8):e0159828 25414185 - Invest Ophthalmol Vis Sci. 2014 Nov 20;56(1):221-31 25964427 - Hum Mol Genet. 2015 Aug 15;24(16):4491-503 27913442 - Br J Ophthalmol. 2017 Jul;101(7):970-975 22332655 - Epigenomics. 2012 Feb;4(1):17-27 20872368 - J Nephrol. 2010 Sep-Oct;23 Suppl 15:S29-36 18615127 - Curr Neuropharmacol. 2006 Apr;4(2):139-47 26088679 - Eye (Lond). 2015 Aug;29(8):1013-26 19623253 - PLoS One. 2009 Jul 22;4(7):e6334 27416757 - Biochem Biophys Res Commun. 2017 Feb 19;483(4):1187-1193 19239420 - Aging Cell. 2009 Apr;8(2):162-77 10076021 - Biochim Biophys Acta. 1999 Feb 9;1410(2):103-23 19386761 - Mol Biol Cell. 2009 Jun;20(12):2864-73 12860203 - Peptides. 2003 Apr;24(4):585-95 18421225 - Ophthalmic Res. 2008;40(3-4):124-8 12882504 - Korean J Ophthalmol. 2003 Jun;17(1):19-28 12427055 - Arch Ophthalmol. 2002 Nov;120(11):1435-42 26384090 - Endocrinology. 2015 Dec;156(12 ):4511-21 20410236 - J Mol Cell Biol. 2010 Aug;2(4):180-91 16960089 - Stroke. 2006 Oct;37(10):2613-9 12091909 - Nat Genet. 2002 Aug;31(4):424-8 20651283 - Arterioscler Thromb Vasc Biol. 2010 Oct;30(10):1940-8 21220632 - Arch Ophthalmol. 2011 Jan;129(1):75-80 |
References_xml | – volume: 1410 start-page: 103 year: 1999 end-page: 23 ident: CR6 article-title: The mitochondrial genome: structure, transcription, translation and replication publication-title: Biochim Biophys Acta doi: 10.1016/S0005-2728(98)00161-3 – volume: 21 start-page: 443 year: 2015 end-page: 54 ident: CR14 article-title: The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance publication-title: Cell Metab doi: 10.1016/j.cmet.2015.02.009 – volume: 78 start-page: 243 year: 2004 end-page: 256 ident: CR50 article-title: Characterization of β amyloid assemblies in drusen: the deposits associated with aging and age-related macular degeneration publication-title: Exp Eye Res doi: 10.1016/j.exer.2003.10.011 – volume: 98 start-page: 6336 year: 2001 end-page: 41 ident: CR54 article-title: A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Abeta publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.101133498 – volume: 1802 start-page: 29 year: 2010 end-page: 44 ident: CR11 article-title: Mitochondrial dysfunction in Parkinson’s disease publication-title: Biochim Biophys Acta doi: 10.1016/j.bbadis.2009.08.013 – volume: 5 start-page: e14319 year: 2016 ident: CR34 article-title: Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration publication-title: Elife doi: 10.7554/eLife.14319 – volume: 51 start-page: 5470 year: 2010 end-page: 9 ident: CR7 article-title: damage as a potential mechanism for age-related macular degeneration publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.10-5429 – volume: 5 start-page: 210 year: 2014 ident: CR53 article-title: Humanin and age-related diseases: a new link? publication-title: Front Endocrinol (Lausanne) doi: 10.3389/fendo.2014.00210 – volume: 1853 start-page: 2897 year: 2015 end-page: 906 ident: CR42 article-title: Mitochondrial DNA has a pro-inflammatory role in AMD publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamcr.2015.08.012 – volume: 1802 start-page: 2 year: 2010 end-page: 10 ident: CR10 article-title: Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology publication-title: Biochim Biophys Acta doi: 10.1016/j.bbadis.2009.10.006 – volume: 17 start-page: 19 year: 2003 end-page: 28 ident: CR32 article-title: Hydrogen peroxide-induced cell death in a human retinal pigment epithelial cell line, ARPE-19 publication-title: Korean J Ophthalmol doi: 10.3341/kjo.2003.17.1.19 – volume: 48 start-page: 4866 year: 2007 end-page: 81 ident: CR44 article-title: Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.07-0918 – volume: 4 start-page: 17 year: 2012 end-page: 27 ident: CR40 article-title: Global DNA methylation levels are modulated by mitochondrial DNA variants publication-title: Epigenomics doi: 10.2217/epi.11.109 – volume: 106 start-page: djt459 year: 2014 ident: CR58 article-title: Protective role of humanin on bortezomib-induced bone growth impairment in anticancer treatment publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djt459 – volume: 23 start-page: S29 year: 2010 end-page: 36 ident: CR38 article-title: Oxidative stress and aging publication-title: J Nephrol – volume: 24 start-page: 4491 year: 2015 end-page: 503 ident: CR29 article-title: Mitochondrial DNA variants can mediate methylation status of inflammation, angiogenesis and signaling genes publication-title: Hum Mol Genet doi: 10.1093/hmg/ddv173 – volume: 25 start-page: 95 year: 2004 end-page: 102 ident: CR23 article-title: Humanin rescues cortical neurons from prion-peptide-induced apoptosis publication-title: Mol Cell Neurosci doi: 10.1016/j.mcn.2003.09.017 – volume: 2 start-page: 180 year: 2010 end-page: 91 ident: CR22 article-title: Polyglutamine diseases: where does toxicity come from? what is toxicity? where are we going? publication-title: J Mol Cell Biol doi: 10.1093/jmcb/mjq005 – volume: 24 start-page: 222 year: 2013 end-page: 8 ident: CR13 article-title: Humanin: a harbinger of mitochondrial-derived peptides? publication-title: Trends Endocrinol Metab doi: 10.1016/j.tem.2013.01.005 – volume: 16 start-page: 569 year: 2015 end-page: 85 ident: CR41 article-title: Mitochondria in health, aging and diseases: the epigenetic perspective publication-title: Biogerontology doi: 10.1007/s10522-015-9562-3 – volume: 100 start-page: 13042 year: 2003 end-page: 7 ident: CR21 article-title: Interaction between the Alzheimer's survival peptide humanin and insulin-like growth factor-binding protein 3 regulates cell survival and apoptosis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2135111100 – volume: 101 start-page: 970 year: 2016 end-page: 975 ident: CR3 article-title: Comparison of anti-VEGF therapies on fibrovascular pigment epithelial detachments in age-related macular degeneration publication-title: Br J Ophthalmol doi: 10.1136/bjophthalmol-2016-309434 – volume: 31 start-page: 424 year: 2002 end-page: 8 ident: CR35 article-title: Uncontrolled C3 activation causes membranoproliferative glomerulonephritis in mice deficient in complement factor H publication-title: Nat Genet doi: 10.1038/ng912 – volume: 423 start-page: 456 year: 2003 end-page: 61 ident: CR59 article-title: Humanin peptide suppresses apoptosis by interfering with Bax activation publication-title: Nature doi: 10.1038/nature01627 – volume: 134 start-page: 1597 year: 2001 end-page: 9 ident: CR18 article-title: [Gly(14)]-Humanin improved the learning and memory impairment induced by scopolamine publication-title: Br J Pharmacol doi: 10.1038/sj.bjp.0704429 – volume: 4 start-page: e6334 year: 2009 ident: CR57 article-title: Humanin: a novel central regulator of peripheral insulin action publication-title: PLoS One doi: 10.1371/journal.pone.0006334 – volume: 6 start-page: 395 year: 2014 end-page: 399 ident: CR5 article-title: Retinal energetics: its critical role in retinal physiology and pathology publication-title: Exp Rev Ophthalmol doi: 10.1586/eop.11.44 – volume: 15 start-page: 2086 year: 2008 end-page: 98 ident: CR16 article-title: A rescue factor for Alzheimer's diseases: discovery, activity, structure, and mechanism publication-title: Curr Med Chem doi: 10.2174/092986708785747616 – volume: 33 start-page: 399 year: 2012 end-page: 417 ident: CR39 article-title: Consequences of oxidative stress in age-related macular degeneration publication-title: Mol Aspects Med doi: 10.1016/j.mam.2012.03.009 – volume: 20 start-page: 2864 year: 2009 end-page: 73 ident: CR60 article-title: Humanin inhibits neuronal cell death by interacting with a cytokine receptor complex or complexes involving CNTF receptor alpha/WSX-1/gp130 publication-title: Mol Biol Cell doi: 10.1091/mbc.e09-02-0168 – volume: 129 start-page: 75 year: 2011 end-page: 80 ident: CR1 article-title: Prevalence of age-related macular degeneration in the US population publication-title: Arch Ophthalmol doi: 10.1001/archophthalmol.2010.318 – volume: 483 start-page: 1187 year: 2016 end-page: 1193 ident: CR12 article-title: Pathways to mitochondrial dysfunction in ALS pathogenesis publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2016.07.055 – volume: 75 start-page: 26 year: 2012 end-page: 39 ident: CR31 article-title: Mechanisms of age-related macular degeneration publication-title: Neuron doi: 10.1016/j.neuron.2012.06.018 – volume: 358 start-page: 2606 year: 2008 end-page: 17 ident: CR37 article-title: Age-related macular degeneration publication-title: N Engl J Med doi: 10.1056/NEJMra0801537 – volume: 8 start-page: e63205 year: 2013 ident: CR47 article-title: Ablation of C/EBP homologous protein does not protect T17M RHO mice from retinal degeneration publication-title: PLoS One doi: 10.1371/journal.pone.0063205 – volume: 284 start-page: 9529 year: 2009 end-page: 39 ident: CR33 article-title: BMP4 mediates oxidative stress-induced retinal pigment epithelial cell senescence and is overexpressed in age-related macular degeneration publication-title: J Biol Chem doi: 10.1074/jbc.M809393200 – volume: 10 start-page: 1989 year: 2014 end-page: 2005 ident: CR45 article-title: Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD publication-title: Autophagy doi: 10.4161/auto.36184 – volume: 37 start-page: 2613 year: 2006 end-page: 9 ident: CR19 article-title: Humanin is a novel neuroprotective agent against stroke publication-title: Stroke doi: 10.1161/01.STR.0000242772.94277.1f – volume: 156 start-page: 4511 year: 2015 end-page: 21 ident: CR27 article-title: The potent humanin analogue (HNG) protects germ cells and leucocytes while enhancing chemotherapy-induced suppression of cancer metastases in male mice publication-title: Endocrinology doi: 10.1210/en.2015-1542 – volume: 24 start-page: 585 year: 2003 end-page: 595 ident: CR25 article-title: Identification of essential amino acids in Humanin, a neuroprotective factor against Alzheimer’s disease-relevant insults publication-title: Peptides doi: 10.1016/S0196-9781(03)00106-2 – volume: 8 start-page: 796 year: 2016 end-page: 809 ident: CR15 article-title: Naturally occurring mitochondrial-derived peptides are age-dependent regulators of apoptosis, insulin sensitivity, and inflammatory markers publication-title: Aging (Albany NY) doi: 10.18632/aging.100943 – volume: 57 start-page: 1238 year: 2016 end-page: 53 ident: CR24 article-title: The mitochondrial-derived peptide humanin protects RPE cells from oxidative stress, senescence, and mitochondrial dysfunction publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.15-17053 – volume: 56 start-page: 417 year: 2010 end-page: 23 ident: CR26 article-title: Protective effects of [Gly14]-Humanin on beta-amyloid-induced PC12 cell death by preventing mitochondrial dysfunction publication-title: Neurochem Int doi: 10.1016/j.neuint.2009.11.015 – volume: 35 start-page: 7304 year: 2015 end-page: 11 ident: CR49 article-title: Investigating mitochondria as a target for treating age-related macular degeneration publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0190-15.2015 – volume: 283 start-page: 460 year: 2001 end-page: 8 ident: CR55 article-title: Mechanisms of neuroprotection by a novel rescue factor humanin from Swedish mutant amyloid precursor protein publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.2001.4765 – volume: 29 start-page: 1013 year: 2015 end-page: 26 ident: CR52 article-title: Dementia of the eye: the role of amyloid beta in retinal degeneration publication-title: Eye (Lond) doi: 10.1038/eye.2015.100 – volume: 100 start-page: 361 year: 2012 end-page: 9 ident: CR56 article-title: S14G-humanin improves cognitive deficits and reduces amyloid pathology in the middle-aged APPswe/PS1dE9 mice publication-title: Pharmacol Biochem Behav doi: 10.1016/j.pbb.2011.09.012 – volume: 27 start-page: 983 year: 2006 end-page: 93 ident: CR48 article-title: Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2005.05.012 – volume: 56 start-page: 221 year: 2014 end-page: 31 ident: CR46 article-title: Role of C/EBP homologous protein in retinal ganglion cell death after ischemia/reperfusion injury publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.14-15447 – volume: 120 start-page: 1435 year: 2002 end-page: 42 ident: CR43 article-title: The role of apoptosis in age-related macular degeneration publication-title: Arch Ophthalmol doi: 10.1001/archopht.120.11.1435 – volume: 28 start-page: 1 year: 2009 end-page: 18 ident: CR2 article-title: Molecular pathology of age-related macular degeneration publication-title: Prog Retin Eye Res doi: 10.1016/j.preteyeres.2008.10.001 – volume: 46 start-page: 1765 year: 2005 end-page: 73 ident: CR30 article-title: Nuclear gene expression changes due to mitochondrial dysfunction in ARPE-19 cells: implications for age-related macular degeneration publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.04-1327 – volume: 128 start-page: 724 year: 2010 end-page: 30 ident: CR8 article-title: Mitochondrial damage in the trabecular meshwork of patients with glaucoma publication-title: Arch Ophthalmol doi: 10.1001/archophthalmol.2010.87 – volume: 1852 start-page: 2474 year: 2015 end-page: 83 ident: CR9 article-title: Oxidative stress, mitochondrial damage and diabetic retinopathy publication-title: Biochim Biophys Acta doi: 10.1016/j.bbadis.2015.08.001 – volume: 40 start-page: 124 year: 2008 end-page: 8 ident: CR36 article-title: Ccl2/Cx3cr1-deficient mice: an animal model for age-related macular degeneration publication-title: Ophthalmic Res doi: 10.1159/000119862 – volume: 4 start-page: 139 year: 2006 end-page: 47 ident: CR17 article-title: Neuronal cell death in Alzheimer's disease and a neuroprotective factor, humanin publication-title: Curr Neuropharmacol doi: 10.2174/157015906776359577 – volume: 30 start-page: 1940 year: 2010 end-page: 8 ident: CR20 article-title: Acute humanin therapy attenuates myocardial ischemia and reperfusion injury in mice publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.110.205997 – volume: 11 start-page: e0159828 year: 2016 ident: CR28 article-title: Differential expression of complement markers in normal and AMD transmitochondrial cybrids publication-title: PLoS One doi: 10.1371/journal.pone.0159828 – volume: 8 start-page: 162 year: 2009 end-page: 77 ident: CR51 article-title: Amyloid-beta(1-42) alters structure and function of retinal pigmented epithelial cells publication-title: Aging Cell doi: 10.1111/j.1474-9726.2009.00456.x – volume: 34 start-page: 276 year: 2016 end-page: 85 ident: CR4 article-title: An eye on nutrition: the role of vitamins, essential fatty acids, and antioxidants in age-related macular degeneration, dry eye syndrome, and cataract publication-title: Clin Dermatol doi: 10.1016/j.clindermatol.2015.11.009 – volume: 1802 start-page: 29 year: 2010 ident: BFcddis2017348_CR11 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbadis.2009.08.013 – volume: 8 start-page: e63205 year: 2013 ident: BFcddis2017348_CR47 publication-title: PLoS One doi: 10.1371/journal.pone.0063205 – volume: 6 start-page: 395 year: 2014 ident: BFcddis2017348_CR5 publication-title: Exp Rev Ophthalmol doi: 10.1586/eop.11.44 – volume: 120 start-page: 1435 year: 2002 ident: BFcddis2017348_CR43 publication-title: Arch Ophthalmol doi: 10.1001/archopht.120.11.1435 – volume: 78 start-page: 243 year: 2004 ident: BFcddis2017348_CR50 publication-title: Exp Eye Res doi: 10.1016/j.exer.2003.10.011 – volume: 483 start-page: 1187 year: 2016 ident: BFcddis2017348_CR12 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2016.07.055 – volume: 48 start-page: 4866 year: 2007 ident: BFcddis2017348_CR44 publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.07-0918 – volume: 4 start-page: e6334 year: 2009 ident: BFcddis2017348_CR57 publication-title: PLoS One doi: 10.1371/journal.pone.0006334 – volume: 100 start-page: 13042 year: 2003 ident: BFcddis2017348_CR21 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2135111100 – volume: 29 start-page: 1013 year: 2015 ident: BFcddis2017348_CR52 publication-title: Eye (Lond) doi: 10.1038/eye.2015.100 – volume: 5 start-page: 210 year: 2014 ident: BFcddis2017348_CR53 publication-title: Front Endocrinol (Lausanne) doi: 10.3389/fendo.2014.00210 – volume: 129 start-page: 75 year: 2011 ident: BFcddis2017348_CR1 publication-title: Arch Ophthalmol doi: 10.1001/archophthalmol.2010.318 – volume: 106 start-page: djt459 year: 2014 ident: BFcddis2017348_CR58 publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djt459 – volume: 98 start-page: 6336 year: 2001 ident: BFcddis2017348_CR54 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.101133498 – volume: 25 start-page: 95 year: 2004 ident: BFcddis2017348_CR23 publication-title: Mol Cell Neurosci doi: 10.1016/j.mcn.2003.09.017 – volume: 16 start-page: 569 year: 2015 ident: BFcddis2017348_CR41 publication-title: Biogerontology doi: 10.1007/s10522-015-9562-3 – volume: 31 start-page: 424 year: 2002 ident: BFcddis2017348_CR35 publication-title: Nat Genet doi: 10.1038/ng912 – volume: 23 start-page: S29 year: 2010 ident: BFcddis2017348_CR38 publication-title: J Nephrol – volume: 423 start-page: 456 year: 2003 ident: BFcddis2017348_CR59 publication-title: Nature doi: 10.1038/nature01627 – volume: 33 start-page: 399 year: 2012 ident: BFcddis2017348_CR39 publication-title: Mol Aspects Med doi: 10.1016/j.mam.2012.03.009 – volume: 56 start-page: 417 year: 2010 ident: BFcddis2017348_CR26 publication-title: Neurochem Int doi: 10.1016/j.neuint.2009.11.015 – volume: 358 start-page: 2606 year: 2008 ident: BFcddis2017348_CR37 publication-title: N Engl J Med doi: 10.1056/NEJMra0801537 – volume: 156 start-page: 4511 year: 2015 ident: BFcddis2017348_CR27 publication-title: Endocrinology doi: 10.1210/en.2015-1542 – volume: 4 start-page: 139 year: 2006 ident: BFcddis2017348_CR17 publication-title: Curr Neuropharmacol doi: 10.2174/157015906776359577 – volume: 2 start-page: 180 year: 2010 ident: BFcddis2017348_CR22 publication-title: J Mol Cell Biol doi: 10.1093/jmcb/mjq005 – volume: 8 start-page: 796 year: 2016 ident: BFcddis2017348_CR15 publication-title: Aging (Albany NY) doi: 10.18632/aging.100943 – volume: 75 start-page: 26 year: 2012 ident: BFcddis2017348_CR31 publication-title: Neuron doi: 10.1016/j.neuron.2012.06.018 – volume: 134 start-page: 1597 year: 2001 ident: BFcddis2017348_CR18 publication-title: Br J Pharmacol doi: 10.1038/sj.bjp.0704429 – volume: 24 start-page: 222 year: 2013 ident: BFcddis2017348_CR13 publication-title: Trends Endocrinol Metab doi: 10.1016/j.tem.2013.01.005 – volume: 40 start-page: 124 year: 2008 ident: BFcddis2017348_CR36 publication-title: Ophthalmic Res doi: 10.1159/000119862 – volume: 283 start-page: 460 year: 2001 ident: BFcddis2017348_CR55 publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.2001.4765 – volume: 10 start-page: 1989 year: 2014 ident: BFcddis2017348_CR45 publication-title: Autophagy doi: 10.4161/auto.36184 – volume: 8 start-page: 162 year: 2009 ident: BFcddis2017348_CR51 publication-title: Aging Cell doi: 10.1111/j.1474-9726.2009.00456.x – volume: 4 start-page: 17 year: 2012 ident: BFcddis2017348_CR40 publication-title: Epigenomics doi: 10.2217/epi.11.109 – volume: 24 start-page: 4491 year: 2015 ident: BFcddis2017348_CR29 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddv173 – volume: 27 start-page: 983 year: 2006 ident: BFcddis2017348_CR48 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2005.05.012 – volume: 34 start-page: 276 year: 2016 ident: BFcddis2017348_CR4 publication-title: Clin Dermatol doi: 10.1016/j.clindermatol.2015.11.009 – volume: 37 start-page: 2613 year: 2006 ident: BFcddis2017348_CR19 publication-title: Stroke doi: 10.1161/01.STR.0000242772.94277.1f – volume: 20 start-page: 2864 year: 2009 ident: BFcddis2017348_CR60 publication-title: Mol Biol Cell doi: 10.1091/mbc.e09-02-0168 – volume: 15 start-page: 2086 year: 2008 ident: BFcddis2017348_CR16 publication-title: Curr Med Chem doi: 10.2174/092986708785747616 – volume: 21 start-page: 443 year: 2015 ident: BFcddis2017348_CR14 publication-title: Cell Metab doi: 10.1016/j.cmet.2015.02.009 – volume: 1853 start-page: 2897 year: 2015 ident: BFcddis2017348_CR42 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamcr.2015.08.012 – volume: 1410 start-page: 103 year: 1999 ident: BFcddis2017348_CR6 publication-title: Biochim Biophys Acta doi: 10.1016/S0005-2728(98)00161-3 – volume: 51 start-page: 5470 year: 2010 ident: BFcddis2017348_CR7 publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.10-5429 – volume: 1802 start-page: 2 year: 2010 ident: BFcddis2017348_CR10 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbadis.2009.10.006 – volume: 128 start-page: 724 year: 2010 ident: BFcddis2017348_CR8 publication-title: Arch Ophthalmol doi: 10.1001/archophthalmol.2010.87 – volume: 35 start-page: 7304 year: 2015 ident: BFcddis2017348_CR49 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0190-15.2015 – volume: 28 start-page: 1 year: 2009 ident: BFcddis2017348_CR2 publication-title: Prog Retin Eye Res doi: 10.1016/j.preteyeres.2008.10.001 – volume: 56 start-page: 221 year: 2014 ident: BFcddis2017348_CR46 publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.14-15447 – volume: 5 start-page: e14319 year: 2016 ident: BFcddis2017348_CR34 publication-title: Elife doi: 10.7554/eLife.14319 – volume: 30 start-page: 1940 year: 2010 ident: BFcddis2017348_CR20 publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.110.205997 – volume: 101 start-page: 970 year: 2016 ident: BFcddis2017348_CR3 publication-title: Br J Ophthalmol doi: 10.1136/bjophthalmol-2016-309434 – volume: 24 start-page: 585 year: 2003 ident: BFcddis2017348_CR25 publication-title: Peptides doi: 10.1016/S0196-9781(03)00106-2 – volume: 1852 start-page: 2474 year: 2015 ident: BFcddis2017348_CR9 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbadis.2015.08.001 – volume: 17 start-page: 19 year: 2003 ident: BFcddis2017348_CR32 publication-title: Korean J Ophthalmol doi: 10.3341/kjo.2003.17.1.19 – volume: 57 start-page: 1238 year: 2016 ident: BFcddis2017348_CR24 publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.15-17053 – volume: 46 start-page: 1765 year: 2005 ident: BFcddis2017348_CR30 publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.04-1327 – volume: 100 start-page: 361 year: 2012 ident: BFcddis2017348_CR56 publication-title: Pharmacol Biochem Behav doi: 10.1016/j.pbb.2011.09.012 – volume: 284 start-page: 9529 year: 2009 ident: BFcddis2017348_CR33 publication-title: J Biol Chem doi: 10.1074/jbc.M809393200 – volume: 11 start-page: e0159828 year: 2016 ident: BFcddis2017348_CR28 publication-title: PLoS One doi: 10.1371/journal.pone.0159828 – reference: 21220632 - Arch Ophthalmol. 2011 Jan;129(1):75-80 – reference: 11327724 - Biochem Biophys Res Commun. 2001 May 4;283(2):460-8 – reference: 16960089 - Stroke. 2006 Oct;37(10):2613-9 – reference: 19733240 - Biochim Biophys Acta. 2010 Jan;1802(1):29-44 – reference: 18421225 - Ophthalmic Res. 2008;40(3-4):124-8 – reference: 19026761 - Prog Retin Eye Res. 2009 Jan;28(1):1-18 – reference: 25484094 - Autophagy. 2014;10(11):1989-2005 – reference: 19386761 - Mol Biol Cell. 2009 Jun;20(12):2864-73 – reference: 26384090 - Endocrinology. 2015 Dec;156(12 ):4511-21 – reference: 23646198 - PLoS One. 2013 Apr 30;8(4):e63205 – reference: 25711915 - Biogerontology. 2015 Oct;16(5):569-85 – reference: 19158083 - J Biol Chem. 2009 Apr 3;284(14):9529-39 – reference: 24586107 - J Natl Cancer Inst. 2014 Mar;106(3):djt459 – reference: 25414185 - Invest Ophthalmol Vis Sci. 2014 Nov 20;56(1):221-31 – reference: 12882504 - Korean J Ophthalmol. 2003 Jun;17(1):19-28 – reference: 26978795 - Elife. 2016 Mar 15;5:null – reference: 26990160 - Invest Ophthalmol Vis Sci. 2016 Mar;57(3):1238-53 – reference: 19853658 - Biochim Biophys Acta. 2010 Jan;1802(1):2-10 – reference: 22510306 - Mol Aspects Med. 2012 Aug;33(4):399-417 – reference: 15979212 - Neurobiol Aging. 2006 Jul;27(7):983-93 – reference: 25964427 - Hum Mol Genet. 2015 Aug 15;24(16):4491-503 – reference: 20547950 - Arch Ophthalmol. 2010 Jun;128(6):724-30 – reference: 25738459 - Cell Metab. 2015 Mar 3;21(3):443-54 – reference: 20410236 - J Mol Cell Biol. 2010 Aug;2(4):180-91 – reference: 18615127 - Curr Neuropharmacol. 2006 Apr;4(2):139-47 – reference: 18781936 - Curr Med Chem. 2008;15(21):2086-98 – reference: 11371646 - Proc Natl Acad Sci U S A. 2001 May 22;98 (11):6336-41 – reference: 26248057 - Biochim Biophys Acta. 2015 Nov;1852(11):2474-83 – reference: 27486856 - PLoS One. 2016 Aug 03;11(8):e0159828 – reference: 12860203 - Peptides. 2003 Apr;24(4):585-95 – reference: 15851580 - Invest Ophthalmol Vis Sci. 2005 May;46(5):1765-73 – reference: 14962743 - Mol Cell Neurosci. 2004 Jan;25(1):95-102 – reference: 26305120 - Biochim Biophys Acta. 2015 Nov;1853(11 Pt A):2897-906 – reference: 12732850 - Nature. 2003 May 22;423(6938):456-61 – reference: 25538685 - Front Endocrinol (Lausanne). 2014 Dec 04;5:210 – reference: 20872368 - J Nephrol. 2010 Sep-Oct;23 Suppl 15:S29-36 – reference: 19941922 - Neurochem Int. 2010 Feb;56(3):417-23 – reference: 12091909 - Nat Genet. 2002 Aug;31(4):424-8 – reference: 26088679 - Eye (Lond). 2015 Aug;29(8):1013-26 – reference: 19623253 - PLoS One. 2009 Jul 22;4(7):e6334 – reference: 17962433 - Invest Ophthalmol Vis Sci. 2007 Nov;48(11):4866-81; biography 4864-5 – reference: 14561895 - Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):13042-7 – reference: 19239420 - Aging Cell. 2009 Apr;8(2):162-77 – reference: 27416757 - Biochem Biophys Res Commun. 2017 Feb 19;483(4):1187-1193 – reference: 20651283 - Arterioscler Thromb Vasc Biol. 2010 Oct;30(10):1940-8 – reference: 23402768 - Trends Endocrinol Metab. 2013 May;24(5):222-8 – reference: 27070352 - Aging (Albany NY). 2016 Apr;8(4):796-809 – reference: 18550876 - N Engl J Med. 2008 Jun 12;358(24):2606-17 – reference: 27913442 - Br J Ophthalmol. 2017 Jul;101(7):970-975 – reference: 20505194 - Invest Ophthalmol Vis Sci. 2010 Nov;51(11):5470-9 – reference: 10076021 - Biochim Biophys Acta. 1999 Feb 9;1410(2):103-23 – reference: 25948278 - J Neurosci. 2015 May 6;35(18):7304-11 – reference: 22794258 - Neuron. 2012 Jul 12;75(1):26-39 – reference: 21993310 - Pharmacol Biochem Behav. 2012 Jan;100(3):361-9 – reference: 11739234 - Br J Pharmacol. 2001 Dec;134(8):1597-9 – reference: 12427055 - Arch Ophthalmol. 2002 Nov;120(11):1435-42 – reference: 22332655 - Epigenomics. 2012 Feb;4(1):17-27 – reference: 26903189 - Clin Dermatol. 2016 Mar-Apr;34(2):276-85 – reference: 14729357 - Exp Eye Res. 2004 Feb;78(2):243-56 |
SSID | ssj0000330256 |
Score | 2.439199 |
Snippet | Age-related macular degeneration (AMD) ranks third among the leading causes of visual impairment with a blindness prevalence rate of 8.7%. Despite several... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2951 |
SubjectTerms | 13 13/2 13/31 13/51 14 14/19 14/34 38 38/39 38/77 38/90 631/45/612/1234 631/80/642/333 631/80/82 692/699/3161/1626 82 82/1 82/29 96 96/106 96/2 Aged Antibodies Biochemistry Biomedical and Life Sciences Cell Biology Cell Culture Cell Survival Female Humans Immunology Intracellular Signaling Peptides and Proteins - metabolism Life Sciences Macular Degeneration - metabolism Macular Degeneration - pathology Macular Degeneration - prevention & control Male Mitochondria - metabolism Mitochondria - pathology Mitochondrial Proteins - metabolism Original original-article Retinal Pigment Epithelium - metabolism Retinal Pigment Epithelium - pathology |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBddy2AvZd1nunWoMGjyoM22JFt-DGmTUEgopYG-GX2lLTTuqNOH_gn9r3cn24GkBPpm8FmSdSfdh-5-IuR3BjIiY--ZjrhgItGKGZkK5lQOrpvT2sdYOzyZpuOZOL-W142jWDVplTWkZdim2-ywvxazazATK_vDhXpH9hC2HSV6kA5WMZUInHNQ4S02I1cbn63rnlcG5eu8yI3D0aBzhh_JfmMs0n49vAOy48tP5H19feTzZ_ISIvB3JR3R7ng66tEGdKGisEmwUKXiHV3okGpKnb8JENPICdrtT057dImKagFrGvbA0qEo0v7lxRmLc2qfsZSrolh-QtdJdOkoxvvrVvUCOvtCZsOzq8GYNVcrMCt4tGS58Z4nyia5kSKOXAyOFGh2y01qcy5N7IxItRR-bnlutfJqbgTMuEgiOzda8K9kt3wo_XdCI6vTuU3Ak3ZKSJci2reTRnMtI2G57hDWTnphG9xxvP7ivgjn31wVgUkFMqkAJnXIyYr-X424sZXyuOVhAYsC_1yX_uGpKhDkDZxvsI465FvN01Vb4CImaZZlHZKtcXtFgIDb62_Ku9sAvC0lmrPQb7eVi6JZ8dWWIR6-nfQH-YCPGDdOop9kd_n45I_A4FmaX0HK_wMHoAIq priority: 102 providerName: Springer Nature |
Title | Humanin G (HNG) protects age-related macular degeneration (AMD) transmitochondrial ARPE-19 cybrids from mitochondrial and cellular damage |
URI | https://link.springer.com/article/10.1038/cddis.2017.348 https://www.ncbi.nlm.nih.gov/pubmed/28726777 https://www.proquest.com/docview/1921133743 https://pubmed.ncbi.nlm.nih.gov/PMC5550888 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYJiReEN8rH5WRkOgePJLYjp0HhELpVlVqNQ0q9S1ybBcmrRmsnUT_BP5r7pykqJS98BQpcezEd-e7s-9-R8gbBTwiY--ZibhgIjGalTIVzOkMXDdnjI8xd3g8SYdTMZrJ2Z_4p2YCl_907bCe1PT68vjnj_UHEPj3dcq4fmcx8gajtNQxF3qPHIBWUiik48bUD6syOO6g3lvcxp3XEBVYqyRVSm2rqB27czd88q8z1KCaTh6Q-41NSfOaCR6SO756RO7WVSbXj8mvsFF_UdFT2htOTo9og82wpLCWsJDM4h1dmBCRSp3_GpCokWC0l48_HdEV6rMFiD7MVuWQY2l-fjZgcUbtGjO-lhSzVOh2E1M5iscCda9mAYM9IdOTwZf-kDUVGJgVPFqxrPSeJ9omWSlFHLkY_C0wACwvU5txWcauFKmRws8tz6zRXs9LoYQQSWTnpRH8Kdmvrip_SGhkTTq3CTjcTgvpUgQFd7I03MhIWG46hLWTXtgGnhyrZFwW4Zic6yLQq0B6FUCvDnm7af-9Bua4teXrloYFyA7-uan81c2yQCw48NHBiOqQZzVNN321zNAhaovamwaIy739pLr4FvC5pUSrF8bttXxRtHx9yyc-_-9BXpB72AnuNifRS7K_ur7xr8BMWpVdsqdmqksO8nz0eQTXj4PJ2Tnc7af9bth66AYJ-Q1jpBsM |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELZKKwQviHKU5ShGQmL7YEjiI87jamm7QHeFUCv1zfK1pRKbVs32oT-Bf82Mk6y0rSrxmkx8ZMaewzOfCflYgozIPEZmMy6YKKxmTirBgq7AdQvWxhxrh6czNTkR30_laecoNl1aZQtpmbbpPjvsi8fsGszEKj9zoR-QLbCzFaZwjdV4FVPJwDkHFd5jM3J967N13XPHoLybF3nrcDTpnIOn5ElnLNJRO7xtshHrZ-Rhe33kzXPyN0Xgz2t6SIeT2eEe7UAXGgqbBEtVKjHQhU2ppjTEswQxjZygw9H06x5doqJawJqGPbAOKIp09OvnPssr6m-wlKuhWH5C10lsHSjG-9tW7QI6e0FODvaPxxPWXa3AvODZklUuRl5oX1ROijwLOThSoNk9d8pXXLo8OKGsFHHueeWtjnruRCmEKDI_d1bwl2SzvqjjK0Izb9XcF-BJBy1kUIj2HaSz3MpMeG4HhPU_3fgOdxyvv_hj0vk31yYxySCTDDBpQD6t6C9bxI17KT_0PDSwKHDmto4X141BkDdwvsE6GpCdlqertsBFLFRZlgNSrnF7RYCA2-tv6vPfCXhbSjRnod9hLxemW_HNPUN8_f-k78mjyfH0yBx9m_14Qx7jY4whF9lbsrm8uo7vwPhZut0k8f8AUqcFGQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoVateEH1vS1tXqtTlYHBiO3GOq4Vl-2CFqiJxs_xKi9QNqLsc-An86844yUoLQuo1mfiRGXsenvlMyKcSZERlMTLLhWQyt5o5VUgWdAWuW7A2Zlg7fDwrpqfy65k62yB5XwuTkvYTpGXapvvssH2P2TWYiVXuCan3LkP9gDwEW5ujwzUuxqu4CgcHHdR4j88o9K1P1_XPHaPybm7krQPSpHcm22SrMxjpqB3iU7IRm2fkUXuF5PVzcpOi8OcNPaLD6exol3bACwsKGwVLlSox0LlN6aY0xF8JZhq5QYej44NdukRlNYd1DftgE1Ac6ejHySHLKuqvsZxrQbEEha6T2CZQjPm3rdo5dPaCnE4Of46nrLtegXkp-JJVLkaRa59XTsmMhwycKdDuXrjCV0K5LDhZWCVj7UXlrY66drKUUubc185K8ZJsNhdNfE0o97aofQ7edNBShQIRv4NyVljFpRd2QFj_043vsMfxCow_Jp2BC20SkwwyyQCTBuTziv6yRd24l_Jjz0MDCwNnbpt4cbUwCPQGDjhYSAPyquXpqi1wE_OiLMsBKde4vSJA0O31N8357wS-rRSatNDvsJcL0636xT1DfPP_pB_I45ODifn-ZfbtLXmCTzGMnPMdsrn8exXfgf2zdO-TwP8D7IoGIg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Humanin+G+%28HNG%29+protects+age-related+macular+degeneration+%28AMD%29+transmitochondrial+ARPE-19+cybrids+from+mitochondrial+and+cellular+damage&rft.jtitle=Cell+death+%26+disease&rft.au=Nashine%2C+Sonali&rft.au=Cohen%2C+Pinchas&rft.au=Chwa%2C+Marilyn&rft.au=Lu%2C+Stephanie&rft.date=2017-07-20&rft.pub=Nature+Publishing+Group&rft.eissn=2041-4889&rft.volume=8&rft.issue=7&rft.spage=e2951&rft_id=info:doi/10.1038%2Fcddis.2017.348&rft_id=info%3Apmid%2F28726777&rft.externalDocID=PMC5550888 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-4889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-4889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-4889&client=summon |