Curcumin‐loaded polycaprolactone nanoparticles prepared by emulsion evaporation stabilized with a pH ‐responsive emulsifier
This study focuses on encapsulating curcumin (CUR) with low water solubility in polycaprolactone (PCL) particles using the emulsion evaporation method. In order to obtain particles with desired properties, a pH-sensitive emulsifier is synthesized by reversible addition fragmentation chain transfer (...
Saved in:
Published in | Polymer engineering and science Vol. 65; no. 6; pp. 3147 - 3162 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Newtown
Society of Plastics Engineers, Inc
01.06.2025
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study focuses on encapsulating curcumin (CUR) with low water solubility in polycaprolactone (PCL) particles using the emulsion evaporation method. In order to obtain particles with desired properties, a pH-sensitive emulsifier is synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. The properties of particles obtained from commercial (Pluronic P105) and synthetic emulsifiers, ABP-1 and ABP-2 (with different HLB values), were evaluated. The morphology of the final particles formed by ABP-1 is spherical and more uniform. The molecular structure design of ABP-1 enabled the production of particles with a narrow size distribution, a feat not achievable with Pluronic P105. The optimal sample prepared from ABP-1, with an entrapment effectiveness (EE%) of 78.4% and an average particle size of 258 [+ or -] 12 nm, was able to deliver CUR in a controlled manner. Also, zeta potential values show that ABP-1 is well separated from the drug-carrying particles in the washing phase, and the particles without emulsifier were evaluated to investigate the drug release. Among other models, the Weibull model showed the best agreement with the experimental data, and based on [beta] parameter value of 0.46, it can be concluded that the drug release mechanism is Fickian. The particles synthesized using both methods give outstanding antibacterial activity (99.9%). |
---|---|
AbstractList | This study focuses on encapsulating curcumin (CUR) with low water solubility in polycaprolactone (PCL) particles using the emulsion evaporation method. In order to obtain particles with desired properties, a pH-sensitive emulsifier is synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. The properties of particles obtained from commercial (Pluronic P105) and synthetic emulsifiers, ABP-1 and ABP-2 (with different HLB values), were evaluated. The morphology of the final particles formed by ABP-1 is spherical and more uniform. The molecular structure design of ABP-1 enabled the production of particles with a narrow size distribution, a feat not achievable with Pluronic P105. The optimal sample prepared from ABP-1, with an entrapment effectiveness (EE%) of 78.4% and an average particle size of 258 [+ or -] 12 nm, was able to deliver CUR in a controlled manner. Also, zeta potential values show that ABP-1 is well separated from the drug-carrying particles in the washing phase, and the particles without emulsifier were evaluated to investigate the drug release. Among other models, the Weibull model showed the best agreement with the experimental data, and based on [beta] parameter value of 0.46, it can be concluded that the drug release mechanism is Fickian. The particles synthesized using both methods give outstanding antibacterial activity (99.9%). This study focuses on encapsulating curcumin (CUR) with low water solubility in polycaprolactone (PCL) particles using the emulsion evaporation method. In order to obtain particles with desired properties, a pH‐sensitive emulsifier is synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. The properties of particles obtained from commercial (Pluronic P105) and synthetic emulsifiers, ABP‐1 and ABP‐2 (with different HLB values), were evaluated. The morphology of the final particles formed by ABP‐1 is spherical and more uniform. The molecular structure design of ABP‐1 enabled the production of particles with a narrow size distribution, a feat not achievable with Pluronic P105. The optimal sample prepared from ABP‐1, with an entrapment effectiveness (EE%) of 78.4% and an average particle size of 258 ± 12 nm, was able to deliver CUR in a controlled manner. Also, zeta potential values show that ABP‐1 is well separated from the drug‐carrying particles in the washing phase, and the particles without emulsifier were evaluated to investigate the drug release. Among other models, the Weibull model showed the best agreement with the experimental data, and based on β parameter value of 0.46, it can be concluded that the drug release mechanism is Fickian. The particles synthesized using both methods give outstanding antibacterial activity (99.9%). Highlights Synthesis of a pH‐responsive block copolymers by reversible addition fragmentation chain transfer (RAFT) polymerization. Application of the block copolymers as smart emulsifier. Preparation of polycaprolactone (PCL) nanoparticles containing curcumin by evaporation emulsion method. The dominance of Fickian diffusion in drug release. Excellent antibacterial properties over a period of time. This study focuses on encapsulating curcumin (CUR) with low water solubility in polycaprolactone (PCL) particles using the emulsion evaporation method. In order to obtain particles with desired properties, a pH-sensitive emulsifier is synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. The properties of particles obtained from commercial (Pluronic P105) and synthetic emulsifiers, ABP-1 and ABP-2 (with different HLB values), were evaluated. The morphology of the final particles formed by ABP-1 is spherical and more uniform. The molecular structure design of ABP-1 enabled the production of particles with a narrow size distribution, a feat not achievable with Pluronic P105. The optimal sample prepared from ABP-1, with an entrapment effectiveness (EE%) of 78.4% and an average particle size of 258 [+ or -] 12 nm, was able to deliver CUR in a controlled manner. Also, zeta potential values show that ABP-1 is well separated from the drug-carrying particles in the washing phase, and the particles without emulsifier were evaluated to investigate the drug release. Among other models, the Weibull model showed the best agreement with the experimental data, and based on [beta] parameter value of 0.46, it can be concluded that the drug release mechanism is Fickian. The particles synthesized using both methods give outstanding antibacterial activity (99.9%). Highlights * Synthesis of a pH-responsive block copolymers by reversible addition fragmentation chain transfer (RAFT) polymerization. * Application of the block copolymers as smart emulsifier. * Preparation of polycaprolactone (PCL) nanoparticles containing curcumin by evaporation emulsion method. * The dominance of Fickian diffusion in drug release. * Excellent antibacterial properties over a period of time. KEYWORDS curcumin, polycaprolactone, smart polymers, surfactant |
Audience | Academic |
Author | Ahmadi, Hanie Haddadi‐Asl, Vahid |
Author_xml | – sequence: 1 givenname: Hanie surname: Ahmadi fullname: Ahmadi, Hanie organization: Department of Polymer Engineering and Color Technology AmirKabir University of Technology Tehran Iran – sequence: 2 givenname: Vahid orcidid: 0000-0002-2728-6307 surname: Haddadi‐Asl fullname: Haddadi‐Asl, Vahid organization: Department of Polymer Engineering and Color Technology AmirKabir University of Technology Tehran Iran |
BookMark | eNptkttqFTEUhoO04G71wjcY8EpwtjlM5nBZNmoLBaHqdVjJrNlNmUnGJFPd3ugj-Iw-iekB7IZNIFlZfP8fsvhPyJHzDgl5xeiaUcrfzejWvOFUPiMrJqu25LWojsiKUsFL0bbtc3IS4w3NrJDdivzaLMEsk3V_f_8ZPfTYF7Mfdwbm4EcwKbsXDpyfISRrRozFHDBfMqd3BU7LGK13Bd7C7AOkuzom0Ha0PzPy3abrAor5vMj2AePsXbS3-KgbLIYX5HiAMeLLx_OUfP3w_svmvLz89PFic3ZZmkrQVHZ1q1nPq6rrDTY17RrWG8paCbWsaikHpKCNRDCaoeZaVJJ2g66bphNDAyBOyesH3_yvbwvGpG78Elx-UgnOO1rXQsj_1BZGVNYNPgUwk41GnbVVK2vRVCxT5QFqiw4DjHlgg83tPX59gM-rx8mag4I3e4LMJPyRtrDEqC4-X-2zb5-weonWYcxbtNvrFB8kh6xN8DEGHNQc7ARhpxhVdwlSOUHqPkHiHyyevQk |
Cites_doi | 10.1016/S0378-5173(02)00058-3 10.1002/mame.202400147 10.1080/01932691.2012.756377 10.1002/adv.21741 10.1586/17434440.1.1.115 10.1007/s00396-014-3464-9 10.1016/j.molliq.2021.117786 10.1080/17415993.2020.1812610 10.1007/s10965-013-0110-z 10.1016/j.fuel.2021.122921 10.1016/j.biomaterials.2013.05.005 10.1016/j.colsurfa.2023.131569 10.1002/jbm.a.36240 10.1007/s10853-018-2588-6 10.1208/s12248‐023‐00869‐4 10.1515/epoly-2019-0021 10.1016/j.matchemphys.2020.123000 10.1002/anie.202013443 10.1021/ma702422y 10.1007/s00289-023-04783-9 10.1021/ie500892b 10.1016/j.colsurfb.2017.11.054 10.1039/C5RA26674B 10.1016/j.colsurfa.2016.12.029 10.1016/j.ijbiomac.2023.124894 10.3390/polym9070285 10.1039/C5RA01444A 10.1016/j.ijbiomac.2025.140932 10.1002/elsc.201800214 10.1021/la900401f 10.1016/j.xphs.2021.11.015 10.1016/j.pdpdt.2020.101674 10.1007/s00396-016-3977-5 10.1016/j.polymer.2019.121716 10.1002/cbdv.202302030 10.1016/j.mtchem.2024.102454 10.1080/00914037.2016.1190927 10.1016/j.jcis.2007.09.081 10.1016/j.colsurfb.2018.03.013 10.1016/S0927-7765(03)00152-8 10.1016/j.polymer.2018.03.058 10.1016/j.matchemphys.2024.130075 10.1016/j.foodchem.2014.09.131 10.1016/j.colsurfb.2018.06.064 10.1016/j.foodhyd.2016.02.036 10.1007/s10965-014-0455-y 10.1002/app.46133 10.1016/j.eurpolymj.2021.110928 10.1016/j.pdpdt.2021.102286 10.1016/j.colsurfb.2018.02.010 10.1039/C6RA07667J 10.1016/j.molliq.2020.113504 10.3109/10717544.2014.927021 10.1080/00914037.2023.2227312 10.1016/j.biopha.2023.116034 10.1039/c4ra01701c 10.1039/C9RA10857B 10.1002/jbm.a.31950 10.1021/cr500129h 10.1016/j.microc.2018.11.017 10.1016/j.reactfunctpolym.2022.105352 10.1016/j.polymer.2020.122859 10.1002/app.31595 10.1515/cppm-2019-0026 10.1016/j.molliq.2021.115916 10.1016/j.ijpharm.2004.12.010 10.3109/10717544.2014.948643 10.1016/j.colsurfa.2023.132808 10.1016/S0168-3659(01)00299-1 10.1016/j.jiec.2022.09.043 10.1002/cncr.21300 10.1007/s11095-006-0180-2 10.1081/DRT-120028238 10.1080/01932691.2016.1216861 10.1155/2015/341848 10.1016/j.molstruc.2022.132879 10.1016/j.lwt.2010.06.032 10.1080/10717540802174662 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 Society of Plastics Engineers, Inc. 2025 Society of Plastics Engineers |
Copyright_xml | – notice: COPYRIGHT 2025 Society of Plastics Engineers, Inc. – notice: 2025 Society of Plastics Engineers |
DBID | AAYXX CITATION N95 ISR 7SR 8FD JG9 |
DOI | 10.1002/pen.27205 |
DatabaseName | CrossRef Gale Business: Insights Gale In Context: Science Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1548-2634 |
EndPage | 3162 |
ExternalDocumentID | A848563741 10_1002_pen_27205 |
GroupedDBID | -~X .-4 .3N .4S .DC .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 29O 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 88I 8AF 8FE 8FG 8G5 8R4 8R5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDEX ABEML ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCZN ACGFO ACGFS ACGOD ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFKRA AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARAPS ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAAKF BAFTC BDRZF BENPR BES BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CITATION CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 DWQXO EBS EJD F00 F01 F04 FEDTE FOJGT G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IAO IEA IOF ISR ITC IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M2Q M6K M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N95 N9A NDZJH NEJ NF~ NNB O66 O9- OIG P2P P2W P2X P4D P62 PALCI PDBOC PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS PV9 Q.N Q11 Q2X QB0 QRW R.K RIWAO RJQFR RNS ROL RWL RX1 RXW RYL RZL S0X SAMSI SUPJJ TUS U5U UB1 V2E W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WTY WXSBR WYISQ XG1 XV2 ZE2 ZY4 ZZTAW ~02 ~IA ~WT 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c430t-968b1d2449dce760971dc0185a654655fe0abc5eacb1eb2b34509fb67793f7aa3 |
ISSN | 0032-3888 |
IngestDate | Sat Aug 23 13:13:25 EDT 2025 Wed Jul 23 16:52:23 EDT 2025 Thu Jul 24 12:10:29 EDT 2025 Tue Jul 29 03:41:27 EDT 2025 Wed Jul 23 03:21:22 EDT 2025 Tue Jul 29 01:11:40 EDT 2025 Tue Aug 05 12:09:14 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c430t-968b1d2449dce760971dc0185a654655fe0abc5eacb1eb2b34509fb67793f7aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2728-6307 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pen.27205 |
PQID | 3229066335 |
PQPubID | 41843 |
PageCount | 16 |
ParticipantIDs | proquest_journals_3229066335 gale_infotracmisc_A848563741 gale_infotracgeneralonefile_A848563741 gale_infotracacademiconefile_A848563741 gale_incontextgauss_ISR_A848563741 gale_businessinsightsgauss_A848563741 crossref_primary_10_1002_pen_27205 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-00 20250601 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-00 |
PublicationDecade | 2020 |
PublicationPlace | Newtown |
PublicationPlace_xml | – name: Newtown |
PublicationTitle | Polymer engineering and science |
PublicationYear | 2025 |
Publisher | Society of Plastics Engineers, Inc Blackwell Publishing Ltd |
Publisher_xml | – name: Society of Plastics Engineers, Inc – name: Blackwell Publishing Ltd |
References | e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 Ma Y (e_1_2_8_39_1) 2011; 6 e_1_2_8_20_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 Łukasiewicz S (e_1_2_8_43_1) 2021; 13 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 Akotkar AM (e_1_2_8_19_1) 2023; 30 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – ident: e_1_2_8_28_1 doi: 10.1016/S0378-5173(02)00058-3 – ident: e_1_2_8_68_1 doi: 10.1002/mame.202400147 – ident: e_1_2_8_71_1 doi: 10.1080/01932691.2012.756377 – ident: e_1_2_8_11_1 doi: 10.1002/adv.21741 – volume: 30 start-page: 635 year: 2023 ident: e_1_2_8_19_1 article-title: Formulation and evaluation of oral microspheres containing antihypertensive drugs by emulsion solvent evaporation method publication-title: J Popul Ther Clin Pharmacol – ident: e_1_2_8_76_1 doi: 10.1586/17434440.1.1.115 – ident: e_1_2_8_24_1 doi: 10.1007/s00396-014-3464-9 – ident: e_1_2_8_53_1 doi: 10.1016/j.molliq.2021.117786 – ident: e_1_2_8_65_1 doi: 10.1080/17415993.2020.1812610 – ident: e_1_2_8_77_1 doi: 10.1007/s10965-013-0110-z – ident: e_1_2_8_37_1 doi: 10.1016/j.fuel.2021.122921 – ident: e_1_2_8_5_1 doi: 10.1016/j.biomaterials.2013.05.005 – ident: e_1_2_8_21_1 doi: 10.1016/j.colsurfa.2023.131569 – ident: e_1_2_8_17_1 doi: 10.1002/jbm.a.36240 – ident: e_1_2_8_23_1 doi: 10.1007/s10853-018-2588-6 – ident: e_1_2_8_25_1 doi: 10.1208/s12248‐023‐00869‐4 – ident: e_1_2_8_12_1 doi: 10.1515/epoly-2019-0021 – ident: e_1_2_8_54_1 doi: 10.1016/j.matchemphys.2020.123000 – ident: e_1_2_8_35_1 doi: 10.1002/anie.202013443 – ident: e_1_2_8_67_1 doi: 10.1021/ma702422y – ident: e_1_2_8_4_1 doi: 10.1007/s00289-023-04783-9 – ident: e_1_2_8_10_1 doi: 10.1021/ie500892b – ident: e_1_2_8_36_1 doi: 10.1016/j.colsurfb.2017.11.054 – ident: e_1_2_8_41_1 doi: 10.1039/C5RA26674B – ident: e_1_2_8_50_1 doi: 10.1016/j.colsurfa.2016.12.029 – ident: e_1_2_8_18_1 doi: 10.1016/j.ijbiomac.2023.124894 – ident: e_1_2_8_70_1 doi: 10.3390/polym9070285 – volume: 13 issue: 191 year: 2021 ident: e_1_2_8_43_1 article-title: Polycaprolactone nanoparticles as promising candidates for nanocarriers in novel nanomedicines publication-title: Pharmaceutics – ident: e_1_2_8_8_1 doi: 10.1039/C5RA01444A – ident: e_1_2_8_14_1 doi: 10.1016/j.ijbiomac.2025.140932 – ident: e_1_2_8_47_1 doi: 10.1002/elsc.201800214 – ident: e_1_2_8_73_1 doi: 10.1021/la900401f – ident: e_1_2_8_57_1 doi: 10.1016/j.xphs.2021.11.015 – ident: e_1_2_8_83_1 doi: 10.1016/j.pdpdt.2020.101674 – ident: e_1_2_8_64_1 doi: 10.1007/s00396-016-3977-5 – ident: e_1_2_8_62_1 doi: 10.1016/j.polymer.2019.121716 – ident: e_1_2_8_2_1 doi: 10.1002/cbdv.202302030 – ident: e_1_2_8_16_1 doi: 10.1016/j.mtchem.2024.102454 – ident: e_1_2_8_63_1 doi: 10.1080/00914037.2016.1190927 – ident: e_1_2_8_72_1 doi: 10.1016/j.jcis.2007.09.081 – ident: e_1_2_8_75_1 doi: 10.1016/j.colsurfb.2018.03.013 – ident: e_1_2_8_31_1 doi: 10.1016/S0927-7765(03)00152-8 – ident: e_1_2_8_15_1 doi: 10.1016/j.polymer.2018.03.058 – ident: e_1_2_8_61_1 doi: 10.1016/j.matchemphys.2024.130075 – ident: e_1_2_8_79_1 doi: 10.1016/j.foodchem.2014.09.131 – ident: e_1_2_8_13_1 doi: 10.1016/j.colsurfb.2018.06.064 – ident: e_1_2_8_6_1 doi: 10.1016/j.foodhyd.2016.02.036 – ident: e_1_2_8_82_1 doi: 10.1007/s10965-014-0455-y – ident: e_1_2_8_29_1 doi: 10.1002/app.46133 – ident: e_1_2_8_51_1 – ident: e_1_2_8_52_1 doi: 10.1016/j.eurpolymj.2021.110928 – ident: e_1_2_8_9_1 doi: 10.1016/j.pdpdt.2021.102286 – ident: e_1_2_8_80_1 doi: 10.1016/j.colsurfb.2018.02.010 – ident: e_1_2_8_38_1 doi: 10.1039/C6RA07667J – ident: e_1_2_8_56_1 doi: 10.1016/j.molliq.2020.113504 – ident: e_1_2_8_49_1 doi: 10.3109/10717544.2014.927021 – ident: e_1_2_8_22_1 doi: 10.1080/00914037.2023.2227312 – ident: e_1_2_8_3_1 doi: 10.1016/j.biopha.2023.116034 – ident: e_1_2_8_81_1 doi: 10.1039/c4ra01701c – ident: e_1_2_8_27_1 doi: 10.1039/C9RA10857B – ident: e_1_2_8_40_1 doi: 10.1002/jbm.a.31950 – ident: e_1_2_8_33_1 doi: 10.1021/cr500129h – ident: e_1_2_8_55_1 doi: 10.1016/j.microc.2018.11.017 – ident: e_1_2_8_78_1 doi: 10.1016/j.reactfunctpolym.2022.105352 – ident: e_1_2_8_69_1 doi: 10.1016/j.polymer.2020.122859 – ident: e_1_2_8_74_1 doi: 10.1002/app.31595 – ident: e_1_2_8_59_1 doi: 10.1515/cppm-2019-0026 – ident: e_1_2_8_34_1 doi: 10.1016/j.molliq.2021.115916 – ident: e_1_2_8_42_1 doi: 10.1016/j.ijpharm.2004.12.010 – volume: 6 start-page: 2679 year: 2011 ident: e_1_2_8_39_1 article-title: Novel docetaxel‐loaded nanoparticles based on PCL‐tween 80 copolymer for cancer treatment publication-title: Int J Nanomedicine – ident: e_1_2_8_45_1 doi: 10.3109/10717544.2014.948643 – ident: e_1_2_8_20_1 doi: 10.1016/j.colsurfa.2023.132808 – ident: e_1_2_8_32_1 doi: 10.1016/S0168-3659(01)00299-1 – ident: e_1_2_8_60_1 doi: 10.1016/j.jiec.2022.09.043 – ident: e_1_2_8_7_1 doi: 10.1002/cncr.21300 – ident: e_1_2_8_26_1 doi: 10.1007/s11095-006-0180-2 – ident: e_1_2_8_44_1 doi: 10.1081/DRT-120028238 – ident: e_1_2_8_66_1 doi: 10.1080/01932691.2016.1216861 – ident: e_1_2_8_30_1 doi: 10.1155/2015/341848 – ident: e_1_2_8_58_1 doi: 10.1016/j.molstruc.2022.132879 – ident: e_1_2_8_46_1 doi: 10.1016/j.lwt.2010.06.032 – ident: e_1_2_8_48_1 doi: 10.1080/10717540802174662 |
SSID | ssj0002359 |
Score | 2.4458094 |
Snippet | This study focuses on encapsulating curcumin (CUR) with low water solubility in polycaprolactone (PCL) particles using the emulsion evaporation method. In... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Index Database |
StartPage | 3147 |
SubjectTerms | Addition polymerization Block copolymers Chain transfer Chains (polymeric) Chemical synthesis Emulsifiers Emulsion polymerization Emulsions Entrapment Evaporation Fragmentation Hydrogen-ion concentration Molecular structure Nanoparticles Polycaprolactone Polymerization Surface active agents Zeta potential |
Title | Curcumin‐loaded polycaprolactone nanoparticles prepared by emulsion evaporation stabilized with a pH ‐responsive emulsifier |
URI | https://www.proquest.com/docview/3229066335 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbQeAAe0BggNgayED8eJo8kTtLksSqgggRCY0N7i2wn2Sa1aZQfk9a_nrvYbpLRh8FLVKXXJPJ9PX927r4j5C2fuCr1JWdK-A5DjSkWA81ggRQ8F54MI4m1w99_hPMz_9t5cN7nqnbVJY08VuutdSX_41U4B37FKtl_8OzmonACPoN_4QgehuOdfDxrK9Uurwq2WIkUmGO5WtwoATFxgV10gD4WooBFscl9Qz0AnW8OlDNbtgvcKEO579LCAJgi5squbUq6OCrnrDJZtNeZ-VF-ZTJ6Daf9CXddZtVR1ksbdq8kzOS6gdTlUqS6RzaWtQ9DH5xn07rbjP4tLk2OvdmK8II-ZUpvRZo8U0zeA-rfyUxbVUUb8oaxmHuMR7qpn43Fum-EwdwwsHJXC3P-FfG1gmyZFcf4Rjnop7VNsuE08qMg5BOUN7jvwWoCG118OulVxjwe6FWSeSArQOV4HzfXHdGW7ZN3x0hOd8ljs5SgU-3eJ-ReVuyRBzPbwW-PPBqITT4l61toobfRQkdooRYtVN5QixY6QAvt0UIRLVTQEVpoj5Zn5OzL59PZnJnOG0z53GlYDH9RNwXmF6cqm4SoM5YqB6idwNq3IMgzR0gVwKQt3Ux6kvvAO3MZTiDa5xMh-HOyU8CDvyAU32znisehSmEx7ucCpl-gnb5wPRXFQu6TN3Zgk1ILrCRaSttLYPSTbvT3yTsc8sQ0ZoVDjVtX9YVo6zrpHQwX6-xQ2KTAzClt8PXXycjogzHKV00llDCFKPC8qIU2snw_srzQSvDbDA9HhuBnNf7aQiUx4aNOeNdpIeQ8OLjrbV6Sh_3f7pDsNFWbvQJO3MjXHaL_AEpOwUs |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Curcumin-loaded+polycaprolactone+nanoparticles+prepared+by+emulsion+evaporation+stabilized+with+a+pH-responsive+emulsifier&rft.jtitle=Polymer+engineering+and+science&rft.au=Ahmadi%2C+Hanie&rft.au=Haddadi-Asl%2C+Vahid&rft.date=2025-06-01&rft.pub=Society+of+Plastics+Engineers%2C+Inc&rft.issn=0032-3888&rft.volume=65&rft.issue=6&rft.spage=3147&rft_id=info:doi/10.1002%2Fpen.27205&rft.externalDocID=A848563741 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3888&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3888&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3888&client=summon |