Curcumin‐loaded polycaprolactone nanoparticles prepared by emulsion evaporation stabilized with a pH ‐responsive emulsifier

This study focuses on encapsulating curcumin (CUR) with low water solubility in polycaprolactone (PCL) particles using the emulsion evaporation method. In order to obtain particles with desired properties, a pH-sensitive emulsifier is synthesized by reversible addition fragmentation chain transfer (...

Full description

Saved in:
Bibliographic Details
Published inPolymer engineering and science Vol. 65; no. 6; pp. 3147 - 3162
Main Authors Ahmadi, Hanie, Haddadi‐Asl, Vahid
Format Journal Article
LanguageEnglish
Published Newtown Society of Plastics Engineers, Inc 01.06.2025
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study focuses on encapsulating curcumin (CUR) with low water solubility in polycaprolactone (PCL) particles using the emulsion evaporation method. In order to obtain particles with desired properties, a pH-sensitive emulsifier is synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. The properties of particles obtained from commercial (Pluronic P105) and synthetic emulsifiers, ABP-1 and ABP-2 (with different HLB values), were evaluated. The morphology of the final particles formed by ABP-1 is spherical and more uniform. The molecular structure design of ABP-1 enabled the production of particles with a narrow size distribution, a feat not achievable with Pluronic P105. The optimal sample prepared from ABP-1, with an entrapment effectiveness (EE%) of 78.4% and an average particle size of 258 [+ or -] 12 nm, was able to deliver CUR in a controlled manner. Also, zeta potential values show that ABP-1 is well separated from the drug-carrying particles in the washing phase, and the particles without emulsifier were evaluated to investigate the drug release. Among other models, the Weibull model showed the best agreement with the experimental data, and based on [beta] parameter value of 0.46, it can be concluded that the drug release mechanism is Fickian. The particles synthesized using both methods give outstanding antibacterial activity (99.9%).
AbstractList This study focuses on encapsulating curcumin (CUR) with low water solubility in polycaprolactone (PCL) particles using the emulsion evaporation method. In order to obtain particles with desired properties, a pH-sensitive emulsifier is synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. The properties of particles obtained from commercial (Pluronic P105) and synthetic emulsifiers, ABP-1 and ABP-2 (with different HLB values), were evaluated. The morphology of the final particles formed by ABP-1 is spherical and more uniform. The molecular structure design of ABP-1 enabled the production of particles with a narrow size distribution, a feat not achievable with Pluronic P105. The optimal sample prepared from ABP-1, with an entrapment effectiveness (EE%) of 78.4% and an average particle size of 258 [+ or -] 12 nm, was able to deliver CUR in a controlled manner. Also, zeta potential values show that ABP-1 is well separated from the drug-carrying particles in the washing phase, and the particles without emulsifier were evaluated to investigate the drug release. Among other models, the Weibull model showed the best agreement with the experimental data, and based on [beta] parameter value of 0.46, it can be concluded that the drug release mechanism is Fickian. The particles synthesized using both methods give outstanding antibacterial activity (99.9%).
This study focuses on encapsulating curcumin (CUR) with low water solubility in polycaprolactone (PCL) particles using the emulsion evaporation method. In order to obtain particles with desired properties, a pH‐sensitive emulsifier is synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. The properties of particles obtained from commercial (Pluronic P105) and synthetic emulsifiers, ABP‐1 and ABP‐2 (with different HLB values), were evaluated. The morphology of the final particles formed by ABP‐1 is spherical and more uniform. The molecular structure design of ABP‐1 enabled the production of particles with a narrow size distribution, a feat not achievable with Pluronic P105. The optimal sample prepared from ABP‐1, with an entrapment effectiveness (EE%) of 78.4% and an average particle size of 258 ± 12 nm, was able to deliver CUR in a controlled manner. Also, zeta potential values show that ABP‐1 is well separated from the drug‐carrying particles in the washing phase, and the particles without emulsifier were evaluated to investigate the drug release. Among other models, the Weibull model showed the best agreement with the experimental data, and based on β parameter value of 0.46, it can be concluded that the drug release mechanism is Fickian. The particles synthesized using both methods give outstanding antibacterial activity (99.9%). Highlights Synthesis of a pH‐responsive block copolymers by reversible addition fragmentation chain transfer (RAFT) polymerization. Application of the block copolymers as smart emulsifier. Preparation of polycaprolactone (PCL) nanoparticles containing curcumin by evaporation emulsion method. The dominance of Fickian diffusion in drug release. Excellent antibacterial properties over a period of time.
This study focuses on encapsulating curcumin (CUR) with low water solubility in polycaprolactone (PCL) particles using the emulsion evaporation method. In order to obtain particles with desired properties, a pH-sensitive emulsifier is synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. The properties of particles obtained from commercial (Pluronic P105) and synthetic emulsifiers, ABP-1 and ABP-2 (with different HLB values), were evaluated. The morphology of the final particles formed by ABP-1 is spherical and more uniform. The molecular structure design of ABP-1 enabled the production of particles with a narrow size distribution, a feat not achievable with Pluronic P105. The optimal sample prepared from ABP-1, with an entrapment effectiveness (EE%) of 78.4% and an average particle size of 258 [+ or -] 12 nm, was able to deliver CUR in a controlled manner. Also, zeta potential values show that ABP-1 is well separated from the drug-carrying particles in the washing phase, and the particles without emulsifier were evaluated to investigate the drug release. Among other models, the Weibull model showed the best agreement with the experimental data, and based on [beta] parameter value of 0.46, it can be concluded that the drug release mechanism is Fickian. The particles synthesized using both methods give outstanding antibacterial activity (99.9%). Highlights * Synthesis of a pH-responsive block copolymers by reversible addition fragmentation chain transfer (RAFT) polymerization. * Application of the block copolymers as smart emulsifier. * Preparation of polycaprolactone (PCL) nanoparticles containing curcumin by evaporation emulsion method. * The dominance of Fickian diffusion in drug release. * Excellent antibacterial properties over a period of time. KEYWORDS curcumin, polycaprolactone, smart polymers, surfactant
Audience Academic
Author Ahmadi, Hanie
Haddadi‐Asl, Vahid
Author_xml – sequence: 1
  givenname: Hanie
  surname: Ahmadi
  fullname: Ahmadi, Hanie
  organization: Department of Polymer Engineering and Color Technology AmirKabir University of Technology Tehran Iran
– sequence: 2
  givenname: Vahid
  orcidid: 0000-0002-2728-6307
  surname: Haddadi‐Asl
  fullname: Haddadi‐Asl, Vahid
  organization: Department of Polymer Engineering and Color Technology AmirKabir University of Technology Tehran Iran
BookMark eNptkttqFTEUhoO04G71wjcY8EpwtjlM5nBZNmoLBaHqdVjJrNlNmUnGJFPd3ugj-Iw-iekB7IZNIFlZfP8fsvhPyJHzDgl5xeiaUcrfzejWvOFUPiMrJqu25LWojsiKUsFL0bbtc3IS4w3NrJDdivzaLMEsk3V_f_8ZPfTYF7Mfdwbm4EcwKbsXDpyfISRrRozFHDBfMqd3BU7LGK13Bd7C7AOkuzom0Ha0PzPy3abrAor5vMj2AePsXbS3-KgbLIYX5HiAMeLLx_OUfP3w_svmvLz89PFic3ZZmkrQVHZ1q1nPq6rrDTY17RrWG8paCbWsaikHpKCNRDCaoeZaVJJ2g66bphNDAyBOyesH3_yvbwvGpG78Elx-UgnOO1rXQsj_1BZGVNYNPgUwk41GnbVVK2vRVCxT5QFqiw4DjHlgg83tPX59gM-rx8mag4I3e4LMJPyRtrDEqC4-X-2zb5-weonWYcxbtNvrFB8kh6xN8DEGHNQc7ARhpxhVdwlSOUHqPkHiHyyevQk
Cites_doi 10.1016/S0378-5173(02)00058-3
10.1002/mame.202400147
10.1080/01932691.2012.756377
10.1002/adv.21741
10.1586/17434440.1.1.115
10.1007/s00396-014-3464-9
10.1016/j.molliq.2021.117786
10.1080/17415993.2020.1812610
10.1007/s10965-013-0110-z
10.1016/j.fuel.2021.122921
10.1016/j.biomaterials.2013.05.005
10.1016/j.colsurfa.2023.131569
10.1002/jbm.a.36240
10.1007/s10853-018-2588-6
10.1208/s12248‐023‐00869‐4
10.1515/epoly-2019-0021
10.1016/j.matchemphys.2020.123000
10.1002/anie.202013443
10.1021/ma702422y
10.1007/s00289-023-04783-9
10.1021/ie500892b
10.1016/j.colsurfb.2017.11.054
10.1039/C5RA26674B
10.1016/j.colsurfa.2016.12.029
10.1016/j.ijbiomac.2023.124894
10.3390/polym9070285
10.1039/C5RA01444A
10.1016/j.ijbiomac.2025.140932
10.1002/elsc.201800214
10.1021/la900401f
10.1016/j.xphs.2021.11.015
10.1016/j.pdpdt.2020.101674
10.1007/s00396-016-3977-5
10.1016/j.polymer.2019.121716
10.1002/cbdv.202302030
10.1016/j.mtchem.2024.102454
10.1080/00914037.2016.1190927
10.1016/j.jcis.2007.09.081
10.1016/j.colsurfb.2018.03.013
10.1016/S0927-7765(03)00152-8
10.1016/j.polymer.2018.03.058
10.1016/j.matchemphys.2024.130075
10.1016/j.foodchem.2014.09.131
10.1016/j.colsurfb.2018.06.064
10.1016/j.foodhyd.2016.02.036
10.1007/s10965-014-0455-y
10.1002/app.46133
10.1016/j.eurpolymj.2021.110928
10.1016/j.pdpdt.2021.102286
10.1016/j.colsurfb.2018.02.010
10.1039/C6RA07667J
10.1016/j.molliq.2020.113504
10.3109/10717544.2014.927021
10.1080/00914037.2023.2227312
10.1016/j.biopha.2023.116034
10.1039/c4ra01701c
10.1039/C9RA10857B
10.1002/jbm.a.31950
10.1021/cr500129h
10.1016/j.microc.2018.11.017
10.1016/j.reactfunctpolym.2022.105352
10.1016/j.polymer.2020.122859
10.1002/app.31595
10.1515/cppm-2019-0026
10.1016/j.molliq.2021.115916
10.1016/j.ijpharm.2004.12.010
10.3109/10717544.2014.948643
10.1016/j.colsurfa.2023.132808
10.1016/S0168-3659(01)00299-1
10.1016/j.jiec.2022.09.043
10.1002/cncr.21300
10.1007/s11095-006-0180-2
10.1081/DRT-120028238
10.1080/01932691.2016.1216861
10.1155/2015/341848
10.1016/j.molstruc.2022.132879
10.1016/j.lwt.2010.06.032
10.1080/10717540802174662
ContentType Journal Article
Copyright COPYRIGHT 2025 Society of Plastics Engineers, Inc.
2025 Society of Plastics Engineers
Copyright_xml – notice: COPYRIGHT 2025 Society of Plastics Engineers, Inc.
– notice: 2025 Society of Plastics Engineers
DBID AAYXX
CITATION
N95
ISR
7SR
8FD
JG9
DOI 10.1002/pen.27205
DatabaseName CrossRef
Gale Business: Insights
Gale In Context: Science
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList
Materials Research Database




DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1548-2634
EndPage 3162
ExternalDocumentID A848563741
10_1002_pen_27205
GroupedDBID -~X
.-4
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
29O
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
88I
8AF
8FE
8FG
8G5
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDEX
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFKRA
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARAPS
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAAKF
BAFTC
BDRZF
BENPR
BES
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CITATION
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
FOJGT
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IAO
IEA
IOF
ISR
ITC
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M2Q
M6K
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N95
N9A
NDZJH
NEJ
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
P62
PALCI
PDBOC
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PTHSS
PV9
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWL
RX1
RXW
RYL
RZL
S0X
SAMSI
SUPJJ
TUS
U5U
UB1
V2E
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WTY
WXSBR
WYISQ
XG1
XV2
ZE2
ZY4
ZZTAW
~02
~IA
~WT
7SR
8FD
JG9
ID FETCH-LOGICAL-c430t-968b1d2449dce760971dc0185a654655fe0abc5eacb1eb2b34509fb67793f7aa3
ISSN 0032-3888
IngestDate Sat Aug 23 13:13:25 EDT 2025
Wed Jul 23 16:52:23 EDT 2025
Thu Jul 24 12:10:29 EDT 2025
Tue Jul 29 03:41:27 EDT 2025
Wed Jul 23 03:21:22 EDT 2025
Tue Jul 29 01:11:40 EDT 2025
Tue Aug 05 12:09:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c430t-968b1d2449dce760971dc0185a654655fe0abc5eacb1eb2b34509fb67793f7aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2728-6307
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pen.27205
PQID 3229066335
PQPubID 41843
PageCount 16
ParticipantIDs proquest_journals_3229066335
gale_infotracmisc_A848563741
gale_infotracgeneralonefile_A848563741
gale_infotracacademiconefile_A848563741
gale_incontextgauss_ISR_A848563741
gale_businessinsightsgauss_A848563741
crossref_primary_10_1002_pen_27205
PublicationCentury 2000
PublicationDate 2025-06-00
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-00
PublicationDecade 2020
PublicationPlace Newtown
PublicationPlace_xml – name: Newtown
PublicationTitle Polymer engineering and science
PublicationYear 2025
Publisher Society of Plastics Engineers, Inc
Blackwell Publishing Ltd
Publisher_xml – name: Society of Plastics Engineers, Inc
– name: Blackwell Publishing Ltd
References e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
Ma Y (e_1_2_8_39_1) 2011; 6
e_1_2_8_20_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
Łukasiewicz S (e_1_2_8_43_1) 2021; 13
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
Akotkar AM (e_1_2_8_19_1) 2023; 30
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – ident: e_1_2_8_28_1
  doi: 10.1016/S0378-5173(02)00058-3
– ident: e_1_2_8_68_1
  doi: 10.1002/mame.202400147
– ident: e_1_2_8_71_1
  doi: 10.1080/01932691.2012.756377
– ident: e_1_2_8_11_1
  doi: 10.1002/adv.21741
– volume: 30
  start-page: 635
  year: 2023
  ident: e_1_2_8_19_1
  article-title: Formulation and evaluation of oral microspheres containing antihypertensive drugs by emulsion solvent evaporation method
  publication-title: J Popul Ther Clin Pharmacol
– ident: e_1_2_8_76_1
  doi: 10.1586/17434440.1.1.115
– ident: e_1_2_8_24_1
  doi: 10.1007/s00396-014-3464-9
– ident: e_1_2_8_53_1
  doi: 10.1016/j.molliq.2021.117786
– ident: e_1_2_8_65_1
  doi: 10.1080/17415993.2020.1812610
– ident: e_1_2_8_77_1
  doi: 10.1007/s10965-013-0110-z
– ident: e_1_2_8_37_1
  doi: 10.1016/j.fuel.2021.122921
– ident: e_1_2_8_5_1
  doi: 10.1016/j.biomaterials.2013.05.005
– ident: e_1_2_8_21_1
  doi: 10.1016/j.colsurfa.2023.131569
– ident: e_1_2_8_17_1
  doi: 10.1002/jbm.a.36240
– ident: e_1_2_8_23_1
  doi: 10.1007/s10853-018-2588-6
– ident: e_1_2_8_25_1
  doi: 10.1208/s12248‐023‐00869‐4
– ident: e_1_2_8_12_1
  doi: 10.1515/epoly-2019-0021
– ident: e_1_2_8_54_1
  doi: 10.1016/j.matchemphys.2020.123000
– ident: e_1_2_8_35_1
  doi: 10.1002/anie.202013443
– ident: e_1_2_8_67_1
  doi: 10.1021/ma702422y
– ident: e_1_2_8_4_1
  doi: 10.1007/s00289-023-04783-9
– ident: e_1_2_8_10_1
  doi: 10.1021/ie500892b
– ident: e_1_2_8_36_1
  doi: 10.1016/j.colsurfb.2017.11.054
– ident: e_1_2_8_41_1
  doi: 10.1039/C5RA26674B
– ident: e_1_2_8_50_1
  doi: 10.1016/j.colsurfa.2016.12.029
– ident: e_1_2_8_18_1
  doi: 10.1016/j.ijbiomac.2023.124894
– ident: e_1_2_8_70_1
  doi: 10.3390/polym9070285
– volume: 13
  issue: 191
  year: 2021
  ident: e_1_2_8_43_1
  article-title: Polycaprolactone nanoparticles as promising candidates for nanocarriers in novel nanomedicines
  publication-title: Pharmaceutics
– ident: e_1_2_8_8_1
  doi: 10.1039/C5RA01444A
– ident: e_1_2_8_14_1
  doi: 10.1016/j.ijbiomac.2025.140932
– ident: e_1_2_8_47_1
  doi: 10.1002/elsc.201800214
– ident: e_1_2_8_73_1
  doi: 10.1021/la900401f
– ident: e_1_2_8_57_1
  doi: 10.1016/j.xphs.2021.11.015
– ident: e_1_2_8_83_1
  doi: 10.1016/j.pdpdt.2020.101674
– ident: e_1_2_8_64_1
  doi: 10.1007/s00396-016-3977-5
– ident: e_1_2_8_62_1
  doi: 10.1016/j.polymer.2019.121716
– ident: e_1_2_8_2_1
  doi: 10.1002/cbdv.202302030
– ident: e_1_2_8_16_1
  doi: 10.1016/j.mtchem.2024.102454
– ident: e_1_2_8_63_1
  doi: 10.1080/00914037.2016.1190927
– ident: e_1_2_8_72_1
  doi: 10.1016/j.jcis.2007.09.081
– ident: e_1_2_8_75_1
  doi: 10.1016/j.colsurfb.2018.03.013
– ident: e_1_2_8_31_1
  doi: 10.1016/S0927-7765(03)00152-8
– ident: e_1_2_8_15_1
  doi: 10.1016/j.polymer.2018.03.058
– ident: e_1_2_8_61_1
  doi: 10.1016/j.matchemphys.2024.130075
– ident: e_1_2_8_79_1
  doi: 10.1016/j.foodchem.2014.09.131
– ident: e_1_2_8_13_1
  doi: 10.1016/j.colsurfb.2018.06.064
– ident: e_1_2_8_6_1
  doi: 10.1016/j.foodhyd.2016.02.036
– ident: e_1_2_8_82_1
  doi: 10.1007/s10965-014-0455-y
– ident: e_1_2_8_29_1
  doi: 10.1002/app.46133
– ident: e_1_2_8_51_1
– ident: e_1_2_8_52_1
  doi: 10.1016/j.eurpolymj.2021.110928
– ident: e_1_2_8_9_1
  doi: 10.1016/j.pdpdt.2021.102286
– ident: e_1_2_8_80_1
  doi: 10.1016/j.colsurfb.2018.02.010
– ident: e_1_2_8_38_1
  doi: 10.1039/C6RA07667J
– ident: e_1_2_8_56_1
  doi: 10.1016/j.molliq.2020.113504
– ident: e_1_2_8_49_1
  doi: 10.3109/10717544.2014.927021
– ident: e_1_2_8_22_1
  doi: 10.1080/00914037.2023.2227312
– ident: e_1_2_8_3_1
  doi: 10.1016/j.biopha.2023.116034
– ident: e_1_2_8_81_1
  doi: 10.1039/c4ra01701c
– ident: e_1_2_8_27_1
  doi: 10.1039/C9RA10857B
– ident: e_1_2_8_40_1
  doi: 10.1002/jbm.a.31950
– ident: e_1_2_8_33_1
  doi: 10.1021/cr500129h
– ident: e_1_2_8_55_1
  doi: 10.1016/j.microc.2018.11.017
– ident: e_1_2_8_78_1
  doi: 10.1016/j.reactfunctpolym.2022.105352
– ident: e_1_2_8_69_1
  doi: 10.1016/j.polymer.2020.122859
– ident: e_1_2_8_74_1
  doi: 10.1002/app.31595
– ident: e_1_2_8_59_1
  doi: 10.1515/cppm-2019-0026
– ident: e_1_2_8_34_1
  doi: 10.1016/j.molliq.2021.115916
– ident: e_1_2_8_42_1
  doi: 10.1016/j.ijpharm.2004.12.010
– volume: 6
  start-page: 2679
  year: 2011
  ident: e_1_2_8_39_1
  article-title: Novel docetaxel‐loaded nanoparticles based on PCL‐tween 80 copolymer for cancer treatment
  publication-title: Int J Nanomedicine
– ident: e_1_2_8_45_1
  doi: 10.3109/10717544.2014.948643
– ident: e_1_2_8_20_1
  doi: 10.1016/j.colsurfa.2023.132808
– ident: e_1_2_8_32_1
  doi: 10.1016/S0168-3659(01)00299-1
– ident: e_1_2_8_60_1
  doi: 10.1016/j.jiec.2022.09.043
– ident: e_1_2_8_7_1
  doi: 10.1002/cncr.21300
– ident: e_1_2_8_26_1
  doi: 10.1007/s11095-006-0180-2
– ident: e_1_2_8_44_1
  doi: 10.1081/DRT-120028238
– ident: e_1_2_8_66_1
  doi: 10.1080/01932691.2016.1216861
– ident: e_1_2_8_30_1
  doi: 10.1155/2015/341848
– ident: e_1_2_8_58_1
  doi: 10.1016/j.molstruc.2022.132879
– ident: e_1_2_8_46_1
  doi: 10.1016/j.lwt.2010.06.032
– ident: e_1_2_8_48_1
  doi: 10.1080/10717540802174662
SSID ssj0002359
Score 2.4458094
Snippet This study focuses on encapsulating curcumin (CUR) with low water solubility in polycaprolactone (PCL) particles using the emulsion evaporation method. In...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Index Database
StartPage 3147
SubjectTerms Addition polymerization
Block copolymers
Chain transfer
Chains (polymeric)
Chemical synthesis
Emulsifiers
Emulsion polymerization
Emulsions
Entrapment
Evaporation
Fragmentation
Hydrogen-ion concentration
Molecular structure
Nanoparticles
Polycaprolactone
Polymerization
Surface active agents
Zeta potential
Title Curcumin‐loaded polycaprolactone nanoparticles prepared by emulsion evaporation stabilized with a pH ‐responsive emulsifier
URI https://www.proquest.com/docview/3229066335
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbQeAAe0BggNgayED8eJo8kTtLksSqgggRCY0N7i2wn2Sa1aZQfk9a_nrvYbpLRh8FLVKXXJPJ9PX927r4j5C2fuCr1JWdK-A5DjSkWA81ggRQ8F54MI4m1w99_hPMz_9t5cN7nqnbVJY08VuutdSX_41U4B37FKtl_8OzmonACPoN_4QgehuOdfDxrK9Uurwq2WIkUmGO5WtwoATFxgV10gD4WooBFscl9Qz0AnW8OlDNbtgvcKEO579LCAJgi5squbUq6OCrnrDJZtNeZ-VF-ZTJ6Daf9CXddZtVR1ksbdq8kzOS6gdTlUqS6RzaWtQ9DH5xn07rbjP4tLk2OvdmK8II-ZUpvRZo8U0zeA-rfyUxbVUUb8oaxmHuMR7qpn43Fum-EwdwwsHJXC3P-FfG1gmyZFcf4Rjnop7VNsuE08qMg5BOUN7jvwWoCG118OulVxjwe6FWSeSArQOV4HzfXHdGW7ZN3x0hOd8ljs5SgU-3eJ-ReVuyRBzPbwW-PPBqITT4l61toobfRQkdooRYtVN5QixY6QAvt0UIRLVTQEVpoj5Zn5OzL59PZnJnOG0z53GlYDH9RNwXmF6cqm4SoM5YqB6idwNq3IMgzR0gVwKQt3Ux6kvvAO3MZTiDa5xMh-HOyU8CDvyAU32znisehSmEx7ucCpl-gnb5wPRXFQu6TN3Zgk1ILrCRaSttLYPSTbvT3yTsc8sQ0ZoVDjVtX9YVo6zrpHQwX6-xQ2KTAzClt8PXXycjogzHKV00llDCFKPC8qIU2snw_srzQSvDbDA9HhuBnNf7aQiUx4aNOeNdpIeQ8OLjrbV6Sh_3f7pDsNFWbvQJO3MjXHaL_AEpOwUs
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Curcumin-loaded+polycaprolactone+nanoparticles+prepared+by+emulsion+evaporation+stabilized+with+a+pH-responsive+emulsifier&rft.jtitle=Polymer+engineering+and+science&rft.au=Ahmadi%2C+Hanie&rft.au=Haddadi-Asl%2C+Vahid&rft.date=2025-06-01&rft.pub=Society+of+Plastics+Engineers%2C+Inc&rft.issn=0032-3888&rft.volume=65&rft.issue=6&rft.spage=3147&rft_id=info:doi/10.1002%2Fpen.27205&rft.externalDocID=A848563741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3888&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3888&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3888&client=summon