Optimal location-allocation of storage devices and renewable-based DG in distribution systems

•Proposing Stochastic multi-stage model for distribution system planning.•Applying scenario reduction from historical data by using k-means.•Using convex relaxation to ease simultaneous allocation of RES and storage devices. This paper proposes a mixed integer conic programming (MICP) model to find...

Full description

Saved in:
Bibliographic Details
Published inElectric power systems research Vol. 172; pp. 11 - 21
Main Authors Home-Ortiz, Juan M., Pourakbari-Kasmaei, Mahdi, Lehtonen, Matti, Sanches Mantovani, José Roberto
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.07.2019
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Proposing Stochastic multi-stage model for distribution system planning.•Applying scenario reduction from historical data by using k-means.•Using convex relaxation to ease simultaneous allocation of RES and storage devices. This paper proposes a mixed integer conic programming (MICP) model to find the optimal type, size, and place of distributed generators (DG) over a multistage planning horizon in radial distribution systems. The proposed planning framework focuses on the optimal siting and sizing of wind turbines, photovoltaic panels, gas turbines, and energy storage devices (ESD). Inherently, renewable energy sources and electricity demands are subject to uncertainty. To handle such probabilistic situations in decision-making, the MICP model is extended into a two-stage stochastic programming model. To obtain more practical results, annual historical data are used to generate the scenarios. For the sake of tractability, the k-means clustering technique is used to reduce the number of scenarios while keeping the correlation between the uncertain data. Due to convexity, the proposed MICP model guarantees to find the global optimal solution. To show the potential and performance of the proposed model a 69-bus radial distribution system under different conditions is dully studied and a sensitivity analysis is conducted. Results and comparisons approve its effectiveness and usefulness.
AbstractList •Proposing Stochastic multi-stage model for distribution system planning.•Applying scenario reduction from historical data by using k-means.•Using convex relaxation to ease simultaneous allocation of RES and storage devices. This paper proposes a mixed integer conic programming (MICP) model to find the optimal type, size, and place of distributed generators (DG) over a multistage planning horizon in radial distribution systems. The proposed planning framework focuses on the optimal siting and sizing of wind turbines, photovoltaic panels, gas turbines, and energy storage devices (ESD). Inherently, renewable energy sources and electricity demands are subject to uncertainty. To handle such probabilistic situations in decision-making, the MICP model is extended into a two-stage stochastic programming model. To obtain more practical results, annual historical data are used to generate the scenarios. For the sake of tractability, the k-means clustering technique is used to reduce the number of scenarios while keeping the correlation between the uncertain data. Due to convexity, the proposed MICP model guarantees to find the global optimal solution. To show the potential and performance of the proposed model a 69-bus radial distribution system under different conditions is dully studied and a sensitivity analysis is conducted. Results and comparisons approve its effectiveness and usefulness.
This paper proposes a mixed integer conic programming (MICP) model to find the optimal type, size, and place of distributed generators (DG) over a multistage planning horizon in radial distribution systems. The proposed planning framework focuses on the optimal siting and sizing of wind turbines, photovoltaic panels, gas turbines, and energy storage devices (ESD). Inherently, renewable energy sources and electricity demands are subject to uncertainty. To handle such probabilistic situations in decision-making, the MICP model is extended into a two-stage stochastic programming model. To obtain more practical results, annual historical data are used to generate the scenarios. For the sake of tractability, the k-means clustering technique is used to reduce the number of scenarios while keeping the correlation between the uncertain data. Due to convexity, the proposed MICP model guarantees to find the global optimal solution. To show the potential and performance of the proposed model a 69-bus radial distribution system under different conditions is dully studied and a sensitivity analysis is conducted. Results and comparisons approve its effectiveness and usefulness.
Author Sanches Mantovani, José Roberto
Home-Ortiz, Juan M.
Lehtonen, Matti
Pourakbari-Kasmaei, Mahdi
Author_xml – sequence: 1
  givenname: Juan M.
  surname: Home-Ortiz
  fullname: Home-Ortiz, Juan M.
  email: juan.home@unesp.br
  organization: Department of Electrical Engineering, São Paulo State University (UNESP), Ilha Solteira, SP, Brazil
– sequence: 2
  givenname: Mahdi
  orcidid: 0000-0003-4803-7753
  surname: Pourakbari-Kasmaei
  fullname: Pourakbari-Kasmaei, Mahdi
  email: Mahdi.Pourakbari@aalto.fi
  organization: Department of Electrical Engineering and Automation, Aalto University, Maarintie 8, 02150, Espoo, Finland
– sequence: 3
  givenname: Matti
  orcidid: 0000-0002-9979-7333
  surname: Lehtonen
  fullname: Lehtonen, Matti
  email: matti.lehtonen@aalto.fi
  organization: Department of Electrical Engineering and Automation, Aalto University, Maarintie 8, 02150, Espoo, Finland
– sequence: 4
  givenname: José Roberto
  surname: Sanches Mantovani
  fullname: Sanches Mantovani, José Roberto
  email: mant@dee.feis.unesp.br
  organization: Department of Electrical Engineering, São Paulo State University (UNESP), Ilha Solteira, SP, Brazil
BookMark eNp9kD1PwzAQhi1UJErhDzBZYk7wR-wkEgsqUJAqdemKLMe-IFdpXGy3qP-etIWFodPdcM97ep9rNOp9DwjdUZJTQuXDKodNDDkjtM4JywnlF2hMq5JnjBRyhMaEl1VWlrW8Qtcxrgghsi7FGH0sNsmtdYc7b3Ryvs9097di3-KYfNCfgC3snIGIdW9xgB6-ddNB1ugIFj_PsOuxdTEF12yPZNzHBOt4gy5b3UW4_Z0TtHx9WU7fsvli9j59mmem4CRltYCibZls6saQVlQN50Att7qRQlppgDFRyFLX1AjLS9qygtoKhBFVSbXlE3R_it0E_7WFmNTKb0M_fFSMcTFI4YORCWKnKxN8jAFatQlD9bBXlKiDRbVSB4vqYFERpgZmgKp_kHHpaCcF7brz6OMJhaH5zkFQ0TjoDVgXwCRlvTuH_wCUjZEu
CitedBy_id crossref_primary_10_1007_s00202_020_01185_2
crossref_primary_10_1016_j_apenergy_2022_119605
crossref_primary_10_1109_ACCESS_2023_3327640
crossref_primary_10_1016_j_ijepes_2021_107541
crossref_primary_10_1016_j_apenergy_2020_115720
crossref_primary_10_1016_j_dajour_2023_100368
crossref_primary_10_1007_s00521_021_06078_4
crossref_primary_10_1016_j_eswa_2024_124307
crossref_primary_10_1016_j_seta_2021_101033
crossref_primary_10_1109_TSTE_2023_3261599
crossref_primary_10_1016_j_cie_2019_06_002
crossref_primary_10_1016_j_egyr_2022_12_064
crossref_primary_10_1080_00051144_2021_1963080
crossref_primary_10_1016_j_energy_2023_127511
crossref_primary_10_1016_j_epsr_2022_108914
crossref_primary_10_1016_j_aej_2019_10_009
crossref_primary_10_2174_2352096515666220506183107
crossref_primary_10_1016_j_est_2020_102158
crossref_primary_10_1016_j_epsr_2023_109220
crossref_primary_10_3390_su15031999
crossref_primary_10_3390_en13020364
crossref_primary_10_3390_en13215800
crossref_primary_10_1016_j_ijepes_2021_106761
crossref_primary_10_3390_math10142543
crossref_primary_10_1016_j_compeleceng_2020_106710
crossref_primary_10_1109_TIA_2022_3177175
crossref_primary_10_1109_TSG_2020_2982129
crossref_primary_10_1007_s00521_022_07364_5
crossref_primary_10_1109_ACCESS_2020_3001758
crossref_primary_10_1109_ACCESS_2022_3146799
crossref_primary_10_1016_j_est_2023_110288
crossref_primary_10_1016_j_segan_2024_101505
crossref_primary_10_1108_JEDT_09_2020_0362
crossref_primary_10_3390_electronics10243102
crossref_primary_10_1109_ACCESS_2022_3148253
crossref_primary_10_3390_electronics11193139
crossref_primary_10_1016_j_epsr_2020_106807
crossref_primary_10_1016_j_egyr_2024_11_026
crossref_primary_10_3390_math10091600
crossref_primary_10_1109_TIA_2020_2968046
crossref_primary_10_1109_TIA_2022_3223339
crossref_primary_10_3390_batteries9030190
crossref_primary_10_3390_en16052168
crossref_primary_10_1016_j_apenergy_2024_124517
crossref_primary_10_1155_2021_2150293
crossref_primary_10_3390_en12101918
crossref_primary_10_1109_TPWRS_2024_3424409
crossref_primary_10_3390_en15186698
crossref_primary_10_1016_j_epsr_2020_106202
crossref_primary_10_1007_s40998_020_00391_9
crossref_primary_10_3390_electronics10141648
crossref_primary_10_1016_j_energy_2020_118026
crossref_primary_10_3390_su14074189
crossref_primary_10_1016_j_energy_2024_131921
crossref_primary_10_1155_2022_2617125
crossref_primary_10_1049_iet_stg_2019_0194
crossref_primary_10_1016_j_energy_2024_133625
crossref_primary_10_3390_app9091911
crossref_primary_10_1007_s13369_023_08663_2
crossref_primary_10_3390_en12122312
crossref_primary_10_1016_j_est_2024_112497
crossref_primary_10_1049_gtd2_12801
crossref_primary_10_1016_j_rser_2024_114709
crossref_primary_10_1016_j_epsr_2020_106474
crossref_primary_10_1016_j_segan_2024_101330
crossref_primary_10_1109_ACCESS_2021_3128052
crossref_primary_10_1002_er_4663
crossref_primary_10_1016_j_apenergy_2021_117760
crossref_primary_10_1109_JSYST_2020_3023076
crossref_primary_10_1080_23311916_2020_1836730
crossref_primary_10_14483_22487638_18342
crossref_primary_10_3390_en12234494
crossref_primary_10_3390_electronics9101677
crossref_primary_10_1109_ACCESS_2022_3194894
crossref_primary_10_3390_en18051020
crossref_primary_10_1080_01430750_2024_2305699
crossref_primary_10_1109_ACCESS_2024_3403478
crossref_primary_10_1016_j_apenergy_2023_121286
crossref_primary_10_1016_j_ijepes_2021_107191
crossref_primary_10_3389_fenrg_2021_676305
crossref_primary_10_1109_TPWRS_2024_3404115
crossref_primary_10_1109_TIA_2022_3190241
crossref_primary_10_1016_j_renene_2024_119968
crossref_primary_10_1016_j_est_2022_105937
crossref_primary_10_1109_JIOT_2021_3122196
crossref_primary_10_1016_j_ijepes_2021_107791
crossref_primary_10_1016_j_segan_2019_100278
crossref_primary_10_3390_en12112223
crossref_primary_10_3390_app9173586
Cites_doi 10.1016/j.epsr.2012.12.009
10.1109/TPWRS.2010.2049036
10.1109/TPWRS.2013.2291553
10.1109/TSG.2015.2419134
10.1016/j.ijepes.2017.11.010
10.1049/iet-rpg.2015.0378
10.1016/j.apenergy.2012.12.023
10.1109/TPWRD.2004.829146
10.1016/j.applthermaleng.2016.02.027
10.1109/TPWRS.2005.846114
10.1016/j.rser.2016.09.063
10.1109/TSTE.2015.2512819
10.1109/TCNS.2014.2309732
10.1109/TPWRS.2015.2404533
10.1016/j.rser.2016.10.036
10.1016/j.renene.2017.09.074
10.1049/iet-rpg.2017.0068
10.1109/61.19265
10.1109/TSG.2017.2752303
10.1109/TPWRS.2012.2230652
10.1109/TPWRD.2011.2165972
10.1109/TSTE.2015.2444438
10.1109/TPWRS.2006.879234
10.1016/j.apenergy.2012.06.002
10.1016/j.ijepes.2018.12.042
10.1109/TPWRD.2008.917916
10.1109/TSG.2016.2560341
10.1109/TIE.2014.2336620
10.1016/j.ijepes.2015.05.024
10.1109/TSTE.2018.2828778
10.1109/TSG.2016.2560339
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier Science Ltd. Jul 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jul 2019
DBID AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1016/j.epsr.2019.02.013
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2046
EndPage 21
ExternalDocumentID 10_1016_j_epsr_2019_02_013
S0378779619300690
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSW
SSZ
T5K
VH1
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SP
8FD
EFKBS
FR3
KR7
L7M
ID FETCH-LOGICAL-c430t-95e4ff26b9bc0f58b33e1d3dab656d6ce225467a91c5d371f241d8e5c5871ad3
IEDL.DBID .~1
ISSN 0378-7796
IngestDate Sun Jul 13 03:31:13 EDT 2025
Thu Apr 24 23:06:11 EDT 2025
Tue Jul 01 04:31:56 EDT 2025
Fri Feb 23 02:49:04 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Renewable energy sources
Distributed generation
Multistage distribution system planning
Conic programming
Energy storage
Stochastic programming
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-95e4ff26b9bc0f58b33e1d3dab656d6ce225467a91c5d371f241d8e5c5871ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4803-7753
0000-0002-9979-7333
OpenAccessLink http://doi.org/10.1016/j.epsr.2019.02.013
PQID 2235019301
PQPubID 2047565
PageCount 11
ParticipantIDs proquest_journals_2235019301
crossref_primary_10_1016_j_epsr_2019_02_013
crossref_citationtrail_10_1016_j_epsr_2019_02_013
elsevier_sciencedirect_doi_10_1016_j_epsr_2019_02_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Electric power systems research
PublicationYear 2019
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Hemmati, Hooshmand, Taheri (bib0110) 2015; 73
(accessed June 23, 2018).
Zeng, Zhang, Yang, Wang, Dong, Zhang (bib0115) 2014; 29
Jabr (bib0040) 2013; 28
Adefarati, Bansal (bib0060) 2016; 10
Pfenninger, Staffell (bib0170) 2016
Jabr (bib0035) 2006; 21
Baran, Wu (bib0165) 1989; 4
Montoya-Bueno, Munoz, Contreras (bib0120) 2015; 6
Di Somma, Graditi, Heydarian-Forushani, Shafie-khah, Siano (bib0085) 2018; 116
IBM, CPLEX Optimization Studio, v12.8 2018:594.
Theo, Lim, Ho, Hashim, Lee (bib0065) 2017; 67
Rueda-Medina, Franco, Rider, Padilha-Feltrin, Romero (bib0030) 2013; 97
Ahmad (bib0005) 2017
Home-Ortiz, Melgar-Dominguez, Pourakbari-Kasmaei, Mantovani (bib0145) 2019; 108
Pereira, Martins da Costa, Contreras, Mantovani (bib0100) 2016; 7
Pourakbari-Kasmaei, Sanches Mantovani (bib0015) 2018; 97
(bib0185) 2018
Fourer, Gay, Kernighan (bib0175) 2003
Tanaka, Yuge, Ohmori (bib0150) 2017; 11
Liu, Wen, Ledwich (bib0070) 2011; 26
Asensio, Meneses de Quevedo, Munoz-Delgado, Contreras (bib0130) 2018; 9
Ochoa, Harrison (bib0050) 2011; 26
Haffner, Pereira, Pereira, Barreto (bib0025) 2008; 23
Baringo, Conejo (bib0075) 2013; 101
Graditi, Ippolito, Telaretti, Zizzo (bib0080) 2015; 62
Hung, Mithulananthan, Bansal (bib0155) 2013; 105
Melgar-Dominguez, Pourakbari-Kasmaei, Mantovani (bib0140) 2018; 10
Meneses de Quevedo, Munoz-Delgado, Contreras (bib0135) 2019; 10
Pourakbari-Kasmaei, Mantovani, Rashidinejad, Habibi, Contreras (bib0045) 2017
Zubo, Mokryani, Rajamani, Aghaei, Niknam, Pillai (bib0055) 2017; 72
Macedo, Franco, Rider, Romero (bib0095) 2015; 6
Di Somma, Yan, Bianco, Luh, Graditi, Mongibello (bib0090) 2016; 101
Sedghi, Ahmadian, Aliakbar-Golkar (bib0105) 2016; 31
Asensio, Meneses de Quevedo, Munoz-Delgado, Contreras (bib0125) 2018; 9
El-Khattam, Hegazy, Salama (bib0010) 2005; 20
Vaziri, Tomsovic, Bose (bib0020) 2004; 19
Low (bib0160) 2014; 1
Montoya-Bueno (10.1016/j.epsr.2019.02.013_bib0120) 2015; 6
Jabr (10.1016/j.epsr.2019.02.013_bib0035) 2006; 21
Adefarati (10.1016/j.epsr.2019.02.013_bib0060) 2016; 10
Asensio (10.1016/j.epsr.2019.02.013_bib0125) 2018; 9
Jabr (10.1016/j.epsr.2019.02.013_bib0040) 2013; 28
Liu (10.1016/j.epsr.2019.02.013_bib0070) 2011; 26
(10.1016/j.epsr.2019.02.013_bib0185) 2018
Hung (10.1016/j.epsr.2019.02.013_bib0155) 2013; 105
Baran (10.1016/j.epsr.2019.02.013_bib0165) 1989; 4
Pourakbari-Kasmaei (10.1016/j.epsr.2019.02.013_bib0045) 2017
Ochoa (10.1016/j.epsr.2019.02.013_bib0050) 2011; 26
Home-Ortiz (10.1016/j.epsr.2019.02.013_bib0145) 2019; 108
Pourakbari-Kasmaei (10.1016/j.epsr.2019.02.013_bib0015) 2018; 97
Rueda-Medina (10.1016/j.epsr.2019.02.013_bib0030) 2013; 97
Baringo (10.1016/j.epsr.2019.02.013_bib0075) 2013; 101
Fourer (10.1016/j.epsr.2019.02.013_bib0175) 2003
Asensio (10.1016/j.epsr.2019.02.013_bib0130) 2018; 9
Di Somma (10.1016/j.epsr.2019.02.013_bib0085) 2018; 116
Zeng (10.1016/j.epsr.2019.02.013_bib0115) 2014; 29
Hemmati (10.1016/j.epsr.2019.02.013_bib0110) 2015; 73
Haffner (10.1016/j.epsr.2019.02.013_bib0025) 2008; 23
Ahmad (10.1016/j.epsr.2019.02.013_bib0005) 2017
Vaziri (10.1016/j.epsr.2019.02.013_bib0020) 2004; 19
Pereira (10.1016/j.epsr.2019.02.013_bib0100) 2016; 7
Low (10.1016/j.epsr.2019.02.013_bib0160) 2014; 1
10.1016/j.epsr.2019.02.013_bib0180
El-Khattam (10.1016/j.epsr.2019.02.013_bib0010) 2005; 20
Theo (10.1016/j.epsr.2019.02.013_bib0065) 2017; 67
Tanaka (10.1016/j.epsr.2019.02.013_bib0150) 2017; 11
Macedo (10.1016/j.epsr.2019.02.013_bib0095) 2015; 6
Zubo (10.1016/j.epsr.2019.02.013_bib0055) 2017; 72
Graditi (10.1016/j.epsr.2019.02.013_bib0080) 2015; 62
Meneses de Quevedo (10.1016/j.epsr.2019.02.013_bib0135) 2019; 10
Melgar-Dominguez (10.1016/j.epsr.2019.02.013_bib0140) 2018; 10
Pfenninger (10.1016/j.epsr.2019.02.013_bib0170) 2016
Sedghi (10.1016/j.epsr.2019.02.013_bib0105) 2016; 31
Di Somma (10.1016/j.epsr.2019.02.013_bib0090) 2016; 101
References_xml – volume: 19
  start-page: 1335
  year: 2004
  end-page: 1341
  ident: bib0020
  article-title: A directed graph formulation of the multistage distribution expansion problem
  publication-title: IEEE Trans. Power Deliv.
– start-page: 1
  year: 2017
  end-page: 6
  ident: bib0045
  article-title: Carbon footprint allocation among consumers and transmission losses
  publication-title: 2017 IEEE Int. Conf. Environ. Electr. Eng. 2017 IEEE Ind. Commer. Power Syst. Eur. (EEEIC/I&CPS Eur., IEEE
– volume: 10
  start-page: 158
  year: 2018
  end-page: 169
  ident: bib0140
  article-title: Adaptive robust short-term planning of electrical distribution systems considering siting and sizing of renewable energy-based DG units
  publication-title: IEEE Trans. Sustain. Energy
– volume: 97
  start-page: 133
  year: 2013
  end-page: 143
  ident: bib0030
  article-title: A mixed-integer linear programming approach for optimal type, size and allocation of distributed generation in radial distribution systems
  publication-title: Electr. Power Syst. Res.
– year: 2017
  ident: bib0005
  article-title: Operation and Control of Renewable Energy Systems
– volume: 97
  start-page: 240
  year: 2018
  end-page: 249
  ident: bib0015
  article-title: Logically constrained optimal power flow: solver-based mixed-integer nonlinear programming model
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 108
  start-page: 86
  year: 2019
  end-page: 95
  ident: bib0145
  article-title: A stochastic mixed-integer convex programming model for long-term distribution system expansion planning considering greenhouse gas emission mitigation
  publication-title: Int. J. Electr. Power Energy Syst.
– reference: (accessed June 23, 2018).
– volume: 9
  start-page: 667
  year: 2018
  end-page: 675
  ident: bib0130
  article-title: Joint distribution network and renewable energy expansion planning considering demand response and energy storage ̶ part II: numerical results and considered metrics
  publication-title: IEEE Trans. Smart Grid
– volume: 23
  start-page: 915
  year: 2008
  end-page: 923
  ident: bib0025
  article-title: Multistage model for distribution expansion planning with distributed generation—part I: problem formulation
  publication-title: IEEE Trans. Power Deliv.
– volume: 101
  start-page: 475
  year: 2013
  end-page: 482
  ident: bib0075
  article-title: Correlated wind-power production and electric load scenarios for investment decisions
  publication-title: Appl. Energy
– volume: 10
  start-page: 794
  year: 2019
  end-page: 804
  ident: bib0135
  article-title: Impact of electric vehicles on the expansion planning of distribution systems considering renewable energy, storage and charging stations
  publication-title: IEEE Trans. Smart Grid
– volume: 20
  start-page: 1158
  year: 2005
  end-page: 1165
  ident: bib0010
  article-title: An integrated distributed generation optimization model for distribution system planning
  publication-title: IEEE Trans. Power Syst.
– reference: IBM, CPLEX Optimization Studio, v12.8 2018:594.
– year: 2003
  ident: bib0175
  article-title: AMPL: A Modeling Language for Mathematical Programming
– volume: 116
  start-page: 272
  year: 2018
  end-page: 287
  ident: bib0085
  article-title: Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects
  publication-title: Renew. Energy
– volume: 26
  start-page: 2541
  year: 2011
  end-page: 2551
  ident: bib0070
  article-title: Optimal siting and sizing of distributed generators in distribution systems considering uncertainties
  publication-title: IEEE Trans. Power Deliv.
– volume: 73
  start-page: 665
  year: 2015
  end-page: 673
  ident: bib0110
  article-title: Distribution network expansion planning and DG placement in the presence of uncertainties
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 67
  start-page: 531
  year: 2017
  end-page: 573
  ident: bib0065
  article-title: Review of distributed generation (DG) system planning and optimisation techniques: comparison of numerical and mathematical modelling methods
  publication-title: Renew. Sustainable Energy Rev.
– volume: 6
  start-page: 2825
  year: 2015
  end-page: 2836
  ident: bib0095
  article-title: Optimal operation of distribution networks considering energy storage devices
  publication-title: IEEE Trans. Smart Grid
– volume: 6
  start-page: 1466
  year: 2015
  end-page: 1474
  ident: bib0120
  article-title: A stochastic investment model for renewable generation in distribution systems
  publication-title: IEEE Trans. Sustainable Energy
– volume: 105
  start-page: 75
  year: 2013
  end-page: 85
  ident: bib0155
  article-title: Analytical strategies for renewable distributed generation integration considering energy loss minimization
  publication-title: Appl. Energy
– volume: 4
  start-page: 725
  year: 1989
  end-page: 734
  ident: bib0165
  article-title: Optimal capacitor placement on radial distribution systems
  publication-title: IEEE Trans. Power Deliv.
– volume: 31
  start-page: 304
  year: 2016
  end-page: 316
  ident: bib0105
  article-title: Optimal storage planning in active distribution network considering uncertainty of wind power distributed generation
  publication-title: IEEE Trans. Power Syst.
– volume: 11
  start-page: 1584
  year: 2017
  end-page: 1596
  ident: bib0150
  article-title: Formulation and evaluation of long-term allocation problem for renewable distributed generations
  publication-title: IET Renew. Power Gener.
– volume: 28
  start-page: 1888
  year: 2013
  end-page: 1897
  ident: bib0040
  article-title: Polyhedral formulations and loop elimination constraints for distribution network expansion planning
  publication-title: IEEE Trans. Power Syst.
– year: 2016
  ident: bib0170
  article-title: Renewables.ninja
– year: 2018
  ident: bib0185
  article-title: LaPSEE Power System Test Cases Repository
– volume: 72
  start-page: 1177
  year: 2017
  end-page: 1198
  ident: bib0055
  article-title: Operation and planning of distribution networks with integration of renewable distributed generators considering uncertainties: a review
  publication-title: Renew. Sustainable Energy Rev.
– volume: 29
  start-page: 1153
  year: 2014
  end-page: 1165
  ident: bib0115
  article-title: Integrated planning for transition to low-carbon distribution system with renewable energy generation and demand response
  publication-title: IEEE Trans. Power Syst.
– volume: 21
  start-page: 1458
  year: 2006
  end-page: 1459
  ident: bib0035
  article-title: Radial distribution load flow using conic programming
  publication-title: IEEE Trans. Power Syst.
– volume: 26
  start-page: 198
  year: 2011
  end-page: 205
  ident: bib0050
  article-title: Minimizing energy losses: optimal accommodation and smart operation of renewable distributed generation
  publication-title: IEEE Trans. Power Syst.
– volume: 1
  start-page: 15
  year: 2014
  end-page: 27
  ident: bib0160
  article-title: Convex relaxation of optimal power flow—part I: formulations and equivalence
  publication-title: IEEE Trans. Control Network Syst.
– volume: 7
  start-page: 975
  year: 2016
  end-page: 984
  ident: bib0100
  article-title: Optimal distributed generation and reactive power allocation in electrical distribution systems
  publication-title: IEEE Trans. Sustainable Energy
– volume: 9
  start-page: 655
  year: 2018
  end-page: 666
  ident: bib0125
  article-title: Joint distribution network and renewable energy expansion planning considering demand response and energy storage—part I: stochastic programming model
  publication-title: IEEE Trans. Smart Grid
– volume: 101
  start-page: 752
  year: 2016
  end-page: 761
  ident: bib0090
  article-title: Multi-objective operation optimization of a distributed energy system for a large-scale utility customer
  publication-title: Appl. Therm. Eng.
– volume: 62
  start-page: 2540
  year: 2015
  end-page: 2550
  ident: bib0080
  article-title: An innovative conversion device to the grid interface of combined RES-based generators and electric storage systems
  publication-title: IEEE Trans. Ind. Electron.
– volume: 10
  start-page: 873
  year: 2016
  end-page: 884
  ident: bib0060
  article-title: Integration of renewable distributed generators into the distribution system: a review
  publication-title: IET Renew. Power Gener.
– volume: 97
  start-page: 133
  year: 2013
  ident: 10.1016/j.epsr.2019.02.013_bib0030
  article-title: A mixed-integer linear programming approach for optimal type, size and allocation of distributed generation in radial distribution systems
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2012.12.009
– volume: 26
  start-page: 198
  year: 2011
  ident: 10.1016/j.epsr.2019.02.013_bib0050
  article-title: Minimizing energy losses: optimal accommodation and smart operation of renewable distributed generation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2010.2049036
– volume: 29
  start-page: 1153
  year: 2014
  ident: 10.1016/j.epsr.2019.02.013_bib0115
  article-title: Integrated planning for transition to low-carbon distribution system with renewable energy generation and demand response
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2013.2291553
– volume: 6
  start-page: 2825
  year: 2015
  ident: 10.1016/j.epsr.2019.02.013_bib0095
  article-title: Optimal operation of distribution networks considering energy storage devices
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2015.2419134
– volume: 97
  start-page: 240
  year: 2018
  ident: 10.1016/j.epsr.2019.02.013_bib0015
  article-title: Logically constrained optimal power flow: solver-based mixed-integer nonlinear programming model
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2017.11.010
– year: 2003
  ident: 10.1016/j.epsr.2019.02.013_bib0175
– year: 2017
  ident: 10.1016/j.epsr.2019.02.013_bib0005
– volume: 10
  start-page: 873
  year: 2016
  ident: 10.1016/j.epsr.2019.02.013_bib0060
  article-title: Integration of renewable distributed generators into the distribution system: a review
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/iet-rpg.2015.0378
– volume: 105
  start-page: 75
  year: 2013
  ident: 10.1016/j.epsr.2019.02.013_bib0155
  article-title: Analytical strategies for renewable distributed generation integration considering energy loss minimization
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.12.023
– volume: 19
  start-page: 1335
  year: 2004
  ident: 10.1016/j.epsr.2019.02.013_bib0020
  article-title: A directed graph formulation of the multistage distribution expansion problem
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2004.829146
– volume: 101
  start-page: 752
  year: 2016
  ident: 10.1016/j.epsr.2019.02.013_bib0090
  article-title: Multi-objective operation optimization of a distributed energy system for a large-scale utility customer
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.02.027
– year: 2018
  ident: 10.1016/j.epsr.2019.02.013_bib0185
– volume: 20
  start-page: 1158
  year: 2005
  ident: 10.1016/j.epsr.2019.02.013_bib0010
  article-title: An integrated distributed generation optimization model for distribution system planning
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2005.846114
– volume: 67
  start-page: 531
  year: 2017
  ident: 10.1016/j.epsr.2019.02.013_bib0065
  article-title: Review of distributed generation (DG) system planning and optimisation techniques: comparison of numerical and mathematical modelling methods
  publication-title: Renew. Sustainable Energy Rev.
  doi: 10.1016/j.rser.2016.09.063
– volume: 7
  start-page: 975
  year: 2016
  ident: 10.1016/j.epsr.2019.02.013_bib0100
  article-title: Optimal distributed generation and reactive power allocation in electrical distribution systems
  publication-title: IEEE Trans. Sustainable Energy
  doi: 10.1109/TSTE.2015.2512819
– volume: 1
  start-page: 15
  year: 2014
  ident: 10.1016/j.epsr.2019.02.013_bib0160
  article-title: Convex relaxation of optimal power flow—part I: formulations and equivalence
  publication-title: IEEE Trans. Control Network Syst.
  doi: 10.1109/TCNS.2014.2309732
– volume: 31
  start-page: 304
  year: 2016
  ident: 10.1016/j.epsr.2019.02.013_bib0105
  article-title: Optimal storage planning in active distribution network considering uncertainty of wind power distributed generation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2015.2404533
– volume: 72
  start-page: 1177
  year: 2017
  ident: 10.1016/j.epsr.2019.02.013_bib0055
  article-title: Operation and planning of distribution networks with integration of renewable distributed generators considering uncertainties: a review
  publication-title: Renew. Sustainable Energy Rev.
  doi: 10.1016/j.rser.2016.10.036
– year: 2016
  ident: 10.1016/j.epsr.2019.02.013_bib0170
– volume: 116
  start-page: 272
  year: 2018
  ident: 10.1016/j.epsr.2019.02.013_bib0085
  article-title: Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.09.074
– volume: 11
  start-page: 1584
  year: 2017
  ident: 10.1016/j.epsr.2019.02.013_bib0150
  article-title: Formulation and evaluation of long-term allocation problem for renewable distributed generations
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/iet-rpg.2017.0068
– volume: 4
  start-page: 725
  year: 1989
  ident: 10.1016/j.epsr.2019.02.013_bib0165
  article-title: Optimal capacitor placement on radial distribution systems
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/61.19265
– start-page: 1
  year: 2017
  ident: 10.1016/j.epsr.2019.02.013_bib0045
  article-title: Carbon footprint allocation among consumers and transmission losses
  publication-title: 2017 IEEE Int. Conf. Environ. Electr. Eng. 2017 IEEE Ind. Commer. Power Syst. Eur. (EEEIC/I&CPS Eur., IEEE
– volume: 10
  start-page: 794
  year: 2019
  ident: 10.1016/j.epsr.2019.02.013_bib0135
  article-title: Impact of electric vehicles on the expansion planning of distribution systems considering renewable energy, storage and charging stations
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2752303
– ident: 10.1016/j.epsr.2019.02.013_bib0180
– volume: 28
  start-page: 1888
  year: 2013
  ident: 10.1016/j.epsr.2019.02.013_bib0040
  article-title: Polyhedral formulations and loop elimination constraints for distribution network expansion planning
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2012.2230652
– volume: 26
  start-page: 2541
  year: 2011
  ident: 10.1016/j.epsr.2019.02.013_bib0070
  article-title: Optimal siting and sizing of distributed generators in distribution systems considering uncertainties
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2011.2165972
– volume: 6
  start-page: 1466
  year: 2015
  ident: 10.1016/j.epsr.2019.02.013_bib0120
  article-title: A stochastic investment model for renewable generation in distribution systems
  publication-title: IEEE Trans. Sustainable Energy
  doi: 10.1109/TSTE.2015.2444438
– volume: 21
  start-page: 1458
  year: 2006
  ident: 10.1016/j.epsr.2019.02.013_bib0035
  article-title: Radial distribution load flow using conic programming
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2006.879234
– volume: 101
  start-page: 475
  year: 2013
  ident: 10.1016/j.epsr.2019.02.013_bib0075
  article-title: Correlated wind-power production and electric load scenarios for investment decisions
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.06.002
– volume: 108
  start-page: 86
  year: 2019
  ident: 10.1016/j.epsr.2019.02.013_bib0145
  article-title: A stochastic mixed-integer convex programming model for long-term distribution system expansion planning considering greenhouse gas emission mitigation
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.12.042
– volume: 23
  start-page: 915
  year: 2008
  ident: 10.1016/j.epsr.2019.02.013_bib0025
  article-title: Multistage model for distribution expansion planning with distributed generation—part I: problem formulation
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2008.917916
– volume: 9
  start-page: 667
  year: 2018
  ident: 10.1016/j.epsr.2019.02.013_bib0130
  article-title: Joint distribution network and renewable energy expansion planning considering demand response and energy storage ̶ part II: numerical results and considered metrics
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2560341
– volume: 62
  start-page: 2540
  year: 2015
  ident: 10.1016/j.epsr.2019.02.013_bib0080
  article-title: An innovative conversion device to the grid interface of combined RES-based generators and electric storage systems
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2336620
– volume: 73
  start-page: 665
  year: 2015
  ident: 10.1016/j.epsr.2019.02.013_bib0110
  article-title: Distribution network expansion planning and DG placement in the presence of uncertainties
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.05.024
– volume: 10
  start-page: 158
  year: 2018
  ident: 10.1016/j.epsr.2019.02.013_bib0140
  article-title: Adaptive robust short-term planning of electrical distribution systems considering siting and sizing of renewable energy-based DG units
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2018.2828778
– volume: 9
  start-page: 655
  year: 2018
  ident: 10.1016/j.epsr.2019.02.013_bib0125
  article-title: Joint distribution network and renewable energy expansion planning considering demand response and energy storage—part I: stochastic programming model
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2560339
SSID ssj0006975
Score 2.5642238
Snippet •Proposing Stochastic multi-stage model for distribution system planning.•Applying scenario reduction from historical data by using k-means.•Using convex...
This paper proposes a mixed integer conic programming (MICP) model to find the optimal type, size, and place of distributed generators (DG) over a multistage...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11
SubjectTerms Alternative energy
Cluster analysis
Clustering
Conic programming
Convexity
Decision making
Distributed generation
Energy storage
Gas turbines
Mixed integer
Multistage distribution system planning
Radial distribution
Renewable energy sources
Sensitivity analysis
Stochastic programming
Turbines
Uncertainty
Vector quantization
Wind power
Wind turbines
Title Optimal location-allocation of storage devices and renewable-based DG in distribution systems
URI https://dx.doi.org/10.1016/j.epsr.2019.02.013
https://www.proquest.com/docview/2235019301
Volume 172
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTywIdMktpN4rMqjgCgDReqCrDh2pCJIK1rExm_H5zi8JDqQKYnOUXQ-f3eW775D6Ehxe4WGk4DriFgPnRMV5BmhcRyoiMXGOCLtm2E8uGdXYz5uoH5dCwNplR77K0x3aO3fdL02u7PJpHsXUGtsibA7AOr4dqGCnSVg5SfvX2kesXBkuyBMQNoXzlQ5XmY2B07QUDjezpD-5Zx-wbTzPecbaN0HjbhX_dcmaphyC619oxLcRg-3du0_WyFwTqBsAifq1S2eFhiSIC10YG0cNOCs1BjYLN-gdIqAL9P49AJPSqyBStd3wcIV0fN8B43Oz0b9AfGtE0jOaLAgghtWFFGshMqDgqeKUhNqqjNl4zcNXcCABz_JRJhzTZOwsI5cp4bn3G6gMk13UbOclmYPYc5NpBM7c2mcMi2YYCxjNg7MciaMyIoWCmuVydzTikN3iydZ5489SlCzBDXLIJJWzS10_DlmVpFqLJXm9UzIH6YhLeovHdeup036hTmXNhriAVhMuP_Pzx6gVXiqUnbbqLl4eTWHNjBZqI6zvA5a6V1eD4Yf9azidw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdgAOiKcYzxy4oWhtk3TNEQFjsAcHhrQLitomlYagm9gQf5-4TSdAggM9Va1dVY7z2VGczwBnibCXbwT1hA6ojdApTbw0piwMvSTgoTEFkfZgGHYf-d1YjGtwWZ2FwbJKh_0lphdo7Z60nDVbs8mk9eAx62xtaVcArODbXYEGslOJOjQubnvd4RKQQ1nw7aI8RQV3dqYs8zKzOdKC-rKg7vTZb_HpB1IX4aezCRsubyQX5a9tQc3k27D-hU1wB57u7fR_tUIYn9DeFDfVy1syzQjWQVr0INoU6EDiXBMktPzA01MUw5kmVzdkkhONbLquERYpuZ7nuzDqXI8uu9R1T6ApZ96CSmF4lgVhIpPUy0SUMGZ8zXSc2BROYyMwpMJvx9JPhWZtP7OxXEdGpMKuoWLN9qCeT3OzD0QIE-i2HbwojLiWXHIec5sKximXRsZZE_zKZCp1zOLY4OJFVSVkzwrNrNDMyguUNXMTzpc6s5JX409pUY2E-uYdygL_n3pH1bApNzfnyiZEwkOn8Q_--dlTWO2OBn3Vvx32DmEN35QVvEdQX7y9m2ObpyySE-eHn7-Z5Sg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+location-allocation+of+storage+devices+and+renewable-based+DG+in+distribution+systems&rft.jtitle=Electric+power+systems+research&rft.au=Home-Ortiz%2C+Juan+M&rft.au=Pourakbari-Kasmaei%2C+Mahdi&rft.au=Lehtonen%2C+Matti&rft.au=Mantovani%2C+Jos%C3%A9+Roberto+Sanches&rft.date=2019-07-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0378-7796&rft.eissn=1873-2046&rft.volume=172&rft.spage=11&rft_id=info:doi/10.1016%2Fj.epsr.2019.02.013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon