Optimal location-allocation of storage devices and renewable-based DG in distribution systems
•Proposing Stochastic multi-stage model for distribution system planning.•Applying scenario reduction from historical data by using k-means.•Using convex relaxation to ease simultaneous allocation of RES and storage devices. This paper proposes a mixed integer conic programming (MICP) model to find...
Saved in:
Published in | Electric power systems research Vol. 172; pp. 11 - 21 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.07.2019
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Proposing Stochastic multi-stage model for distribution system planning.•Applying scenario reduction from historical data by using k-means.•Using convex relaxation to ease simultaneous allocation of RES and storage devices.
This paper proposes a mixed integer conic programming (MICP) model to find the optimal type, size, and place of distributed generators (DG) over a multistage planning horizon in radial distribution systems. The proposed planning framework focuses on the optimal siting and sizing of wind turbines, photovoltaic panels, gas turbines, and energy storage devices (ESD). Inherently, renewable energy sources and electricity demands are subject to uncertainty. To handle such probabilistic situations in decision-making, the MICP model is extended into a two-stage stochastic programming model. To obtain more practical results, annual historical data are used to generate the scenarios. For the sake of tractability, the k-means clustering technique is used to reduce the number of scenarios while keeping the correlation between the uncertain data. Due to convexity, the proposed MICP model guarantees to find the global optimal solution. To show the potential and performance of the proposed model a 69-bus radial distribution system under different conditions is dully studied and a sensitivity analysis is conducted. Results and comparisons approve its effectiveness and usefulness. |
---|---|
AbstractList | •Proposing Stochastic multi-stage model for distribution system planning.•Applying scenario reduction from historical data by using k-means.•Using convex relaxation to ease simultaneous allocation of RES and storage devices.
This paper proposes a mixed integer conic programming (MICP) model to find the optimal type, size, and place of distributed generators (DG) over a multistage planning horizon in radial distribution systems. The proposed planning framework focuses on the optimal siting and sizing of wind turbines, photovoltaic panels, gas turbines, and energy storage devices (ESD). Inherently, renewable energy sources and electricity demands are subject to uncertainty. To handle such probabilistic situations in decision-making, the MICP model is extended into a two-stage stochastic programming model. To obtain more practical results, annual historical data are used to generate the scenarios. For the sake of tractability, the k-means clustering technique is used to reduce the number of scenarios while keeping the correlation between the uncertain data. Due to convexity, the proposed MICP model guarantees to find the global optimal solution. To show the potential and performance of the proposed model a 69-bus radial distribution system under different conditions is dully studied and a sensitivity analysis is conducted. Results and comparisons approve its effectiveness and usefulness. This paper proposes a mixed integer conic programming (MICP) model to find the optimal type, size, and place of distributed generators (DG) over a multistage planning horizon in radial distribution systems. The proposed planning framework focuses on the optimal siting and sizing of wind turbines, photovoltaic panels, gas turbines, and energy storage devices (ESD). Inherently, renewable energy sources and electricity demands are subject to uncertainty. To handle such probabilistic situations in decision-making, the MICP model is extended into a two-stage stochastic programming model. To obtain more practical results, annual historical data are used to generate the scenarios. For the sake of tractability, the k-means clustering technique is used to reduce the number of scenarios while keeping the correlation between the uncertain data. Due to convexity, the proposed MICP model guarantees to find the global optimal solution. To show the potential and performance of the proposed model a 69-bus radial distribution system under different conditions is dully studied and a sensitivity analysis is conducted. Results and comparisons approve its effectiveness and usefulness. |
Author | Sanches Mantovani, José Roberto Home-Ortiz, Juan M. Lehtonen, Matti Pourakbari-Kasmaei, Mahdi |
Author_xml | – sequence: 1 givenname: Juan M. surname: Home-Ortiz fullname: Home-Ortiz, Juan M. email: juan.home@unesp.br organization: Department of Electrical Engineering, São Paulo State University (UNESP), Ilha Solteira, SP, Brazil – sequence: 2 givenname: Mahdi orcidid: 0000-0003-4803-7753 surname: Pourakbari-Kasmaei fullname: Pourakbari-Kasmaei, Mahdi email: Mahdi.Pourakbari@aalto.fi organization: Department of Electrical Engineering and Automation, Aalto University, Maarintie 8, 02150, Espoo, Finland – sequence: 3 givenname: Matti orcidid: 0000-0002-9979-7333 surname: Lehtonen fullname: Lehtonen, Matti email: matti.lehtonen@aalto.fi organization: Department of Electrical Engineering and Automation, Aalto University, Maarintie 8, 02150, Espoo, Finland – sequence: 4 givenname: José Roberto surname: Sanches Mantovani fullname: Sanches Mantovani, José Roberto email: mant@dee.feis.unesp.br organization: Department of Electrical Engineering, São Paulo State University (UNESP), Ilha Solteira, SP, Brazil |
BookMark | eNp9kD1PwzAQhi1UJErhDzBZYk7wR-wkEgsqUJAqdemKLMe-IFdpXGy3qP-etIWFodPdcM97ep9rNOp9DwjdUZJTQuXDKodNDDkjtM4JywnlF2hMq5JnjBRyhMaEl1VWlrW8Qtcxrgghsi7FGH0sNsmtdYc7b3Ryvs9097di3-KYfNCfgC3snIGIdW9xgB6-ddNB1ugIFj_PsOuxdTEF12yPZNzHBOt4gy5b3UW4_Z0TtHx9WU7fsvli9j59mmem4CRltYCibZls6saQVlQN50Att7qRQlppgDFRyFLX1AjLS9qygtoKhBFVSbXlE3R_it0E_7WFmNTKb0M_fFSMcTFI4YORCWKnKxN8jAFatQlD9bBXlKiDRbVSB4vqYFERpgZmgKp_kHHpaCcF7brz6OMJhaH5zkFQ0TjoDVgXwCRlvTuH_wCUjZEu |
CitedBy_id | crossref_primary_10_1007_s00202_020_01185_2 crossref_primary_10_1016_j_apenergy_2022_119605 crossref_primary_10_1109_ACCESS_2023_3327640 crossref_primary_10_1016_j_ijepes_2021_107541 crossref_primary_10_1016_j_apenergy_2020_115720 crossref_primary_10_1016_j_dajour_2023_100368 crossref_primary_10_1007_s00521_021_06078_4 crossref_primary_10_1016_j_eswa_2024_124307 crossref_primary_10_1016_j_seta_2021_101033 crossref_primary_10_1109_TSTE_2023_3261599 crossref_primary_10_1016_j_cie_2019_06_002 crossref_primary_10_1016_j_egyr_2022_12_064 crossref_primary_10_1080_00051144_2021_1963080 crossref_primary_10_1016_j_energy_2023_127511 crossref_primary_10_1016_j_epsr_2022_108914 crossref_primary_10_1016_j_aej_2019_10_009 crossref_primary_10_2174_2352096515666220506183107 crossref_primary_10_1016_j_est_2020_102158 crossref_primary_10_1016_j_epsr_2023_109220 crossref_primary_10_3390_su15031999 crossref_primary_10_3390_en13020364 crossref_primary_10_3390_en13215800 crossref_primary_10_1016_j_ijepes_2021_106761 crossref_primary_10_3390_math10142543 crossref_primary_10_1016_j_compeleceng_2020_106710 crossref_primary_10_1109_TIA_2022_3177175 crossref_primary_10_1109_TSG_2020_2982129 crossref_primary_10_1007_s00521_022_07364_5 crossref_primary_10_1109_ACCESS_2020_3001758 crossref_primary_10_1109_ACCESS_2022_3146799 crossref_primary_10_1016_j_est_2023_110288 crossref_primary_10_1016_j_segan_2024_101505 crossref_primary_10_1108_JEDT_09_2020_0362 crossref_primary_10_3390_electronics10243102 crossref_primary_10_1109_ACCESS_2022_3148253 crossref_primary_10_3390_electronics11193139 crossref_primary_10_1016_j_epsr_2020_106807 crossref_primary_10_1016_j_egyr_2024_11_026 crossref_primary_10_3390_math10091600 crossref_primary_10_1109_TIA_2020_2968046 crossref_primary_10_1109_TIA_2022_3223339 crossref_primary_10_3390_batteries9030190 crossref_primary_10_3390_en16052168 crossref_primary_10_1016_j_apenergy_2024_124517 crossref_primary_10_1155_2021_2150293 crossref_primary_10_3390_en12101918 crossref_primary_10_1109_TPWRS_2024_3424409 crossref_primary_10_3390_en15186698 crossref_primary_10_1016_j_epsr_2020_106202 crossref_primary_10_1007_s40998_020_00391_9 crossref_primary_10_3390_electronics10141648 crossref_primary_10_1016_j_energy_2020_118026 crossref_primary_10_3390_su14074189 crossref_primary_10_1016_j_energy_2024_131921 crossref_primary_10_1155_2022_2617125 crossref_primary_10_1049_iet_stg_2019_0194 crossref_primary_10_1016_j_energy_2024_133625 crossref_primary_10_3390_app9091911 crossref_primary_10_1007_s13369_023_08663_2 crossref_primary_10_3390_en12122312 crossref_primary_10_1016_j_est_2024_112497 crossref_primary_10_1049_gtd2_12801 crossref_primary_10_1016_j_rser_2024_114709 crossref_primary_10_1016_j_epsr_2020_106474 crossref_primary_10_1016_j_segan_2024_101330 crossref_primary_10_1109_ACCESS_2021_3128052 crossref_primary_10_1002_er_4663 crossref_primary_10_1016_j_apenergy_2021_117760 crossref_primary_10_1109_JSYST_2020_3023076 crossref_primary_10_1080_23311916_2020_1836730 crossref_primary_10_14483_22487638_18342 crossref_primary_10_3390_en12234494 crossref_primary_10_3390_electronics9101677 crossref_primary_10_1109_ACCESS_2022_3194894 crossref_primary_10_3390_en18051020 crossref_primary_10_1080_01430750_2024_2305699 crossref_primary_10_1109_ACCESS_2024_3403478 crossref_primary_10_1016_j_apenergy_2023_121286 crossref_primary_10_1016_j_ijepes_2021_107191 crossref_primary_10_3389_fenrg_2021_676305 crossref_primary_10_1109_TPWRS_2024_3404115 crossref_primary_10_1109_TIA_2022_3190241 crossref_primary_10_1016_j_renene_2024_119968 crossref_primary_10_1016_j_est_2022_105937 crossref_primary_10_1109_JIOT_2021_3122196 crossref_primary_10_1016_j_ijepes_2021_107791 crossref_primary_10_1016_j_segan_2019_100278 crossref_primary_10_3390_en12112223 crossref_primary_10_3390_app9173586 |
Cites_doi | 10.1016/j.epsr.2012.12.009 10.1109/TPWRS.2010.2049036 10.1109/TPWRS.2013.2291553 10.1109/TSG.2015.2419134 10.1016/j.ijepes.2017.11.010 10.1049/iet-rpg.2015.0378 10.1016/j.apenergy.2012.12.023 10.1109/TPWRD.2004.829146 10.1016/j.applthermaleng.2016.02.027 10.1109/TPWRS.2005.846114 10.1016/j.rser.2016.09.063 10.1109/TSTE.2015.2512819 10.1109/TCNS.2014.2309732 10.1109/TPWRS.2015.2404533 10.1016/j.rser.2016.10.036 10.1016/j.renene.2017.09.074 10.1049/iet-rpg.2017.0068 10.1109/61.19265 10.1109/TSG.2017.2752303 10.1109/TPWRS.2012.2230652 10.1109/TPWRD.2011.2165972 10.1109/TSTE.2015.2444438 10.1109/TPWRS.2006.879234 10.1016/j.apenergy.2012.06.002 10.1016/j.ijepes.2018.12.042 10.1109/TPWRD.2008.917916 10.1109/TSG.2016.2560341 10.1109/TIE.2014.2336620 10.1016/j.ijepes.2015.05.024 10.1109/TSTE.2018.2828778 10.1109/TSG.2016.2560339 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier Science Ltd. Jul 2019 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Jul 2019 |
DBID | AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
DOI | 10.1016/j.epsr.2019.02.013 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2046 |
EndPage | 21 |
ExternalDocumentID | 10_1016_j_epsr_2019_02_013 S0378779619300690 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADHUB ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SET SEW SPC SPCBC SSR SST SSW SSZ T5K VH1 WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SP 8FD EFKBS FR3 KR7 L7M |
ID | FETCH-LOGICAL-c430t-95e4ff26b9bc0f58b33e1d3dab656d6ce225467a91c5d371f241d8e5c5871ad3 |
IEDL.DBID | .~1 |
ISSN | 0378-7796 |
IngestDate | Sun Jul 13 03:31:13 EDT 2025 Thu Apr 24 23:06:11 EDT 2025 Tue Jul 01 04:31:56 EDT 2025 Fri Feb 23 02:49:04 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Renewable energy sources Distributed generation Multistage distribution system planning Conic programming Energy storage Stochastic programming |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c430t-95e4ff26b9bc0f58b33e1d3dab656d6ce225467a91c5d371f241d8e5c5871ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4803-7753 0000-0002-9979-7333 |
OpenAccessLink | http://doi.org/10.1016/j.epsr.2019.02.013 |
PQID | 2235019301 |
PQPubID | 2047565 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2235019301 crossref_primary_10_1016_j_epsr_2019_02_013 crossref_citationtrail_10_1016_j_epsr_2019_02_013 elsevier_sciencedirect_doi_10_1016_j_epsr_2019_02_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Electric power systems research |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Hemmati, Hooshmand, Taheri (bib0110) 2015; 73 (accessed June 23, 2018). Zeng, Zhang, Yang, Wang, Dong, Zhang (bib0115) 2014; 29 Jabr (bib0040) 2013; 28 Adefarati, Bansal (bib0060) 2016; 10 Pfenninger, Staffell (bib0170) 2016 Jabr (bib0035) 2006; 21 Baran, Wu (bib0165) 1989; 4 Montoya-Bueno, Munoz, Contreras (bib0120) 2015; 6 Di Somma, Graditi, Heydarian-Forushani, Shafie-khah, Siano (bib0085) 2018; 116 IBM, CPLEX Optimization Studio, v12.8 2018:594. Theo, Lim, Ho, Hashim, Lee (bib0065) 2017; 67 Rueda-Medina, Franco, Rider, Padilha-Feltrin, Romero (bib0030) 2013; 97 Ahmad (bib0005) 2017 Home-Ortiz, Melgar-Dominguez, Pourakbari-Kasmaei, Mantovani (bib0145) 2019; 108 Pereira, Martins da Costa, Contreras, Mantovani (bib0100) 2016; 7 Pourakbari-Kasmaei, Sanches Mantovani (bib0015) 2018; 97 (bib0185) 2018 Fourer, Gay, Kernighan (bib0175) 2003 Tanaka, Yuge, Ohmori (bib0150) 2017; 11 Liu, Wen, Ledwich (bib0070) 2011; 26 Asensio, Meneses de Quevedo, Munoz-Delgado, Contreras (bib0130) 2018; 9 Ochoa, Harrison (bib0050) 2011; 26 Haffner, Pereira, Pereira, Barreto (bib0025) 2008; 23 Baringo, Conejo (bib0075) 2013; 101 Graditi, Ippolito, Telaretti, Zizzo (bib0080) 2015; 62 Hung, Mithulananthan, Bansal (bib0155) 2013; 105 Melgar-Dominguez, Pourakbari-Kasmaei, Mantovani (bib0140) 2018; 10 Meneses de Quevedo, Munoz-Delgado, Contreras (bib0135) 2019; 10 Pourakbari-Kasmaei, Mantovani, Rashidinejad, Habibi, Contreras (bib0045) 2017 Zubo, Mokryani, Rajamani, Aghaei, Niknam, Pillai (bib0055) 2017; 72 Macedo, Franco, Rider, Romero (bib0095) 2015; 6 Di Somma, Yan, Bianco, Luh, Graditi, Mongibello (bib0090) 2016; 101 Sedghi, Ahmadian, Aliakbar-Golkar (bib0105) 2016; 31 Asensio, Meneses de Quevedo, Munoz-Delgado, Contreras (bib0125) 2018; 9 El-Khattam, Hegazy, Salama (bib0010) 2005; 20 Vaziri, Tomsovic, Bose (bib0020) 2004; 19 Low (bib0160) 2014; 1 Montoya-Bueno (10.1016/j.epsr.2019.02.013_bib0120) 2015; 6 Jabr (10.1016/j.epsr.2019.02.013_bib0035) 2006; 21 Adefarati (10.1016/j.epsr.2019.02.013_bib0060) 2016; 10 Asensio (10.1016/j.epsr.2019.02.013_bib0125) 2018; 9 Jabr (10.1016/j.epsr.2019.02.013_bib0040) 2013; 28 Liu (10.1016/j.epsr.2019.02.013_bib0070) 2011; 26 (10.1016/j.epsr.2019.02.013_bib0185) 2018 Hung (10.1016/j.epsr.2019.02.013_bib0155) 2013; 105 Baran (10.1016/j.epsr.2019.02.013_bib0165) 1989; 4 Pourakbari-Kasmaei (10.1016/j.epsr.2019.02.013_bib0045) 2017 Ochoa (10.1016/j.epsr.2019.02.013_bib0050) 2011; 26 Home-Ortiz (10.1016/j.epsr.2019.02.013_bib0145) 2019; 108 Pourakbari-Kasmaei (10.1016/j.epsr.2019.02.013_bib0015) 2018; 97 Rueda-Medina (10.1016/j.epsr.2019.02.013_bib0030) 2013; 97 Baringo (10.1016/j.epsr.2019.02.013_bib0075) 2013; 101 Fourer (10.1016/j.epsr.2019.02.013_bib0175) 2003 Asensio (10.1016/j.epsr.2019.02.013_bib0130) 2018; 9 Di Somma (10.1016/j.epsr.2019.02.013_bib0085) 2018; 116 Zeng (10.1016/j.epsr.2019.02.013_bib0115) 2014; 29 Hemmati (10.1016/j.epsr.2019.02.013_bib0110) 2015; 73 Haffner (10.1016/j.epsr.2019.02.013_bib0025) 2008; 23 Ahmad (10.1016/j.epsr.2019.02.013_bib0005) 2017 Vaziri (10.1016/j.epsr.2019.02.013_bib0020) 2004; 19 Pereira (10.1016/j.epsr.2019.02.013_bib0100) 2016; 7 Low (10.1016/j.epsr.2019.02.013_bib0160) 2014; 1 10.1016/j.epsr.2019.02.013_bib0180 El-Khattam (10.1016/j.epsr.2019.02.013_bib0010) 2005; 20 Theo (10.1016/j.epsr.2019.02.013_bib0065) 2017; 67 Tanaka (10.1016/j.epsr.2019.02.013_bib0150) 2017; 11 Macedo (10.1016/j.epsr.2019.02.013_bib0095) 2015; 6 Zubo (10.1016/j.epsr.2019.02.013_bib0055) 2017; 72 Graditi (10.1016/j.epsr.2019.02.013_bib0080) 2015; 62 Meneses de Quevedo (10.1016/j.epsr.2019.02.013_bib0135) 2019; 10 Melgar-Dominguez (10.1016/j.epsr.2019.02.013_bib0140) 2018; 10 Pfenninger (10.1016/j.epsr.2019.02.013_bib0170) 2016 Sedghi (10.1016/j.epsr.2019.02.013_bib0105) 2016; 31 Di Somma (10.1016/j.epsr.2019.02.013_bib0090) 2016; 101 |
References_xml | – volume: 19 start-page: 1335 year: 2004 end-page: 1341 ident: bib0020 article-title: A directed graph formulation of the multistage distribution expansion problem publication-title: IEEE Trans. Power Deliv. – start-page: 1 year: 2017 end-page: 6 ident: bib0045 article-title: Carbon footprint allocation among consumers and transmission losses publication-title: 2017 IEEE Int. Conf. Environ. Electr. Eng. 2017 IEEE Ind. Commer. Power Syst. Eur. (EEEIC/I&CPS Eur., IEEE – volume: 10 start-page: 158 year: 2018 end-page: 169 ident: bib0140 article-title: Adaptive robust short-term planning of electrical distribution systems considering siting and sizing of renewable energy-based DG units publication-title: IEEE Trans. Sustain. Energy – volume: 97 start-page: 133 year: 2013 end-page: 143 ident: bib0030 article-title: A mixed-integer linear programming approach for optimal type, size and allocation of distributed generation in radial distribution systems publication-title: Electr. Power Syst. Res. – year: 2017 ident: bib0005 article-title: Operation and Control of Renewable Energy Systems – volume: 97 start-page: 240 year: 2018 end-page: 249 ident: bib0015 article-title: Logically constrained optimal power flow: solver-based mixed-integer nonlinear programming model publication-title: Int. J. Electr. Power Energy Syst. – volume: 108 start-page: 86 year: 2019 end-page: 95 ident: bib0145 article-title: A stochastic mixed-integer convex programming model for long-term distribution system expansion planning considering greenhouse gas emission mitigation publication-title: Int. J. Electr. Power Energy Syst. – reference: (accessed June 23, 2018). – volume: 9 start-page: 667 year: 2018 end-page: 675 ident: bib0130 article-title: Joint distribution network and renewable energy expansion planning considering demand response and energy storage ̶ part II: numerical results and considered metrics publication-title: IEEE Trans. Smart Grid – volume: 23 start-page: 915 year: 2008 end-page: 923 ident: bib0025 article-title: Multistage model for distribution expansion planning with distributed generation—part I: problem formulation publication-title: IEEE Trans. Power Deliv. – volume: 101 start-page: 475 year: 2013 end-page: 482 ident: bib0075 article-title: Correlated wind-power production and electric load scenarios for investment decisions publication-title: Appl. Energy – volume: 10 start-page: 794 year: 2019 end-page: 804 ident: bib0135 article-title: Impact of electric vehicles on the expansion planning of distribution systems considering renewable energy, storage and charging stations publication-title: IEEE Trans. Smart Grid – volume: 20 start-page: 1158 year: 2005 end-page: 1165 ident: bib0010 article-title: An integrated distributed generation optimization model for distribution system planning publication-title: IEEE Trans. Power Syst. – reference: IBM, CPLEX Optimization Studio, v12.8 2018:594. – year: 2003 ident: bib0175 article-title: AMPL: A Modeling Language for Mathematical Programming – volume: 116 start-page: 272 year: 2018 end-page: 287 ident: bib0085 article-title: Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects publication-title: Renew. Energy – volume: 26 start-page: 2541 year: 2011 end-page: 2551 ident: bib0070 article-title: Optimal siting and sizing of distributed generators in distribution systems considering uncertainties publication-title: IEEE Trans. Power Deliv. – volume: 73 start-page: 665 year: 2015 end-page: 673 ident: bib0110 article-title: Distribution network expansion planning and DG placement in the presence of uncertainties publication-title: Int. J. Electr. Power Energy Syst. – volume: 67 start-page: 531 year: 2017 end-page: 573 ident: bib0065 article-title: Review of distributed generation (DG) system planning and optimisation techniques: comparison of numerical and mathematical modelling methods publication-title: Renew. Sustainable Energy Rev. – volume: 6 start-page: 2825 year: 2015 end-page: 2836 ident: bib0095 article-title: Optimal operation of distribution networks considering energy storage devices publication-title: IEEE Trans. Smart Grid – volume: 6 start-page: 1466 year: 2015 end-page: 1474 ident: bib0120 article-title: A stochastic investment model for renewable generation in distribution systems publication-title: IEEE Trans. Sustainable Energy – volume: 105 start-page: 75 year: 2013 end-page: 85 ident: bib0155 article-title: Analytical strategies for renewable distributed generation integration considering energy loss minimization publication-title: Appl. Energy – volume: 4 start-page: 725 year: 1989 end-page: 734 ident: bib0165 article-title: Optimal capacitor placement on radial distribution systems publication-title: IEEE Trans. Power Deliv. – volume: 31 start-page: 304 year: 2016 end-page: 316 ident: bib0105 article-title: Optimal storage planning in active distribution network considering uncertainty of wind power distributed generation publication-title: IEEE Trans. Power Syst. – volume: 11 start-page: 1584 year: 2017 end-page: 1596 ident: bib0150 article-title: Formulation and evaluation of long-term allocation problem for renewable distributed generations publication-title: IET Renew. Power Gener. – volume: 28 start-page: 1888 year: 2013 end-page: 1897 ident: bib0040 article-title: Polyhedral formulations and loop elimination constraints for distribution network expansion planning publication-title: IEEE Trans. Power Syst. – year: 2016 ident: bib0170 article-title: Renewables.ninja – year: 2018 ident: bib0185 article-title: LaPSEE Power System Test Cases Repository – volume: 72 start-page: 1177 year: 2017 end-page: 1198 ident: bib0055 article-title: Operation and planning of distribution networks with integration of renewable distributed generators considering uncertainties: a review publication-title: Renew. Sustainable Energy Rev. – volume: 29 start-page: 1153 year: 2014 end-page: 1165 ident: bib0115 article-title: Integrated planning for transition to low-carbon distribution system with renewable energy generation and demand response publication-title: IEEE Trans. Power Syst. – volume: 21 start-page: 1458 year: 2006 end-page: 1459 ident: bib0035 article-title: Radial distribution load flow using conic programming publication-title: IEEE Trans. Power Syst. – volume: 26 start-page: 198 year: 2011 end-page: 205 ident: bib0050 article-title: Minimizing energy losses: optimal accommodation and smart operation of renewable distributed generation publication-title: IEEE Trans. Power Syst. – volume: 1 start-page: 15 year: 2014 end-page: 27 ident: bib0160 article-title: Convex relaxation of optimal power flow—part I: formulations and equivalence publication-title: IEEE Trans. Control Network Syst. – volume: 7 start-page: 975 year: 2016 end-page: 984 ident: bib0100 article-title: Optimal distributed generation and reactive power allocation in electrical distribution systems publication-title: IEEE Trans. Sustainable Energy – volume: 9 start-page: 655 year: 2018 end-page: 666 ident: bib0125 article-title: Joint distribution network and renewable energy expansion planning considering demand response and energy storage—part I: stochastic programming model publication-title: IEEE Trans. Smart Grid – volume: 101 start-page: 752 year: 2016 end-page: 761 ident: bib0090 article-title: Multi-objective operation optimization of a distributed energy system for a large-scale utility customer publication-title: Appl. Therm. Eng. – volume: 62 start-page: 2540 year: 2015 end-page: 2550 ident: bib0080 article-title: An innovative conversion device to the grid interface of combined RES-based generators and electric storage systems publication-title: IEEE Trans. Ind. Electron. – volume: 10 start-page: 873 year: 2016 end-page: 884 ident: bib0060 article-title: Integration of renewable distributed generators into the distribution system: a review publication-title: IET Renew. Power Gener. – volume: 97 start-page: 133 year: 2013 ident: 10.1016/j.epsr.2019.02.013_bib0030 article-title: A mixed-integer linear programming approach for optimal type, size and allocation of distributed generation in radial distribution systems publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2012.12.009 – volume: 26 start-page: 198 year: 2011 ident: 10.1016/j.epsr.2019.02.013_bib0050 article-title: Minimizing energy losses: optimal accommodation and smart operation of renewable distributed generation publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2010.2049036 – volume: 29 start-page: 1153 year: 2014 ident: 10.1016/j.epsr.2019.02.013_bib0115 article-title: Integrated planning for transition to low-carbon distribution system with renewable energy generation and demand response publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2013.2291553 – volume: 6 start-page: 2825 year: 2015 ident: 10.1016/j.epsr.2019.02.013_bib0095 article-title: Optimal operation of distribution networks considering energy storage devices publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2015.2419134 – volume: 97 start-page: 240 year: 2018 ident: 10.1016/j.epsr.2019.02.013_bib0015 article-title: Logically constrained optimal power flow: solver-based mixed-integer nonlinear programming model publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2017.11.010 – year: 2003 ident: 10.1016/j.epsr.2019.02.013_bib0175 – year: 2017 ident: 10.1016/j.epsr.2019.02.013_bib0005 – volume: 10 start-page: 873 year: 2016 ident: 10.1016/j.epsr.2019.02.013_bib0060 article-title: Integration of renewable distributed generators into the distribution system: a review publication-title: IET Renew. Power Gener. doi: 10.1049/iet-rpg.2015.0378 – volume: 105 start-page: 75 year: 2013 ident: 10.1016/j.epsr.2019.02.013_bib0155 article-title: Analytical strategies for renewable distributed generation integration considering energy loss minimization publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.12.023 – volume: 19 start-page: 1335 year: 2004 ident: 10.1016/j.epsr.2019.02.013_bib0020 article-title: A directed graph formulation of the multistage distribution expansion problem publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2004.829146 – volume: 101 start-page: 752 year: 2016 ident: 10.1016/j.epsr.2019.02.013_bib0090 article-title: Multi-objective operation optimization of a distributed energy system for a large-scale utility customer publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.02.027 – year: 2018 ident: 10.1016/j.epsr.2019.02.013_bib0185 – volume: 20 start-page: 1158 year: 2005 ident: 10.1016/j.epsr.2019.02.013_bib0010 article-title: An integrated distributed generation optimization model for distribution system planning publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2005.846114 – volume: 67 start-page: 531 year: 2017 ident: 10.1016/j.epsr.2019.02.013_bib0065 article-title: Review of distributed generation (DG) system planning and optimisation techniques: comparison of numerical and mathematical modelling methods publication-title: Renew. Sustainable Energy Rev. doi: 10.1016/j.rser.2016.09.063 – volume: 7 start-page: 975 year: 2016 ident: 10.1016/j.epsr.2019.02.013_bib0100 article-title: Optimal distributed generation and reactive power allocation in electrical distribution systems publication-title: IEEE Trans. Sustainable Energy doi: 10.1109/TSTE.2015.2512819 – volume: 1 start-page: 15 year: 2014 ident: 10.1016/j.epsr.2019.02.013_bib0160 article-title: Convex relaxation of optimal power flow—part I: formulations and equivalence publication-title: IEEE Trans. Control Network Syst. doi: 10.1109/TCNS.2014.2309732 – volume: 31 start-page: 304 year: 2016 ident: 10.1016/j.epsr.2019.02.013_bib0105 article-title: Optimal storage planning in active distribution network considering uncertainty of wind power distributed generation publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2015.2404533 – volume: 72 start-page: 1177 year: 2017 ident: 10.1016/j.epsr.2019.02.013_bib0055 article-title: Operation and planning of distribution networks with integration of renewable distributed generators considering uncertainties: a review publication-title: Renew. Sustainable Energy Rev. doi: 10.1016/j.rser.2016.10.036 – year: 2016 ident: 10.1016/j.epsr.2019.02.013_bib0170 – volume: 116 start-page: 272 year: 2018 ident: 10.1016/j.epsr.2019.02.013_bib0085 article-title: Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects publication-title: Renew. Energy doi: 10.1016/j.renene.2017.09.074 – volume: 11 start-page: 1584 year: 2017 ident: 10.1016/j.epsr.2019.02.013_bib0150 article-title: Formulation and evaluation of long-term allocation problem for renewable distributed generations publication-title: IET Renew. Power Gener. doi: 10.1049/iet-rpg.2017.0068 – volume: 4 start-page: 725 year: 1989 ident: 10.1016/j.epsr.2019.02.013_bib0165 article-title: Optimal capacitor placement on radial distribution systems publication-title: IEEE Trans. Power Deliv. doi: 10.1109/61.19265 – start-page: 1 year: 2017 ident: 10.1016/j.epsr.2019.02.013_bib0045 article-title: Carbon footprint allocation among consumers and transmission losses publication-title: 2017 IEEE Int. Conf. Environ. Electr. Eng. 2017 IEEE Ind. Commer. Power Syst. Eur. (EEEIC/I&CPS Eur., IEEE – volume: 10 start-page: 794 year: 2019 ident: 10.1016/j.epsr.2019.02.013_bib0135 article-title: Impact of electric vehicles on the expansion planning of distribution systems considering renewable energy, storage and charging stations publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2017.2752303 – ident: 10.1016/j.epsr.2019.02.013_bib0180 – volume: 28 start-page: 1888 year: 2013 ident: 10.1016/j.epsr.2019.02.013_bib0040 article-title: Polyhedral formulations and loop elimination constraints for distribution network expansion planning publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2012.2230652 – volume: 26 start-page: 2541 year: 2011 ident: 10.1016/j.epsr.2019.02.013_bib0070 article-title: Optimal siting and sizing of distributed generators in distribution systems considering uncertainties publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2011.2165972 – volume: 6 start-page: 1466 year: 2015 ident: 10.1016/j.epsr.2019.02.013_bib0120 article-title: A stochastic investment model for renewable generation in distribution systems publication-title: IEEE Trans. Sustainable Energy doi: 10.1109/TSTE.2015.2444438 – volume: 21 start-page: 1458 year: 2006 ident: 10.1016/j.epsr.2019.02.013_bib0035 article-title: Radial distribution load flow using conic programming publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2006.879234 – volume: 101 start-page: 475 year: 2013 ident: 10.1016/j.epsr.2019.02.013_bib0075 article-title: Correlated wind-power production and electric load scenarios for investment decisions publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.06.002 – volume: 108 start-page: 86 year: 2019 ident: 10.1016/j.epsr.2019.02.013_bib0145 article-title: A stochastic mixed-integer convex programming model for long-term distribution system expansion planning considering greenhouse gas emission mitigation publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2018.12.042 – volume: 23 start-page: 915 year: 2008 ident: 10.1016/j.epsr.2019.02.013_bib0025 article-title: Multistage model for distribution expansion planning with distributed generation—part I: problem formulation publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2008.917916 – volume: 9 start-page: 667 year: 2018 ident: 10.1016/j.epsr.2019.02.013_bib0130 article-title: Joint distribution network and renewable energy expansion planning considering demand response and energy storage ̶ part II: numerical results and considered metrics publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2016.2560341 – volume: 62 start-page: 2540 year: 2015 ident: 10.1016/j.epsr.2019.02.013_bib0080 article-title: An innovative conversion device to the grid interface of combined RES-based generators and electric storage systems publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2014.2336620 – volume: 73 start-page: 665 year: 2015 ident: 10.1016/j.epsr.2019.02.013_bib0110 article-title: Distribution network expansion planning and DG placement in the presence of uncertainties publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2015.05.024 – volume: 10 start-page: 158 year: 2018 ident: 10.1016/j.epsr.2019.02.013_bib0140 article-title: Adaptive robust short-term planning of electrical distribution systems considering siting and sizing of renewable energy-based DG units publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2018.2828778 – volume: 9 start-page: 655 year: 2018 ident: 10.1016/j.epsr.2019.02.013_bib0125 article-title: Joint distribution network and renewable energy expansion planning considering demand response and energy storage—part I: stochastic programming model publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2016.2560339 |
SSID | ssj0006975 |
Score | 2.5642238 |
Snippet | •Proposing Stochastic multi-stage model for distribution system planning.•Applying scenario reduction from historical data by using k-means.•Using convex... This paper proposes a mixed integer conic programming (MICP) model to find the optimal type, size, and place of distributed generators (DG) over a multistage... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 11 |
SubjectTerms | Alternative energy Cluster analysis Clustering Conic programming Convexity Decision making Distributed generation Energy storage Gas turbines Mixed integer Multistage distribution system planning Radial distribution Renewable energy sources Sensitivity analysis Stochastic programming Turbines Uncertainty Vector quantization Wind power Wind turbines |
Title | Optimal location-allocation of storage devices and renewable-based DG in distribution systems |
URI | https://dx.doi.org/10.1016/j.epsr.2019.02.013 https://www.proquest.com/docview/2235019301 |
Volume | 172 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTywIdMktpN4rMqjgCgDReqCrDh2pCJIK1rExm_H5zi8JDqQKYnOUXQ-f3eW775D6Ehxe4WGk4DriFgPnRMV5BmhcRyoiMXGOCLtm2E8uGdXYz5uoH5dCwNplR77K0x3aO3fdL02u7PJpHsXUGtsibA7AOr4dqGCnSVg5SfvX2kesXBkuyBMQNoXzlQ5XmY2B07QUDjezpD-5Zx-wbTzPecbaN0HjbhX_dcmaphyC619oxLcRg-3du0_WyFwTqBsAifq1S2eFhiSIC10YG0cNOCs1BjYLN-gdIqAL9P49AJPSqyBStd3wcIV0fN8B43Oz0b9AfGtE0jOaLAgghtWFFGshMqDgqeKUhNqqjNl4zcNXcCABz_JRJhzTZOwsI5cp4bn3G6gMk13UbOclmYPYc5NpBM7c2mcMi2YYCxjNg7MciaMyIoWCmuVydzTikN3iydZ5489SlCzBDXLIJJWzS10_DlmVpFqLJXm9UzIH6YhLeovHdeup036hTmXNhriAVhMuP_Pzx6gVXiqUnbbqLl4eTWHNjBZqI6zvA5a6V1eD4Yf9azidw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdgAOiKcYzxy4oWhtk3TNEQFjsAcHhrQLitomlYagm9gQf5-4TSdAggM9Va1dVY7z2VGczwBnibCXbwT1hA6ojdApTbw0piwMvSTgoTEFkfZgGHYf-d1YjGtwWZ2FwbJKh_0lphdo7Z60nDVbs8mk9eAx62xtaVcArODbXYEGslOJOjQubnvd4RKQQ1nw7aI8RQV3dqYs8zKzOdKC-rKg7vTZb_HpB1IX4aezCRsubyQX5a9tQc3k27D-hU1wB57u7fR_tUIYn9DeFDfVy1syzQjWQVr0INoU6EDiXBMktPzA01MUw5kmVzdkkhONbLquERYpuZ7nuzDqXI8uu9R1T6ApZ96CSmF4lgVhIpPUy0SUMGZ8zXSc2BROYyMwpMJvx9JPhWZtP7OxXEdGpMKuoWLN9qCeT3OzD0QIE-i2HbwojLiWXHIec5sKximXRsZZE_zKZCp1zOLY4OJFVSVkzwrNrNDMyguUNXMTzpc6s5JX409pUY2E-uYdygL_n3pH1bApNzfnyiZEwkOn8Q_--dlTWO2OBn3Vvx32DmEN35QVvEdQX7y9m2ObpyySE-eHn7-Z5Sg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+location-allocation+of+storage+devices+and+renewable-based+DG+in+distribution+systems&rft.jtitle=Electric+power+systems+research&rft.au=Home-Ortiz%2C+Juan+M&rft.au=Pourakbari-Kasmaei%2C+Mahdi&rft.au=Lehtonen%2C+Matti&rft.au=Mantovani%2C+Jos%C3%A9+Roberto+Sanches&rft.date=2019-07-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0378-7796&rft.eissn=1873-2046&rft.volume=172&rft.spage=11&rft_id=info:doi/10.1016%2Fj.epsr.2019.02.013&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon |