Nonlinear Disintegration of the Internal Tide

Abstract The disintegration of a first-mode internal tide into shorter solitary-like waves is considered. Since observations frequently show both tides and waves with amplitudes beyond the restrictions of weakly nonlinear theory, the evolution is studied using a fully nonlinear, weakly nonhydrostati...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical oceanography Vol. 38; no. 3; pp. 686 - 701
Main Authors HELFRICH, Karl R, GRIMSHAW, Roger H. J
Format Journal Article
LanguageEnglish
Published Boston, MA American Meteorological Society 01.03.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract The disintegration of a first-mode internal tide into shorter solitary-like waves is considered. Since observations frequently show both tides and waves with amplitudes beyond the restrictions of weakly nonlinear theory, the evolution is studied using a fully nonlinear, weakly nonhydrostatic two-layer theory that includes rotation. In the hydrostatic limit, the governing equations have periodic, nonlinear inertia–gravity solutions that are explored as models of the nonlinear internal tide. These long waves are shown to be robust to weak nonhydrostatic effects. Numerical solutions show that the disintegration of an initial sinusoidal linear internal tide is closely linked to the presence of these nonlinear waves. The initial tide steepens due to nonlinearity and sheds energy into short solitary waves. The disintegration is halted as the longwave part of the solution settles onto a state close to one of the nonlinear hydrostatic solutions, with the short solitary waves superimposed. The degree of disintegration is a function of initial amplitude of the tide and the properties of the underlying nonlinear hydrostatic solutions, which, depending on stratification and tidal frequency, exist only for a finite range of amplitudes (or energies). There is a lower threshold below which no short solitary waves are produced. However, for initial amplitudes above another threshold, given approximately by the energy of the limiting nonlinear hydrostatic inertia–gravity wave, most of the initial tidal energy goes into solitary waves. Recent observations in the South China Sea are briefly discussed.
AbstractList Abstract The disintegration of a first-mode internal tide into shorter solitary-like waves is considered. Since observations frequently show both tides and waves with amplitudes beyond the restrictions of weakly nonlinear theory, the evolution is studied using a fully nonlinear, weakly nonhydrostatic two-layer theory that includes rotation. In the hydrostatic limit, the governing equations have periodic, nonlinear inertia–gravity solutions that are explored as models of the nonlinear internal tide. These long waves are shown to be robust to weak nonhydrostatic effects. Numerical solutions show that the disintegration of an initial sinusoidal linear internal tide is closely linked to the presence of these nonlinear waves. The initial tide steepens due to nonlinearity and sheds energy into short solitary waves. The disintegration is halted as the longwave part of the solution settles onto a state close to one of the nonlinear hydrostatic solutions, with the short solitary waves superimposed. The degree of disintegration is a function of initial amplitude of the tide and the properties of the underlying nonlinear hydrostatic solutions, which, depending on stratification and tidal frequency, exist only for a finite range of amplitudes (or energies). There is a lower threshold below which no short solitary waves are produced. However, for initial amplitudes above another threshold, given approximately by the energy of the limiting nonlinear hydrostatic inertia–gravity wave, most of the initial tidal energy goes into solitary waves. Recent observations in the South China Sea are briefly discussed.
The disintegration of a first-mode internal tide into shorter solitary-like waves is considered. Since observations frequently show both tides and waves with amplitudes beyond the restrictions of weakly nonlinear theory, the evolution is studied using a fully nonlinear, weakly nonhydrostatic two-layer theory that includes rotation. In the hydrostatic limit, the governing equations have periodic, nonlinear inertia-gravity solutions that are explored as models of the nonlinear internal tide. These long waves are shown to be robust to weak nonhydrostatic effects. Numerical solutions show that the disintegration of an initial sinusoidal linear internal tide is closely linked to the presence of these nonlinear waves. The initial tide steepens due to nonlinearity and sheds energy into short solitary waves. The disintegration is halted as the longwave part of the solution settles onto a state close to one of the nonlinear hydrostatic solutions, with the short solitary waves superimposed. The degree of disintegration is a function of initial amplitude of the tide and the properties of the underlying nonlinear hydrostatic solutions, which, depending on stratification and tidal frequency, exist only for a finite range of amplitudes (or energies). There is a lower threshold below which no short solitary waves are produced. However, for initial amplitudes above another threshold, given approximately by the energy of the limiting nonlinear hydrostatic inertia-gravity wave, most of the initial tidal energy goes into solitary waves. Recent observations in the South China Sea are briefly discussed.
The disintegration of a first-mode internal tide into shorter solitary-like waves is considered. Since observations frequently show both tides and waves with amplitudes beyond the restrictions of weakly nonlinear theory, the evolution is studied using a fully nonlinear, weakly nonhydrostatic two-layer theory that includes rotation. In the hydrostatic limit, the governing equations have periodic, nonlinear inertia-gravity solutions that are explored as models of the nonlinear internal tide. These long waves are shown to be robust to weak nonhydrostatic effects. Numerical solutions show that the disintegration of an initial sinusoidal linear internal tide is closely linked to the presence of these nonlinear waves. The initial tide steepens due to nonlinearity and sheds energy into short solitary waves. The disintegration is halted as the longwave part of the solution settles onto a state close to one of the nonlinear hydrostatic solutions, with the short solitary waves superimposed. The degree of disintegration is a function of initial amplitude of the tide and the properties of the underlying nonlinear hydrostatic solutions, which, depending on stratification and tidal frequency, exist only for a finite range of amplitudes (or energies). There is a lower threshold below which no short solitary waves are produced. However, for initial amplitudes above another threshold, given approximately by the energy of the limiting nonlinear hydrostatic inertia-gravity wave, most of the initial tidal energy goes into solitary waves. Recent observations in the South China Sea are briefly discussed. [PUBLICATION ABSTRACT]
Author GRIMSHAW, Roger H. J
HELFRICH, Karl R
Author_xml – sequence: 1
  givenname: Karl R
  surname: HELFRICH
  fullname: HELFRICH, Karl R
  organization: Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States
– sequence: 2
  givenname: Roger H. J
  surname: GRIMSHAW
  fullname: GRIMSHAW, Roger H. J
  organization: Department of Mathematical Sciences, Loughborough University, Loughborough, Leicester, United Kingdom
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20189689$$DView record in Pascal Francis
BookMark eNpd0D1PwzAQBmALFYm2MLJHSLCl3PkjdkZUvooqylDmyHUccJXaxU4H_j2JqBiYTjo99-r0TsjIB28JuUSYIUpxSwHkdh-YosUMT8gYBYUcuBIjMgagNGeFhDMySWkLAAXSckzy1-Bb562O2b1Lznf2I-rOBZ-FJus-bbboV9HrNlu72p6T00a3yV4c55S8Pz6s58_5cvW0mN8tc8MZdLmSiLxkUPMCagWCq5oJyzkTBWf1hlPeFGCURamQWbMRDCTqUqIsa2uUYlNy85u7j-HrYFNX7Vwytm21t-GQKooASgraw6t_cBsOw7u9oaxkjFLZo_wXmRhSirap9tHtdPyuEKqhuWpo7uVtNTRXYe-vj6E6Gd02UXvj0t8RBVRloUr2A98JbAY
CODEN JPYOBT
CitedBy_id crossref_primary_10_5194_os_12_243_2016
crossref_primary_10_1111_sapm_12207
crossref_primary_10_1175_2011JPO4587_1
crossref_primary_10_5194_npg_23_285_2016
crossref_primary_10_1111_j_1467_9590_2012_00560_x
crossref_primary_10_1029_2021JC017781
crossref_primary_10_1007_s10872_014_0233_9
crossref_primary_10_1016_j_dynatmoce_2022_101329
crossref_primary_10_1175_JPO_D_17_0047_1
crossref_primary_10_1029_2018JC014843
crossref_primary_10_1080_03091929_2019_1590568
crossref_primary_10_1175_2010JPO4388_1
crossref_primary_10_1140_epjst_e2010_01249_4
crossref_primary_10_1029_2011JC007215
crossref_primary_10_1016_j_ocemod_2017_06_009
crossref_primary_10_1016_j_dsr_2021_103640
crossref_primary_10_1016_j_ocemod_2011_11_003
crossref_primary_10_1029_2009JC006004
crossref_primary_10_1007_s13131_014_0416_7
crossref_primary_10_1016_j_ocemod_2011_08_005
crossref_primary_10_1029_2009JC005318
crossref_primary_10_1029_2020JC016460
crossref_primary_10_1007_s00343_010_9077_3
crossref_primary_10_1016_j_csr_2023_105083
crossref_primary_10_1016_j_dsr_2012_07_004
crossref_primary_10_1016_j_pocean_2013_03_006
crossref_primary_10_1007_s00343_021_1052_7
crossref_primary_10_1017_jfm_2014_10
crossref_primary_10_1063_1_3253400
crossref_primary_10_1038_nature14399
crossref_primary_10_1250_ast_38_246
crossref_primary_10_1016_j_physd_2015_12_007
crossref_primary_10_1029_2010JC006776
crossref_primary_10_1016_j_pocean_2021_102716
crossref_primary_10_3137_OC313_2009
crossref_primary_10_1038_s41598_023_29931_z
crossref_primary_10_1016_j_dsr_2022_103946
crossref_primary_10_1016_j_pocean_2013_04_002
crossref_primary_10_3390_sym14040668
crossref_primary_10_1002_2014JC010393
crossref_primary_10_1175_2009JTECHO638_1
crossref_primary_10_1063_1_4759499
crossref_primary_10_1007_s13131_020_1667_0
crossref_primary_10_1029_2022JC019130
crossref_primary_10_3390_jmse10010055
crossref_primary_10_1175_BAMS_D_16_0030_1
crossref_primary_10_1002_2014JC010069
crossref_primary_10_1029_2023JC019913
crossref_primary_10_1002_2015JC011134
crossref_primary_10_1134_S1028334X15120090
crossref_primary_10_1016_j_ocemod_2014_02_005
crossref_primary_10_1175_JPO_D_16_0111_1
crossref_primary_10_5194_npg_29_207_2022
crossref_primary_10_1002_2017JC012880
crossref_primary_10_1016_j_dsr_2014_10_002
crossref_primary_10_1016_j_ocemod_2011_03_002
crossref_primary_10_5194_npg_22_289_2015
crossref_primary_10_1007_s13131_015_0734_4
crossref_primary_10_1017_jfm_2022_690
crossref_primary_10_1175_JPO_D_11_0210_1
crossref_primary_10_1016_j_rsma_2018_02_004
crossref_primary_10_1002_2014JC010014
crossref_primary_10_1109_TGRS_2016_2587752
crossref_primary_10_1175_JPO_D_21_0095_1
crossref_primary_10_1017_jfm_2022_689
crossref_primary_10_1016_j_ocemod_2012_09_005
crossref_primary_10_1029_2018JC014437
crossref_primary_10_1016_j_dsr_2019_06_010
crossref_primary_10_1016_j_jcp_2010_06_009
crossref_primary_10_1080_01431161_2014_916442
crossref_primary_10_1175_JPO_D_17_0209_1
crossref_primary_10_1007_s13131_019_1521_4
Cites_doi 10.1016/0377-0265(95)00426-2
10.1017/S0022112099005820
10.1017/S002211208600071X
10.1023/A:1006587919935
10.1029/2006JC003644
10.1175/1520-0485(1995)025<1081:GONITA>2.0.CO;2
10.1071/MF05016
10.1017/S0022112005007226
10.1029/2003GL019077
10.1146/annurev.fluid.38.050304.092129
10.1017/S002211209800127X
10.1029/93JC02514
10.1111/1467-9590.00090
10.1017/S002211207800021X
10.1143/JPSJ.45.674
10.1063/1.1604133
10.1029/JC079i003p00453
10.1063/1.2472509
10.1357/002224001762882646
10.1017/S0022112092001939
10.1137/S106482759631041X
10.1029/1999JC900144
10.1029/JC084iC01p00338
10.1017/S0022112087001101
10.1109/JOE.2004.840839
10.1357/0022240963213574
10.1111/j.1749-6632.1981.tb51140.x
10.1111/1467-9590.00222
10.1029/98GL01772
10.1017/S0022112095002813
10.1016/S0375-9601(03)00882-X
10.1029/2004GL022012
10.1017/S002211208900220X
10.1002/sapm1995951115
10.1007/978-3-642-83331-1_44
ContentType Journal Article
Copyright 2008 INIST-CNRS
Copyright American Meteorological Society Mar 2008
Copyright_xml – notice: 2008 INIST-CNRS
– notice: Copyright American Meteorological Society Mar 2008
DBID IQODW
AAYXX
CITATION
3V.
7TG
7TN
7XB
88F
88I
8AF
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
GNUQQ
GUQSH
H96
HCIFZ
KL.
L.G
M1Q
M2O
M2P
MBDVC
P5Z
P62
PATMY
PCBAR
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
S0X
DOI 10.1175/2007jpo3826.1
DatabaseName Pascal-Francis
CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ProQuest Central (purchase pre-March 2016)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Research Library Prep
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Military Database
ProQuest_Research Library
Science Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
SIRS Editorial
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
ProQuest Central Student
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SIRS Editorial
elibrary
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Military Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
EISSN 1520-0485
EndPage 701
ExternalDocumentID 1452971711
10_1175_2007JPO3826_1
20189689
Genre Feature
GeographicLocations West Pacific
South China Sea
Pacific Ocean
ISEW, South China Sea
GeographicLocations_xml – name: ISEW, South China Sea
GroupedDBID -~X
08R
29L
2WC
3V.
4.4
476
5GY
6TJ
7XC
88I
8AF
8CJ
8FE
8FG
8FH
8G5
8R4
8R5
ABDBF
ABDNZ
ABPPZ
ABPTK
ABRJW
ABUWG
ACGFO
ACGOD
ACIHN
ACMJI
ACNCT
ACYGS
AEAQA
AENEX
AFFNX
AFKRA
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
ALQLQ
ARAPS
ATCPS
AZQEC
BCR
BCU
BEC
BENPR
BES
BGLVJ
BHPHI
BKSAR
BLC
BPHCQ
C1A
CAG
CCPQU
COF
CS3
D1J
D1K
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBS
EDH
EJD
EMK
EPL
EST
ESX
F5P
F8P
FRP
GNUQQ
GUQSH
H13
HCIFZ
I-F
IQODW
K6-
LK5
M1Q
M2O
M2P
M2Q
M7R
MV1
OHT
OK1
P2P
P62
PATMY
PCBAR
PEA
PQQKQ
PROAC
PYCSY
Q2X
RWA
RWE
RWL
RXW
S0X
SJFOW
TAE
TN5
TR2
TUS
U5U
UPT
VH1
VOH
YQT
~02
AAYXX
CITATION
7TG
7TN
7XB
8FK
F1W
H96
KL.
L.G
MBDVC
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c430t-87114930d460d80548d35e4435643db424f60c8e17813ecb53071a97179dec883
IEDL.DBID BENPR
ISSN 0022-3670
IngestDate Thu Apr 11 15:40:50 EDT 2024
Thu Oct 10 21:00:29 EDT 2024
Fri Aug 23 00:43:45 EDT 2024
Sun Oct 22 16:08:38 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Solitary wave
Rotating flow
internal waves
Wave packet
Desintegration
mathematical models
two-layer models
Observation data
Gravity inertial wave
Wave generation
Non linear wave
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-87114930d460d80548d35e4435643db424f60c8e17813ecb53071a97179dec883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://journals.ametsoc.org/downloadpdf/journals/phoc/38/3/2007jpo3826.1.pdf
PQID 223933227
PQPubID 33356
PageCount 16
ParticipantIDs proquest_miscellaneous_21008752
proquest_journals_223933227
crossref_primary_10_1175_2007JPO3826_1
pascalfrancis_primary_20189689
PublicationCentury 2000
PublicationDate 2008-03-01
PublicationDateYYYYMMDD 2008-03-01
PublicationDate_xml – month: 03
  year: 2008
  text: 2008-03-01
  day: 01
PublicationDecade 2000
PublicationPlace Boston, MA
PublicationPlace_xml – name: Boston, MA
– name: Boston
PublicationTitle Journal of physical oceanography
PublicationYear 2008
Publisher American Meteorological Society
Publisher_xml – name: American Meteorological Society
References Hammack (2020061404274899900_i1520-0485-38-3-686-Hammack1) 1978; 84
Kakutani (2020061404274899900_i1520-0485-38-3-686-Kakutani1) 1978; 45
Choi (2020061404274899900_i1520-0485-38-3-686-Choi1) 1999; 396
Leonov (2020061404274899900_i1520-0485-38-3-686-Leonov1) 1981; 373
Lee (2020061404274899900_i1520-0485-38-3-686-Lee1) 1974; 79
Lamb (2020061404274899900_i1520-0485-38-3-686-Lamb1) 1994; 99
Zhao (2020061404274899900_i1520-0485-38-3-686-Zhao1) 2006; 111
Grimshaw (2020061404274899900_i1520-0485-38-3-686-Grimshaw2) 1998; 101
Stanton (2020061404274899900_i1520-0485-38-3-686-Stanton1) 1998; 25
Gerkema (2020061404274899900_i1520-0485-38-3-686-Gerkema1) 1996; 54
Helfrich (2020061404274899900_i1520-0485-38-3-686-Helfrich1) 2007; 19
Miyata (2020061404274899900_i1520-0485-38-3-686-Miyata2) 1988
Wei (2020061404274899900_i1520-0485-38-3-686-Wei1) 1995; 294
Melville (2020061404274899900_i1520-0485-38-3-686-Melville2) 1989; 206
Plougonven (2020061404274899900_i1520-0485-38-3-686-Plougonven1) 2003; 314
Grimshaw (2020061404274899900_i1520-0485-38-3-686-Grimshaw4) 2006; 57
Ostrovsky (2020061404274899900_i1520-0485-38-3-686-Ostrovsky1) 1978; 18
Grimshaw (2020061404274899900_i1520-0485-38-3-686-Grimshaw3) 1998; 19
Gerkema (2020061404274899900_i1520-0485-38-3-686-Gerkema2) 2001; 59
Michallet (2020061404274899900_i1520-0485-38-3-686-Michallet1) 1998; 366
Ostrovsky (2020061404274899900_i1520-0485-38-3-686-Ostrovsky2) 2003; 15
Gilman (2020061404274899900_i1520-0485-38-3-686-Gilman2) 1996; 23
Shrira (2020061404274899900_i1520-0485-38-3-686-Shrira1) 1986; 22
Ramp (2020061404274899900_i1520-0485-38-3-686-Ramp1) 2004; 29
Lien (2020061404274899900_i1520-0485-38-3-686-Lien1) 2005; 32
Gilman (2020061404274899900_i1520-0485-38-3-686-Gilman1) 1995; 95
Maxworthy (2020061404274899900_i1520-0485-38-3-686-Maxworthy1) 1979; 84
Miyata (2020061404274899900_i1520-0485-38-3-686-Miyata1) 1985; 23
Jiang (2020061404274899900_i1520-0485-38-3-686-Jiang1) 1998; 19
Holloway (2020061404274899900_i1520-0485-38-3-686-Holloway1) 1999; 104
Grimshaw (2020061404274899900_i1520-0485-38-3-686-Grimshaw1) 1986; 169
Zhao (2020061404274899900_i1520-0485-38-3-686-Zhao2) 2004; 31
Gerkema (2020061404274899900_i1520-0485-38-3-686-Gerkema3) 1995; 25
Camassa (2020061404274899900_i1520-0485-38-3-686-Camassa1) 2006; 549
Helfrich (2020061404274899900_i1520-0485-38-3-686-Helfrich2) 2006; 38
Tomasson (2020061404274899900_i1520-0485-38-3-686-Tomasson1) 1992; 241
New (2020061404274899900_i1520-0485-38-3-686-New1) 1999
Jo (2020061404274899900_i1520-0485-38-3-686-Jo1) 2002; 109
Melville (2020061404274899900_i1520-0485-38-3-686-Melville1) 1987; 178
References_xml – volume: 23
  start-page: 403
  year: 1996
  ident: 2020061404274899900_i1520-0485-38-3-686-Gilman2
  article-title: Dynamics of internal solitary waves in a rotating fluid.
  publication-title: Dyn. Atmos. Oceans
  doi: 10.1016/0377-0265(95)00426-2
  contributor:
    fullname: Gilman
– volume: 396
  start-page: 1
  year: 1999
  ident: 2020061404274899900_i1520-0485-38-3-686-Choi1
  article-title: Fully nonlinear internal waves in a two-fluid system.
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112099005820
  contributor:
    fullname: Choi
– volume: 169
  start-page: 429
  year: 1986
  ident: 2020061404274899900_i1520-0485-38-3-686-Grimshaw1
  article-title: Resonant flow of a stratified fluid over topography.
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211208600071X
  contributor:
    fullname: Grimshaw
– volume: 19
  start-page: 289
  year: 1998
  ident: 2020061404274899900_i1520-0485-38-3-686-Grimshaw3
  article-title: Long nonlinear surface and internal gravity waves in a rotating ocean.
  publication-title: Surv. Geophys.
  doi: 10.1023/A:1006587919935
  contributor:
    fullname: Grimshaw
– volume: 111
  year: 2006
  ident: 2020061404274899900_i1520-0485-38-3-686-Zhao1
  article-title: Source and propagation of internal solitary waves in the northeastern South China Sea.
  publication-title: J. Geophys. Res.
  doi: 10.1029/2006JC003644
  contributor:
    fullname: Zhao
– volume: 25
  start-page: 1081
  year: 1995
  ident: 2020061404274899900_i1520-0485-38-3-686-Gerkema3
  article-title: Generation of nonlinear internal tides and solitary waves.
  publication-title: J. Phys. Oceanogr.
  doi: 10.1175/1520-0485(1995)025<1081:GONITA>2.0.CO;2
  contributor:
    fullname: Gerkema
– volume: 57
  start-page: 265
  year: 2006
  ident: 2020061404274899900_i1520-0485-38-3-686-Grimshaw4
  article-title: Modelling internal solitary waves on the Australian North West Shelf.
  publication-title: Mar. Freshwater Res.
  doi: 10.1071/MF05016
  contributor:
    fullname: Grimshaw
– volume: 549
  start-page: 1
  year: 2006
  ident: 2020061404274899900_i1520-0485-38-3-686-Camassa1
  article-title: On the realm of validity of strongly nonlinear asymptotic approximations for internal waves.
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112005007226
  contributor:
    fullname: Camassa
– volume: 31
  year: 2004
  ident: 2020061404274899900_i1520-0485-38-3-686-Zhao2
  article-title: Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea.
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2003GL019077
  contributor:
    fullname: Zhao
– volume: 38
  start-page: 395
  year: 2006
  ident: 2020061404274899900_i1520-0485-38-3-686-Helfrich2
  article-title: Long nonlinear internal waves.
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.38.050304.092129
  contributor:
    fullname: Helfrich
– volume: 366
  start-page: 159
  year: 1998
  ident: 2020061404274899900_i1520-0485-38-3-686-Michallet1
  article-title: Experimental study of interfacial solitary waves.
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211209800127X
  contributor:
    fullname: Michallet
– volume: 99
  start-page: 843
  year: 1994
  ident: 2020061404274899900_i1520-0485-38-3-686-Lamb1
  article-title: Numerical experiments of internal wave generation by strong tidal flow across a finite amplitude bank edge.
  publication-title: J. Geophys. Res.
  doi: 10.1029/93JC02514
  contributor:
    fullname: Lamb
– volume: 23
  start-page: 43
  year: 1985
  ident: 2020061404274899900_i1520-0485-38-3-686-Miyata1
  article-title: Long internal waves of large amplitude.
  publication-title: La Mer
  contributor:
    fullname: Miyata
– volume: 101
  start-page: 197
  year: 1998
  ident: 2020061404274899900_i1520-0485-38-3-686-Grimshaw2
  article-title: Terminal damping of a solitary wave due to radiation in rotational systems.
  publication-title: Stud. Appl. Math.
  doi: 10.1111/1467-9590.00090
  contributor:
    fullname: Grimshaw
– volume: 84
  start-page: 359
  year: 1978
  ident: 2020061404274899900_i1520-0485-38-3-686-Hammack1
  article-title: Modelling criteria for long water waves.
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211207800021X
  contributor:
    fullname: Hammack
– volume: 45
  start-page: 674
  year: 1978
  ident: 2020061404274899900_i1520-0485-38-3-686-Kakutani1
  article-title: Solitary waves on a two-layer fluid.
  publication-title: J. Phys. Soc. Japan
  doi: 10.1143/JPSJ.45.674
  contributor:
    fullname: Kakutani
– volume: 15
  start-page: 2934
  year: 2003
  ident: 2020061404274899900_i1520-0485-38-3-686-Ostrovsky2
  article-title: Evolution equations for strongly nonlinear internal waves.
  publication-title: Phys. Fluids
  doi: 10.1063/1.1604133
  contributor:
    fullname: Ostrovsky
– volume: 79
  start-page: 453
  year: 1974
  ident: 2020061404274899900_i1520-0485-38-3-686-Lee1
  article-title: The generation of long nonlinear internal waves in a weakly stratified shear flow.
  publication-title: J. Geophys. Res.
  doi: 10.1029/JC079i003p00453
  contributor:
    fullname: Lee
– volume: 19
  year: 2007
  ident: 2020061404274899900_i1520-0485-38-3-686-Helfrich1
  article-title: Decay and return of internal solitary waves with rotation.
  publication-title: Phys. Fluids
  doi: 10.1063/1.2472509
  contributor:
    fullname: Helfrich
– volume: 59
  start-page: 227
  year: 2001
  ident: 2020061404274899900_i1520-0485-38-3-686-Gerkema2
  article-title: Internal and interfacial tides: Beam scattering and local generation of solitary waves.
  publication-title: J. Mar. Res.
  doi: 10.1357/002224001762882646
  contributor:
    fullname: Gerkema
– volume: 241
  start-page: 23
  year: 1992
  ident: 2020061404274899900_i1520-0485-38-3-686-Tomasson1
  article-title: Geostrophic adjustment in a channel: Nonlinear and dispersive effects.
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112092001939
  contributor:
    fullname: Tomasson
– volume: 18
  start-page: 119
  year: 1978
  ident: 2020061404274899900_i1520-0485-38-3-686-Ostrovsky1
  article-title: Nonlinear internal waves in a rotating ocean.
  publication-title: Oceanology
  contributor:
    fullname: Ostrovsky
– volume: 19
  start-page: 1892
  year: 1998
  ident: 2020061404274899900_i1520-0485-38-3-686-Jiang1
  article-title: Nonoscillatory central schemes for multidimensional hyperbolic conservation laws.
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S106482759631041X
  contributor:
    fullname: Jiang
– volume: 104
  start-page: 18333
  year: 1999
  ident: 2020061404274899900_i1520-0485-38-3-686-Holloway1
  article-title: A generalized Korteweg–de Vries model of internal tide transformation in the coastal zone.
  publication-title: J. Geophys. Res.
  doi: 10.1029/1999JC900144
  contributor:
    fullname: Holloway
– volume: 84
  start-page: 338
  year: 1979
  ident: 2020061404274899900_i1520-0485-38-3-686-Maxworthy1
  article-title: A note on the internal solitary waves produced by tidal flow over a three-dimensional ridge.
  publication-title: J. Geophys. Res.
  doi: 10.1029/JC084iC01p00338
  contributor:
    fullname: Maxworthy
– volume: 178
  start-page: 31
  year: 1987
  ident: 2020061404274899900_i1520-0485-38-3-686-Melville1
  article-title: Transcritical two-layer flow over topography.
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112087001101
  contributor:
    fullname: Melville
– volume: 22
  start-page: 298
  year: 1986
  ident: 2020061404274899900_i1520-0485-38-3-686-Shrira1
  article-title: On long strongly nonlinear waves in a rotating ocean.
  publication-title: Izv. Atmos. Oceanic Phys.
  contributor:
    fullname: Shrira
– volume: 29
  start-page: 1157
  year: 2004
  ident: 2020061404274899900_i1520-0485-38-3-686-Ramp1
  article-title: Internal solitons in the northeastern South China Sea. Part I: Sources and deep water propagation.
  publication-title: IEEE J. Oceanic Eng.
  doi: 10.1109/JOE.2004.840839
  contributor:
    fullname: Ramp
– volume: 54
  start-page: 421
  year: 1996
  ident: 2020061404274899900_i1520-0485-38-3-686-Gerkema1
  article-title: A unified model for the generation and fission of internal tides in a rotating ocean.
  publication-title: J. Mar. Res.
  doi: 10.1357/0022240963213574
  contributor:
    fullname: Gerkema
– volume: 373
  start-page: 150
  year: 1981
  ident: 2020061404274899900_i1520-0485-38-3-686-Leonov1
  article-title: The effect of the earth’s rotation on the propagation of weak nonlinear surface and internal long oceanic waves.
  publication-title: Ann. NY Acad. Sci.
  doi: 10.1111/j.1749-6632.1981.tb51140.x
  contributor:
    fullname: Leonov
– year: 1999
  ident: 2020061404274899900_i1520-0485-38-3-686-New1
  article-title: A new Korteweg–de Vries-type theory for internal solitary waves in a rotating continuously-stratified ocean.
  contributor:
    fullname: New
– volume: 109
  start-page: 205
  year: 2002
  ident: 2020061404274899900_i1520-0485-38-3-686-Jo1
  article-title: Dynamics of strongly nonlinear internal solitary waves in shallow water.
  publication-title: Stud. Appl. Math.
  doi: 10.1111/1467-9590.00222
  contributor:
    fullname: Jo
– volume: 25
  start-page: 2695
  year: 1998
  ident: 2020061404274899900_i1520-0485-38-3-686-Stanton1
  article-title: Observations of highly nonlinear internal solitons over the continental shelf.
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/98GL01772
  contributor:
    fullname: Stanton
– volume: 294
  start-page: 71
  year: 1995
  ident: 2020061404274899900_i1520-0485-38-3-686-Wei1
  article-title: A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves.
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112095002813
  contributor:
    fullname: Wei
– volume: 314
  start-page: 140
  year: 2003
  ident: 2020061404274899900_i1520-0485-38-3-686-Plougonven1
  article-title: On periodic inertia-gravity waves of finite amplitude propagating without change of form at sharp density-gradient interfaces in the rotating fluid.
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(03)00882-X
  contributor:
    fullname: Plougonven
– volume: 32
  year: 2005
  ident: 2020061404274899900_i1520-0485-38-3-686-Lien1
  article-title: Energy of nonlinear internal waves in the South China Sea.
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2004GL022012
  contributor:
    fullname: Lien
– volume: 206
  start-page: 1
  year: 1989
  ident: 2020061404274899900_i1520-0485-38-3-686-Melville2
  article-title: On the stability of Kelvin waves.
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211208900220X
  contributor:
    fullname: Melville
– volume: 95
  start-page: 115
  year: 1995
  ident: 2020061404274899900_i1520-0485-38-3-686-Gilman1
  article-title: Approximate analytical and numerical solutions of the stationary Ostrovsky equation.
  publication-title: Stud. Appl. Math.
  doi: 10.1002/sapm1995951115
  contributor:
    fullname: Gilman
– year: 1988
  ident: 2020061404274899900_i1520-0485-38-3-686-Miyata2
  article-title: Long internal waves of large amplitude.
  doi: 10.1007/978-3-642-83331-1_44
  contributor:
    fullname: Miyata
SSID ssj0006129
Score 2.2497137
Snippet Abstract The disintegration of a first-mode internal tide into shorter solitary-like waves is considered. Since observations frequently show both tides and...
The disintegration of a first-mode internal tide into shorter solitary-like waves is considered. Since observations frequently show both tides and waves with...
SourceID proquest
crossref
pascalfrancis
SourceType Aggregation Database
Index Database
StartPage 686
SubjectTerms Dynamics of the ocean (upper and deep oceans)
Earth, ocean, space
Exact sciences and technology
External geophysics
Farmers
Gravity waves
Mathematical models
Physics of the oceans
Solitary waves
Tidal energy
Tides
Title Nonlinear Disintegration of the Internal Tide
URI https://www.proquest.com/docview/223933227
https://search.proquest.com/docview/21008752
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90exFF_MQ6nX0Q3-qaJm2TJ_Fjcwzchmywt9KmKUyknfv4_72saWEIPjfpwy_J3e8ul98B3AdeLNwEmZukkjmMUeUkUvkOQW6vMiGY8vRr5I9h0J-ywcyfmdqclSmrrGzi1lCnhdQ58o6ntbpw94VPix9HN43Sl6umg8Y-ND3C9C1t86U7HH_Wphjdt6jlwoPQrUQ2Q7-jc3Rfi4IivX4kO07paBGvEJ-sbGzxx0ZvHU_vBI4NY7SfyyU-hT2Vn8HhSKo4N3LT5-AMS8WLeGm_zVeVBARCbheZjRTPNom_b3syT9UFTHvdyWvfMY0QHMmou0aLhVGLoG7KAjflSLJ4Sn2FwPrIJ9KEeSwLXMkVCTmhSiY-HlwSC4zURKok5_QSGnmRqyuwU4QE_4ZBTobzXZ6ESjMiikQi8IiiFjxUSESLUu8i2sYJoa87VoaD8UhDFhEL2js41aORUXARcGFBqwIuMudiFdWraMFd_RU3tL6liHNVbHAI2arse9f_zm_BQVm5oavBbqCxXm7ULdKDddKGfd57b5ut8AsCU7av
link.rule.ids 315,786,790,12792,21416,27955,27956,33406,33407,33777,33778,43633,43838,74390,74657
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BGUAgxFOEQpsBsYUmsZPYE0JAKaUPhlbqFiWOIxWhJDTt_-ecl1QhMcfO8Pl89519_g7gzrUDbobI3AQR1KCUSCMU0jEs5PYy5pxKW71GHk_cwZwOF86iqs3Jq7LK2icWjjpKhToj79lKqwutz3vMfgzVNEpdrlYdNHZhjxKXKDNn_bfGEWPw5o1YuOuZtcSm5_TUCd1XlhIk1w_WVkg6yoIc0YnLthZ_PHQRdvoncFzxRf2pXOBT2JHJGRxOhQySSmz6HIxJqXcRrPSXZV4LQCDgehrrSPD06tjvW58tI3kB8_7r7HlgVG0QDEGJuUZ_hTkLJ2ZEXTNiSLFYRByJsDrIJqKQ2jR2TcGk5TGLSBE6uG2tgGOexiMpGCOX0ErSRF6BHiEk-DdMcWKcb7LQk4oPEaQRrm1JosF9jYSflWoXfpEleI7qV-kNP6cKMt_SoLOFUzMa-QTjLuMatGvg_GpX5H6zhhp0m69ozuqOIkhkusEhVqGxb1__O78L-4PZeOSP3icfbTgoazhUXdgNtNarjbxForAOO4U5_AJA_bdQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED50gogi_sQ53fogvtW1TdomTyLOOadue9hgb6VNU5hIW_fj__fSpoUh-NykD18ud98ll-8A7jwn5FaEzE0QQU1KiTQjIV3TRm4vE86pdNRr5M-RN5jR4dyda0mhlS6rrHxi4ajjTKgz8q6jtLrQ-vxuoqsiJr3-Y_5jqgZS6qJVd9PYhT3FsVUXB9Z_rZ0yBnJeC4d7vlXJbfpuV53WfeUZQaL9YG-Fp6M8XCFSSdni4o-3LkJQ_wSONXc0nsrFPoUdmZ7B4VjIMNXC0-dgjkrti3Bp9BarSgwCwTeyxECyZ-gjwG9juojlBcz6L9PngalbIpiCEmuNvgvzF06smHpWzJBusZi4EiF2kVnEEXVo4lmCSdtnNpEicnEL2yHHnI3HUjBGLqGRZqm8AiNGSPBvmO4kON9ikS8VNyKInufYkjThvkIiyEvli6DIGHxX9a70h5Oxgiywm9DewqkejdyCcY_xJrQq4AK9Q1ZBvZ5N6NRf0bTVfUWYymyDQ-xCb9-5_nd-B_bREoKPt9F7Cw7Kcg5VInYDjfVyI2-RM6yjdmENv-OZu4U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Disintegration+of+the+Internal+Tide&rft.jtitle=Journal+of+physical+oceanography&rft.au=HELFRICH%2C+Karl+R&rft.au=GRIMSHAW%2C+Roger+H.+J&rft.date=2008-03-01&rft.pub=American+Meteorological+Society&rft.issn=0022-3670&rft.eissn=1520-0485&rft.volume=38&rft.issue=3&rft.spage=686&rft.epage=701&rft_id=info:doi/10.1175%2F2007jpo3826.1&rft.externalDBID=n%2Fa&rft.externalDocID=20189689
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3670&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3670&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3670&client=summon