Buoyancy effects on the flows around flat and steep street canyons in simplified urban settings subject to a neutral approaching boundary layer: Wind tunnel PIV measurements
The present wind tunnel particle image velocimetry (PIV) measurements document flows around flat and steep street canyons subject to thermal conditions at different levels, ranging from the Richardson number of 0.31 to 2.07. A steepness ratio, that is, the ratio of windward and leeward building heig...
Saved in:
Published in | The Science of the total environment Vol. 797; p. 149067 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
25.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The present wind tunnel particle image velocimetry (PIV) measurements document flows around flat and steep street canyons subject to thermal conditions at different levels, ranging from the Richardson number of 0.31 to 2.07. A steepness ratio, that is, the ratio of windward and leeward building heights, is proposed to characterise the geometrical influence of street canyons surrounded by buildings of non-uniform height. To study the thermal effects of building façades and ground on surrounding flow, surfaces of building models and the ground between them are heated up and maintained at three different temperatures to induce buoyant flows of different strength. The transition of the canyon flow from the typical rooftop shear-layer driven vortex to the buoyant plume type of flow is clearly revealed from the measurement results, which enhances the air removal that takes place at the roof-level of the two canyons. However, due to the different steepness of the canyons, the air removal rate from the steep canyon of a steepness ratio 2.52 is approximately 50% of that from the flat canyon with a steepness ratio of 1.53 in the buoyant plume-driven case because the downward flush flow along the windward façade suppresses the ascending plumes in the steep canyon. At the pedestrian level, the wind field is jointly dominated by the interplay between canyon-wide vortical flow and the buoyant plume rising ascending from the ground. The dynamics of non-isothermal flow in flat and steep canyons are revealed in detail, the implication of which is that the steepness of street canyons has to be considered in urban morphology planning, as well as in simplified geometrical representations of street canyons and in simplified urban canopy models.
[Display omitted]
•Non-isothermal flows around flat and steep canyons are studied using PIV measurements.•A steepness ratio is adopted to characterise the flow around steep canyons.•The transition from a shear-layer driven flow to a buoyant plume-driven flow enhances air removal. |
---|---|
AbstractList | The present wind tunnel particle image velocimetry (PIV) measurements document flows around flat and steep street canyons subject to thermal conditions at different levels, ranging from the Richardson number of 0.31 to 2.07. A steepness ratio, that is, the ratio of windward and leeward building heights, is proposed to characterise the geometrical influence of street canyons surrounded by buildings of non-uniform height. To study the thermal effects of building façades and ground on surrounding flow, surfaces of building models and the ground between them are heated up and maintained at three different temperatures to induce buoyant flows of different strength. The transition of the canyon flow from the typical rooftop shear-layer driven vortex to the buoyant plume type of flow is clearly revealed from the measurement results, which enhances the air removal that takes place at the roof-level of the two canyons. However, due to the different steepness of the canyons, the air removal rate from the steep canyon of a steepness ratio 2.52 is approximately 50% of that from the flat canyon with a steepness ratio of 1.53 in the buoyant plume-driven case because the downward flush flow along the windward façade suppresses the ascending plumes in the steep canyon. At the pedestrian level, the wind field is jointly dominated by the interplay between canyon-wide vortical flow and the buoyant plume rising ascending from the ground. The dynamics of non-isothermal flow in flat and steep canyons are revealed in detail, the implication of which is that the steepness of street canyons has to be considered in urban morphology planning, as well as in simplified geometrical representations of street canyons and in simplified urban canopy models. The present wind tunnel particle image velocimetry (PIV) measurements document flows around flat and steep street canyons subject to thermal conditions at different levels, ranging from the Richardson number of 0.31 to 2.07. A steepness ratio, that is, the ratio of windward and leeward building heights, is proposed to characterise the geometrical influence of street canyons surrounded by buildings of non-uniform height. To study the thermal effects of building façades and ground on surrounding flow, surfaces of building models and the ground between them are heated up and maintained at three different temperatures to induce buoyant flows of different strength. The transition of the canyon flow from the typical rooftop shear-layer driven vortex to the buoyant plume type of flow is clearly revealed from the measurement results, which enhances the air removal that takes place at the roof-level of the two canyons. However, due to the different steepness of the canyons, the air removal rate from the steep canyon of a steepness ratio 2.52 is approximately 50% of that from the flat canyon with a steepness ratio of 1.53 in the buoyant plume-driven case because the downward flush flow along the windward façade suppresses the ascending plumes in the steep canyon. At the pedestrian level, the wind field is jointly dominated by the interplay between canyon-wide vortical flow and the buoyant plume rising ascending from the ground. The dynamics of non-isothermal flow in flat and steep canyons are revealed in detail, the implication of which is that the steepness of street canyons has to be considered in urban morphology planning, as well as in simplified geometrical representations of street canyons and in simplified urban canopy models.The present wind tunnel particle image velocimetry (PIV) measurements document flows around flat and steep street canyons subject to thermal conditions at different levels, ranging from the Richardson number of 0.31 to 2.07. A steepness ratio, that is, the ratio of windward and leeward building heights, is proposed to characterise the geometrical influence of street canyons surrounded by buildings of non-uniform height. To study the thermal effects of building façades and ground on surrounding flow, surfaces of building models and the ground between them are heated up and maintained at three different temperatures to induce buoyant flows of different strength. The transition of the canyon flow from the typical rooftop shear-layer driven vortex to the buoyant plume type of flow is clearly revealed from the measurement results, which enhances the air removal that takes place at the roof-level of the two canyons. However, due to the different steepness of the canyons, the air removal rate from the steep canyon of a steepness ratio 2.52 is approximately 50% of that from the flat canyon with a steepness ratio of 1.53 in the buoyant plume-driven case because the downward flush flow along the windward façade suppresses the ascending plumes in the steep canyon. At the pedestrian level, the wind field is jointly dominated by the interplay between canyon-wide vortical flow and the buoyant plume rising ascending from the ground. The dynamics of non-isothermal flow in flat and steep canyons are revealed in detail, the implication of which is that the steepness of street canyons has to be considered in urban morphology planning, as well as in simplified geometrical representations of street canyons and in simplified urban canopy models. The present wind tunnel particle image velocimetry (PIV) measurements document flows around flat and steep street canyons subject to thermal conditions at different levels, ranging from the Richardson number of 0.31 to 2.07. A steepness ratio, that is, the ratio of windward and leeward building heights, is proposed to characterise the geometrical influence of street canyons surrounded by buildings of non-uniform height. To study the thermal effects of building façades and ground on surrounding flow, surfaces of building models and the ground between them are heated up and maintained at three different temperatures to induce buoyant flows of different strength. The transition of the canyon flow from the typical rooftop shear-layer driven vortex to the buoyant plume type of flow is clearly revealed from the measurement results, which enhances the air removal that takes place at the roof-level of the two canyons. However, due to the different steepness of the canyons, the air removal rate from the steep canyon of a steepness ratio 2.52 is approximately 50% of that from the flat canyon with a steepness ratio of 1.53 in the buoyant plume-driven case because the downward flush flow along the windward façade suppresses the ascending plumes in the steep canyon. At the pedestrian level, the wind field is jointly dominated by the interplay between canyon-wide vortical flow and the buoyant plume rising ascending from the ground. The dynamics of non-isothermal flow in flat and steep canyons are revealed in detail, the implication of which is that the steepness of street canyons has to be considered in urban morphology planning, as well as in simplified geometrical representations of street canyons and in simplified urban canopy models. [Display omitted] •Non-isothermal flows around flat and steep canyons are studied using PIV measurements.•A steepness ratio is adopted to characterise the flow around steep canyons.•The transition from a shear-layer driven flow to a buoyant plume-driven flow enhances air removal. |
ArticleNumber | 149067 |
Author | Li, Haiwei Zhao, Yongling Kubilay, Aytaç Carmeliet, Jan |
Author_xml | – sequence: 1 givenname: Yongling surname: Zhao fullname: Zhao, Yongling email: yozhao@ethz.ch – sequence: 2 givenname: Haiwei surname: Li fullname: Li, Haiwei – sequence: 3 givenname: Aytaç surname: Kubilay fullname: Kubilay, Aytaç – sequence: 4 givenname: Jan surname: Carmeliet fullname: Carmeliet, Jan |
BookMark | eNqNkctu1DAUhi1UJKaFZ-As2WSwc7ETJBalgrZSJVhwWVqOc0w9cuxgO0V5KN4RjwaxYEO98E3f_x_7_OfkzAePhLxkdM8o468P-6RtDhn9w76mNduzdqBcPCE71ouhYrTmZ2RHadtXAx_EM3Ke0oGWIXq2I7_erWFTXm-AxqDOCYKHfI9gXPiZQMWw-qkcVAZVNikjLmWOiBm08lvwCayHZOfFWWNxgjWOqlxgztZ_T5DW8VB8IQdQ4HHNUTlQyxKD0veFgPFYQcUNnNowvoFvttTJq_fo4NPtV5hRpTXijD6n5-SpUS7hiz_rBfny4f3nq5vq7uP17dXlXaXbhuaKMzb1fKyVGIw2U825Mh2fhoF3euLC9GxkHBvT00YIjaxh7Vj3TT-aRrf1RJsL8urkW575Y8WU5WyTRueUx7AmWfOGN0Nbd49Au66nA21bVlBxQnUMKUU0col2Ll-XjMpjlvIg_2Ypj1nKU5ZF-fYfZcFUtsGXdlr3CP3lSY-laQ8W45FDr3GysYQjp2D_6_EbR6zHLg |
CitedBy_id | crossref_primary_10_1016_j_buildenv_2021_108708 crossref_primary_10_1007_s44213_022_00003_8 crossref_primary_10_1016_j_uclim_2024_102188 crossref_primary_10_1080_17512549_2023_2263459 crossref_primary_10_1016_j_buildenv_2025_112530 crossref_primary_10_1016_j_scitotenv_2023_168315 crossref_primary_10_2298_TSCI211123046V crossref_primary_10_3390_atmos13050834 crossref_primary_10_1016_j_atmosenv_2024_120783 crossref_primary_10_3390_atmos13050813 crossref_primary_10_1016_j_buildenv_2023_110469 crossref_primary_10_1016_j_rser_2024_114943 crossref_primary_10_1016_j_scitotenv_2022_160209 crossref_primary_10_1016_j_jweia_2024_105721 crossref_primary_10_1016_j_buildenv_2025_112528 crossref_primary_10_1016_j_buildenv_2025_112704 crossref_primary_10_1016_j_expthermflusci_2024_111255 crossref_primary_10_1016_j_uclim_2023_101659 crossref_primary_10_1063_5_0090642 crossref_primary_10_1016_j_renene_2025_122879 crossref_primary_10_3390_buildings12081167 crossref_primary_10_1016_j_ijheatfluidflow_2024_109594 crossref_primary_10_1016_j_buildenv_2022_109745 crossref_primary_10_1016_j_buildenv_2023_110471 crossref_primary_10_3390_j4040047 crossref_primary_10_1016_j_scs_2022_104324 crossref_primary_10_3390_en16062577 crossref_primary_10_3390_ijerph191912895 crossref_primary_10_5194_essd_14_4057_2022 crossref_primary_10_1016_j_rser_2023_113668 crossref_primary_10_1016_j_buildenv_2025_112646 crossref_primary_10_1016_j_buildenv_2025_112769 crossref_primary_10_1016_j_buildenv_2023_110466 crossref_primary_10_1016_j_uclim_2023_101449 crossref_primary_10_1016_j_buildenv_2024_111654 crossref_primary_10_1016_j_expthermflusci_2023_111066 crossref_primary_10_1016_j_uclim_2023_101528 crossref_primary_10_1088_1742_6596_2654_1_012145 crossref_primary_10_1029_2023JD039502 crossref_primary_10_1016_j_buildenv_2022_109831 crossref_primary_10_1016_j_rser_2022_112717 crossref_primary_10_1016_j_buildenv_2022_109757 crossref_primary_10_1016_j_buildenv_2024_111693 crossref_primary_10_1016_j_buildenv_2022_108945 crossref_primary_10_1016_j_buildenv_2021_108306 crossref_primary_10_1016_j_scitotenv_2022_157834 crossref_primary_10_1016_j_buildenv_2022_108905 |
Cites_doi | 10.1016/j.buildenv.2014.07.008 10.1063/1.4892979 10.1016/j.atmosenv.2009.01.016 10.1016/j.scitotenv.2018.10.333 10.1016/S1352-2310(99)00410-0 10.1175/2011JAMC2665.1 10.1016/j.scs.2019.101700 10.1016/j.scitotenv.2020.138147 10.1016/j.buildenv.2020.106969 10.1016/S1352-2310(02)00830-0 10.1016/j.expthermflusci.2018.09.007 10.1016/j.buildenv.2017.03.001 10.1088/0957-0233/26/7/074002 10.1016/S1352-2310(99)00187-9 10.1007/s10546-020-00524-x 10.1007/s10546-019-00494-9 10.1016/j.buildenv.2019.106342 10.1016/j.scs.2018.10.034 10.1016/j.scitotenv.2017.01.138 10.1017/S0022112008003765 10.1016/j.buildenv.2017.08.031 10.1016/j.scitotenv.2018.10.135 10.1016/j.buildenv.2020.106876 10.1016/j.buildenv.2020.107163 10.1016/j.envpol.2021.116971 10.1016/j.agrformet.2017.10.014 10.1016/j.jweia.2015.11.002 10.1016/0378-7788(90)90031-D 10.1007/s10546-007-9238-x 10.1007/s10652-014-9366-z 10.1175/1520-0450(2000)039<1592:ALMOUS>2.0.CO;2 10.1007/s10546-006-9099-8 10.1175/2007JAMC1597.1 10.1177/1744259120968586 10.1016/j.buildenv.2014.05.014 10.1175/JAMC-D-11-0180.1 10.1002/qj.2289 10.1007/s10546-004-6204-8 10.1023/A:1002463829265 10.1016/j.buildenv.2012.08.029 10.1016/j.jweia.2006.06.011 10.1016/j.atmosenv.2004.02.047 10.1016/j.buildenv.2019.04.013 10.1016/j.scs.2019.101574 10.1016/j.scs.2015.07.009 10.1016/j.scitotenv.2016.05.150 10.1007/s00348-016-2186-9 10.1017/S0022112072000515 10.1016/j.buildenv.2021.107713 10.1002/joc.3370050410 10.1007/s10546-004-6205-7 10.1016/j.scitotenv.2019.135553 10.1017/S0022112008002346 10.1016/0004-6981(88)90437-4 10.1016/j.jweia.2020.104248 10.1016/j.jweia.2019.103958 10.1175/JAMC-D-12-0162.1 10.1016/j.buildenv.2015.08.021 10.1016/j.ijheatmasstransfer.2018.03.069 10.1023/B:BOUN.0000027909.40439.7c 10.1016/0957-1272(92)90049-X 10.1023/A:1021355906101 10.1016/j.uclim.2015.03.002 |
ContentType | Journal Article |
Copyright | 2021 The Authors Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2021 The Authors – notice: Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2021.149067 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 10_1016_j_scitotenv_2021_149067 S0048969721041395 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW SSH WUQ XPP ZXP ZY4 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c430t-611d86b2a79fcfd266af56d9965cd67f81b16e3f80377ce1314b2838bf3c42d03 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Fri Jul 11 00:00:52 EDT 2025 Thu Aug 07 15:13:09 EDT 2025 Tue Jul 01 04:25:08 EDT 2025 Thu Apr 24 22:59:39 EDT 2025 Fri Feb 23 02:37:52 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Street canyons Wind tunnel Steepness ratio Isothermal and non-isothermal flows Air exchange |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c430t-611d86b2a79fcfd266af56d9965cd67f81b16e3f80377ce1314b2838bf3c42d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0048969721041395 |
PQID | 2558090441 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2636394250 proquest_miscellaneous_2558090441 crossref_primary_10_1016_j_scitotenv_2021_149067 crossref_citationtrail_10_1016_j_scitotenv_2021_149067 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2021_149067 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-25 |
PublicationDateYYYYMMDD | 2021-11-25 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | The Science of the total environment |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gallagher, Lago (bb0080) 2019; 651 Nazarian, Kleissl (bb0195) 2016; 95 Addepalli, Pardyjak (bb0005) 2015; 15 Uehara, Murakami, Oikawa, Wakamatsu (bb0265) 2000; 34 Arnfield (bb0020) 1990; 14 Wells, Worster (bb0275) 2008; 609 Louka, Vachon, Sini, Mestayer, Rosant (bb0155) 2002; 2 Sessa, Xie, Herring (bb0240) 2020; 176 Tsalicoglou, Allegrini, Carmeliet (bb0260) 2020; 204 Xie, Castro (bb0285) 2009; 43 Allegrini, Dorer, Carmeliet (bb0015) 2015; 19 Huang, Lei, Liu, Perez, Forehead, Kong, Zhou (bb0095) 2021; 280 Theeuwes, Steeneveld, Ronda, Heusinkveld, van Hove, Holtslag (bb0255) 2014; 140 Park, Kim, Choi, Kim, Song, Pardyjak (bb0225) 2020; 174 Stathopoulos (bb0250) 2006; 94 Fan, Li, Yin (bb0075) 2018; 124 Kubilay, Ferrari, Derome, Carmeliet (bb0140) 2021; 45 Hunter, Johnson, Watson (bb0100) 1992; 26 Wallace, Eckelmann, Brodkey (bb0270) 1972; 54 Oleson, Bonan, Feddema, Vertenstein, Grimmond (bb0210) 2008; 47 Park, Baik (bb0215) 2013; 52 Chen, Wang, Wang, Li, Wang, Hang, Gao, Ou, Wang (bb0045) 2020; 726 Kim, Baik (bb0125) 2004; 38 Mei, Luo, Zhao, Wang (bb0180) 2019; 50 Fan, Hunt, Wang, Yin, Li (bb0070) 2019; 164 Offerle, Eliasson, Grimmond, Holmer (bb0205) 2007; 122 Kanda, Yamao (bb0115) 2016; 148 Yuan, Adelia, Mei, He, Li, Norford (bb0290) 2020; 176 Zhao, Lei, Patterson (bb0310) 2019; 101 Liu, Niu, Mak, Xia (bb0150) 2017; 125 Zhang, Chen, Wang, Liu, Mak, Fan, Hang (bb0295) 2019; 653 Baik, Park, Chun, Kim (bb0025) 2000; 39 Allegrini, Dorer, Carmeliet (bb0010) 2013; 59 Duan, Ngan (bb0060) 2019; 193 Immer, Allegrini, Carmeliet (bb0105) 2016; 57 Soulhac, Perkins, Salizzoni (bb0245) 2008; 126 Harman, Barlow, Belcher (bb0085) 2004; 113 Park, Baik, Raasch, Letzel (bb0220) 2012; 51 Kubilay, Derome, Carmeliet (bb0135) 2019; 49 Zhang, Chen, Zhang, Liu, Wang, Wang, Hang (bb0300) 2020; 712 Bärring, Mattsson, Lindqvist (bb0035) 1985; 5 Ryu, Baik, Lee (bb0230) 2011; 50 Neophytou, Markides, Fokaides (bb0200) 2014; 26 Masson (bb0170) 2000; 94 Dallman, Magnusson, Britter, Norford, Entekhabi, Fernando (bb0050) 2014; 80 Zhao, Chew, Kubilay, Carmeliet (bb0305) 2020; 184 Nazarian, Kleissl (bb0190) 2015; 12 Du, Mak, Liu, Xia, Niu, Kwok (bb0055) 2017; 117 He, Hang, Wang, Lin, Li, Lan (bb0090) 2017; 584–585 Kubilay, Derome, Blocken, Carmeliet (bb0130) 2014; 81 Kanda, Moriwaki, Kasamatsu (bb0120) 2004; 112 Duan, Ngan (bb0065) 2020; 183 Nakamura, Oke (bb0185) 1988; 22 Wieneke (bb0280) 2015; 26 Caton, Britter, Dalziel (bb0040) 2003; 37 Santamouris, Papanikolaou, Koronakis, Livada, Asimakopoulos (bb0235) 1999; 33 Liu, Niu, Du, Mak, Zhang (bb0145) 2019; 44 Marucci, Carpentieri (bb0165) 2019; 156 Mei, Liu, Liu, Zhao, Wang, Li (bb0175) 2016; 565 Inagaki, Kanda (bb0110) 2008; 615 Manickathan, Defraeye, Allegrini, Derome, Carmeliet (bb0160) 2018; 248 Zou, Yu, Liu, Niu, Chauhan, Lei (bb0315) 2021; 194 Barlow, Harman, Belcher (bb0030) 2004; 113 Park (10.1016/j.scitotenv.2021.149067_bb0220) 2012; 51 Harman (10.1016/j.scitotenv.2021.149067_bb0085) 2004; 113 Arnfield (10.1016/j.scitotenv.2021.149067_bb0020) 1990; 14 Bärring (10.1016/j.scitotenv.2021.149067_bb0035) 1985; 5 Kubilay (10.1016/j.scitotenv.2021.149067_bb0130) 2014; 81 Zou (10.1016/j.scitotenv.2021.149067_bb0315) 2021; 194 Huang (10.1016/j.scitotenv.2021.149067_bb0095) 2021; 280 Kubilay (10.1016/j.scitotenv.2021.149067_bb0135) 2019; 49 Nazarian (10.1016/j.scitotenv.2021.149067_bb0190) 2015; 12 Addepalli (10.1016/j.scitotenv.2021.149067_bb0005) 2015; 15 Baik (10.1016/j.scitotenv.2021.149067_bb0025) 2000; 39 Duan (10.1016/j.scitotenv.2021.149067_bb0060) 2019; 193 Mei (10.1016/j.scitotenv.2021.149067_bb0180) 2019; 50 Wallace (10.1016/j.scitotenv.2021.149067_bb0270) 1972; 54 Immer (10.1016/j.scitotenv.2021.149067_bb0105) 2016; 57 Marucci (10.1016/j.scitotenv.2021.149067_bb0165) 2019; 156 Liu (10.1016/j.scitotenv.2021.149067_bb0150) 2017; 125 Zhao (10.1016/j.scitotenv.2021.149067_bb0310) 2019; 101 Xie (10.1016/j.scitotenv.2021.149067_bb0285) 2009; 43 Inagaki (10.1016/j.scitotenv.2021.149067_bb0110) 2008; 615 Tsalicoglou (10.1016/j.scitotenv.2021.149067_bb0260) 2020; 204 Zhao (10.1016/j.scitotenv.2021.149067_bb0305) 2020; 184 Duan (10.1016/j.scitotenv.2021.149067_bb0065) 2020; 183 Kim (10.1016/j.scitotenv.2021.149067_bb0125) 2004; 38 Hunter (10.1016/j.scitotenv.2021.149067_bb0100) 1992; 26 Sessa (10.1016/j.scitotenv.2021.149067_bb0240) 2020; 176 Offerle (10.1016/j.scitotenv.2021.149067_bb0205) 2007; 122 Wieneke (10.1016/j.scitotenv.2021.149067_bb0280) 2015; 26 Liu (10.1016/j.scitotenv.2021.149067_bb0145) 2019; 44 Nakamura (10.1016/j.scitotenv.2021.149067_bb0185) 1988; 22 Zhang (10.1016/j.scitotenv.2021.149067_bb0300) 2020; 712 Park (10.1016/j.scitotenv.2021.149067_bb0225) 2020; 174 Ryu (10.1016/j.scitotenv.2021.149067_bb0230) 2011; 50 Chen (10.1016/j.scitotenv.2021.149067_bb0045) 2020; 726 Kubilay (10.1016/j.scitotenv.2021.149067_bb0140) 2021; 45 Theeuwes (10.1016/j.scitotenv.2021.149067_bb0255) 2014; 140 Oleson (10.1016/j.scitotenv.2021.149067_bb0210) 2008; 47 Fan (10.1016/j.scitotenv.2021.149067_bb0075) 2018; 124 Gallagher (10.1016/j.scitotenv.2021.149067_bb0080) 2019; 651 Yuan (10.1016/j.scitotenv.2021.149067_bb0290) 2020; 176 Nazarian (10.1016/j.scitotenv.2021.149067_bb0195) 2016; 95 Fan (10.1016/j.scitotenv.2021.149067_bb0070) 2019; 164 Allegrini (10.1016/j.scitotenv.2021.149067_bb0015) 2015; 19 Allegrini (10.1016/j.scitotenv.2021.149067_bb0010) 2013; 59 Louka (10.1016/j.scitotenv.2021.149067_bb0155) 2002; 2 Caton (10.1016/j.scitotenv.2021.149067_bb0040) 2003; 37 Dallman (10.1016/j.scitotenv.2021.149067_bb0050) 2014; 80 Mei (10.1016/j.scitotenv.2021.149067_bb0175) 2016; 565 Park (10.1016/j.scitotenv.2021.149067_bb0215) 2013; 52 Zhang (10.1016/j.scitotenv.2021.149067_bb0295) 2019; 653 Du (10.1016/j.scitotenv.2021.149067_bb0055) 2017; 117 Soulhac (10.1016/j.scitotenv.2021.149067_bb0245) 2008; 126 Uehara (10.1016/j.scitotenv.2021.149067_bb0265) 2000; 34 He (10.1016/j.scitotenv.2021.149067_bb0090) 2017; 584–585 Barlow (10.1016/j.scitotenv.2021.149067_bb0030) 2004; 113 Neophytou (10.1016/j.scitotenv.2021.149067_bb0200) 2014; 26 Kanda (10.1016/j.scitotenv.2021.149067_bb0120) 2004; 112 Kanda (10.1016/j.scitotenv.2021.149067_bb0115) 2016; 148 Stathopoulos (10.1016/j.scitotenv.2021.149067_bb0250) 2006; 94 Santamouris (10.1016/j.scitotenv.2021.149067_bb0235) 1999; 33 Masson (10.1016/j.scitotenv.2021.149067_bb0170) 2000; 94 Manickathan (10.1016/j.scitotenv.2021.149067_bb0160) 2018; 248 Wells (10.1016/j.scitotenv.2021.149067_bb0275) 2008; 609 |
References_xml | – volume: 94 start-page: 769 year: 2006 end-page: 780 ident: bb0250 article-title: Pedestrian level winds and outdoor human comfort publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 184 year: 2020 ident: bb0305 article-title: Isothermal and non-isothermal flow in street canyons: a review from theoretical, experimental and numerical perspectives publication-title: Build. Environ. – volume: 122 start-page: 273 year: 2007 end-page: 292 ident: bb0205 article-title: Surface heating in relation to air temperature, wind and turbulence in an urban street canyon publication-title: Bound.-Layer Meteorol. – volume: 49 year: 2019 ident: bb0135 article-title: Impact of evaporative cooling due to wetting of urban materials on local thermal comfort in a street canyon publication-title: Sustain. Cities Soc. – volume: 33 start-page: 4503 year: 1999 end-page: 4521 ident: bb0235 article-title: Thermal and air flow characteristics in a deep pedestrian canyon under hot weather conditions publication-title: Atmos. Environ. – volume: 584–585 start-page: 189 year: 2017 end-page: 206 ident: bb0090 article-title: Numerical investigations of flow and passive pollutant exposure in high-rise deep street canyons with various street aspect ratios and viaduct settings publication-title: Sci. Total Environ. – volume: 26 year: 2015 ident: bb0280 article-title: PIV uncertainty quantification from correlation statistics publication-title: Meas. Sci. Technol. – volume: 19 start-page: 385 year: 2015 end-page: 394 ident: bb0015 article-title: Coupled CFD, radiation and building energy model for studying heat fluxes in an urban environment with generic building configurations publication-title: Sustain. Cities Soc. – volume: 565 start-page: 1102 year: 2016 end-page: 1115 ident: bb0175 article-title: Fluid mechanical dispersion of airborne pollutants inside urban street canyons subjecting to multi-component ventilation and unstable thermal stratifications publication-title: Sci. Total Environ. – volume: 726 year: 2020 ident: bb0045 article-title: Scaled outdoor experimental studies of urban thermal environment in street canyon models with various aspect ratios and thermal storage publication-title: Sci. Total Environ. – volume: 125 start-page: 168 year: 2017 end-page: 179 ident: bb0150 article-title: Detached eddy simulation of pedestrian-level wind and gust around an elevated building publication-title: Build. Environ. – volume: 15 start-page: 439 year: 2015 end-page: 481 ident: bb0005 article-title: A study of flow fields in step-down street canyons publication-title: Environ. Fluid Mech. – volume: 174 start-page: 411 year: 2020 end-page: 431 ident: bb0225 article-title: Flow characteristics around step-up street canyons with various building aspect ratios publication-title: Bound.-Layer Meteorol. – volume: 164 year: 2019 ident: bb0070 article-title: Water tank modelling of variations in inversion breakup over a circular city publication-title: Build. Environ. – volume: 81 start-page: 283 year: 2014 end-page: 295 ident: bb0130 article-title: Numerical simulations of wind-driven rain on an array of low-rise cubic buildings and validation by field measurements publication-title: Build. Environ. – volume: 183 year: 2020 ident: bb0065 article-title: Influence of thermal stability on the ventilation of a 3-D building array publication-title: Build. Environ. – volume: 34 start-page: 1553 year: 2000 end-page: 1562 ident: bb0265 article-title: Wind tunnel experiments on how thermal stratification affects flow in and above urban street canyons publication-title: Atmos. Environ. – volume: 193 year: 2019 ident: bb0060 article-title: Sensitivity of turbulent flow around a 3-D building array to urban boundary-layer stability publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 176 start-page: 61 year: 2020 end-page: 83 ident: bb0240 article-title: Thermal stratification effects on turbulence and dispersion in internal and external boundary layers publication-title: Bound.-Layer Meteorol. – volume: 653 start-page: 968 year: 2019 end-page: 994 ident: bb0295 article-title: Numerical evaluations of urban design technique to reduce vehicular personal intake fraction in deep street canyons publication-title: Sci. Total Environ. – volume: 615 start-page: 101 year: 2008 end-page: 120 ident: bb0110 article-title: Turbulent flow similarity over an array of cubes in near-neutrally stratified atmospheric flow publication-title: J. Fluid Mech. – volume: 112 start-page: 343 year: 2004 end-page: 368 ident: bb0120 article-title: Large-Eddy simulation of turbulent organized structures within and above explicitly resolved cube arrays publication-title: Bound.-Layer Meteorol. – volume: 12 start-page: 141 year: 2015 end-page: 159 ident: bb0190 article-title: CFD simulation of an idealized urban environment: thermal effects of geometrical characteristics and surface materials publication-title: Urban Clim. – volume: 280 year: 2021 ident: bb0095 article-title: A review of strategies for mitigating roadside air pollution in urban street canyons publication-title: Environ. Pollut. – volume: 22 start-page: 2691 year: 1988 end-page: 2700 ident: bb0185 article-title: Wind, temperature and stability conditions in an east-west oriented urban canyon publication-title: Atmos. Environ. – volume: 140 start-page: 2197 year: 2014 end-page: 2210 ident: bb0255 article-title: Seasonal dependence of the urban heat island on the street canyon aspect ratio publication-title: Q. J. R. Meteorol. Soc. – volume: 38 start-page: 3039 year: 2004 end-page: 3048 ident: bb0125 article-title: A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k–e turbulence model publication-title: Atmos. Environ. – volume: 45 start-page: 36 year: 2021 end-page: 66 ident: bb0140 article-title: Smart wetting of permeable pavements as an evaporative-cooling measure for improving the urban climate during heat waves publication-title: J. Build. Phys. – volume: 194 year: 2021 ident: bb0315 article-title: Field measurement of the urban pedestrian level wind turbulence publication-title: Build. Environ. – volume: 204 year: 2020 ident: bb0260 article-title: Non-isothermal flow between heated building models publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 712 year: 2020 ident: bb0300 article-title: Integrated impacts of turbulent mixing and NOX-O3 photochemistry on reactive pollutant dispersion and intake fraction in shallow and deep street canyons publication-title: Sci. Total Environ. – volume: 2 start-page: 351 year: 2002 end-page: 364 ident: bb0155 article-title: Thermal effects on the airflow in a street canyon – Nantes'99 experimental results and model simulations publication-title: Water Air Soil Pollut. Focus – volume: 113 start-page: 387 year: 2004 end-page: 410 ident: bb0085 article-title: Scalar fluxes from urban street canyons part II: model publication-title: Bound.-Layer Meteorol. – volume: 52 start-page: 1348 year: 2013 end-page: 1365 ident: bb0215 article-title: A large-Eddy simulation study of thermal effects on turbulence coherent structures in and above a building Array publication-title: J. Appl. Meteorol. Climatol. – volume: 14 start-page: 117 year: 1990 end-page: 131 ident: bb0020 article-title: Street design and urban canyon solar access publication-title: Energ. Buildings – volume: 113 start-page: 369 year: 2004 end-page: 385 ident: bb0030 article-title: Scalar fluxes from urban street canyons. Part I: laboratory simulation publication-title: Bound.-Layer Meteorol. – volume: 148 start-page: 18 year: 2016 end-page: 33 ident: bb0115 article-title: Passive scalar diffusion in and above urban-like roughness under weakly stable and unstable thermal stratification conditions publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 59 start-page: 315 year: 2013 end-page: 326 ident: bb0010 article-title: Wind tunnel measurements of buoyant flows in street canyons publication-title: Build. Environ. – volume: 54 start-page: 39 year: 1972 end-page: 48 ident: bb0270 article-title: The wall region in turbulent shear flow publication-title: J. Fluid Mech. – volume: 37 start-page: 693 year: 2003 end-page: 702 ident: bb0040 article-title: Dispersion mechanisms in a street canyon publication-title: Atmos. Environ. – volume: 248 start-page: 259 year: 2018 end-page: 274 ident: bb0160 article-title: Parametric study of the influence of environmental factors and tree properties on the transpirative cooling effect of trees publication-title: Agric. For. Meteorol. – volume: 95 start-page: 75 year: 2016 end-page: 93 ident: bb0195 article-title: Realistic solar heating in urban areas: air exchange and street-canyon ventilation publication-title: Build. Environ. – volume: 43 start-page: 2174 year: 2009 end-page: 2185 ident: bb0285 article-title: Large-eddy simulation for flow and dispersion in urban streets publication-title: Atmos. Environ. – volume: 26 year: 2014 ident: bb0200 article-title: An experimental study of the flow through and over two dimensional rectangular roughness elements: deductions for urban boundary layer parameterizations and exchange processes publication-title: Phys. Fluids – volume: 50 start-page: 1773 year: 2011 end-page: 1794 ident: bb0230 article-title: A new single-layer urban canopy model for use in mesoscale atmospheric models publication-title: J. Appl. Meteorol. Climatol. – volume: 124 start-page: 233 year: 2018 end-page: 246 ident: bb0075 article-title: Non-uniform ground-level wind patterns in a heat dome over a uniformly heated non-circular city publication-title: Int. J. Heat Mass Transf. – volume: 51 start-page: 829 year: 2012 end-page: 841 ident: bb0220 article-title: A large-Eddy simulation study of thermal effects on turbulent flow and dispersion in and above a street canyon publication-title: J. Appl. Meteorol. Climatol. – volume: 47 start-page: 1038 year: 2008 end-page: 1060 ident: bb0210 article-title: An urban parameterization for a global climate model. part I: formulation and evaluation for two cities publication-title: J. Appl. Meteorol. Climatol. – volume: 126 start-page: 365 year: 2008 end-page: 388 ident: bb0245 article-title: Flow in a street canyon for any external wind direction publication-title: Bound.-Layer Meteorol. – volume: 80 start-page: 184 year: 2014 end-page: 191 ident: bb0050 article-title: Conditions for thermal circulation in urban street canyons publication-title: Build. Environ. – volume: 94 start-page: 357 year: 2000 end-page: 397 ident: bb0170 article-title: A physically-based scheme for the urban energy budget in atmospheric models publication-title: Bound.-Layer Meteorol. – volume: 44 start-page: 406 year: 2019 end-page: 415 ident: bb0145 article-title: LES for pedestrian level wind around an idealized building array—assessment of sensitivity to influencing parameters publication-title: Sustain. Cities Soc. – volume: 39 start-page: 1592 year: 2000 end-page: 1600 ident: bb0025 article-title: A laboratory model of urban street-canyon flows publication-title: J. Appl. Meteorol. – volume: 57 start-page: 101 year: 2016 ident: bb0105 article-title: Time-resolved and time-averaged stereo-PIV measurements of a unit-ratio cavity publication-title: Exp. Fluids – volume: 101 start-page: 62 year: 2019 end-page: 75 ident: bb0310 article-title: PIV measurements of the K-type transition in natural convection boundary layers publication-title: Exp. Thermal Fluid Sci. – volume: 117 start-page: 84 year: 2017 end-page: 99 ident: bb0055 article-title: Effects of lift-up design on pedestrian level wind comfort in different building configurations under three wind directions publication-title: Build. Environ. – volume: 609 start-page: 111 year: 2008 end-page: 137 ident: bb0275 article-title: A geophysical-scale model of vertical natural convection boundary layers publication-title: J. Fluid Mech. – volume: 50 year: 2019 ident: bb0180 article-title: Street canyon ventilation and airborne pollutant dispersion: 2-D versus 3-D CFD simulations publication-title: Sustain. Cities Soc. – volume: 176 year: 2020 ident: bb0290 article-title: Mitigating intensity of urban heat island by better understanding on urban morphology and anthropogenic heat dispersion publication-title: Build. Environ. – volume: 5 start-page: 433 year: 1985 end-page: 444 ident: bb0035 article-title: Canyon geometry, street temperatures and urban heat island in malmö, Sweden publication-title: J. Climatol. – volume: 156 start-page: 74 year: 2019 end-page: 88 ident: bb0165 article-title: Effect of local and upwind stratification on flow and dispersion inside and above a bi-dimensional street canyon publication-title: Build. Environ. – volume: 651 start-page: 2410 year: 2019 end-page: 2418 ident: bb0080 article-title: How parked cars affect pollutant dispersion at street level in an urban street canyon? A CFD modelling exercise assessing geometrical detailing and pollutant decay rates publication-title: Sci. Total Environ. – volume: 26 start-page: 425 year: 1992 end-page: 432 ident: bb0100 article-title: An investigation of three-dimensional characteristics of flow regimes within the urban canyon publication-title: Atmos. Environ. Part B – volume: 81 start-page: 283 year: 2014 ident: 10.1016/j.scitotenv.2021.149067_bb0130 article-title: Numerical simulations of wind-driven rain on an array of low-rise cubic buildings and validation by field measurements publication-title: Build. Environ. doi: 10.1016/j.buildenv.2014.07.008 – volume: 26 issue: 8 year: 2014 ident: 10.1016/j.scitotenv.2021.149067_bb0200 article-title: An experimental study of the flow through and over two dimensional rectangular roughness elements: deductions for urban boundary layer parameterizations and exchange processes publication-title: Phys. Fluids doi: 10.1063/1.4892979 – volume: 43 start-page: 2174 issue: 13 year: 2009 ident: 10.1016/j.scitotenv.2021.149067_bb0285 article-title: Large-eddy simulation for flow and dispersion in urban streets publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2009.01.016 – volume: 653 start-page: 968 year: 2019 ident: 10.1016/j.scitotenv.2021.149067_bb0295 article-title: Numerical evaluations of urban design technique to reduce vehicular personal intake fraction in deep street canyons publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.10.333 – volume: 34 start-page: 1553 issue: 10 year: 2000 ident: 10.1016/j.scitotenv.2021.149067_bb0265 article-title: Wind tunnel experiments on how thermal stratification affects flow in and above urban street canyons publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(99)00410-0 – volume: 50 start-page: 1773 issue: 9 year: 2011 ident: 10.1016/j.scitotenv.2021.149067_bb0230 article-title: A new single-layer urban canopy model for use in mesoscale atmospheric models publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/2011JAMC2665.1 – volume: 50 year: 2019 ident: 10.1016/j.scitotenv.2021.149067_bb0180 article-title: Street canyon ventilation and airborne pollutant dispersion: 2-D versus 3-D CFD simulations publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.101700 – volume: 726 year: 2020 ident: 10.1016/j.scitotenv.2021.149067_bb0045 article-title: Scaled outdoor experimental studies of urban thermal environment in street canyon models with various aspect ratios and thermal storage publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138147 – volume: 183 year: 2020 ident: 10.1016/j.scitotenv.2021.149067_bb0065 article-title: Influence of thermal stability on the ventilation of a 3-D building array publication-title: Build. Environ. doi: 10.1016/j.buildenv.2020.106969 – volume: 37 start-page: 693 issue: 5 year: 2003 ident: 10.1016/j.scitotenv.2021.149067_bb0040 article-title: Dispersion mechanisms in a street canyon publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(02)00830-0 – volume: 101 start-page: 62 year: 2019 ident: 10.1016/j.scitotenv.2021.149067_bb0310 article-title: PIV measurements of the K-type transition in natural convection boundary layers publication-title: Exp. Thermal Fluid Sci. doi: 10.1016/j.expthermflusci.2018.09.007 – volume: 117 start-page: 84 year: 2017 ident: 10.1016/j.scitotenv.2021.149067_bb0055 article-title: Effects of lift-up design on pedestrian level wind comfort in different building configurations under three wind directions publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.03.001 – volume: 26 issue: 7 year: 2015 ident: 10.1016/j.scitotenv.2021.149067_bb0280 article-title: PIV uncertainty quantification from correlation statistics publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/26/7/074002 – volume: 33 start-page: 4503 issue: 27 year: 1999 ident: 10.1016/j.scitotenv.2021.149067_bb0235 article-title: Thermal and air flow characteristics in a deep pedestrian canyon under hot weather conditions publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(99)00187-9 – volume: 176 start-page: 61 issue: 1 year: 2020 ident: 10.1016/j.scitotenv.2021.149067_bb0240 article-title: Thermal stratification effects on turbulence and dispersion in internal and external boundary layers publication-title: Bound.-Layer Meteorol. doi: 10.1007/s10546-020-00524-x – volume: 174 start-page: 411 issue: 3 year: 2020 ident: 10.1016/j.scitotenv.2021.149067_bb0225 article-title: Flow characteristics around step-up street canyons with various building aspect ratios publication-title: Bound.-Layer Meteorol. doi: 10.1007/s10546-019-00494-9 – volume: 164 year: 2019 ident: 10.1016/j.scitotenv.2021.149067_bb0070 article-title: Water tank modelling of variations in inversion breakup over a circular city publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.106342 – volume: 44 start-page: 406 year: 2019 ident: 10.1016/j.scitotenv.2021.149067_bb0145 article-title: LES for pedestrian level wind around an idealized building array—assessment of sensitivity to influencing parameters publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2018.10.034 – volume: 584–585 start-page: 189 year: 2017 ident: 10.1016/j.scitotenv.2021.149067_bb0090 article-title: Numerical investigations of flow and passive pollutant exposure in high-rise deep street canyons with various street aspect ratios and viaduct settings publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.01.138 – volume: 615 start-page: 101 year: 2008 ident: 10.1016/j.scitotenv.2021.149067_bb0110 article-title: Turbulent flow similarity over an array of cubes in near-neutrally stratified atmospheric flow publication-title: J. Fluid Mech. doi: 10.1017/S0022112008003765 – volume: 125 start-page: 168 year: 2017 ident: 10.1016/j.scitotenv.2021.149067_bb0150 article-title: Detached eddy simulation of pedestrian-level wind and gust around an elevated building publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.08.031 – volume: 651 start-page: 2410 year: 2019 ident: 10.1016/j.scitotenv.2021.149067_bb0080 article-title: How parked cars affect pollutant dispersion at street level in an urban street canyon? A CFD modelling exercise assessing geometrical detailing and pollutant decay rates publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.10.135 – volume: 176 year: 2020 ident: 10.1016/j.scitotenv.2021.149067_bb0290 article-title: Mitigating intensity of urban heat island by better understanding on urban morphology and anthropogenic heat dispersion publication-title: Build. Environ. doi: 10.1016/j.buildenv.2020.106876 – volume: 184 year: 2020 ident: 10.1016/j.scitotenv.2021.149067_bb0305 article-title: Isothermal and non-isothermal flow in street canyons: a review from theoretical, experimental and numerical perspectives publication-title: Build. Environ. doi: 10.1016/j.buildenv.2020.107163 – volume: 280 year: 2021 ident: 10.1016/j.scitotenv.2021.149067_bb0095 article-title: A review of strategies for mitigating roadside air pollution in urban street canyons publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.116971 – volume: 248 start-page: 259 year: 2018 ident: 10.1016/j.scitotenv.2021.149067_bb0160 article-title: Parametric study of the influence of environmental factors and tree properties on the transpirative cooling effect of trees publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2017.10.014 – volume: 148 start-page: 18 year: 2016 ident: 10.1016/j.scitotenv.2021.149067_bb0115 article-title: Passive scalar diffusion in and above urban-like roughness under weakly stable and unstable thermal stratification conditions publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2015.11.002 – volume: 14 start-page: 117 issue: 2 year: 1990 ident: 10.1016/j.scitotenv.2021.149067_bb0020 article-title: Street design and urban canyon solar access publication-title: Energ. Buildings doi: 10.1016/0378-7788(90)90031-D – volume: 126 start-page: 365 issue: 3 year: 2008 ident: 10.1016/j.scitotenv.2021.149067_bb0245 article-title: Flow in a street canyon for any external wind direction publication-title: Bound.-Layer Meteorol. doi: 10.1007/s10546-007-9238-x – volume: 15 start-page: 439 issue: 2 year: 2015 ident: 10.1016/j.scitotenv.2021.149067_bb0005 article-title: A study of flow fields in step-down street canyons publication-title: Environ. Fluid Mech. doi: 10.1007/s10652-014-9366-z – volume: 39 start-page: 1592 issue: 9 year: 2000 ident: 10.1016/j.scitotenv.2021.149067_bb0025 article-title: A laboratory model of urban street-canyon flows publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(2000)039<1592:ALMOUS>2.0.CO;2 – volume: 122 start-page: 273 issue: 2 year: 2007 ident: 10.1016/j.scitotenv.2021.149067_bb0205 article-title: Surface heating in relation to air temperature, wind and turbulence in an urban street canyon publication-title: Bound.-Layer Meteorol. doi: 10.1007/s10546-006-9099-8 – volume: 47 start-page: 1038 issue: 4 year: 2008 ident: 10.1016/j.scitotenv.2021.149067_bb0210 article-title: An urban parameterization for a global climate model. part I: formulation and evaluation for two cities publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/2007JAMC1597.1 – volume: 45 start-page: 36 issue: 1 year: 2021 ident: 10.1016/j.scitotenv.2021.149067_bb0140 article-title: Smart wetting of permeable pavements as an evaporative-cooling measure for improving the urban climate during heat waves publication-title: J. Build. Phys. doi: 10.1177/1744259120968586 – volume: 80 start-page: 184 year: 2014 ident: 10.1016/j.scitotenv.2021.149067_bb0050 article-title: Conditions for thermal circulation in urban street canyons publication-title: Build. Environ. doi: 10.1016/j.buildenv.2014.05.014 – volume: 51 start-page: 829 issue: 5 year: 2012 ident: 10.1016/j.scitotenv.2021.149067_bb0220 article-title: A large-Eddy simulation study of thermal effects on turbulent flow and dispersion in and above a street canyon publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/JAMC-D-11-0180.1 – volume: 140 start-page: 2197 issue: 684 year: 2014 ident: 10.1016/j.scitotenv.2021.149067_bb0255 article-title: Seasonal dependence of the urban heat island on the street canyon aspect ratio publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.2289 – volume: 113 start-page: 369 issue: 3 year: 2004 ident: 10.1016/j.scitotenv.2021.149067_bb0030 article-title: Scalar fluxes from urban street canyons. Part I: laboratory simulation publication-title: Bound.-Layer Meteorol. doi: 10.1007/s10546-004-6204-8 – volume: 94 start-page: 357 year: 2000 ident: 10.1016/j.scitotenv.2021.149067_bb0170 article-title: A physically-based scheme for the urban energy budget in atmospheric models publication-title: Bound.-Layer Meteorol. doi: 10.1023/A:1002463829265 – volume: 59 start-page: 315 year: 2013 ident: 10.1016/j.scitotenv.2021.149067_bb0010 article-title: Wind tunnel measurements of buoyant flows in street canyons publication-title: Build. Environ. doi: 10.1016/j.buildenv.2012.08.029 – volume: 94 start-page: 769 issue: 11 year: 2006 ident: 10.1016/j.scitotenv.2021.149067_bb0250 article-title: Pedestrian level winds and outdoor human comfort publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2006.06.011 – volume: 38 start-page: 3039 issue: 19 year: 2004 ident: 10.1016/j.scitotenv.2021.149067_bb0125 article-title: A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k–e turbulence model publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2004.02.047 – volume: 156 start-page: 74 year: 2019 ident: 10.1016/j.scitotenv.2021.149067_bb0165 article-title: Effect of local and upwind stratification on flow and dispersion inside and above a bi-dimensional street canyon publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.04.013 – volume: 49 year: 2019 ident: 10.1016/j.scitotenv.2021.149067_bb0135 article-title: Impact of evaporative cooling due to wetting of urban materials on local thermal comfort in a street canyon publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.101574 – volume: 19 start-page: 385 year: 2015 ident: 10.1016/j.scitotenv.2021.149067_bb0015 article-title: Coupled CFD, radiation and building energy model for studying heat fluxes in an urban environment with generic building configurations publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2015.07.009 – volume: 565 start-page: 1102 year: 2016 ident: 10.1016/j.scitotenv.2021.149067_bb0175 article-title: Fluid mechanical dispersion of airborne pollutants inside urban street canyons subjecting to multi-component ventilation and unstable thermal stratifications publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.05.150 – volume: 57 start-page: 101 issue: 6 year: 2016 ident: 10.1016/j.scitotenv.2021.149067_bb0105 article-title: Time-resolved and time-averaged stereo-PIV measurements of a unit-ratio cavity publication-title: Exp. Fluids doi: 10.1007/s00348-016-2186-9 – volume: 54 start-page: 39 issue: 1 year: 1972 ident: 10.1016/j.scitotenv.2021.149067_bb0270 article-title: The wall region in turbulent shear flow publication-title: J. Fluid Mech. doi: 10.1017/S0022112072000515 – volume: 194 year: 2021 ident: 10.1016/j.scitotenv.2021.149067_bb0315 article-title: Field measurement of the urban pedestrian level wind turbulence publication-title: Build. Environ. doi: 10.1016/j.buildenv.2021.107713 – volume: 5 start-page: 433 issue: 4 year: 1985 ident: 10.1016/j.scitotenv.2021.149067_bb0035 article-title: Canyon geometry, street temperatures and urban heat island in malmö, Sweden publication-title: J. Climatol. doi: 10.1002/joc.3370050410 – volume: 113 start-page: 387 issue: 3 year: 2004 ident: 10.1016/j.scitotenv.2021.149067_bb0085 article-title: Scalar fluxes from urban street canyons part II: model publication-title: Bound.-Layer Meteorol. doi: 10.1007/s10546-004-6205-7 – volume: 712 year: 2020 ident: 10.1016/j.scitotenv.2021.149067_bb0300 article-title: Integrated impacts of turbulent mixing and NOX-O3 photochemistry on reactive pollutant dispersion and intake fraction in shallow and deep street canyons publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.135553 – volume: 609 start-page: 111 year: 2008 ident: 10.1016/j.scitotenv.2021.149067_bb0275 article-title: A geophysical-scale model of vertical natural convection boundary layers publication-title: J. Fluid Mech. doi: 10.1017/S0022112008002346 – volume: 22 start-page: 2691 issue: 12 year: 1988 ident: 10.1016/j.scitotenv.2021.149067_bb0185 article-title: Wind, temperature and stability conditions in an east-west oriented urban canyon publication-title: Atmos. Environ. doi: 10.1016/0004-6981(88)90437-4 – volume: 204 year: 2020 ident: 10.1016/j.scitotenv.2021.149067_bb0260 article-title: Non-isothermal flow between heated building models publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2020.104248 – volume: 193 year: 2019 ident: 10.1016/j.scitotenv.2021.149067_bb0060 article-title: Sensitivity of turbulent flow around a 3-D building array to urban boundary-layer stability publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2019.103958 – volume: 52 start-page: 1348 issue: 6 year: 2013 ident: 10.1016/j.scitotenv.2021.149067_bb0215 article-title: A large-Eddy simulation study of thermal effects on turbulence coherent structures in and above a building Array publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/JAMC-D-12-0162.1 – volume: 95 start-page: 75 year: 2016 ident: 10.1016/j.scitotenv.2021.149067_bb0195 article-title: Realistic solar heating in urban areas: air exchange and street-canyon ventilation publication-title: Build. Environ. doi: 10.1016/j.buildenv.2015.08.021 – volume: 124 start-page: 233 year: 2018 ident: 10.1016/j.scitotenv.2021.149067_bb0075 article-title: Non-uniform ground-level wind patterns in a heat dome over a uniformly heated non-circular city publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.03.069 – volume: 112 start-page: 343 issue: 2 year: 2004 ident: 10.1016/j.scitotenv.2021.149067_bb0120 article-title: Large-Eddy simulation of turbulent organized structures within and above explicitly resolved cube arrays publication-title: Bound.-Layer Meteorol. doi: 10.1023/B:BOUN.0000027909.40439.7c – volume: 26 start-page: 425 issue: 4 year: 1992 ident: 10.1016/j.scitotenv.2021.149067_bb0100 article-title: An investigation of three-dimensional characteristics of flow regimes within the urban canyon publication-title: Atmos. Environ. Part B doi: 10.1016/0957-1272(92)90049-X – volume: 2 start-page: 351 issue: 5 year: 2002 ident: 10.1016/j.scitotenv.2021.149067_bb0155 article-title: Thermal effects on the airflow in a street canyon – Nantes'99 experimental results and model simulations publication-title: Water Air Soil Pollut. Focus doi: 10.1023/A:1021355906101 – volume: 12 start-page: 141 year: 2015 ident: 10.1016/j.scitotenv.2021.149067_bb0190 article-title: CFD simulation of an idealized urban environment: thermal effects of geometrical characteristics and surface materials publication-title: Urban Clim. doi: 10.1016/j.uclim.2015.03.002 |
SSID | ssj0000781 |
Score | 2.546718 |
Snippet | The present wind tunnel particle image velocimetry (PIV) measurements document flows around flat and steep street canyons subject to thermal conditions at... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 149067 |
SubjectTerms | air Air exchange canopy environment Isothermal and non-isothermal flows particle image velocimetry Steepness ratio Street canyons wind Wind tunnel wind tunnels |
Title | Buoyancy effects on the flows around flat and steep street canyons in simplified urban settings subject to a neutral approaching boundary layer: Wind tunnel PIV measurements |
URI | https://dx.doi.org/10.1016/j.scitotenv.2021.149067 https://www.proquest.com/docview/2558090441 https://www.proquest.com/docview/2636394250 |
Volume | 797 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEF9KRRBE9LRYq2UEX89usskm6VstLVcPi4i1fQv7CSlnclwSy734H_k_OpOPHhWxDz4lWWaTJTM7-5vd-WDsnRaRR8OHT63xHg2UIJ4qG6RTh-g4tJajUUEnup_O5ewi-ngVX22x4zEWhtwqB93f6_ROWw8tB8PfPFgWBcX4RmkmKfsMR02cUaB5FCUk5e9_btw8KJlNf8qMExup7_h44XubCrHpDzQUwwC1Rsa7gvN_XaH-0NXdAnT6lD0ZkCMc9YN7xrZcOWEP-1qS6wnbOdmErCHZMGfrCXvc78xBH3D0nP360FZr0qkw-HJAVQLCQPCL6qYGtaJCS_igGlB4g1LgllB3h9eAfFijmEJRQl2QL7pHBAvtSitscJ0LdQ11q2lzB5oKFJSupb0UGHOXIwXorpTTag0LhYD_EC4L_E7TkscNfD77Bt83-5b1C3ZxevL1eDYdijZMTSR4g6ZoYFOpQ5Vk3niL67_ysbRoVsXGysQjTA6kEz7lIkmMC0QQaYQ4qfbCRKHlYodtl1XpXjKQIky1CUMljYwsUmXG-thoIdCO8qHbZXJkVG6GjOZUWGORj65r1_kth3PicN5zeJfx247LPqnH_V0OR0nI78hnjkvP_Z3fjrKT4-ylIxlVuqqtczToUp5xxKT_oJECYSTqVv7qfwaxxx7RE8VRhvFrtt2sWvcGAVWj97sZs88eHJ3NZ-d0nX-5nP8G-U0nbQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKVggkhGChojwHiWtUJ06cpLdStdql7YpDC71ZfkpBS7LaJKD9UfxHxnl0VYTogVsedhJlxp-_sedByAfFYoeGDw2Mdg4NlDAJpAmzwCI7joyhaFT4Hd2LBZ9dxZ-uk-sdcjzGwni3ygH7e0zv0Hq4cjD8zYNVUfgY3zjLuc8-QxGJ8-Qe2fXZqZIJ2T2an80WW0BOs75wXoxjGzvccvPCRzcV0tMfaCtGIQJHTrua83-dpP6A624OOn1CHg_kEY7673tKdmw5Jff7cpKbKdk72UatYbNh2NZT8qhfnIM-5ugZ-fWxrTYeVmFw54CqBGSC4JbVzxrk2tdawhPZgMQDVAS7grrbvwYUxQY1FYoS6sK7ozsksdCulcQLtvOirqFulV_fgaYCCaVt_XIKjOnLsQWorprTegNLiZz_EL4W-J6m9U438Hn-Bb5vly7r5-Tq9OTyeBYMdRsCHTPaoDUamoyrSKa5084gBZAu4QYtq0QbnjpkyiG3zGWUpam2IQtjhSwnU47pODKU7ZFJWZX2BQHOokzpKJJc89hgq1wbl2jFGJpSLrL7hI-CEnpIau5rayzF6L32TdxIWHgJi17C-4TedFz1eT3u7nI4aoK4paICZ5-7O78fdUfgAPa7MrK0VVsLtOkymlOkpf9owxkySYRX-vJ_PuIdeTC7vDgX5_PF2Svy0N_xYZVR8ppMmnVr3yC_atTbYfz8BrGQKHs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Buoyancy+effects+on+the+flows+around+flat+and+steep+street+canyons+in+simplified+urban+settings+subject+to+a+neutral+approaching+boundary+layer%3A+Wind+tunnel+PIV+measurements&rft.jtitle=The+Science+of+the+total+environment&rft.au=Zhao%2C+Yongling&rft.au=Li%2C+Haiwei&rft.au=Kubilay%2C+Ayta%C3%A7&rft.au=Carmeliet%2C+Jan&rft.date=2021-11-25&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=797&rft_id=info:doi/10.1016%2Fj.scitotenv.2021.149067&rft.externalDocID=S0048969721041395 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |