Buoyancy effects on the flows around flat and steep street canyons in simplified urban settings subject to a neutral approaching boundary layer: Wind tunnel PIV measurements

The present wind tunnel particle image velocimetry (PIV) measurements document flows around flat and steep street canyons subject to thermal conditions at different levels, ranging from the Richardson number of 0.31 to 2.07. A steepness ratio, that is, the ratio of windward and leeward building heig...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 797; p. 149067
Main Authors Zhao, Yongling, Li, Haiwei, Kubilay, Aytaç, Carmeliet, Jan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 25.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The present wind tunnel particle image velocimetry (PIV) measurements document flows around flat and steep street canyons subject to thermal conditions at different levels, ranging from the Richardson number of 0.31 to 2.07. A steepness ratio, that is, the ratio of windward and leeward building heights, is proposed to characterise the geometrical influence of street canyons surrounded by buildings of non-uniform height. To study the thermal effects of building façades and ground on surrounding flow, surfaces of building models and the ground between them are heated up and maintained at three different temperatures to induce buoyant flows of different strength. The transition of the canyon flow from the typical rooftop shear-layer driven vortex to the buoyant plume type of flow is clearly revealed from the measurement results, which enhances the air removal that takes place at the roof-level of the two canyons. However, due to the different steepness of the canyons, the air removal rate from the steep canyon of a steepness ratio 2.52 is approximately 50% of that from the flat canyon with a steepness ratio of 1.53 in the buoyant plume-driven case because the downward flush flow along the windward façade suppresses the ascending plumes in the steep canyon. At the pedestrian level, the wind field is jointly dominated by the interplay between canyon-wide vortical flow and the buoyant plume rising ascending from the ground. The dynamics of non-isothermal flow in flat and steep canyons are revealed in detail, the implication of which is that the steepness of street canyons has to be considered in urban morphology planning, as well as in simplified geometrical representations of street canyons and in simplified urban canopy models. [Display omitted] •Non-isothermal flows around flat and steep canyons are studied using PIV measurements.•A steepness ratio is adopted to characterise the flow around steep canyons.•The transition from a shear-layer driven flow to a buoyant plume-driven flow enhances air removal.
AbstractList The present wind tunnel particle image velocimetry (PIV) measurements document flows around flat and steep street canyons subject to thermal conditions at different levels, ranging from the Richardson number of 0.31 to 2.07. A steepness ratio, that is, the ratio of windward and leeward building heights, is proposed to characterise the geometrical influence of street canyons surrounded by buildings of non-uniform height. To study the thermal effects of building façades and ground on surrounding flow, surfaces of building models and the ground between them are heated up and maintained at three different temperatures to induce buoyant flows of different strength. The transition of the canyon flow from the typical rooftop shear-layer driven vortex to the buoyant plume type of flow is clearly revealed from the measurement results, which enhances the air removal that takes place at the roof-level of the two canyons. However, due to the different steepness of the canyons, the air removal rate from the steep canyon of a steepness ratio 2.52 is approximately 50% of that from the flat canyon with a steepness ratio of 1.53 in the buoyant plume-driven case because the downward flush flow along the windward façade suppresses the ascending plumes in the steep canyon. At the pedestrian level, the wind field is jointly dominated by the interplay between canyon-wide vortical flow and the buoyant plume rising ascending from the ground. The dynamics of non-isothermal flow in flat and steep canyons are revealed in detail, the implication of which is that the steepness of street canyons has to be considered in urban morphology planning, as well as in simplified geometrical representations of street canyons and in simplified urban canopy models.
The present wind tunnel particle image velocimetry (PIV) measurements document flows around flat and steep street canyons subject to thermal conditions at different levels, ranging from the Richardson number of 0.31 to 2.07. A steepness ratio, that is, the ratio of windward and leeward building heights, is proposed to characterise the geometrical influence of street canyons surrounded by buildings of non-uniform height. To study the thermal effects of building façades and ground on surrounding flow, surfaces of building models and the ground between them are heated up and maintained at three different temperatures to induce buoyant flows of different strength. The transition of the canyon flow from the typical rooftop shear-layer driven vortex to the buoyant plume type of flow is clearly revealed from the measurement results, which enhances the air removal that takes place at the roof-level of the two canyons. However, due to the different steepness of the canyons, the air removal rate from the steep canyon of a steepness ratio 2.52 is approximately 50% of that from the flat canyon with a steepness ratio of 1.53 in the buoyant plume-driven case because the downward flush flow along the windward façade suppresses the ascending plumes in the steep canyon. At the pedestrian level, the wind field is jointly dominated by the interplay between canyon-wide vortical flow and the buoyant plume rising ascending from the ground. The dynamics of non-isothermal flow in flat and steep canyons are revealed in detail, the implication of which is that the steepness of street canyons has to be considered in urban morphology planning, as well as in simplified geometrical representations of street canyons and in simplified urban canopy models.The present wind tunnel particle image velocimetry (PIV) measurements document flows around flat and steep street canyons subject to thermal conditions at different levels, ranging from the Richardson number of 0.31 to 2.07. A steepness ratio, that is, the ratio of windward and leeward building heights, is proposed to characterise the geometrical influence of street canyons surrounded by buildings of non-uniform height. To study the thermal effects of building façades and ground on surrounding flow, surfaces of building models and the ground between them are heated up and maintained at three different temperatures to induce buoyant flows of different strength. The transition of the canyon flow from the typical rooftop shear-layer driven vortex to the buoyant plume type of flow is clearly revealed from the measurement results, which enhances the air removal that takes place at the roof-level of the two canyons. However, due to the different steepness of the canyons, the air removal rate from the steep canyon of a steepness ratio 2.52 is approximately 50% of that from the flat canyon with a steepness ratio of 1.53 in the buoyant plume-driven case because the downward flush flow along the windward façade suppresses the ascending plumes in the steep canyon. At the pedestrian level, the wind field is jointly dominated by the interplay between canyon-wide vortical flow and the buoyant plume rising ascending from the ground. The dynamics of non-isothermal flow in flat and steep canyons are revealed in detail, the implication of which is that the steepness of street canyons has to be considered in urban morphology planning, as well as in simplified geometrical representations of street canyons and in simplified urban canopy models.
The present wind tunnel particle image velocimetry (PIV) measurements document flows around flat and steep street canyons subject to thermal conditions at different levels, ranging from the Richardson number of 0.31 to 2.07. A steepness ratio, that is, the ratio of windward and leeward building heights, is proposed to characterise the geometrical influence of street canyons surrounded by buildings of non-uniform height. To study the thermal effects of building façades and ground on surrounding flow, surfaces of building models and the ground between them are heated up and maintained at three different temperatures to induce buoyant flows of different strength. The transition of the canyon flow from the typical rooftop shear-layer driven vortex to the buoyant plume type of flow is clearly revealed from the measurement results, which enhances the air removal that takes place at the roof-level of the two canyons. However, due to the different steepness of the canyons, the air removal rate from the steep canyon of a steepness ratio 2.52 is approximately 50% of that from the flat canyon with a steepness ratio of 1.53 in the buoyant plume-driven case because the downward flush flow along the windward façade suppresses the ascending plumes in the steep canyon. At the pedestrian level, the wind field is jointly dominated by the interplay between canyon-wide vortical flow and the buoyant plume rising ascending from the ground. The dynamics of non-isothermal flow in flat and steep canyons are revealed in detail, the implication of which is that the steepness of street canyons has to be considered in urban morphology planning, as well as in simplified geometrical representations of street canyons and in simplified urban canopy models. [Display omitted] •Non-isothermal flows around flat and steep canyons are studied using PIV measurements.•A steepness ratio is adopted to characterise the flow around steep canyons.•The transition from a shear-layer driven flow to a buoyant plume-driven flow enhances air removal.
ArticleNumber 149067
Author Li, Haiwei
Zhao, Yongling
Kubilay, Aytaç
Carmeliet, Jan
Author_xml – sequence: 1
  givenname: Yongling
  surname: Zhao
  fullname: Zhao, Yongling
  email: yozhao@ethz.ch
– sequence: 2
  givenname: Haiwei
  surname: Li
  fullname: Li, Haiwei
– sequence: 3
  givenname: Aytaç
  surname: Kubilay
  fullname: Kubilay, Aytaç
– sequence: 4
  givenname: Jan
  surname: Carmeliet
  fullname: Carmeliet, Jan
BookMark eNqNkctu1DAUhi1UJKaFZ-As2WSwc7ETJBalgrZSJVhwWVqOc0w9cuxgO0V5KN4RjwaxYEO98E3f_x_7_OfkzAePhLxkdM8o468P-6RtDhn9w76mNduzdqBcPCE71ouhYrTmZ2RHadtXAx_EM3Ke0oGWIXq2I7_erWFTXm-AxqDOCYKHfI9gXPiZQMWw-qkcVAZVNikjLmWOiBm08lvwCayHZOfFWWNxgjWOqlxgztZ_T5DW8VB8IQdQ4HHNUTlQyxKD0veFgPFYQcUNnNowvoFvttTJq_fo4NPtV5hRpTXijD6n5-SpUS7hiz_rBfny4f3nq5vq7uP17dXlXaXbhuaKMzb1fKyVGIw2U825Mh2fhoF3euLC9GxkHBvT00YIjaxh7Vj3TT-aRrf1RJsL8urkW575Y8WU5WyTRueUx7AmWfOGN0Nbd49Au66nA21bVlBxQnUMKUU0col2Ll-XjMpjlvIg_2Ypj1nKU5ZF-fYfZcFUtsGXdlr3CP3lSY-laQ8W45FDr3GysYQjp2D_6_EbR6zHLg
CitedBy_id crossref_primary_10_1016_j_buildenv_2021_108708
crossref_primary_10_1007_s44213_022_00003_8
crossref_primary_10_1016_j_uclim_2024_102188
crossref_primary_10_1080_17512549_2023_2263459
crossref_primary_10_1016_j_buildenv_2025_112530
crossref_primary_10_1016_j_scitotenv_2023_168315
crossref_primary_10_2298_TSCI211123046V
crossref_primary_10_3390_atmos13050834
crossref_primary_10_1016_j_atmosenv_2024_120783
crossref_primary_10_3390_atmos13050813
crossref_primary_10_1016_j_buildenv_2023_110469
crossref_primary_10_1016_j_rser_2024_114943
crossref_primary_10_1016_j_scitotenv_2022_160209
crossref_primary_10_1016_j_jweia_2024_105721
crossref_primary_10_1016_j_buildenv_2025_112528
crossref_primary_10_1016_j_buildenv_2025_112704
crossref_primary_10_1016_j_expthermflusci_2024_111255
crossref_primary_10_1016_j_uclim_2023_101659
crossref_primary_10_1063_5_0090642
crossref_primary_10_1016_j_renene_2025_122879
crossref_primary_10_3390_buildings12081167
crossref_primary_10_1016_j_ijheatfluidflow_2024_109594
crossref_primary_10_1016_j_buildenv_2022_109745
crossref_primary_10_1016_j_buildenv_2023_110471
crossref_primary_10_3390_j4040047
crossref_primary_10_1016_j_scs_2022_104324
crossref_primary_10_3390_en16062577
crossref_primary_10_3390_ijerph191912895
crossref_primary_10_5194_essd_14_4057_2022
crossref_primary_10_1016_j_rser_2023_113668
crossref_primary_10_1016_j_buildenv_2025_112646
crossref_primary_10_1016_j_buildenv_2025_112769
crossref_primary_10_1016_j_buildenv_2023_110466
crossref_primary_10_1016_j_uclim_2023_101449
crossref_primary_10_1016_j_buildenv_2024_111654
crossref_primary_10_1016_j_expthermflusci_2023_111066
crossref_primary_10_1016_j_uclim_2023_101528
crossref_primary_10_1088_1742_6596_2654_1_012145
crossref_primary_10_1029_2023JD039502
crossref_primary_10_1016_j_buildenv_2022_109831
crossref_primary_10_1016_j_rser_2022_112717
crossref_primary_10_1016_j_buildenv_2022_109757
crossref_primary_10_1016_j_buildenv_2024_111693
crossref_primary_10_1016_j_buildenv_2022_108945
crossref_primary_10_1016_j_buildenv_2021_108306
crossref_primary_10_1016_j_scitotenv_2022_157834
crossref_primary_10_1016_j_buildenv_2022_108905
Cites_doi 10.1016/j.buildenv.2014.07.008
10.1063/1.4892979
10.1016/j.atmosenv.2009.01.016
10.1016/j.scitotenv.2018.10.333
10.1016/S1352-2310(99)00410-0
10.1175/2011JAMC2665.1
10.1016/j.scs.2019.101700
10.1016/j.scitotenv.2020.138147
10.1016/j.buildenv.2020.106969
10.1016/S1352-2310(02)00830-0
10.1016/j.expthermflusci.2018.09.007
10.1016/j.buildenv.2017.03.001
10.1088/0957-0233/26/7/074002
10.1016/S1352-2310(99)00187-9
10.1007/s10546-020-00524-x
10.1007/s10546-019-00494-9
10.1016/j.buildenv.2019.106342
10.1016/j.scs.2018.10.034
10.1016/j.scitotenv.2017.01.138
10.1017/S0022112008003765
10.1016/j.buildenv.2017.08.031
10.1016/j.scitotenv.2018.10.135
10.1016/j.buildenv.2020.106876
10.1016/j.buildenv.2020.107163
10.1016/j.envpol.2021.116971
10.1016/j.agrformet.2017.10.014
10.1016/j.jweia.2015.11.002
10.1016/0378-7788(90)90031-D
10.1007/s10546-007-9238-x
10.1007/s10652-014-9366-z
10.1175/1520-0450(2000)039<1592:ALMOUS>2.0.CO;2
10.1007/s10546-006-9099-8
10.1175/2007JAMC1597.1
10.1177/1744259120968586
10.1016/j.buildenv.2014.05.014
10.1175/JAMC-D-11-0180.1
10.1002/qj.2289
10.1007/s10546-004-6204-8
10.1023/A:1002463829265
10.1016/j.buildenv.2012.08.029
10.1016/j.jweia.2006.06.011
10.1016/j.atmosenv.2004.02.047
10.1016/j.buildenv.2019.04.013
10.1016/j.scs.2019.101574
10.1016/j.scs.2015.07.009
10.1016/j.scitotenv.2016.05.150
10.1007/s00348-016-2186-9
10.1017/S0022112072000515
10.1016/j.buildenv.2021.107713
10.1002/joc.3370050410
10.1007/s10546-004-6205-7
10.1016/j.scitotenv.2019.135553
10.1017/S0022112008002346
10.1016/0004-6981(88)90437-4
10.1016/j.jweia.2020.104248
10.1016/j.jweia.2019.103958
10.1175/JAMC-D-12-0162.1
10.1016/j.buildenv.2015.08.021
10.1016/j.ijheatmasstransfer.2018.03.069
10.1023/B:BOUN.0000027909.40439.7c
10.1016/0957-1272(92)90049-X
10.1023/A:1021355906101
10.1016/j.uclim.2015.03.002
ContentType Journal Article
Copyright 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2021.149067
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 10_1016_j_scitotenv_2021_149067
S0048969721041395
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c430t-611d86b2a79fcfd266af56d9965cd67f81b16e3f80377ce1314b2838bf3c42d03
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Fri Jul 11 00:00:52 EDT 2025
Thu Aug 07 15:13:09 EDT 2025
Tue Jul 01 04:25:08 EDT 2025
Thu Apr 24 22:59:39 EDT 2025
Fri Feb 23 02:37:52 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Street canyons
Wind tunnel
Steepness ratio
Isothermal and non-isothermal flows
Air exchange
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-611d86b2a79fcfd266af56d9965cd67f81b16e3f80377ce1314b2838bf3c42d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0048969721041395
PQID 2558090441
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2636394250
proquest_miscellaneous_2558090441
crossref_primary_10_1016_j_scitotenv_2021_149067
crossref_citationtrail_10_1016_j_scitotenv_2021_149067
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2021_149067
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-25
PublicationDateYYYYMMDD 2021-11-25
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-25
  day: 25
PublicationDecade 2020
PublicationTitle The Science of the total environment
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gallagher, Lago (bb0080) 2019; 651
Nazarian, Kleissl (bb0195) 2016; 95
Addepalli, Pardyjak (bb0005) 2015; 15
Uehara, Murakami, Oikawa, Wakamatsu (bb0265) 2000; 34
Arnfield (bb0020) 1990; 14
Wells, Worster (bb0275) 2008; 609
Louka, Vachon, Sini, Mestayer, Rosant (bb0155) 2002; 2
Sessa, Xie, Herring (bb0240) 2020; 176
Tsalicoglou, Allegrini, Carmeliet (bb0260) 2020; 204
Xie, Castro (bb0285) 2009; 43
Allegrini, Dorer, Carmeliet (bb0015) 2015; 19
Huang, Lei, Liu, Perez, Forehead, Kong, Zhou (bb0095) 2021; 280
Theeuwes, Steeneveld, Ronda, Heusinkveld, van Hove, Holtslag (bb0255) 2014; 140
Park, Kim, Choi, Kim, Song, Pardyjak (bb0225) 2020; 174
Stathopoulos (bb0250) 2006; 94
Fan, Li, Yin (bb0075) 2018; 124
Kubilay, Ferrari, Derome, Carmeliet (bb0140) 2021; 45
Hunter, Johnson, Watson (bb0100) 1992; 26
Wallace, Eckelmann, Brodkey (bb0270) 1972; 54
Oleson, Bonan, Feddema, Vertenstein, Grimmond (bb0210) 2008; 47
Park, Baik (bb0215) 2013; 52
Chen, Wang, Wang, Li, Wang, Hang, Gao, Ou, Wang (bb0045) 2020; 726
Kim, Baik (bb0125) 2004; 38
Mei, Luo, Zhao, Wang (bb0180) 2019; 50
Fan, Hunt, Wang, Yin, Li (bb0070) 2019; 164
Offerle, Eliasson, Grimmond, Holmer (bb0205) 2007; 122
Kanda, Yamao (bb0115) 2016; 148
Yuan, Adelia, Mei, He, Li, Norford (bb0290) 2020; 176
Zhao, Lei, Patterson (bb0310) 2019; 101
Liu, Niu, Mak, Xia (bb0150) 2017; 125
Zhang, Chen, Wang, Liu, Mak, Fan, Hang (bb0295) 2019; 653
Baik, Park, Chun, Kim (bb0025) 2000; 39
Allegrini, Dorer, Carmeliet (bb0010) 2013; 59
Duan, Ngan (bb0060) 2019; 193
Immer, Allegrini, Carmeliet (bb0105) 2016; 57
Soulhac, Perkins, Salizzoni (bb0245) 2008; 126
Harman, Barlow, Belcher (bb0085) 2004; 113
Park, Baik, Raasch, Letzel (bb0220) 2012; 51
Kubilay, Derome, Carmeliet (bb0135) 2019; 49
Zhang, Chen, Zhang, Liu, Wang, Wang, Hang (bb0300) 2020; 712
Bärring, Mattsson, Lindqvist (bb0035) 1985; 5
Ryu, Baik, Lee (bb0230) 2011; 50
Neophytou, Markides, Fokaides (bb0200) 2014; 26
Masson (bb0170) 2000; 94
Dallman, Magnusson, Britter, Norford, Entekhabi, Fernando (bb0050) 2014; 80
Zhao, Chew, Kubilay, Carmeliet (bb0305) 2020; 184
Nazarian, Kleissl (bb0190) 2015; 12
Du, Mak, Liu, Xia, Niu, Kwok (bb0055) 2017; 117
He, Hang, Wang, Lin, Li, Lan (bb0090) 2017; 584–585
Kubilay, Derome, Blocken, Carmeliet (bb0130) 2014; 81
Kanda, Moriwaki, Kasamatsu (bb0120) 2004; 112
Duan, Ngan (bb0065) 2020; 183
Nakamura, Oke (bb0185) 1988; 22
Wieneke (bb0280) 2015; 26
Caton, Britter, Dalziel (bb0040) 2003; 37
Santamouris, Papanikolaou, Koronakis, Livada, Asimakopoulos (bb0235) 1999; 33
Liu, Niu, Du, Mak, Zhang (bb0145) 2019; 44
Marucci, Carpentieri (bb0165) 2019; 156
Mei, Liu, Liu, Zhao, Wang, Li (bb0175) 2016; 565
Inagaki, Kanda (bb0110) 2008; 615
Manickathan, Defraeye, Allegrini, Derome, Carmeliet (bb0160) 2018; 248
Zou, Yu, Liu, Niu, Chauhan, Lei (bb0315) 2021; 194
Barlow, Harman, Belcher (bb0030) 2004; 113
Park (10.1016/j.scitotenv.2021.149067_bb0220) 2012; 51
Harman (10.1016/j.scitotenv.2021.149067_bb0085) 2004; 113
Arnfield (10.1016/j.scitotenv.2021.149067_bb0020) 1990; 14
Bärring (10.1016/j.scitotenv.2021.149067_bb0035) 1985; 5
Kubilay (10.1016/j.scitotenv.2021.149067_bb0130) 2014; 81
Zou (10.1016/j.scitotenv.2021.149067_bb0315) 2021; 194
Huang (10.1016/j.scitotenv.2021.149067_bb0095) 2021; 280
Kubilay (10.1016/j.scitotenv.2021.149067_bb0135) 2019; 49
Nazarian (10.1016/j.scitotenv.2021.149067_bb0190) 2015; 12
Addepalli (10.1016/j.scitotenv.2021.149067_bb0005) 2015; 15
Baik (10.1016/j.scitotenv.2021.149067_bb0025) 2000; 39
Duan (10.1016/j.scitotenv.2021.149067_bb0060) 2019; 193
Mei (10.1016/j.scitotenv.2021.149067_bb0180) 2019; 50
Wallace (10.1016/j.scitotenv.2021.149067_bb0270) 1972; 54
Immer (10.1016/j.scitotenv.2021.149067_bb0105) 2016; 57
Marucci (10.1016/j.scitotenv.2021.149067_bb0165) 2019; 156
Liu (10.1016/j.scitotenv.2021.149067_bb0150) 2017; 125
Zhao (10.1016/j.scitotenv.2021.149067_bb0310) 2019; 101
Xie (10.1016/j.scitotenv.2021.149067_bb0285) 2009; 43
Inagaki (10.1016/j.scitotenv.2021.149067_bb0110) 2008; 615
Tsalicoglou (10.1016/j.scitotenv.2021.149067_bb0260) 2020; 204
Zhao (10.1016/j.scitotenv.2021.149067_bb0305) 2020; 184
Duan (10.1016/j.scitotenv.2021.149067_bb0065) 2020; 183
Kim (10.1016/j.scitotenv.2021.149067_bb0125) 2004; 38
Hunter (10.1016/j.scitotenv.2021.149067_bb0100) 1992; 26
Sessa (10.1016/j.scitotenv.2021.149067_bb0240) 2020; 176
Offerle (10.1016/j.scitotenv.2021.149067_bb0205) 2007; 122
Wieneke (10.1016/j.scitotenv.2021.149067_bb0280) 2015; 26
Liu (10.1016/j.scitotenv.2021.149067_bb0145) 2019; 44
Nakamura (10.1016/j.scitotenv.2021.149067_bb0185) 1988; 22
Zhang (10.1016/j.scitotenv.2021.149067_bb0300) 2020; 712
Park (10.1016/j.scitotenv.2021.149067_bb0225) 2020; 174
Ryu (10.1016/j.scitotenv.2021.149067_bb0230) 2011; 50
Chen (10.1016/j.scitotenv.2021.149067_bb0045) 2020; 726
Kubilay (10.1016/j.scitotenv.2021.149067_bb0140) 2021; 45
Theeuwes (10.1016/j.scitotenv.2021.149067_bb0255) 2014; 140
Oleson (10.1016/j.scitotenv.2021.149067_bb0210) 2008; 47
Fan (10.1016/j.scitotenv.2021.149067_bb0075) 2018; 124
Gallagher (10.1016/j.scitotenv.2021.149067_bb0080) 2019; 651
Yuan (10.1016/j.scitotenv.2021.149067_bb0290) 2020; 176
Nazarian (10.1016/j.scitotenv.2021.149067_bb0195) 2016; 95
Fan (10.1016/j.scitotenv.2021.149067_bb0070) 2019; 164
Allegrini (10.1016/j.scitotenv.2021.149067_bb0015) 2015; 19
Allegrini (10.1016/j.scitotenv.2021.149067_bb0010) 2013; 59
Louka (10.1016/j.scitotenv.2021.149067_bb0155) 2002; 2
Caton (10.1016/j.scitotenv.2021.149067_bb0040) 2003; 37
Dallman (10.1016/j.scitotenv.2021.149067_bb0050) 2014; 80
Mei (10.1016/j.scitotenv.2021.149067_bb0175) 2016; 565
Park (10.1016/j.scitotenv.2021.149067_bb0215) 2013; 52
Zhang (10.1016/j.scitotenv.2021.149067_bb0295) 2019; 653
Du (10.1016/j.scitotenv.2021.149067_bb0055) 2017; 117
Soulhac (10.1016/j.scitotenv.2021.149067_bb0245) 2008; 126
Uehara (10.1016/j.scitotenv.2021.149067_bb0265) 2000; 34
He (10.1016/j.scitotenv.2021.149067_bb0090) 2017; 584–585
Barlow (10.1016/j.scitotenv.2021.149067_bb0030) 2004; 113
Neophytou (10.1016/j.scitotenv.2021.149067_bb0200) 2014; 26
Kanda (10.1016/j.scitotenv.2021.149067_bb0120) 2004; 112
Kanda (10.1016/j.scitotenv.2021.149067_bb0115) 2016; 148
Stathopoulos (10.1016/j.scitotenv.2021.149067_bb0250) 2006; 94
Santamouris (10.1016/j.scitotenv.2021.149067_bb0235) 1999; 33
Masson (10.1016/j.scitotenv.2021.149067_bb0170) 2000; 94
Manickathan (10.1016/j.scitotenv.2021.149067_bb0160) 2018; 248
Wells (10.1016/j.scitotenv.2021.149067_bb0275) 2008; 609
References_xml – volume: 94
  start-page: 769
  year: 2006
  end-page: 780
  ident: bb0250
  article-title: Pedestrian level winds and outdoor human comfort
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 184
  year: 2020
  ident: bb0305
  article-title: Isothermal and non-isothermal flow in street canyons: a review from theoretical, experimental and numerical perspectives
  publication-title: Build. Environ.
– volume: 122
  start-page: 273
  year: 2007
  end-page: 292
  ident: bb0205
  article-title: Surface heating in relation to air temperature, wind and turbulence in an urban street canyon
  publication-title: Bound.-Layer Meteorol.
– volume: 49
  year: 2019
  ident: bb0135
  article-title: Impact of evaporative cooling due to wetting of urban materials on local thermal comfort in a street canyon
  publication-title: Sustain. Cities Soc.
– volume: 33
  start-page: 4503
  year: 1999
  end-page: 4521
  ident: bb0235
  article-title: Thermal and air flow characteristics in a deep pedestrian canyon under hot weather conditions
  publication-title: Atmos. Environ.
– volume: 584–585
  start-page: 189
  year: 2017
  end-page: 206
  ident: bb0090
  article-title: Numerical investigations of flow and passive pollutant exposure in high-rise deep street canyons with various street aspect ratios and viaduct settings
  publication-title: Sci. Total Environ.
– volume: 26
  year: 2015
  ident: bb0280
  article-title: PIV uncertainty quantification from correlation statistics
  publication-title: Meas. Sci. Technol.
– volume: 19
  start-page: 385
  year: 2015
  end-page: 394
  ident: bb0015
  article-title: Coupled CFD, radiation and building energy model for studying heat fluxes in an urban environment with generic building configurations
  publication-title: Sustain. Cities Soc.
– volume: 565
  start-page: 1102
  year: 2016
  end-page: 1115
  ident: bb0175
  article-title: Fluid mechanical dispersion of airborne pollutants inside urban street canyons subjecting to multi-component ventilation and unstable thermal stratifications
  publication-title: Sci. Total Environ.
– volume: 726
  year: 2020
  ident: bb0045
  article-title: Scaled outdoor experimental studies of urban thermal environment in street canyon models with various aspect ratios and thermal storage
  publication-title: Sci. Total Environ.
– volume: 125
  start-page: 168
  year: 2017
  end-page: 179
  ident: bb0150
  article-title: Detached eddy simulation of pedestrian-level wind and gust around an elevated building
  publication-title: Build. Environ.
– volume: 15
  start-page: 439
  year: 2015
  end-page: 481
  ident: bb0005
  article-title: A study of flow fields in step-down street canyons
  publication-title: Environ. Fluid Mech.
– volume: 174
  start-page: 411
  year: 2020
  end-page: 431
  ident: bb0225
  article-title: Flow characteristics around step-up street canyons with various building aspect ratios
  publication-title: Bound.-Layer Meteorol.
– volume: 164
  year: 2019
  ident: bb0070
  article-title: Water tank modelling of variations in inversion breakup over a circular city
  publication-title: Build. Environ.
– volume: 81
  start-page: 283
  year: 2014
  end-page: 295
  ident: bb0130
  article-title: Numerical simulations of wind-driven rain on an array of low-rise cubic buildings and validation by field measurements
  publication-title: Build. Environ.
– volume: 183
  year: 2020
  ident: bb0065
  article-title: Influence of thermal stability on the ventilation of a 3-D building array
  publication-title: Build. Environ.
– volume: 34
  start-page: 1553
  year: 2000
  end-page: 1562
  ident: bb0265
  article-title: Wind tunnel experiments on how thermal stratification affects flow in and above urban street canyons
  publication-title: Atmos. Environ.
– volume: 193
  year: 2019
  ident: bb0060
  article-title: Sensitivity of turbulent flow around a 3-D building array to urban boundary-layer stability
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 176
  start-page: 61
  year: 2020
  end-page: 83
  ident: bb0240
  article-title: Thermal stratification effects on turbulence and dispersion in internal and external boundary layers
  publication-title: Bound.-Layer Meteorol.
– volume: 653
  start-page: 968
  year: 2019
  end-page: 994
  ident: bb0295
  article-title: Numerical evaluations of urban design technique to reduce vehicular personal intake fraction in deep street canyons
  publication-title: Sci. Total Environ.
– volume: 615
  start-page: 101
  year: 2008
  end-page: 120
  ident: bb0110
  article-title: Turbulent flow similarity over an array of cubes in near-neutrally stratified atmospheric flow
  publication-title: J. Fluid Mech.
– volume: 112
  start-page: 343
  year: 2004
  end-page: 368
  ident: bb0120
  article-title: Large-Eddy simulation of turbulent organized structures within and above explicitly resolved cube arrays
  publication-title: Bound.-Layer Meteorol.
– volume: 12
  start-page: 141
  year: 2015
  end-page: 159
  ident: bb0190
  article-title: CFD simulation of an idealized urban environment: thermal effects of geometrical characteristics and surface materials
  publication-title: Urban Clim.
– volume: 280
  year: 2021
  ident: bb0095
  article-title: A review of strategies for mitigating roadside air pollution in urban street canyons
  publication-title: Environ. Pollut.
– volume: 22
  start-page: 2691
  year: 1988
  end-page: 2700
  ident: bb0185
  article-title: Wind, temperature and stability conditions in an east-west oriented urban canyon
  publication-title: Atmos. Environ.
– volume: 140
  start-page: 2197
  year: 2014
  end-page: 2210
  ident: bb0255
  article-title: Seasonal dependence of the urban heat island on the street canyon aspect ratio
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 38
  start-page: 3039
  year: 2004
  end-page: 3048
  ident: bb0125
  article-title: A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k–e turbulence model
  publication-title: Atmos. Environ.
– volume: 45
  start-page: 36
  year: 2021
  end-page: 66
  ident: bb0140
  article-title: Smart wetting of permeable pavements as an evaporative-cooling measure for improving the urban climate during heat waves
  publication-title: J. Build. Phys.
– volume: 194
  year: 2021
  ident: bb0315
  article-title: Field measurement of the urban pedestrian level wind turbulence
  publication-title: Build. Environ.
– volume: 204
  year: 2020
  ident: bb0260
  article-title: Non-isothermal flow between heated building models
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 712
  year: 2020
  ident: bb0300
  article-title: Integrated impacts of turbulent mixing and NOX-O3 photochemistry on reactive pollutant dispersion and intake fraction in shallow and deep street canyons
  publication-title: Sci. Total Environ.
– volume: 2
  start-page: 351
  year: 2002
  end-page: 364
  ident: bb0155
  article-title: Thermal effects on the airflow in a street canyon – Nantes&apos;99 experimental results and model simulations
  publication-title: Water Air Soil Pollut. Focus
– volume: 113
  start-page: 387
  year: 2004
  end-page: 410
  ident: bb0085
  article-title: Scalar fluxes from urban street canyons part II: model
  publication-title: Bound.-Layer Meteorol.
– volume: 52
  start-page: 1348
  year: 2013
  end-page: 1365
  ident: bb0215
  article-title: A large-Eddy simulation study of thermal effects on turbulence coherent structures in and above a building Array
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 14
  start-page: 117
  year: 1990
  end-page: 131
  ident: bb0020
  article-title: Street design and urban canyon solar access
  publication-title: Energ. Buildings
– volume: 113
  start-page: 369
  year: 2004
  end-page: 385
  ident: bb0030
  article-title: Scalar fluxes from urban street canyons. Part I: laboratory simulation
  publication-title: Bound.-Layer Meteorol.
– volume: 148
  start-page: 18
  year: 2016
  end-page: 33
  ident: bb0115
  article-title: Passive scalar diffusion in and above urban-like roughness under weakly stable and unstable thermal stratification conditions
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 59
  start-page: 315
  year: 2013
  end-page: 326
  ident: bb0010
  article-title: Wind tunnel measurements of buoyant flows in street canyons
  publication-title: Build. Environ.
– volume: 54
  start-page: 39
  year: 1972
  end-page: 48
  ident: bb0270
  article-title: The wall region in turbulent shear flow
  publication-title: J. Fluid Mech.
– volume: 37
  start-page: 693
  year: 2003
  end-page: 702
  ident: bb0040
  article-title: Dispersion mechanisms in a street canyon
  publication-title: Atmos. Environ.
– volume: 248
  start-page: 259
  year: 2018
  end-page: 274
  ident: bb0160
  article-title: Parametric study of the influence of environmental factors and tree properties on the transpirative cooling effect of trees
  publication-title: Agric. For. Meteorol.
– volume: 95
  start-page: 75
  year: 2016
  end-page: 93
  ident: bb0195
  article-title: Realistic solar heating in urban areas: air exchange and street-canyon ventilation
  publication-title: Build. Environ.
– volume: 43
  start-page: 2174
  year: 2009
  end-page: 2185
  ident: bb0285
  article-title: Large-eddy simulation for flow and dispersion in urban streets
  publication-title: Atmos. Environ.
– volume: 26
  year: 2014
  ident: bb0200
  article-title: An experimental study of the flow through and over two dimensional rectangular roughness elements: deductions for urban boundary layer parameterizations and exchange processes
  publication-title: Phys. Fluids
– volume: 50
  start-page: 1773
  year: 2011
  end-page: 1794
  ident: bb0230
  article-title: A new single-layer urban canopy model for use in mesoscale atmospheric models
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 124
  start-page: 233
  year: 2018
  end-page: 246
  ident: bb0075
  article-title: Non-uniform ground-level wind patterns in a heat dome over a uniformly heated non-circular city
  publication-title: Int. J. Heat Mass Transf.
– volume: 51
  start-page: 829
  year: 2012
  end-page: 841
  ident: bb0220
  article-title: A large-Eddy simulation study of thermal effects on turbulent flow and dispersion in and above a street canyon
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 47
  start-page: 1038
  year: 2008
  end-page: 1060
  ident: bb0210
  article-title: An urban parameterization for a global climate model. part I: formulation and evaluation for two cities
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 126
  start-page: 365
  year: 2008
  end-page: 388
  ident: bb0245
  article-title: Flow in a street canyon for any external wind direction
  publication-title: Bound.-Layer Meteorol.
– volume: 80
  start-page: 184
  year: 2014
  end-page: 191
  ident: bb0050
  article-title: Conditions for thermal circulation in urban street canyons
  publication-title: Build. Environ.
– volume: 94
  start-page: 357
  year: 2000
  end-page: 397
  ident: bb0170
  article-title: A physically-based scheme for the urban energy budget in atmospheric models
  publication-title: Bound.-Layer Meteorol.
– volume: 44
  start-page: 406
  year: 2019
  end-page: 415
  ident: bb0145
  article-title: LES for pedestrian level wind around an idealized building array—assessment of sensitivity to influencing parameters
  publication-title: Sustain. Cities Soc.
– volume: 39
  start-page: 1592
  year: 2000
  end-page: 1600
  ident: bb0025
  article-title: A laboratory model of urban street-canyon flows
  publication-title: J. Appl. Meteorol.
– volume: 57
  start-page: 101
  year: 2016
  ident: bb0105
  article-title: Time-resolved and time-averaged stereo-PIV measurements of a unit-ratio cavity
  publication-title: Exp. Fluids
– volume: 101
  start-page: 62
  year: 2019
  end-page: 75
  ident: bb0310
  article-title: PIV measurements of the K-type transition in natural convection boundary layers
  publication-title: Exp. Thermal Fluid Sci.
– volume: 117
  start-page: 84
  year: 2017
  end-page: 99
  ident: bb0055
  article-title: Effects of lift-up design on pedestrian level wind comfort in different building configurations under three wind directions
  publication-title: Build. Environ.
– volume: 609
  start-page: 111
  year: 2008
  end-page: 137
  ident: bb0275
  article-title: A geophysical-scale model of vertical natural convection boundary layers
  publication-title: J. Fluid Mech.
– volume: 50
  year: 2019
  ident: bb0180
  article-title: Street canyon ventilation and airborne pollutant dispersion: 2-D versus 3-D CFD simulations
  publication-title: Sustain. Cities Soc.
– volume: 176
  year: 2020
  ident: bb0290
  article-title: Mitigating intensity of urban heat island by better understanding on urban morphology and anthropogenic heat dispersion
  publication-title: Build. Environ.
– volume: 5
  start-page: 433
  year: 1985
  end-page: 444
  ident: bb0035
  article-title: Canyon geometry, street temperatures and urban heat island in malmö, Sweden
  publication-title: J. Climatol.
– volume: 156
  start-page: 74
  year: 2019
  end-page: 88
  ident: bb0165
  article-title: Effect of local and upwind stratification on flow and dispersion inside and above a bi-dimensional street canyon
  publication-title: Build. Environ.
– volume: 651
  start-page: 2410
  year: 2019
  end-page: 2418
  ident: bb0080
  article-title: How parked cars affect pollutant dispersion at street level in an urban street canyon? A CFD modelling exercise assessing geometrical detailing and pollutant decay rates
  publication-title: Sci. Total Environ.
– volume: 26
  start-page: 425
  year: 1992
  end-page: 432
  ident: bb0100
  article-title: An investigation of three-dimensional characteristics of flow regimes within the urban canyon
  publication-title: Atmos. Environ. Part B
– volume: 81
  start-page: 283
  year: 2014
  ident: 10.1016/j.scitotenv.2021.149067_bb0130
  article-title: Numerical simulations of wind-driven rain on an array of low-rise cubic buildings and validation by field measurements
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2014.07.008
– volume: 26
  issue: 8
  year: 2014
  ident: 10.1016/j.scitotenv.2021.149067_bb0200
  article-title: An experimental study of the flow through and over two dimensional rectangular roughness elements: deductions for urban boundary layer parameterizations and exchange processes
  publication-title: Phys. Fluids
  doi: 10.1063/1.4892979
– volume: 43
  start-page: 2174
  issue: 13
  year: 2009
  ident: 10.1016/j.scitotenv.2021.149067_bb0285
  article-title: Large-eddy simulation for flow and dispersion in urban streets
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2009.01.016
– volume: 653
  start-page: 968
  year: 2019
  ident: 10.1016/j.scitotenv.2021.149067_bb0295
  article-title: Numerical evaluations of urban design technique to reduce vehicular personal intake fraction in deep street canyons
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.10.333
– volume: 34
  start-page: 1553
  issue: 10
  year: 2000
  ident: 10.1016/j.scitotenv.2021.149067_bb0265
  article-title: Wind tunnel experiments on how thermal stratification affects flow in and above urban street canyons
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(99)00410-0
– volume: 50
  start-page: 1773
  issue: 9
  year: 2011
  ident: 10.1016/j.scitotenv.2021.149067_bb0230
  article-title: A new single-layer urban canopy model for use in mesoscale atmospheric models
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/2011JAMC2665.1
– volume: 50
  year: 2019
  ident: 10.1016/j.scitotenv.2021.149067_bb0180
  article-title: Street canyon ventilation and airborne pollutant dispersion: 2-D versus 3-D CFD simulations
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2019.101700
– volume: 726
  year: 2020
  ident: 10.1016/j.scitotenv.2021.149067_bb0045
  article-title: Scaled outdoor experimental studies of urban thermal environment in street canyon models with various aspect ratios and thermal storage
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138147
– volume: 183
  year: 2020
  ident: 10.1016/j.scitotenv.2021.149067_bb0065
  article-title: Influence of thermal stability on the ventilation of a 3-D building array
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2020.106969
– volume: 37
  start-page: 693
  issue: 5
  year: 2003
  ident: 10.1016/j.scitotenv.2021.149067_bb0040
  article-title: Dispersion mechanisms in a street canyon
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(02)00830-0
– volume: 101
  start-page: 62
  year: 2019
  ident: 10.1016/j.scitotenv.2021.149067_bb0310
  article-title: PIV measurements of the K-type transition in natural convection boundary layers
  publication-title: Exp. Thermal Fluid Sci.
  doi: 10.1016/j.expthermflusci.2018.09.007
– volume: 117
  start-page: 84
  year: 2017
  ident: 10.1016/j.scitotenv.2021.149067_bb0055
  article-title: Effects of lift-up design on pedestrian level wind comfort in different building configurations under three wind directions
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.03.001
– volume: 26
  issue: 7
  year: 2015
  ident: 10.1016/j.scitotenv.2021.149067_bb0280
  article-title: PIV uncertainty quantification from correlation statistics
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/26/7/074002
– volume: 33
  start-page: 4503
  issue: 27
  year: 1999
  ident: 10.1016/j.scitotenv.2021.149067_bb0235
  article-title: Thermal and air flow characteristics in a deep pedestrian canyon under hot weather conditions
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(99)00187-9
– volume: 176
  start-page: 61
  issue: 1
  year: 2020
  ident: 10.1016/j.scitotenv.2021.149067_bb0240
  article-title: Thermal stratification effects on turbulence and dispersion in internal and external boundary layers
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1007/s10546-020-00524-x
– volume: 174
  start-page: 411
  issue: 3
  year: 2020
  ident: 10.1016/j.scitotenv.2021.149067_bb0225
  article-title: Flow characteristics around step-up street canyons with various building aspect ratios
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1007/s10546-019-00494-9
– volume: 164
  year: 2019
  ident: 10.1016/j.scitotenv.2021.149067_bb0070
  article-title: Water tank modelling of variations in inversion breakup over a circular city
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106342
– volume: 44
  start-page: 406
  year: 2019
  ident: 10.1016/j.scitotenv.2021.149067_bb0145
  article-title: LES for pedestrian level wind around an idealized building array—assessment of sensitivity to influencing parameters
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2018.10.034
– volume: 584–585
  start-page: 189
  year: 2017
  ident: 10.1016/j.scitotenv.2021.149067_bb0090
  article-title: Numerical investigations of flow and passive pollutant exposure in high-rise deep street canyons with various street aspect ratios and viaduct settings
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.01.138
– volume: 615
  start-page: 101
  year: 2008
  ident: 10.1016/j.scitotenv.2021.149067_bb0110
  article-title: Turbulent flow similarity over an array of cubes in near-neutrally stratified atmospheric flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112008003765
– volume: 125
  start-page: 168
  year: 2017
  ident: 10.1016/j.scitotenv.2021.149067_bb0150
  article-title: Detached eddy simulation of pedestrian-level wind and gust around an elevated building
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.08.031
– volume: 651
  start-page: 2410
  year: 2019
  ident: 10.1016/j.scitotenv.2021.149067_bb0080
  article-title: How parked cars affect pollutant dispersion at street level in an urban street canyon? A CFD modelling exercise assessing geometrical detailing and pollutant decay rates
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.10.135
– volume: 176
  year: 2020
  ident: 10.1016/j.scitotenv.2021.149067_bb0290
  article-title: Mitigating intensity of urban heat island by better understanding on urban morphology and anthropogenic heat dispersion
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2020.106876
– volume: 184
  year: 2020
  ident: 10.1016/j.scitotenv.2021.149067_bb0305
  article-title: Isothermal and non-isothermal flow in street canyons: a review from theoretical, experimental and numerical perspectives
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2020.107163
– volume: 280
  year: 2021
  ident: 10.1016/j.scitotenv.2021.149067_bb0095
  article-title: A review of strategies for mitigating roadside air pollution in urban street canyons
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2021.116971
– volume: 248
  start-page: 259
  year: 2018
  ident: 10.1016/j.scitotenv.2021.149067_bb0160
  article-title: Parametric study of the influence of environmental factors and tree properties on the transpirative cooling effect of trees
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2017.10.014
– volume: 148
  start-page: 18
  year: 2016
  ident: 10.1016/j.scitotenv.2021.149067_bb0115
  article-title: Passive scalar diffusion in and above urban-like roughness under weakly stable and unstable thermal stratification conditions
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2015.11.002
– volume: 14
  start-page: 117
  issue: 2
  year: 1990
  ident: 10.1016/j.scitotenv.2021.149067_bb0020
  article-title: Street design and urban canyon solar access
  publication-title: Energ. Buildings
  doi: 10.1016/0378-7788(90)90031-D
– volume: 126
  start-page: 365
  issue: 3
  year: 2008
  ident: 10.1016/j.scitotenv.2021.149067_bb0245
  article-title: Flow in a street canyon for any external wind direction
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1007/s10546-007-9238-x
– volume: 15
  start-page: 439
  issue: 2
  year: 2015
  ident: 10.1016/j.scitotenv.2021.149067_bb0005
  article-title: A study of flow fields in step-down street canyons
  publication-title: Environ. Fluid Mech.
  doi: 10.1007/s10652-014-9366-z
– volume: 39
  start-page: 1592
  issue: 9
  year: 2000
  ident: 10.1016/j.scitotenv.2021.149067_bb0025
  article-title: A laboratory model of urban street-canyon flows
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(2000)039<1592:ALMOUS>2.0.CO;2
– volume: 122
  start-page: 273
  issue: 2
  year: 2007
  ident: 10.1016/j.scitotenv.2021.149067_bb0205
  article-title: Surface heating in relation to air temperature, wind and turbulence in an urban street canyon
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1007/s10546-006-9099-8
– volume: 47
  start-page: 1038
  issue: 4
  year: 2008
  ident: 10.1016/j.scitotenv.2021.149067_bb0210
  article-title: An urban parameterization for a global climate model. part I: formulation and evaluation for two cities
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/2007JAMC1597.1
– volume: 45
  start-page: 36
  issue: 1
  year: 2021
  ident: 10.1016/j.scitotenv.2021.149067_bb0140
  article-title: Smart wetting of permeable pavements as an evaporative-cooling measure for improving the urban climate during heat waves
  publication-title: J. Build. Phys.
  doi: 10.1177/1744259120968586
– volume: 80
  start-page: 184
  year: 2014
  ident: 10.1016/j.scitotenv.2021.149067_bb0050
  article-title: Conditions for thermal circulation in urban street canyons
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2014.05.014
– volume: 51
  start-page: 829
  issue: 5
  year: 2012
  ident: 10.1016/j.scitotenv.2021.149067_bb0220
  article-title: A large-Eddy simulation study of thermal effects on turbulent flow and dispersion in and above a street canyon
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/JAMC-D-11-0180.1
– volume: 140
  start-page: 2197
  issue: 684
  year: 2014
  ident: 10.1016/j.scitotenv.2021.149067_bb0255
  article-title: Seasonal dependence of the urban heat island on the street canyon aspect ratio
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.2289
– volume: 113
  start-page: 369
  issue: 3
  year: 2004
  ident: 10.1016/j.scitotenv.2021.149067_bb0030
  article-title: Scalar fluxes from urban street canyons. Part I: laboratory simulation
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1007/s10546-004-6204-8
– volume: 94
  start-page: 357
  year: 2000
  ident: 10.1016/j.scitotenv.2021.149067_bb0170
  article-title: A physically-based scheme for the urban energy budget in atmospheric models
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1023/A:1002463829265
– volume: 59
  start-page: 315
  year: 2013
  ident: 10.1016/j.scitotenv.2021.149067_bb0010
  article-title: Wind tunnel measurements of buoyant flows in street canyons
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2012.08.029
– volume: 94
  start-page: 769
  issue: 11
  year: 2006
  ident: 10.1016/j.scitotenv.2021.149067_bb0250
  article-title: Pedestrian level winds and outdoor human comfort
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2006.06.011
– volume: 38
  start-page: 3039
  issue: 19
  year: 2004
  ident: 10.1016/j.scitotenv.2021.149067_bb0125
  article-title: A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k–e turbulence model
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2004.02.047
– volume: 156
  start-page: 74
  year: 2019
  ident: 10.1016/j.scitotenv.2021.149067_bb0165
  article-title: Effect of local and upwind stratification on flow and dispersion inside and above a bi-dimensional street canyon
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.04.013
– volume: 49
  year: 2019
  ident: 10.1016/j.scitotenv.2021.149067_bb0135
  article-title: Impact of evaporative cooling due to wetting of urban materials on local thermal comfort in a street canyon
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2019.101574
– volume: 19
  start-page: 385
  year: 2015
  ident: 10.1016/j.scitotenv.2021.149067_bb0015
  article-title: Coupled CFD, radiation and building energy model for studying heat fluxes in an urban environment with generic building configurations
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2015.07.009
– volume: 565
  start-page: 1102
  year: 2016
  ident: 10.1016/j.scitotenv.2021.149067_bb0175
  article-title: Fluid mechanical dispersion of airborne pollutants inside urban street canyons subjecting to multi-component ventilation and unstable thermal stratifications
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.05.150
– volume: 57
  start-page: 101
  issue: 6
  year: 2016
  ident: 10.1016/j.scitotenv.2021.149067_bb0105
  article-title: Time-resolved and time-averaged stereo-PIV measurements of a unit-ratio cavity
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-016-2186-9
– volume: 54
  start-page: 39
  issue: 1
  year: 1972
  ident: 10.1016/j.scitotenv.2021.149067_bb0270
  article-title: The wall region in turbulent shear flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112072000515
– volume: 194
  year: 2021
  ident: 10.1016/j.scitotenv.2021.149067_bb0315
  article-title: Field measurement of the urban pedestrian level wind turbulence
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.107713
– volume: 5
  start-page: 433
  issue: 4
  year: 1985
  ident: 10.1016/j.scitotenv.2021.149067_bb0035
  article-title: Canyon geometry, street temperatures and urban heat island in malmö, Sweden
  publication-title: J. Climatol.
  doi: 10.1002/joc.3370050410
– volume: 113
  start-page: 387
  issue: 3
  year: 2004
  ident: 10.1016/j.scitotenv.2021.149067_bb0085
  article-title: Scalar fluxes from urban street canyons part II: model
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1007/s10546-004-6205-7
– volume: 712
  year: 2020
  ident: 10.1016/j.scitotenv.2021.149067_bb0300
  article-title: Integrated impacts of turbulent mixing and NOX-O3 photochemistry on reactive pollutant dispersion and intake fraction in shallow and deep street canyons
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.135553
– volume: 609
  start-page: 111
  year: 2008
  ident: 10.1016/j.scitotenv.2021.149067_bb0275
  article-title: A geophysical-scale model of vertical natural convection boundary layers
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112008002346
– volume: 22
  start-page: 2691
  issue: 12
  year: 1988
  ident: 10.1016/j.scitotenv.2021.149067_bb0185
  article-title: Wind, temperature and stability conditions in an east-west oriented urban canyon
  publication-title: Atmos. Environ.
  doi: 10.1016/0004-6981(88)90437-4
– volume: 204
  year: 2020
  ident: 10.1016/j.scitotenv.2021.149067_bb0260
  article-title: Non-isothermal flow between heated building models
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2020.104248
– volume: 193
  year: 2019
  ident: 10.1016/j.scitotenv.2021.149067_bb0060
  article-title: Sensitivity of turbulent flow around a 3-D building array to urban boundary-layer stability
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2019.103958
– volume: 52
  start-page: 1348
  issue: 6
  year: 2013
  ident: 10.1016/j.scitotenv.2021.149067_bb0215
  article-title: A large-Eddy simulation study of thermal effects on turbulence coherent structures in and above a building Array
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/JAMC-D-12-0162.1
– volume: 95
  start-page: 75
  year: 2016
  ident: 10.1016/j.scitotenv.2021.149067_bb0195
  article-title: Realistic solar heating in urban areas: air exchange and street-canyon ventilation
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2015.08.021
– volume: 124
  start-page: 233
  year: 2018
  ident: 10.1016/j.scitotenv.2021.149067_bb0075
  article-title: Non-uniform ground-level wind patterns in a heat dome over a uniformly heated non-circular city
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.03.069
– volume: 112
  start-page: 343
  issue: 2
  year: 2004
  ident: 10.1016/j.scitotenv.2021.149067_bb0120
  article-title: Large-Eddy simulation of turbulent organized structures within and above explicitly resolved cube arrays
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1023/B:BOUN.0000027909.40439.7c
– volume: 26
  start-page: 425
  issue: 4
  year: 1992
  ident: 10.1016/j.scitotenv.2021.149067_bb0100
  article-title: An investigation of three-dimensional characteristics of flow regimes within the urban canyon
  publication-title: Atmos. Environ. Part B
  doi: 10.1016/0957-1272(92)90049-X
– volume: 2
  start-page: 351
  issue: 5
  year: 2002
  ident: 10.1016/j.scitotenv.2021.149067_bb0155
  article-title: Thermal effects on the airflow in a street canyon – Nantes'99 experimental results and model simulations
  publication-title: Water Air Soil Pollut. Focus
  doi: 10.1023/A:1021355906101
– volume: 12
  start-page: 141
  year: 2015
  ident: 10.1016/j.scitotenv.2021.149067_bb0190
  article-title: CFD simulation of an idealized urban environment: thermal effects of geometrical characteristics and surface materials
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2015.03.002
SSID ssj0000781
Score 2.546718
Snippet The present wind tunnel particle image velocimetry (PIV) measurements document flows around flat and steep street canyons subject to thermal conditions at...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 149067
SubjectTerms air
Air exchange
canopy
environment
Isothermal and non-isothermal flows
particle image velocimetry
Steepness ratio
Street canyons
wind
Wind tunnel
wind tunnels
Title Buoyancy effects on the flows around flat and steep street canyons in simplified urban settings subject to a neutral approaching boundary layer: Wind tunnel PIV measurements
URI https://dx.doi.org/10.1016/j.scitotenv.2021.149067
https://www.proquest.com/docview/2558090441
https://www.proquest.com/docview/2636394250
Volume 797
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEF9KRRBE9LRYq2UEX89usskm6VstLVcPi4i1fQv7CSlnclwSy734H_k_OpOPHhWxDz4lWWaTJTM7-5vd-WDsnRaRR8OHT63xHg2UIJ4qG6RTh-g4tJajUUEnup_O5ewi-ngVX22x4zEWhtwqB93f6_ROWw8tB8PfPFgWBcX4RmkmKfsMR02cUaB5FCUk5e9_btw8KJlNf8qMExup7_h44XubCrHpDzQUwwC1Rsa7gvN_XaH-0NXdAnT6lD0ZkCMc9YN7xrZcOWEP-1qS6wnbOdmErCHZMGfrCXvc78xBH3D0nP360FZr0qkw-HJAVQLCQPCL6qYGtaJCS_igGlB4g1LgllB3h9eAfFijmEJRQl2QL7pHBAvtSitscJ0LdQ11q2lzB5oKFJSupb0UGHOXIwXorpTTag0LhYD_EC4L_E7TkscNfD77Bt83-5b1C3ZxevL1eDYdijZMTSR4g6ZoYFOpQ5Vk3niL67_ysbRoVsXGysQjTA6kEz7lIkmMC0QQaYQ4qfbCRKHlYodtl1XpXjKQIky1CUMljYwsUmXG-thoIdCO8qHbZXJkVG6GjOZUWGORj65r1_kth3PicN5zeJfx247LPqnH_V0OR0nI78hnjkvP_Z3fjrKT4-ylIxlVuqqtczToUp5xxKT_oJECYSTqVv7qfwaxxx7RE8VRhvFrtt2sWvcGAVWj97sZs88eHJ3NZ-d0nX-5nP8G-U0nbQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKVggkhGChojwHiWtUJ06cpLdStdql7YpDC71ZfkpBS7LaJKD9UfxHxnl0VYTogVsedhJlxp-_sedByAfFYoeGDw2Mdg4NlDAJpAmzwCI7joyhaFT4Hd2LBZ9dxZ-uk-sdcjzGwni3ygH7e0zv0Hq4cjD8zYNVUfgY3zjLuc8-QxGJ8-Qe2fXZqZIJ2T2an80WW0BOs75wXoxjGzvccvPCRzcV0tMfaCtGIQJHTrua83-dpP6A624OOn1CHg_kEY7673tKdmw5Jff7cpKbKdk72UatYbNh2NZT8qhfnIM-5ugZ-fWxrTYeVmFw54CqBGSC4JbVzxrk2tdawhPZgMQDVAS7grrbvwYUxQY1FYoS6sK7ozsksdCulcQLtvOirqFulV_fgaYCCaVt_XIKjOnLsQWorprTegNLiZz_EL4W-J6m9U438Hn-Bb5vly7r5-Tq9OTyeBYMdRsCHTPaoDUamoyrSKa5084gBZAu4QYtq0QbnjpkyiG3zGWUpam2IQtjhSwnU47pODKU7ZFJWZX2BQHOokzpKJJc89hgq1wbl2jFGJpSLrL7hI-CEnpIau5rayzF6L32TdxIWHgJi17C-4TedFz1eT3u7nI4aoK4paICZ5-7O78fdUfgAPa7MrK0VVsLtOkymlOkpf9owxkySYRX-vJ_PuIdeTC7vDgX5_PF2Svy0N_xYZVR8ppMmnVr3yC_atTbYfz8BrGQKHs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Buoyancy+effects+on+the+flows+around+flat+and+steep+street+canyons+in+simplified+urban+settings+subject+to+a+neutral+approaching+boundary+layer%3A+Wind+tunnel+PIV+measurements&rft.jtitle=The+Science+of+the+total+environment&rft.au=Zhao%2C+Yongling&rft.au=Li%2C+Haiwei&rft.au=Kubilay%2C+Ayta%C3%A7&rft.au=Carmeliet%2C+Jan&rft.date=2021-11-25&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=797&rft_id=info:doi/10.1016%2Fj.scitotenv.2021.149067&rft.externalDocID=S0048969721041395
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon