Distributed-parameter optimization and topology design for non-linear thermoelasticity
Topology optimization has been the focus of considerable attention in the shape optimization community in recent years, since significant performance improvements can be obtained if the topology is allowed to vary in shape optimization problems. Attention has mainly focussed on the topology design o...
Saved in:
Published in | Computer methods in applied mechanics and engineering Vol. 132; no. 1; pp. 117 - 134 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.05.1996
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Topology optimization has been the focus of considerable attention in the shape optimization community in recent years, since significant performance improvements can be obtained if the topology is allowed to vary in shape optimization problems. Attention has mainly focussed on the topology design of an elastic continuum for minimum compliance subject to a volume constraint. The macroscopic version of this problem is not well-posed if no restrictions are placed on the structure topology.
The most widely-used method for making the problem has been the so-called homogenization method which introduces microstructure to the design space. Though there are a number of advantages to this method, it also suffers from some drawbacks. Optimal designs generated using an optimal microstructure are difficult to manufacture, while using sub-optimal microstructures reverts the problem back to the original ill-posed problem. In addition, extension of the homogenization method to problems involving non-linear material behavior is quite difficult.
To address some of these issues, a new method for making the compliance optimization problem well-posed has recently been proposed. This method introduces an additional constraint on the perimeter of the solid regions in the design, to make the problem well-posed. Since microstructure is not introduced, the designs are easily manufacturable. Preliminary results for topology design, using the perimeter method, for problems where the material behavior is linear elastic have already been reported in the literature.
We show that the perimeter method can be used even when the material behavior involves material and geometric non-linearities. We formulate the distributed-parameter optimization and topology design problems (using the perimeter method) for non-linear thermoelasticity. Finite element optimization procedures based on this formulation are developed and numerical solutions for the distributed-parameter optimization problem are presented. Though we use the compliance as the objective function, one could optimize any objective function by making minor modifications in the method outlined here. |
---|---|
AbstractList | Topology optimization has been the focus of considerable attention in the shape optimization community in recent years, since significant performance improvements can be obtained if the topology is allowed to vary in shape optimization problems. Attention has mainly focussed on the topology design of an elastic continuum for minimum compliance subject to a volume constraint. The macroscopic version of this problem is not well-posed if no restrictions are placed on the structure topology. The most widely-used method for making the problem has been the so-called homogenization method which introduces microstructure to the design space. Though there are a number of advantages to this method, it also suffers from some drawbacks. Optimal designs generated using an optimal microstructure are difficult to manufacture, while using sub-optimal microstructures reverts the problem back to the original ill-posed problem. In addition, extension of the homogenization method to problems involving non-linear material behavior is quite difficult. To address some of these issues, a new method for making the compliance optimization problem well-posed has recently been proposed. This method introduces an additional constraint on the perimeter of the solid regions in the design, to make the problem well-posed. Since microstructure is not introduced, the designs are easily manufacturable. Preliminary results for topology design, using the perimeter method, for problems where the material behavior is linear elastic have already been reported in the literature. We show that the perimeter method can be used even when the material behavior involves material and geometric non-linearities. We formulate the distributed-parameter optimization and topology design problems (using the perimeter method) for non-linear thermoelasticity. Finite element optimization procedures based on this formulation are developed and numerical solutions for the distributed-parameter optimization problem are presented. Though we use the compliance as the objective function, one could optimize any objective function by making minor modifications in the method outlined here. Topology optimization has been the focus of considerable attention in the shape optimization community in recent years, since significant performance improvements can be obtained if the topology is allowed to vary in shape optimization problems. Attention has mainly focussed on the topology design of an elastic continuum for minimum compliance subject to a volume constraint. The macroscopic version of this problem is not well-posed if no restrictions are placed on the structure topology. The most widely-used method for making the problem has been the so-called homogenization method which introduces microstructure to the design space. Though there are a number of advantages to this method, it also suffers from some drawbacks. Optimal designs generated using an optimal microstructure are difficult to manufacture, while using sub-optimal microstructures reverts the problem back to the original ill-posed problem. In addition, extension of the homogenization method to problems involving non-linear material behavior is quite difficult. To address some of these issues, a new method for making the compliance optimization problem well-posed has recently been proposed. This method introduces an additional constraint on the perimeter of the solid regions in the design, to make the problem well-posed. Since microstructure is not introduced, the designs are easily manufacturable. Preliminary results for topology design, using the perimeter method, for problems where the material behavior is linear elastic have already been reported in the literature. We show that the perimeter method can be used even when the material behavior involves material and geometric non-linearities. We formulate the distributed-parameter optimization and topology design problems (using the perimeter method) for non-linear thermoelasticity. Finite element optimization procedures based on this formulation are developed and numerical solutions for the distributed-parameter optimization problem are presented. Though we use the compliance as the objective function, one could optimize any objective function by making minor modifications in the method outlined here. |
Author | Jog, Chandrashekhar |
Author_xml | – sequence: 1 givenname: Chandrashekhar surname: Jog fullname: Jog, Chandrashekhar organization: Mathematical Institute, Technical University of Denmark, Lyngby, Denmark |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3122449$$DView record in Pascal Francis |
BookMark | eNqFkD1vFDEQQC0UJC4J_4BiC4RIsWH8sXtrCiQUPoIUiSahtebscTDatRfbh3T59dnLRSkoYJpp3huN3jE7iikSY684nHPg_TsA1bXrQXRvdXcGoDW0_TO24sNat4LL4YitnpAX7LiUX7DMwMWK_fgUSs1hs63k2hkzTlQpN2muYQp3WEOKDUbX1DSnMd3uGkcl3MbGp9wsX7RjiIS5qT8pT4lGLDXYUHen7LnHsdDLx33Cbr58vr64bK--f_128fGqtUpCbTuSXHKPVuOgSHi50QMoQKlsr1UHQKSc79eScwLtrOcAzm5c33kEsRbyhL053J1z-r2lUs0UiqVxxEhpW4zoORdS7cHXjyAWi6PPGG0oZs5hwrwzkguhlF4wdcBsTqVk8k8EB7NvbfYhzT6k0Z15aG36RXv_l7ZEeIhXM4bxf_KHg0xLqD-Bsik2ULTkQiZbjUvh3wfuARURmxU |
CODEN | CMMECC |
CitedBy_id | crossref_primary_10_1002_nme_2422 crossref_primary_10_1080_0305215X_2018_1554065 crossref_primary_10_2514_2_2062 crossref_primary_10_1007_s00158_020_02513_7 crossref_primary_10_1007_s00158_024_03929_1 crossref_primary_10_1016_S0045_7825_00_00300_5 crossref_primary_10_1016_S0045_7825_01_00251_1 crossref_primary_10_1080_0305215X_2017_1418864 crossref_primary_10_1016_j_apm_2021_11_008 crossref_primary_10_1016_j_advengsoft_2015_03_001 crossref_primary_10_1007_s00158_022_03321_x crossref_primary_10_1007_s00466_014_1011_7 crossref_primary_10_1016_j_finel_2005_05_003 crossref_primary_10_1007_s11081_021_09661_9 crossref_primary_10_2208_jscejam_71_I_235 crossref_primary_10_1016_j_cma_2016_12_030 crossref_primary_10_1080_01495739_2020_1766391 crossref_primary_10_1007_s11081_015_9276_z crossref_primary_10_1007_s00158_015_1331_z crossref_primary_10_1108_02644400010340642 crossref_primary_10_1002_nme_148 crossref_primary_10_1007_s10999_004_1494_z crossref_primary_10_1016_j_euromechsol_2012_06_004 crossref_primary_10_1002_nme_787 crossref_primary_10_1002_nme_6584 crossref_primary_10_1007_s00158_013_0934_5 crossref_primary_10_1007_s00158_005_0534_0 crossref_primary_10_1007_s00158_014_1185_9 crossref_primary_10_1016_j_cma_2019_112735 crossref_primary_10_1016_j_ijheatmasstransfer_2007_01_039 crossref_primary_10_1007_s00158_004_0468_y crossref_primary_10_1007_s00158_017_1732_2 crossref_primary_10_1007_s00158_013_0885_x crossref_primary_10_1016_j_cja_2019_01_024 crossref_primary_10_1177_1045389X241237581 crossref_primary_10_1016_S0045_7825_00_00278_4 crossref_primary_10_1016_j_jcp_2020_109574 crossref_primary_10_1016_j_pmatsci_2023_101129 crossref_primary_10_1007_s00158_020_02654_9 crossref_primary_10_1088_0964_1726_8_3_308 crossref_primary_10_1002_nme_6650 crossref_primary_10_1016_j_cma_2004_01_011 crossref_primary_10_4028_www_scientific_net_AMM_556_562_4422 crossref_primary_10_1007_s00158_022_03168_2 crossref_primary_10_1016_j_cma_2024_117151 crossref_primary_10_1007_s00466_013_0843_x crossref_primary_10_3390_ma17235970 crossref_primary_10_2514_1_J063512 crossref_primary_10_1007_s00158_020_02605_4 crossref_primary_10_3390_machines11121047 crossref_primary_10_1002_nme_7012 |
Cites_doi | 10.1002/nme.1620370805 10.1007/BF02163264 10.1016/0045-7825(88)90086-2 10.1002/cpa.3160390202 10.1002/cpa.3160390305 10.1115/DETC1994-0136 |
ContentType | Journal Article |
Copyright | 1996 1996 INIST-CNRS |
Copyright_xml | – notice: 1996 – notice: 1996 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/0045-7825(95)00990-6 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1879-2138 |
EndPage | 134 |
ExternalDocumentID | 3122449 10_1016_0045_7825_95_00990_6 0045782595009906 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN AAYOK ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADIYS ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K TN5 VH1 VOH WH7 WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c430t-5e3131fac9a84e2f3b98040a34c694500ee4df67311e09dcf100dcbd65fa02723 |
IEDL.DBID | AIKHN |
ISSN | 0045-7825 |
IngestDate | Thu Jul 10 23:56:34 EDT 2025 Mon Jul 21 09:15:48 EDT 2025 Tue Jul 01 01:59:50 EDT 2025 Thu Apr 24 23:00:40 EDT 2025 Fri Feb 23 02:33:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Sensitivity analysis Displacement(deformation) Thermomechanical properties Numerical method Topology Thermal load Static loads Optimization Beam(mechanics) Case study Finite element method Discretization Thermoelasticity Non linear effect Microstructure Distributed parameter system |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c430t-5e3131fac9a84e2f3b98040a34c694500ee4df67311e09dcf100dcbd65fa02723 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 26112342 |
PQPubID | 23500 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_26112342 pascalfrancis_primary_3122449 crossref_primary_10_1016_0045_7825_95_00990_6 crossref_citationtrail_10_1016_0045_7825_95_00990_6 elsevier_sciencedirect_doi_10_1016_0045_7825_95_00990_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1996-05-15 |
PublicationDateYYYYMMDD | 1996-05-15 |
PublicationDate_xml | – month: 05 year: 1996 text: 1996-05-15 day: 15 |
PublicationDecade | 1990 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computer methods in applied mechanics and engineering |
PublicationYear | 1996 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Jog, Haber, Bendsøe (BIB5) 1994; 37 Bendsøe, Kikuchi (BIB4) 1988; 71 R.B. Haber, C.S. Jog and M.P. Bendsøe, Variable-topology shape optimization with a control on perimeter, in: B.J. Gilmore, D.A. Hoeltzel and H.A. Eshenauer, eds., Advances in Design Automation, Volume ASME DE-Vol. 69-2 (ASME, Minneapolis, MN) 261–272. Carlson (BIB10) 1972; Volume VIa/2 Rodrigues, Fernandes (BIB9) 1993 Ciarlet (BIB11) 1988; Volume I Allaire, Kohn (BIB2) 1993 Allaire, Kohn (BIB3) 1993; 12 Kohn, Strang, Kohn, Strang, Kohn, Strang (BIB1) 1986; 39 Ambrosio, Buttazzo (BIB7) 1993; 1 Jog (BIB6) 1994 Rodrigues (10.1016/0045-7825(95)00990-6_BIB9) 1993 Ciarlet (10.1016/0045-7825(95)00990-6_BIB11) 1988; Volume I Allaire (10.1016/0045-7825(95)00990-6_BIB3) 1993; 12 Kohn (10.1016/0045-7825(95)00990-6_BIB1_3) 1986; 39 Bendsøe (10.1016/0045-7825(95)00990-6_BIB4) 1988; 71 Kohn (10.1016/0045-7825(95)00990-6_BIB1_2) 1986; 39 Jog (10.1016/0045-7825(95)00990-6_BIB6) 1994 Kohn (10.1016/0045-7825(95)00990-6_BIB1_1) 1986; 39 Jog (10.1016/0045-7825(95)00990-6_BIB5) 1994; 37 Ambrosio (10.1016/0045-7825(95)00990-6_BIB7) 1993; 1 Carlson (10.1016/0045-7825(95)00990-6_BIB10) 1972; Volume VIa/2 10.1016/0045-7825(95)00990-6_BIB8 Allaire (10.1016/0045-7825(95)00990-6_BIB2) 1993 |
References_xml | – volume: Volume VIa/2 start-page: 297 year: 1972 end-page: 346 ident: BIB10 article-title: Linear thermoelasticity publication-title: Handbuch Der Physik – volume: 1 start-page: 55 year: 1993 end-page: 69 ident: BIB7 article-title: An optimal design problem with perimeter penalization publication-title: Calc. Var. Partial Diff. Eq. – start-page: 207 year: 1993 end-page: 218 ident: BIB2 article-title: Topology optimization and optimal shape using homogenization publication-title: Topology Design of Structures – reference: R.B. Haber, C.S. Jog and M.P. Bendsøe, Variable-topology shape optimization with a control on perimeter, in: B.J. Gilmore, D.A. Hoeltzel and H.A. Eshenauer, eds., Advances in Design Automation, Volume ASME DE-Vol. 69-2 (ASME, Minneapolis, MN) 261–272. – start-page: 437 year: 1993 end-page: 450 ident: BIB9 article-title: Topology optimization of linear elastic structures subjected to thermal loads publication-title: Topology Design of Structures – volume: 37 start-page: 1323 year: 1994 end-page: 1350 ident: BIB5 article-title: Topology design with optimized self-adaptive materials publication-title: Int. J. Numer. Methods Engrg. – year: 1994 ident: BIB6 article-title: Topology optimization of linear elastic structures publication-title: Ph.D. thesis – volume: 12 start-page: 839 year: 1993 end-page: 878 ident: BIB3 article-title: Optimal design for minimum weight and compliance in plane stress using microstructures publication-title: Eur. J. Mech. Solids – volume: 71 start-page: 197 year: 1988 end-page: 224 ident: BIB4 article-title: Generating optimal topologies in structural design using a homogenization method publication-title: Comput. Methods Appl. Mech. Engrg. – volume: Volume I year: 1988 ident: BIB11 publication-title: Mathematical Elasticity – volume: 39 start-page: 1 year: 1986 end-page: 25 ident: BIB1 article-title: Optimal design and relaxation of variational problems publication-title: Comm. Pure Appl. Math. – volume: 12 start-page: 839 year: 1993 ident: 10.1016/0045-7825(95)00990-6_BIB3 article-title: Optimal design for minimum weight and compliance in plane stress using microstructures publication-title: Eur. J. Mech. Solids – volume: 37 start-page: 1323 year: 1994 ident: 10.1016/0045-7825(95)00990-6_BIB5 article-title: Topology design with optimized self-adaptive materials publication-title: Int. J. Numer. Methods Engrg. doi: 10.1002/nme.1620370805 – start-page: 437 year: 1993 ident: 10.1016/0045-7825(95)00990-6_BIB9 article-title: Topology optimization of linear elastic structures subjected to thermal loads – start-page: 207 year: 1993 ident: 10.1016/0045-7825(95)00990-6_BIB2 article-title: Topology optimization and optimal shape using homogenization – year: 1994 ident: 10.1016/0045-7825(95)00990-6_BIB6 article-title: Topology optimization of linear elastic structures – volume: 1 start-page: 55 year: 1993 ident: 10.1016/0045-7825(95)00990-6_BIB7 article-title: An optimal design problem with perimeter penalization publication-title: Calc. Var. Partial Diff. Eq. doi: 10.1007/BF02163264 – volume: 71 start-page: 197 year: 1988 ident: 10.1016/0045-7825(95)00990-6_BIB4 article-title: Generating optimal topologies in structural design using a homogenization method publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(88)90086-2 – volume: 39 start-page: 139 year: 1986 ident: 10.1016/0045-7825(95)00990-6_BIB1_2 article-title: Optimal design and relaxation of variational problems publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.3160390202 – volume: 39 start-page: 1 year: 1986 ident: 10.1016/0045-7825(95)00990-6_BIB1_1 article-title: Optimal design and relaxation of variational problems publication-title: Comm. Pure Appl. Math. – volume: 39 start-page: 353 year: 1986 ident: 10.1016/0045-7825(95)00990-6_BIB1_3 article-title: Optimal design and relaxation of variational problems publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.3160390305 – volume: Volume I year: 1988 ident: 10.1016/0045-7825(95)00990-6_BIB11 – volume: Volume VIa/2 start-page: 297 year: 1972 ident: 10.1016/0045-7825(95)00990-6_BIB10 article-title: Linear thermoelasticity – ident: 10.1016/0045-7825(95)00990-6_BIB8 doi: 10.1115/DETC1994-0136 |
SSID | ssj0000812 |
Score | 1.7132493 |
Snippet | Topology optimization has been the focus of considerable attention in the shape optimization community in recent years, since significant performance... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 117 |
SubjectTerms | Exact sciences and technology Fundamental areas of phenomenology (including applications) Physics Solid mechanics Static elasticity Static elasticity (thermoelasticity...) Structural and continuum mechanics |
Title | Distributed-parameter optimization and topology design for non-linear thermoelasticity |
URI | https://dx.doi.org/10.1016/0045-7825(95)00990-6 https://www.proquest.com/docview/26112342 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4LCDEo4AoTw8MMJjG8SP1iHiogGCiqJvlJLaERNOKhoGF344vcQoIoUqsVmxHd_bdd_LddwgdG5UJF6mEWOY44ZJnRMWpIMLINLFxapIE6p3vH2Svz28HYvCtFgbSKoPtr216Za3DSCdIszN-fgZWHqBiF0oAygHW7cWYKelP9uL5zV3v4csed2nNGc4FgQlNAR2VnenYiRKn1TJE_uWgVsZm4sXm6n4Xv0x35Y-u19FqAJL4vP7XDTRnixZaC6AShys7aaHlb4yDm-jpEohyoceVzQnQfg8hHQaPvOEYhopMbIocl3XvhHecVxke2ENbXIwKAqDUvGJAjcOR9cgbkrLL9y3Uv756vOiR0FqBZJxFJRGWUUadyZTpchs7lqquv86G8Uwq7iVqLc-dTBilNlJ55mgU5VmaS-GMD2Rjto0W_K52B2HFIKczT4WF0NJHV9QqlXadMt7zCRa1EWvkqbPAOw7tL150k2AGWtCgBa2ErrSgZRuR6axxzbsx4_ukUZX-cX60dw0zZh780Ox0OwaPjly10VGjae2vHrynmMKO3ibaB5_e7_N4999776GlOgtcECr20UL5-mYPPMgp00M0f_ZBD8NZ_gRL9fZP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcQOwCaxmBMK4zhAwc4eE3ij9RHNKi6QXtqETfLSWwJiaYVDYde9rfzXuIUEEJIXC07jvz8vuTf-z1Cjq3OpY90yhz3ggklcqaTTDJpVZa6JLNpivXOw5EaTMS_G3nzrBYGYZXB9jc2vbbWYaQbTrM7v71FVh6kYpdaYpSDrNufBGgvKufv_08wD3B5DWO4kAynt-Vzsequxk60PK0_wtRb7unz3C7g0HzT7eKV4a69Uf8r-RLCSHrW_OkOWXPlLtkOISUNCrvYJVvP-Aa_ketzpMnFDleuYEj6PUUwDJ2B2ZiGekxqy4JWTeeEJS1qfAeFwJaWs5JhSGrvKcaM05mDuBsh2dVyj0z6F-M_AxYaK7Bc8Khi0vGYx97m2vaESzzPdA-U2XKRKy3gPJ0ThVcpj2MX6SL3cRQVeVYo6S2ksQn_TtZhV_eDUM0R0Vlk0mFiCblV7LTOel5b8HuSRx3C2_M0eWAdx-YXd6aFl6EUDErBaGlqKRjVIWy1at6wbrwzP21FZV7cHgOO4Z2Vhy8ku9qO45Oj0B1y1EragOLha4ot3exhYSD1BK8vkv0P731ENgbj4ZW5-ju6PCCbDR5cslj-JOvV_YM7hHCnyn7V9_kRQx73Ew |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed-parameter+optimization+and+topology+design+for+non-linear+thermoelasticity&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Jog%2C+Chandrashekhar&rft.date=1996-05-15&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.eissn=1879-2138&rft.volume=132&rft.issue=1&rft.spage=117&rft.epage=134&rft_id=info:doi/10.1016%2F0045-7825%2895%2900990-6&rft.externalDocID=0045782595009906 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |