Distributed-parameter optimization and topology design for non-linear thermoelasticity

Topology optimization has been the focus of considerable attention in the shape optimization community in recent years, since significant performance improvements can be obtained if the topology is allowed to vary in shape optimization problems. Attention has mainly focussed on the topology design o...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 132; no. 1; pp. 117 - 134
Main Author Jog, Chandrashekhar
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.05.1996
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Topology optimization has been the focus of considerable attention in the shape optimization community in recent years, since significant performance improvements can be obtained if the topology is allowed to vary in shape optimization problems. Attention has mainly focussed on the topology design of an elastic continuum for minimum compliance subject to a volume constraint. The macroscopic version of this problem is not well-posed if no restrictions are placed on the structure topology. The most widely-used method for making the problem has been the so-called homogenization method which introduces microstructure to the design space. Though there are a number of advantages to this method, it also suffers from some drawbacks. Optimal designs generated using an optimal microstructure are difficult to manufacture, while using sub-optimal microstructures reverts the problem back to the original ill-posed problem. In addition, extension of the homogenization method to problems involving non-linear material behavior is quite difficult. To address some of these issues, a new method for making the compliance optimization problem well-posed has recently been proposed. This method introduces an additional constraint on the perimeter of the solid regions in the design, to make the problem well-posed. Since microstructure is not introduced, the designs are easily manufacturable. Preliminary results for topology design, using the perimeter method, for problems where the material behavior is linear elastic have already been reported in the literature. We show that the perimeter method can be used even when the material behavior involves material and geometric non-linearities. We formulate the distributed-parameter optimization and topology design problems (using the perimeter method) for non-linear thermoelasticity. Finite element optimization procedures based on this formulation are developed and numerical solutions for the distributed-parameter optimization problem are presented. Though we use the compliance as the objective function, one could optimize any objective function by making minor modifications in the method outlined here.
AbstractList Topology optimization has been the focus of considerable attention in the shape optimization community in recent years, since significant performance improvements can be obtained if the topology is allowed to vary in shape optimization problems. Attention has mainly focussed on the topology design of an elastic continuum for minimum compliance subject to a volume constraint. The macroscopic version of this problem is not well-posed if no restrictions are placed on the structure topology. The most widely-used method for making the problem has been the so-called homogenization method which introduces microstructure to the design space. Though there are a number of advantages to this method, it also suffers from some drawbacks. Optimal designs generated using an optimal microstructure are difficult to manufacture, while using sub-optimal microstructures reverts the problem back to the original ill-posed problem. In addition, extension of the homogenization method to problems involving non-linear material behavior is quite difficult. To address some of these issues, a new method for making the compliance optimization problem well-posed has recently been proposed. This method introduces an additional constraint on the perimeter of the solid regions in the design, to make the problem well-posed. Since microstructure is not introduced, the designs are easily manufacturable. Preliminary results for topology design, using the perimeter method, for problems where the material behavior is linear elastic have already been reported in the literature. We show that the perimeter method can be used even when the material behavior involves material and geometric non-linearities. We formulate the distributed-parameter optimization and topology design problems (using the perimeter method) for non-linear thermoelasticity. Finite element optimization procedures based on this formulation are developed and numerical solutions for the distributed-parameter optimization problem are presented. Though we use the compliance as the objective function, one could optimize any objective function by making minor modifications in the method outlined here.
Topology optimization has been the focus of considerable attention in the shape optimization community in recent years, since significant performance improvements can be obtained if the topology is allowed to vary in shape optimization problems. Attention has mainly focussed on the topology design of an elastic continuum for minimum compliance subject to a volume constraint. The macroscopic version of this problem is not well-posed if no restrictions are placed on the structure topology. The most widely-used method for making the problem has been the so-called homogenization method which introduces microstructure to the design space. Though there are a number of advantages to this method, it also suffers from some drawbacks. Optimal designs generated using an optimal microstructure are difficult to manufacture, while using sub-optimal microstructures reverts the problem back to the original ill-posed problem. In addition, extension of the homogenization method to problems involving non-linear material behavior is quite difficult. To address some of these issues, a new method for making the compliance optimization problem well-posed has recently been proposed. This method introduces an additional constraint on the perimeter of the solid regions in the design, to make the problem well-posed. Since microstructure is not introduced, the designs are easily manufacturable. Preliminary results for topology design, using the perimeter method, for problems where the material behavior is linear elastic have already been reported in the literature. We show that the perimeter method can be used even when the material behavior involves material and geometric non-linearities. We formulate the distributed-parameter optimization and topology design problems (using the perimeter method) for non-linear thermoelasticity. Finite element optimization procedures based on this formulation are developed and numerical solutions for the distributed-parameter optimization problem are presented. Though we use the compliance as the objective function, one could optimize any objective function by making minor modifications in the method outlined here.
Author Jog, Chandrashekhar
Author_xml – sequence: 1
  givenname: Chandrashekhar
  surname: Jog
  fullname: Jog, Chandrashekhar
  organization: Mathematical Institute, Technical University of Denmark, Lyngby, Denmark
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3122449$$DView record in Pascal Francis
BookMark eNqFkD1vFDEQQC0UJC4J_4BiC4RIsWH8sXtrCiQUPoIUiSahtebscTDatRfbh3T59dnLRSkoYJpp3huN3jE7iikSY684nHPg_TsA1bXrQXRvdXcGoDW0_TO24sNat4LL4YitnpAX7LiUX7DMwMWK_fgUSs1hs63k2hkzTlQpN2muYQp3WEOKDUbX1DSnMd3uGkcl3MbGp9wsX7RjiIS5qT8pT4lGLDXYUHen7LnHsdDLx33Cbr58vr64bK--f_128fGqtUpCbTuSXHKPVuOgSHi50QMoQKlsr1UHQKSc79eScwLtrOcAzm5c33kEsRbyhL053J1z-r2lUs0UiqVxxEhpW4zoORdS7cHXjyAWi6PPGG0oZs5hwrwzkguhlF4wdcBsTqVk8k8EB7NvbfYhzT6k0Z15aG36RXv_l7ZEeIhXM4bxf_KHg0xLqD-Bsik2ULTkQiZbjUvh3wfuARURmxU
CODEN CMMECC
CitedBy_id crossref_primary_10_1002_nme_2422
crossref_primary_10_1080_0305215X_2018_1554065
crossref_primary_10_2514_2_2062
crossref_primary_10_1007_s00158_020_02513_7
crossref_primary_10_1007_s00158_024_03929_1
crossref_primary_10_1016_S0045_7825_00_00300_5
crossref_primary_10_1016_S0045_7825_01_00251_1
crossref_primary_10_1080_0305215X_2017_1418864
crossref_primary_10_1016_j_apm_2021_11_008
crossref_primary_10_1016_j_advengsoft_2015_03_001
crossref_primary_10_1007_s00158_022_03321_x
crossref_primary_10_1007_s00466_014_1011_7
crossref_primary_10_1016_j_finel_2005_05_003
crossref_primary_10_1007_s11081_021_09661_9
crossref_primary_10_2208_jscejam_71_I_235
crossref_primary_10_1016_j_cma_2016_12_030
crossref_primary_10_1080_01495739_2020_1766391
crossref_primary_10_1007_s11081_015_9276_z
crossref_primary_10_1007_s00158_015_1331_z
crossref_primary_10_1108_02644400010340642
crossref_primary_10_1002_nme_148
crossref_primary_10_1007_s10999_004_1494_z
crossref_primary_10_1016_j_euromechsol_2012_06_004
crossref_primary_10_1002_nme_787
crossref_primary_10_1002_nme_6584
crossref_primary_10_1007_s00158_013_0934_5
crossref_primary_10_1007_s00158_005_0534_0
crossref_primary_10_1007_s00158_014_1185_9
crossref_primary_10_1016_j_cma_2019_112735
crossref_primary_10_1016_j_ijheatmasstransfer_2007_01_039
crossref_primary_10_1007_s00158_004_0468_y
crossref_primary_10_1007_s00158_017_1732_2
crossref_primary_10_1007_s00158_013_0885_x
crossref_primary_10_1016_j_cja_2019_01_024
crossref_primary_10_1177_1045389X241237581
crossref_primary_10_1016_S0045_7825_00_00278_4
crossref_primary_10_1016_j_jcp_2020_109574
crossref_primary_10_1016_j_pmatsci_2023_101129
crossref_primary_10_1007_s00158_020_02654_9
crossref_primary_10_1088_0964_1726_8_3_308
crossref_primary_10_1002_nme_6650
crossref_primary_10_1016_j_cma_2004_01_011
crossref_primary_10_4028_www_scientific_net_AMM_556_562_4422
crossref_primary_10_1007_s00158_022_03168_2
crossref_primary_10_1016_j_cma_2024_117151
crossref_primary_10_1007_s00466_013_0843_x
crossref_primary_10_3390_ma17235970
crossref_primary_10_2514_1_J063512
crossref_primary_10_1007_s00158_020_02605_4
crossref_primary_10_3390_machines11121047
crossref_primary_10_1002_nme_7012
Cites_doi 10.1002/nme.1620370805
10.1007/BF02163264
10.1016/0045-7825(88)90086-2
10.1002/cpa.3160390202
10.1002/cpa.3160390305
10.1115/DETC1994-0136
ContentType Journal Article
Copyright 1996
1996 INIST-CNRS
Copyright_xml – notice: 1996
– notice: 1996 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/0045-7825(95)00990-6
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1879-2138
EndPage 134
ExternalDocumentID 3122449
10_1016_0045_7825_95_00990_6
0045782595009906
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
VH1
VOH
WH7
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c430t-5e3131fac9a84e2f3b98040a34c694500ee4df67311e09dcf100dcbd65fa02723
IEDL.DBID AIKHN
ISSN 0045-7825
IngestDate Thu Jul 10 23:56:34 EDT 2025
Mon Jul 21 09:15:48 EDT 2025
Tue Jul 01 01:59:50 EDT 2025
Thu Apr 24 23:00:40 EDT 2025
Fri Feb 23 02:33:40 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Sensitivity analysis
Displacement(deformation)
Thermomechanical properties
Numerical method
Topology
Thermal load
Static loads
Optimization
Beam(mechanics)
Case study
Finite element method
Discretization
Thermoelasticity
Non linear effect
Microstructure
Distributed parameter system
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-5e3131fac9a84e2f3b98040a34c694500ee4df67311e09dcf100dcbd65fa02723
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 26112342
PQPubID 23500
PageCount 18
ParticipantIDs proquest_miscellaneous_26112342
pascalfrancis_primary_3122449
crossref_primary_10_1016_0045_7825_95_00990_6
crossref_citationtrail_10_1016_0045_7825_95_00990_6
elsevier_sciencedirect_doi_10_1016_0045_7825_95_00990_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1996-05-15
PublicationDateYYYYMMDD 1996-05-15
PublicationDate_xml – month: 05
  year: 1996
  text: 1996-05-15
  day: 15
PublicationDecade 1990
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 1996
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Jog, Haber, Bendsøe (BIB5) 1994; 37
Bendsøe, Kikuchi (BIB4) 1988; 71
R.B. Haber, C.S. Jog and M.P. Bendsøe, Variable-topology shape optimization with a control on perimeter, in: B.J. Gilmore, D.A. Hoeltzel and H.A. Eshenauer, eds., Advances in Design Automation, Volume ASME DE-Vol. 69-2 (ASME, Minneapolis, MN) 261–272.
Carlson (BIB10) 1972; Volume VIa/2
Rodrigues, Fernandes (BIB9) 1993
Ciarlet (BIB11) 1988; Volume I
Allaire, Kohn (BIB2) 1993
Allaire, Kohn (BIB3) 1993; 12
Kohn, Strang, Kohn, Strang, Kohn, Strang (BIB1) 1986; 39
Ambrosio, Buttazzo (BIB7) 1993; 1
Jog (BIB6) 1994
Rodrigues (10.1016/0045-7825(95)00990-6_BIB9) 1993
Ciarlet (10.1016/0045-7825(95)00990-6_BIB11) 1988; Volume I
Allaire (10.1016/0045-7825(95)00990-6_BIB3) 1993; 12
Kohn (10.1016/0045-7825(95)00990-6_BIB1_3) 1986; 39
Bendsøe (10.1016/0045-7825(95)00990-6_BIB4) 1988; 71
Kohn (10.1016/0045-7825(95)00990-6_BIB1_2) 1986; 39
Jog (10.1016/0045-7825(95)00990-6_BIB6) 1994
Kohn (10.1016/0045-7825(95)00990-6_BIB1_1) 1986; 39
Jog (10.1016/0045-7825(95)00990-6_BIB5) 1994; 37
Ambrosio (10.1016/0045-7825(95)00990-6_BIB7) 1993; 1
Carlson (10.1016/0045-7825(95)00990-6_BIB10) 1972; Volume VIa/2
10.1016/0045-7825(95)00990-6_BIB8
Allaire (10.1016/0045-7825(95)00990-6_BIB2) 1993
References_xml – volume: Volume VIa/2
  start-page: 297
  year: 1972
  end-page: 346
  ident: BIB10
  article-title: Linear thermoelasticity
  publication-title: Handbuch Der Physik
– volume: 1
  start-page: 55
  year: 1993
  end-page: 69
  ident: BIB7
  article-title: An optimal design problem with perimeter penalization
  publication-title: Calc. Var. Partial Diff. Eq.
– start-page: 207
  year: 1993
  end-page: 218
  ident: BIB2
  article-title: Topology optimization and optimal shape using homogenization
  publication-title: Topology Design of Structures
– reference: R.B. Haber, C.S. Jog and M.P. Bendsøe, Variable-topology shape optimization with a control on perimeter, in: B.J. Gilmore, D.A. Hoeltzel and H.A. Eshenauer, eds., Advances in Design Automation, Volume ASME DE-Vol. 69-2 (ASME, Minneapolis, MN) 261–272.
– start-page: 437
  year: 1993
  end-page: 450
  ident: BIB9
  article-title: Topology optimization of linear elastic structures subjected to thermal loads
  publication-title: Topology Design of Structures
– volume: 37
  start-page: 1323
  year: 1994
  end-page: 1350
  ident: BIB5
  article-title: Topology design with optimized self-adaptive materials
  publication-title: Int. J. Numer. Methods Engrg.
– year: 1994
  ident: BIB6
  article-title: Topology optimization of linear elastic structures
  publication-title: Ph.D. thesis
– volume: 12
  start-page: 839
  year: 1993
  end-page: 878
  ident: BIB3
  article-title: Optimal design for minimum weight and compliance in plane stress using microstructures
  publication-title: Eur. J. Mech. Solids
– volume: 71
  start-page: 197
  year: 1988
  end-page: 224
  ident: BIB4
  article-title: Generating optimal topologies in structural design using a homogenization method
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: Volume I
  year: 1988
  ident: BIB11
  publication-title: Mathematical Elasticity
– volume: 39
  start-page: 1
  year: 1986
  end-page: 25
  ident: BIB1
  article-title: Optimal design and relaxation of variational problems
  publication-title: Comm. Pure Appl. Math.
– volume: 12
  start-page: 839
  year: 1993
  ident: 10.1016/0045-7825(95)00990-6_BIB3
  article-title: Optimal design for minimum weight and compliance in plane stress using microstructures
  publication-title: Eur. J. Mech. Solids
– volume: 37
  start-page: 1323
  year: 1994
  ident: 10.1016/0045-7825(95)00990-6_BIB5
  article-title: Topology design with optimized self-adaptive materials
  publication-title: Int. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1620370805
– start-page: 437
  year: 1993
  ident: 10.1016/0045-7825(95)00990-6_BIB9
  article-title: Topology optimization of linear elastic structures subjected to thermal loads
– start-page: 207
  year: 1993
  ident: 10.1016/0045-7825(95)00990-6_BIB2
  article-title: Topology optimization and optimal shape using homogenization
– year: 1994
  ident: 10.1016/0045-7825(95)00990-6_BIB6
  article-title: Topology optimization of linear elastic structures
– volume: 1
  start-page: 55
  year: 1993
  ident: 10.1016/0045-7825(95)00990-6_BIB7
  article-title: An optimal design problem with perimeter penalization
  publication-title: Calc. Var. Partial Diff. Eq.
  doi: 10.1007/BF02163264
– volume: 71
  start-page: 197
  year: 1988
  ident: 10.1016/0045-7825(95)00990-6_BIB4
  article-title: Generating optimal topologies in structural design using a homogenization method
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(88)90086-2
– volume: 39
  start-page: 139
  year: 1986
  ident: 10.1016/0045-7825(95)00990-6_BIB1_2
  article-title: Optimal design and relaxation of variational problems
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.3160390202
– volume: 39
  start-page: 1
  year: 1986
  ident: 10.1016/0045-7825(95)00990-6_BIB1_1
  article-title: Optimal design and relaxation of variational problems
  publication-title: Comm. Pure Appl. Math.
– volume: 39
  start-page: 353
  year: 1986
  ident: 10.1016/0045-7825(95)00990-6_BIB1_3
  article-title: Optimal design and relaxation of variational problems
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.3160390305
– volume: Volume I
  year: 1988
  ident: 10.1016/0045-7825(95)00990-6_BIB11
– volume: Volume VIa/2
  start-page: 297
  year: 1972
  ident: 10.1016/0045-7825(95)00990-6_BIB10
  article-title: Linear thermoelasticity
– ident: 10.1016/0045-7825(95)00990-6_BIB8
  doi: 10.1115/DETC1994-0136
SSID ssj0000812
Score 1.7132493
Snippet Topology optimization has been the focus of considerable attention in the shape optimization community in recent years, since significant performance...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 117
SubjectTerms Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Static elasticity
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
Title Distributed-parameter optimization and topology design for non-linear thermoelasticity
URI https://dx.doi.org/10.1016/0045-7825(95)00990-6
https://www.proquest.com/docview/26112342
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4LCDEo4AoTw8MMJjG8SP1iHiogGCiqJvlJLaERNOKhoGF344vcQoIoUqsVmxHd_bdd_LddwgdG5UJF6mEWOY44ZJnRMWpIMLINLFxapIE6p3vH2Svz28HYvCtFgbSKoPtr216Za3DSCdIszN-fgZWHqBiF0oAygHW7cWYKelP9uL5zV3v4csed2nNGc4FgQlNAR2VnenYiRKn1TJE_uWgVsZm4sXm6n4Xv0x35Y-u19FqAJL4vP7XDTRnixZaC6AShys7aaHlb4yDm-jpEohyoceVzQnQfg8hHQaPvOEYhopMbIocl3XvhHecVxke2ENbXIwKAqDUvGJAjcOR9cgbkrLL9y3Uv756vOiR0FqBZJxFJRGWUUadyZTpchs7lqquv86G8Uwq7iVqLc-dTBilNlJ55mgU5VmaS-GMD2Rjto0W_K52B2HFIKczT4WF0NJHV9QqlXadMt7zCRa1EWvkqbPAOw7tL150k2AGWtCgBa2ErrSgZRuR6axxzbsx4_ukUZX-cX60dw0zZh780Ox0OwaPjly10VGjae2vHrynmMKO3ibaB5_e7_N4999776GlOgtcECr20UL5-mYPPMgp00M0f_ZBD8NZ_gRL9fZP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcQOwCaxmBMK4zhAwc4eE3ij9RHNKi6QXtqETfLSWwJiaYVDYde9rfzXuIUEEJIXC07jvz8vuTf-z1Cjq3OpY90yhz3ggklcqaTTDJpVZa6JLNpivXOw5EaTMS_G3nzrBYGYZXB9jc2vbbWYaQbTrM7v71FVh6kYpdaYpSDrNufBGgvKufv_08wD3B5DWO4kAynt-Vzsequxk60PK0_wtRb7unz3C7g0HzT7eKV4a69Uf8r-RLCSHrW_OkOWXPlLtkOISUNCrvYJVvP-Aa_ketzpMnFDleuYEj6PUUwDJ2B2ZiGekxqy4JWTeeEJS1qfAeFwJaWs5JhSGrvKcaM05mDuBsh2dVyj0z6F-M_AxYaK7Bc8Khi0vGYx97m2vaESzzPdA-U2XKRKy3gPJ0ThVcpj2MX6SL3cRQVeVYo6S2ksQn_TtZhV_eDUM0R0Vlk0mFiCblV7LTOel5b8HuSRx3C2_M0eWAdx-YXd6aFl6EUDErBaGlqKRjVIWy1at6wbrwzP21FZV7cHgOO4Z2Vhy8ku9qO45Oj0B1y1EragOLha4ot3exhYSD1BK8vkv0P731ENgbj4ZW5-ju6PCCbDR5cslj-JOvV_YM7hHCnyn7V9_kRQx73Ew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed-parameter+optimization+and+topology+design+for+non-linear+thermoelasticity&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Jog%2C+Chandrashekhar&rft.date=1996-05-15&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.eissn=1879-2138&rft.volume=132&rft.issue=1&rft.spage=117&rft.epage=134&rft_id=info:doi/10.1016%2F0045-7825%2895%2900990-6&rft.externalDocID=0045782595009906
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon