Comparison of random forests and other statistical methods for the prediction of lake water level: a case study of the Poyang Lake in China

Modeling of hydrological time series is essential for sustainable development and management of lake water resources. This study aims to develop an efficient model for forecasting lake water level variations, exemplified by the Poyang Lake (China) case study. A random forests (RF) model was first ap...

Full description

Saved in:
Bibliographic Details
Published inHydrology Research Vol. 47; no. S1; pp. 69 - 83
Main Authors Li, Bing, Yang, Guishan, Wan, Rongrong, Dai, Xue, Zhang, Yanhui
Format Journal Article
LanguageEnglish
Published London IWA Publishing 01.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Modeling of hydrological time series is essential for sustainable development and management of lake water resources. This study aims to develop an efficient model for forecasting lake water level variations, exemplified by the Poyang Lake (China) case study. A random forests (RF) model was first applied and compared with artificial neural networks, support vector regression, and a linear model. Three scenarios were adopted to investigate the effect of time lag and previous water levels as model inputs for real-time forecasting. Variable importance was then analyzed to evaluate the influence of each predictor for water level variations. Results indicated that the RF model exhibits the best performance for daily forecasting in terms of root mean square error (RMSE) and coefficient of determination (R2). Moreover, the highest accuracy was achieved using discharge series at 4-day-ahead and the average water level over the previous week as model inputs, with an average RMSE of 0.25 m for five stations within the lake. In addition, the previous water level was the most efficient predictor for water level forecasting, followed by discharge from the Yangtze River. Based on the performance of the soft computing methods, RF can be calibrated to provide information or simulation scenarios for water management and decision-making.
AbstractList Modeling of hydrological time series is essential for sustainable development and management of lake water resources. This study aims to develop an efficient model for forecasting lake water level variations, exemplified by the Poyang Lake (China) case study. A random forests (RF) model was first applied and compared with artificial neural networks, support vector regression, and a linear model. Three scenarios were adopted to investigate the effect of time lag and previous water levels as model inputs for real-time forecasting. Variable importance was then analyzed to evaluate the influence of each predictor for water level variations. Results indicated that the RF model exhibits the best performance for daily forecasting in terms of root mean square error (RMSE) and coefficient of determination (R2). Moreover, the highest accuracy was achieved using discharge series at 4-day-ahead and the average water level over the previous week as model inputs, with an average RMSE of 0.25 m for five stations within the lake. In addition, the previous water level was the most efficient predictor for water level forecasting, followed by discharge from the Yangtze River. Based on the performance of the soft computing methods, RF can be calibrated to provide information or simulation scenarios for water management and decision-making.
Author Zhang, Yanhui
Yang, Guishan
Dai, Xue
Li, Bing
Wan, Rongrong
Author_xml – sequence: 1
  givenname: Bing
  surname: Li
  fullname: Li, Bing
  organization: Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China, University of Chinese Academy of Sciences, Beijing 100049, China
– sequence: 2
  givenname: Guishan
  surname: Yang
  fullname: Yang, Guishan
  organization: Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 3
  givenname: Rongrong
  surname: Wan
  fullname: Wan, Rongrong
  organization: Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 4
  givenname: Xue
  surname: Dai
  fullname: Dai, Xue
  organization: Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China, University of Chinese Academy of Sciences, Beijing 100049, China
– sequence: 5
  givenname: Yanhui
  surname: Zhang
  fullname: Zhang, Yanhui
  organization: Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
BookMark eNptkc2uFCEQhYm5Js69uvIFSFyaHqGgf3BnJv7cZBJd6JpU03CbsQdGYDTzDL60tKMb44KQos75UtS5JTchBkvIc862wLvuVZi3wHi3hU4-IhsAkE2v2vaGbBgD1XDo-yfkNudDLTupxIb83MXjCZPPMdDoaMIwxSN1MdlcMq0VjWW2ieaCxefiDS70aMscp7yqaG3SU7KTN8VfEQt-tfQHlmpa7He7vKZIDWZbEefpsipWz6d4wfBA96vYB7qbfcCn5LHDJdtnf-478uXd28-7D83-4_v73Zt9Y6RgpZED4yAZn0ZgPQ6ja0F16PoeO2bEKDi4ofa4VKbn9UDH0BpuBW8nBbwXd-T-yp0iHvQp-SOmi47o9e-HmB40pvrVxWpnFKhplK0QRk4cVuyoOGuFcczJobJeXFmnFL-d69L0IZ5TqONrrqCtxmGAquJXlUkx52SdNn5daAwloV80Z3rNT4dZr_npGk71vPzH83fS_6l_Ad5_nYM
CitedBy_id crossref_primary_10_1007_s00477_023_02545_7
crossref_primary_10_5194_hess_25_5981_2021
crossref_primary_10_3390_w10101372
crossref_primary_10_1016_j_jhydrol_2019_124540
crossref_primary_10_1016_j_ejrh_2022_101054
crossref_primary_10_1016_j_advwatres_2018_01_003
crossref_primary_10_2166_nh_2017_044
crossref_primary_10_3390_su16198517
crossref_primary_10_1007_s11356_018_3387_y
crossref_primary_10_3390_w16030472
crossref_primary_10_1016_j_envsoft_2022_105582
crossref_primary_10_1007_s11356_025_35933_3
crossref_primary_10_1016_j_pdisas_2025_100415
crossref_primary_10_1007_s00024_024_03486_0
crossref_primary_10_1016_j_patcog_2019_01_036
crossref_primary_10_1016_j_jhydrol_2020_125531
crossref_primary_10_1016_j_jhydrol_2021_126506
crossref_primary_10_2166_nh_2016_003
crossref_primary_10_1080_02626667_2021_1906429
crossref_primary_10_1111_1752_1688_13040
crossref_primary_10_5194_npg_29_301_2022
crossref_primary_10_1016_j_jhydrol_2022_128810
crossref_primary_10_1002_hyp_70083
crossref_primary_10_1029_2020WR029409
crossref_primary_10_3390_w14132070
crossref_primary_10_1029_2020WR028831
crossref_primary_10_1007_s12145_023_00951_7
crossref_primary_10_2166_hydro_2021_111
crossref_primary_10_1080_23311916_2022_2143051
crossref_primary_10_3390_rs15194659
crossref_primary_10_1016_j_jhydrol_2022_127728
crossref_primary_10_1016_j_engappai_2023_107073
crossref_primary_10_2139_ssrn_4187674
crossref_primary_10_1016_j_jhydrol_2023_130304
crossref_primary_10_1007_s11356_020_10917_7
crossref_primary_10_1016_j_jhydrol_2023_130025
crossref_primary_10_3390_w16233388
crossref_primary_10_1088_1757_899X_1197_1_012021
crossref_primary_10_1007_s44288_024_00079_1
crossref_primary_10_1016_j_agwat_2020_106090
crossref_primary_10_1002_rvr2_71
crossref_primary_10_1007_s41101_025_00348_1
crossref_primary_10_3390_rs14040952
crossref_primary_10_1016_j_scitotenv_2023_167718
crossref_primary_10_1007_s00477_021_02023_y
crossref_primary_10_1109_JSTARS_2024_3507023
crossref_primary_10_1080_02626667_2020_1754419
crossref_primary_10_3390_w13070920
crossref_primary_10_1016_j_envsoft_2017_12_021
crossref_primary_10_3389_frwa_2020_00008
crossref_primary_10_1016_j_jhydrol_2020_124783
crossref_primary_10_1016_j_advwatres_2020_103819
crossref_primary_10_3390_w13152095
crossref_primary_10_1155_2022_6955271
crossref_primary_10_1016_j_ecolind_2017_07_033
crossref_primary_10_2478_quageo_2022_0009
crossref_primary_10_3390_w12113015
crossref_primary_10_1002_cpe_7231
crossref_primary_10_1016_j_jhydrol_2018_11_025
crossref_primary_10_1016_j_gloenvcha_2018_07_001
crossref_primary_10_3390_w15183191
crossref_primary_10_1080_17457300_2021_1983844
crossref_primary_10_3390_environments9070085
crossref_primary_10_1007_s13201_018_0742_6
crossref_primary_10_1016_j_asej_2024_102854
crossref_primary_10_28978_nesciences_424674
crossref_primary_10_1080_19942060_2024_2449124
crossref_primary_10_1007_s00704_020_03263_8
crossref_primary_10_1155_2023_9947603
crossref_primary_10_12677_JWRR_2018_75051
crossref_primary_10_1007_s12237_022_01070_0
crossref_primary_10_1007_s11053_023_10284_3
crossref_primary_10_1080_23249676_2017_1355759
crossref_primary_10_1007_s11269_024_03915_8
crossref_primary_10_1016_j_jhydrol_2025_132663
crossref_primary_10_1029_2022WR034290
crossref_primary_10_3390_w16192771
crossref_primary_10_1007_s00704_024_05146_8
crossref_primary_10_1038_s41598_022_22057_8
crossref_primary_10_3390_hydrology9070117
crossref_primary_10_1016_j_ecolind_2024_112983
crossref_primary_10_3390_w14244029
crossref_primary_10_1029_2021WR031048
crossref_primary_10_1016_j_rse_2023_113657
crossref_primary_10_1007_s10661_019_7821_5
crossref_primary_10_1016_j_jenvman_2023_117461
crossref_primary_10_1016_j_envsoft_2023_105766
crossref_primary_10_3390_w12051342
crossref_primary_10_1016_j_jhydrol_2024_132276
crossref_primary_10_1007_s11069_023_06211_7
crossref_primary_10_1016_j_scitotenv_2022_158968
crossref_primary_10_1016_j_jhydrol_2020_124934
crossref_primary_10_1080_09599916_2020_1832558
crossref_primary_10_1007_s12665_024_11888_5
crossref_primary_10_3390_rs16040654
crossref_primary_10_1007_s11269_017_1865_5
crossref_primary_10_1007_s12665_018_7898_0
crossref_primary_10_1016_j_jhydrol_2022_127654
crossref_primary_10_3389_frwa_2021_652100
crossref_primary_10_1016_j_scitotenv_2018_02_140
crossref_primary_10_1016_j_jhydrol_2024_130861
crossref_primary_10_1029_2018WR023044
crossref_primary_10_1016_j_ins_2017_08_060
crossref_primary_10_3390_rs13010056
crossref_primary_10_1016_j_envsoft_2023_105684
crossref_primary_10_3390_w17030433
crossref_primary_10_1002_hyp_13391
crossref_primary_10_3390_w10010056
crossref_primary_10_1016_j_microrel_2019_06_063
crossref_primary_10_1080_01431161_2020_1766148
crossref_primary_10_1007_s12517_020_05965_9
crossref_primary_10_1109_JSTARS_2022_3182646
crossref_primary_10_1016_j_ejrh_2023_101385
crossref_primary_10_1016_j_ejrh_2022_101244
crossref_primary_10_3390_su142214934
crossref_primary_10_3390_rs16122163
crossref_primary_10_1029_2023WR035433
crossref_primary_10_3390_soilsystems5040057
crossref_primary_10_1016_j_envsoft_2020_104761
crossref_primary_10_1016_j_jhydrol_2020_125168
crossref_primary_10_1016_j_scitotenv_2023_167595
crossref_primary_10_3389_feart_2022_927462
crossref_primary_10_1109_ACCESS_2021_3094735
Cites_doi 10.1016/j.eswa.2015.02.001
10.1623/hysj.51.4.563
10.1061/(ASCE)1084-0699(2006)11:3(199)
10.1080/02508060.2015.986617
10.1016/0022-1694(83)90045-8
10.1002/hyp.7163
10.5194/hess-10-1-2006
10.1016/j.jhydrol.2004.12.001
10.1002/hyp.7110
10.1016/j.jhydrol.2008.03.020
10.1016/j.ecoleng.2008.05.018
10.1016/j.neucom.2013.09.010
10.1016/j.cageo.2009.09.014
10.1016/j.engappai.2015.09.010
10.1016/j.oregeorev.2015.01.001
10.1061/(ASCE)HE.1943-5584.0000835
10.1007/s11269-013-0382-4
10.1007/s10750-008-9466-1
10.21236/ADA164453
10.1007/s11269-010-9628-6
10.1007/s10201-015-0454-7
10.1016/j.jenvman.2015.02.034
10.3390/w7052494
10.1016/j.jhydrol.2010.11.002
10.1007/s11269-006-9022-6
10.1016/j.eswa.2006.07.007
10.1007/s11769-014-0724-z
10.1029/95WR01955
10.1623/hysj.51.4.599
10.1016/j.ecolind.2014.12.028
10.1016/j.jenvman.2006.09.009
10.1016/S0278-6125(05)80010-X
10.2166/wst.2014.396
10.1016/j.eswa.2011.11.020
10.1016/j.patrec.2010.03.014
10.5194/hessd-7-7957-2010
10.2166/nh.2015.150
10.1029/2005WR004362
10.1016/j.jhydrol.2013.03.049
10.1007/s11269-011-9824-z
10.2166/hydro.2010.032
10.1002/joc.1307
10.1007/s11442-015-1167-x
10.1023/B:STCO.0000035301.49549.88
10.1177/030913330102500104
10.1002/hyp.6951
10.1023/A:1010933404324
10.1016/j.jhydrol.2015.09.028
ContentType Journal Article
Copyright Copyright IWA Publishing Dec 2016
Copyright_xml – notice: Copyright IWA Publishing Dec 2016
DBID AAYXX
CITATION
7QH
7TG
7UA
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
DOA
DOI 10.2166/nh.2016.264
DatabaseName CrossRef
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2224-7955
EndPage 83
ExternalDocumentID oai_doaj_org_article_fc929db4533c4d12b214b91053cf0f48
10_2166_nh_2016_264
GeographicLocations China
Poyang Lake
Yangtze River
GeographicLocations_xml – name: Yangtze River
– name: China
– name: Poyang Lake
GroupedDBID 4.4
5GY
7XC
8FE
8FH
AAJVE
AAQKY
AAYXX
ABFYC
ABLGR
AECGI
AENEX
AEUYN
AFKRA
AFRAH
AJXRC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BENPR
BHPHI
BKSAR
CCPQU
CITATION
EJD
FRP
GEUZO
GROUPED_DOAJ
HCIFZ
LK5
M7R
PATMY
PCBAR
PHGZM
PHGZT
PYCSY
~02
7QH
7TG
7UA
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
KL.
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c430t-48012401db207a8bf5296af77a60c3b312f8db2149c719c7260aec1e315d92173
IEDL.DBID BENPR
ISSN 0029-1277
1998-9563
IngestDate Wed Aug 27 01:22:49 EDT 2025
Mon Jun 30 08:10:10 EDT 2025
Thu Apr 24 23:03:48 EDT 2025
Tue Jul 01 00:26:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue S1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-48012401db207a8bf5296af77a60c3b312f8db2149c719c7260aec1e315d92173
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
OpenAccessLink https://doaj.org/article/fc929db4533c4d12b214b91053cf0f48
PQID 1925453882
PQPubID 2044530
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_fc929db4533c4d12b214b91053cf0f48
proquest_journals_1925453882
crossref_citationtrail_10_2166_nh_2016_264
crossref_primary_10_2166_nh_2016_264
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Hydrology Research
PublicationYear 2016
Publisher IWA Publishing
Publisher_xml – name: IWA Publishing
References Breiman (2020032610223952100_HYDROLOGY-D-15-00264C6) 2001; 45
Huang (2020032610223952100_HYDROLOGY-D-15-00264C27) 2007; 33
Were (2020032610223952100_HYDROLOGY-D-15-00264C57) 2015; 52
Hsu (2020032610223952100_HYDROLOGY-D-15-00264C25) 1995; 31
Malekipirbazari (2020032610223952100_HYDROLOGY-D-15-00264C41) 2015; 42
Guo (2020032610223952100_HYDROLOGY-D-15-00264C23) 2012; 67
Aqil (2020032610223952100_HYDROLOGY-D-15-00264C3) 2007; 85
Kumar (2020032610223952100_HYDROLOGY-D-15-00264C34) 2008; 22
Rodriguez-Galiano (2020032610223952100_HYDROLOGY-D-15-00264C47) 2015; 71
Dai (2020032610223952100_HYDROLOGY-D-15-00264C11) 2015; 25
Smola (2020032610223952100_HYDROLOGY-D-15-00264C50) 2004; 14
Altunkaynak (2020032610223952100_HYDROLOGY-D-15-00264C1) 2007; 21
Hu (2020032610223952100_HYDROLOGY-D-15-00264C26) 2008; 34
Jiang (2020032610223952100_HYDROLOGY-D-15-00264C29) 1997; 12
Li (2020032610223952100_HYDROLOGY-D-15-00264C38) 2013; 19
Panagoulia (2020032610223952100_HYDROLOGY-D-15-00264C45) 2006; 51
Genuer (2020032610223952100_HYDROLOGY-D-15-00264C17) 2010; 31
Lai (2020032610223952100_HYDROLOGY-D-15-00264C35) 2013; 492
Huang (2020032610223952100_HYDROLOGY-D-15-00264C28) 2015; 16
Mustafa (2020032610223952100_HYDROLOGY-D-15-00264C43) 2012; 62
Yoon (2020032610223952100_HYDROLOGY-D-15-00264C59) 2011; 396
Polikar (2020032610223952100_HYDROLOGY-D-15-00264C46) 2012
Belmans (2020032610223952100_HYDROLOGY-D-15-00264C5) 1983; 63
Gholami (2020032610223952100_HYDROLOGY-D-15-00264C18) 2015; 529
Wantzen (2020032610223952100_HYDROLOGY-D-15-00264C55) 2008; 613
Trichakis (2020032610223952100_HYDROLOGY-D-15-00264C53) 2011; 25
Alvisi (2020032610223952100_HYDROLOGY-D-15-00264C2) 2006; 10
Francke (2020032610223952100_HYDROLOGY-D-15-00264C16) 2008; 22
Team (2020032610223952100_HYDROLOGY-D-15-00264C52) 2014
Sulaiman (2020032610223952100_HYDROLOGY-D-15-00264C51) 2011; 25
Bao (2020032610223952100_HYDROLOGY-D-15-00264C4) 2014; 129
Li (2020032610223952100_HYDROLOGY-D-15-00264C37) 2015; 25
Cui (2020032610223952100_HYDROLOGY-D-15-00264C10) 2009; 23
Kecman (2020032610223952100_HYDROLOGY-D-15-00264C30) 2001
Chau (2020032610223952100_HYDROLOGY-D-15-00264C8) 2010; 12
Callegari (2020032610223952100_HYDROLOGY-D-15-00264C7) 2015; 7
Lin (2020032610223952100_HYDROLOGY-D-15-00264C40) 2006; 51
Kirchner (2020032610223952100_HYDROLOGY-D-15-00264C32) 2006; 42
Guo (2020032610223952100_HYDROLOGY-D-15-00264C21) 2008; 355
Shankman (2020032610223952100_HYDROLOGY-D-15-00264C49) 2006; 26
El-Shafie (2020032610223952100_HYDROLOGY-D-15-00264C14) 2010; 7
Wei (2020032610223952100_HYDROLOGY-D-15-00264C56) 2012; 39
Hipni (2020032610223952100_HYDROLOGY-D-15-00264C24) 2013; 27
Dawson (2020032610223952100_HYDROLOGY-D-15-00264C13) 2001; 25
Lan (2020032610223952100_HYDROLOGY-D-15-00264C36) 2014; 70
Feng (2020032610223952100_HYDROLOGY-D-15-00264C15) 2005; 24
Ye (2020032610223952100_HYDROLOGY-D-15-00264C58) 2014; 39
Li (2020032610223952100_HYDROLOGY-D-15-00264C39) 2015; 46
Daliakopoulos (2020032610223952100_HYDROLOGY-D-15-00264C12) 2005; 309
Vapnik (2020032610223952100_HYDROLOGY-D-15-00264C54) 2013
Khan (2020032610223952100_HYDROLOGY-D-15-00264C31) 2006; 11
Kourgialas (2020032610223952100_HYDROLOGY-D-15-00264C33) 2015; 154
2020032610223952100_HYDROLOGY-D-15-00264C48
Ghorbani (2020032610223952100_HYDROLOGY-D-15-00264C19) 2010; 36
Chen (2020032610223952100_HYDROLOGY-D-15-00264C9) 2015; 46
References_xml – volume: 42
  start-page: 4621
  issue: 10
  year: 2015
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C41
  article-title: Risk assessment in social lending via random forests
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.02.001
– volume: 51
  start-page: 563
  issue: 4
  year: 2006
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C45
  article-title: Artificial neural networks and high and low flows in various climate regimes
  publication-title: Hydrolog. Sci. J.
  doi: 10.1623/hysj.51.4.563
– volume: 11
  start-page: 199
  issue: 3
  year: 2006
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C31
  article-title: Application of support vector machine in lake water level prediction
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(2006)11:3(199)
– volume: 39
  start-page: 983
  issue: 7
  year: 2014
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C58
  article-title: Factors influencing water level changes in China's largest freshwater lake, Poyang Lake, in the past 50 years
  publication-title: Water Int.
  doi: 10.1080/02508060.2015.986617
– volume: 63
  start-page: 271
  issue: 3
  year: 1983
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C5
  article-title: Simulation model of the water balance of a cropped soil: SWATRE
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(83)90045-8
– volume-title: The Nature of Statistical Learning Theory
  year: 2013
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C54
– volume: 23
  start-page: 342
  issue: 2
  year: 2009
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C10
  article-title: Monitoring the impact of backflow and dredging on water clarity using MODIS images of Poyang Lake, China
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.7163
– volume: 10
  start-page: 1
  issue: 1
  year: 2006
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C2
  article-title: Water level forecasting through fuzzy logic and artificial neural network approaches
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-10-1-2006
– volume: 309
  start-page: 229
  issue: 1
  year: 2005
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C12
  article-title: Groundwater level forecasting using artificial neural networks
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2004.12.001
– volume: 22
  start-page: 4892
  issue: 25
  year: 2008
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C16
  article-title: Estimation of suspended sediment concentration and yield using linear models, random forests and quantile regression forests
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.7110
– volume: 355
  start-page: 106
  issue: 1
  year: 2008
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C21
  article-title: Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake basin, China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2008.03.020
– volume: 34
  start-page: 30
  issue: 1
  year: 2008
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C26
  article-title: Impacts of the Yangtze River water transfer on the restoration of Lake Taihu
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2008.05.018
– volume-title: Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models (Complex Adaptive Systems)
  year: 2001
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C30
– volume: 12
  start-page: 219
  issue: 3
  year: 1997
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C29
  article-title: A study of the impact of the three Gorges Project on the water-level of Poyang Lake
  publication-title: J. Natural Resour.
– volume: 129
  start-page: 482
  year: 2014
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C4
  article-title: Multi-step-ahead time series prediction using multiple-output support vector regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.09.010
– volume: 36
  start-page: 620
  issue: 5
  year: 2010
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C19
  article-title: Sea water level forecasting using genetic programming and comparing the performance with artificial neural networks
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2009.09.014
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2014
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C52
– volume: 46
  start-page: 258
  year: 2015
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C9
  article-title: A comparative study of population-based optimization algorithms for downstream river flow forecasting by a hybrid neural network model
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2015.09.010
– volume: 71
  start-page: 804
  year: 2015
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C47
  article-title: Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2015.01.001
– volume: 67
  start-page: 699
  issue: 5
  year: 2012
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C23
  article-title: Annual variations in climatic and hydrological processes and related flood and drought occurrences in the Poyang Lake Basin
  publication-title: Acta Geographica Sinica
– volume: 19
  start-page: 607
  issue: 3
  year: 2013
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C38
  article-title: Hydrodynamic and hydrological modeling of the Poyang Lake catchment system in China
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000835
– volume: 27
  start-page: 3803
  issue: 10
  year: 2013
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C24
  article-title: Daily forecasting of dam water levels: comparing a support vector machine (SVM) model with adaptive neuro fuzzy inference system (ANFIS)
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-013-0382-4
– volume: 62
  start-page: 341
  year: 2012
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C43
  article-title: Artificial neural networks modeling in water resources engineering: infrastructure and applications
  publication-title: Int. J. Soc. Human Sci.
– volume: 613
  start-page: 1
  issue: 1
  year: 2008
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C55
  article-title: Ecological effects of water-level fluctuations in lakes: an urgent issue
  publication-title: Hydrobiologia
  doi: 10.1007/s10750-008-9466-1
– ident: 2020032610223952100_HYDROLOGY-D-15-00264C48
  doi: 10.21236/ADA164453
– volume-title: Ensemble Machine Learning: Methods and Applications
  year: 2012
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C46
– volume: 25
  start-page: 1143
  issue: 4
  year: 2011
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C53
  article-title: Artificial neural network (ANN) based modeling for karstic groundwater level simulation
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-010-9628-6
– volume: 16
  start-page: 179
  issue: 3
  year: 2015
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C28
  article-title: Combination of artificial neural network and clustering techniques for predicting phytoplankton biomass of Lake Poyang, China
  publication-title: Limnology
  doi: 10.1007/s10201-015-0454-7
– volume: 154
  start-page: 86
  year: 2015
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C33
  article-title: Statistical analysis and ANN modeling for predicting hydrological extremes under climate change scenarios: the example of a small Mediterranean agro-watershed
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2015.02.034
– volume: 7
  start-page: 2494
  issue: 5
  year: 2015
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C7
  article-title: Seasonal river discharge forecasting using support vector regression: a case study in the Italian Alps
  publication-title: Water
  doi: 10.3390/w7052494
– volume: 396
  start-page: 128
  issue: 1
  year: 2011
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C59
  article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.11.002
– volume: 21
  start-page: 399
  issue: 2
  year: 2007
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C1
  article-title: Forecasting surface water level fluctuations of Lake Van by artificial neural networks
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-006-9022-6
– volume: 33
  start-page: 847
  issue: 4
  year: 2007
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C27
  article-title: Credit scoring with a data mining approach based on support vector machines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2006.07.007
– volume: 25
  start-page: 13
  issue: 1
  year: 2015
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C37
  article-title: Variation of floods characteristics and their responses to climate and human activities in Poyang Lake, China
  publication-title: Chinese Geogr. Sci.
  doi: 10.1007/s11769-014-0724-z
– volume: 31
  start-page: 2517
  issue: 10
  year: 1995
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C25
  article-title: Artificial neural network modeling of the rainfall-runoff process
  publication-title: Water Resour. Res.
  doi: 10.1029/95WR01955
– volume: 51
  start-page: 599
  issue: 4
  year: 2006
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C40
  article-title: Using support vector machines for long-term discharge prediction
  publication-title: Hydrolog. Sci. J.
  doi: 10.1623/hysj.51.4.599
– volume: 52
  start-page: 394
  year: 2015
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C57
  article-title: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2014.12.028
– volume: 85
  start-page: 215
  issue: 1
  year: 2007
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C3
  article-title: Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2006.09.009
– volume: 24
  start-page: 93
  issue: 2
  year: 2005
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C15
  article-title: Threefold vs. fivefold cross validation in one-hidden-layer and two-hidden-layer predictive neural network modeling of machining surface roughness data
  publication-title: J. Manuf. Syst.
  doi: 10.1016/S0278-6125(05)80010-X
– volume: 70
  start-page: 1488
  issue: 9
  year: 2014
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C36
  article-title: Forecasting performance of support vector machine for the Poyang Lake's water level
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2014.396
– volume: 39
  start-page: 5189
  issue: 5
  year: 2012
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C56
  article-title: Wavelet kernel support vector machines forecasting techniques: case study on water-level predictions during typhoons
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.11.020
– volume: 31
  start-page: 2225
  issue: 14
  year: 2010
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C17
  article-title: Variable selection using random forests
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2010.03.014
– volume: 7
  start-page: 7957
  issue: 5
  year: 2010
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C14
  article-title: Generalized versus non-generalized neural network model for multi-lead inflow forecasting at Aswan High Dam
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
  doi: 10.5194/hessd-7-7957-2010
– volume: 46
  start-page: 912
  issue: 6
  year: 2015
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C39
  article-title: Investigating a complex lake–catchment–river system using artificial neural networks: Poyang Lake (China)
  publication-title: Hydrol. Res.
  doi: 10.2166/nh.2015.150
– volume: 42
  issue: 3
  year: 2006
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C32
  article-title: Getting the right answers for the right reasons: linking measurements, analyses, and models to advance the science of hydrology
  publication-title: Water Resour. Res.
  doi: 10.1029/2005WR004362
– volume: 492
  start-page: 228
  year: 2013
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C35
  article-title: Large-scale hydrodynamic modeling of the middle Yangtze River Basin with complex river–lake interactions
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.03.049
– volume: 25
  start-page: 2525
  issue: 10
  year: 2011
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C51
  article-title: Improved water level forecasting performance by using optimal steepness coefficients in an artificial neural network
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-011-9824-z
– volume: 12
  start-page: 458
  issue: 4
  year: 2010
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C8
  article-title: A hybrid model coupled with singular spectrum analysis for daily rainfall prediction
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2010.032
– volume: 26
  start-page: 1255
  issue: 9
  year: 2006
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C49
  article-title: Flood frequency in China's Poyang Lake region: trends and teleconnections
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.1307
– volume: 25
  start-page: 274
  issue: 3
  year: 2015
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C11
  article-title: Non-stationary water-level fluctuation in China's Poyang Lake and its interactions with Yangtze River
  publication-title: J. Geogr. Sci.
  doi: 10.1007/s11442-015-1167-x
– volume: 14
  start-page: 199
  issue: 3
  year: 2004
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C50
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 25
  start-page: 80
  issue: 1
  year: 2001
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C13
  article-title: Hydrological modelling using artificial neural networks
  publication-title: Prog. Phys. Geog.
  doi: 10.1177/030913330102500104
– volume: 22
  start-page: 3488
  issue: 17
  year: 2008
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C34
  article-title: Bayesian dynamic modelling for nonstationary hydroclimatic time series forecasting along with uncertainty quantification
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.6951
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C6
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 529
  start-page: 1060
  year: 2015
  ident: 2020032610223952100_HYDROLOGY-D-15-00264C18
  article-title: Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.09.028
SSID ssj0026493
ssj0061028
Score 2.4623506
Snippet Modeling of hydrological time series is essential for sustainable development and management of lake water resources. This study aims to develop an efficient...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 69
SubjectTerms Accuracy
Aquifers
Artificial intelligence
Artificial neural networks
Carbon
Case studies
Computer simulation
Daily forecasts
Decision making
Decision trees
Discharge
Explicit knowledge
Forecasting
Groundwater
Hydrologic models
Hydrology
Information dissemination
Lake water
lake water level
Lakes
Mathematical models
Mean square values
Methods
Neural networks
poyang lake
Precipitation
random forests
Regression analysis
Resource management
Rivers
Root-mean-square errors
Soft computing
Statistical methods
Statistical prediction
Support vector machines
support vector regression
Sustainable development
Time lag
Time series
Trends
variable importance analysis
Water levels
Water management
Water resources
Water resources management
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLnCpCgV1C1Rz4IQU8HsTbhQVoapUPRSJm-VHDFWXLNrdquI39E93xsmuikDi0kMOSSaO5bH9faPxzDB2oHTmIou2kjbaSpuUqroJovI8WW-z9CFRvPPlV3txpT9fm-t_Sn3RmbA-PXA_cMc5IoCnoJGWRJ2EDFLogBhnVMw86xLmi5i3NKb6PdgSbBZ_coPL2VjVR-ZJYe1xRy4IYY-k1Y-wqKTsf7IjF5g5f8NeD_wQTvt-bbJXbbfF1odS5bcPb9mfs1XlQJhmQKhJ0ztA6omNzQHvoMRUAUUKlSTM2FpfJnpOUoAv4X5G7hlSCTUx8T9b-I2ccwYTOkJ0Ah4ighuU1LMkQd98mz747ga-kPCPDkrd7W12df7p-9lFNVRUqKJWfFFRrhiEcJGC5GNfh0xeV5_HY295VEEJmetEI9zEscALjR3fRtEqYVKDxovaYWvdtGvfMcgSyQL3oo7GotHT1MlylZXm0RpvjB2xw-XYujikG6eqFxOHZgcpwnW3jhThUBEjdrASvu-zbDwv9pGUtBKh1NjlAU4YN0wY99KEGbG9pYrdsF7nDnkuUkmF5sb7__GPXbZBfe6PveyxtcXsV7uP5GURPpR5-hfR7-pY
  priority: 102
  providerName: Directory of Open Access Journals
Title Comparison of random forests and other statistical methods for the prediction of lake water level: a case study of the Poyang Lake in China
URI https://www.proquest.com/docview/1925453882
https://doaj.org/article/fc929db4533c4d12b214b91053cf0f48
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BTtwwELXocqCXCihVtwU0B06VAnYce7NcECAQQoBQVSRulmPHUHWbbHe3QnwDP82M412EWnHIIfHESjL2zJuMPY-xHVkELoKos1w7nRXK-6wcViKz3GurQ24rT_udL6_02U1xfqtu0w-3aVpWObeJ0VD71tE_8j1EIujsJQLCg_GfjFijKLuaKDTesWU0wWXZY8tHJ1fX3-e2WJP7jHnlIU5rpWW3Qy8XWu81lIoQejfXxSufFEv3_2OZo7s5XWUfEk6Ew06xa2ypbtbZSqIsv3_8yJ6OFwyC0AZAl-Pb34AQFDubAp5B3FsFtGMoFmPG3jq66ClJATbCeEJpGlINdTGyv2p4QOw5gREtJdoHCw6dHMQStCRB91y3j7a5gwsS_tlA5N_eYDenJz-Oz7LErJC5QvJZRjVj0JULX-V8YMsqUPbVhsHAau5kJUUeSmzD6MkNBB4Y9NjaiVoK5YcYxMhPrNe0Tf2ZQcgRNHArSqc0Bj_D0msugyy408oqpfvs2_zbGpfKjhP7xchg-EGKMM29IUUYVESf7SyEx121jf-LHZGSFiJUIjteaCd3Js04ExwiP1_hmJGu8CKn16kQHCnpAg9F2WebcxWbNG-n5mWUfXm7-St7T0_TLWzZZL3Z5G-9hfBkVm2nMbgdw_tnZR_kmQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9FAuqLxEoMAeygXJdB_2xqmEKlpapTSNKtRKvS3rXW9bNbVDElTlN_Bf-huZ8SMIgbj1kIOz45XtGc9869mZD2BTxYGLIPJIaqejOPE-SvuZiCz32uogbeap3vl4pAdn8Zfz5HwF7tpaGNpW2frEylH70tE38i1EIhjsFQLCncn3iFijKLvaUmjUZnGUL25xyTb7ePgZ9ftOyoP9071B1LAKRC5WfB5RvxQMY8JnkvdsmgXKPNrQ61nNncqUkCHFMVw5uJ7AHwJ-mzuRK5H4PgJ4hfM-gNVYaS47sLq7Pzr52vp-TeG6ymP30Y0kWtUVgVJovVVQ6kPoD1LHf8TAiirgr0hQhbeDdXjU4FL2qTakx7CSF09graFIv1w8hZ97S8ZCVgaGIc6XNwwhL042Y3jEqlouRhVKVfNnnK2mp56RFMNBNplSWohMgaYY2-uc3SLWnbIxbV3aZpY5DKqsanlLEnTOSbmwxQUbkvBVwSq-72dwdi_P_Dl0irLIXwALEkEKtyJ1icbFVj_1mqugYu50YpNEd-F9-2yNa9qcE9vG2OByhxRhiktDijCoiC5sLoUndXePf4vtkpKWItSSu_qjnF6Y5g03wSHS9BnaqHKxF5JuJ0MwligXeIjTLmy0KjaNn5iZ31b98v_Db2FtcHo8NMPD0dEreEhXVm-q2YDOfPojf43QaJ69aeyRwbf7fgV-AVTsHpw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTgJeEH9FxwA_jBek0NhOnBQJIfan2tioKsSkvRnHjjdEl5S2aOpn4Bvx6bhzkiIE4m0PeWh8tVLfxb_f9Xx3ADsy8TH3vIyEsipKUueifFjwyMROGeWFKRzlO38Yq8PT5P1ZerYBP7tcGDpW2e2JYaN2taX_yAfIRBDsJRLCgW-PRUz2R29n3yLqIEWR1q6dRmMix-XqCt23xZujfdT1CyFGB5_2DqO2w0BkExkvI6qdgpDGXSHizOSFpyik8VlmVGxlIbnwOY6hF2EzjheSf1NaXkqeuiGSeYnz3oDNjLyiHmzuHownHzscUATdIaY9xC0lVbLJDhRcqUFFYRCuXgmV_IGHoW3AX6gQoG50F-60HJW9a4zqHmyU1X241bZLv1g9gB976-6FrPYM4c7VlwzpL062YPiJhbwuRtlKoRA0zta0ql6QFMNBNptTiIjMgqaYmq8lu0LeO2dTOsb0mhlmEWBZKH9LEvSdSb0y1Tk7IeEvFQu9vx_C6bWs-SPoVXVVPgbmBRKW2PDcpgodr2HuVCy9TGKrUpOmqg8vu7XVti15Tp03phpdH1KEri40KUKjIvqwsxaeNZU-_i22S0pai1B57nCjnp_r9m3X3iLrdAXaq7SJ44J-ToHELJXWxz7J-7DdqVi3e8ZC_7bwrf8PP4ebaPr65Gh8_ARu04M152u2obecfy-fIktaFs9ac2Tw-brfgF-rtyLR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+random+forests+and+other+statistical+methods+for+the+prediction+of+lake+water+level%3A+a+case+study+of+the+Poyang+Lake+in+China&rft.jtitle=Hydrology+research&rft.au=Li%2C+Bing&rft.au=Yang%2C+Guishan&rft.au=Wan%2C+Rongrong&rft.au=Dai%2C+Xue&rft.date=2016-12-01&rft.pub=IWA+Publishing&rft.issn=1998-9563&rft.eissn=2224-7955&rft.volume=47&rft.issue=S1&rft.spage=69&rft_id=info:doi/10.2166%2Fnh.2016.264&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-1277&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-1277&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-1277&client=summon