Comparison of random forests and other statistical methods for the prediction of lake water level: a case study of the Poyang Lake in China
Modeling of hydrological time series is essential for sustainable development and management of lake water resources. This study aims to develop an efficient model for forecasting lake water level variations, exemplified by the Poyang Lake (China) case study. A random forests (RF) model was first ap...
Saved in:
Published in | Hydrology Research Vol. 47; no. S1; pp. 69 - 83 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
IWA Publishing
01.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Modeling of hydrological time series is essential for sustainable development and management of lake water resources. This study aims to develop an efficient model for forecasting lake water level variations, exemplified by the Poyang Lake (China) case study. A random forests (RF) model was first applied and compared with artificial neural networks, support vector regression, and a linear model. Three scenarios were adopted to investigate the effect of time lag and previous water levels as model inputs for real-time forecasting. Variable importance was then analyzed to evaluate the influence of each predictor for water level variations. Results indicated that the RF model exhibits the best performance for daily forecasting in terms of root mean square error (RMSE) and coefficient of determination (R2). Moreover, the highest accuracy was achieved using discharge series at 4-day-ahead and the average water level over the previous week as model inputs, with an average RMSE of 0.25 m for five stations within the lake. In addition, the previous water level was the most efficient predictor for water level forecasting, followed by discharge from the Yangtze River. Based on the performance of the soft computing methods, RF can be calibrated to provide information or simulation scenarios for water management and decision-making. |
---|---|
AbstractList | Modeling of hydrological time series is essential for sustainable development and management of lake water resources. This study aims to develop an efficient model for forecasting lake water level variations, exemplified by the Poyang Lake (China) case study. A random forests (RF) model was first applied and compared with artificial neural networks, support vector regression, and a linear model. Three scenarios were adopted to investigate the effect of time lag and previous water levels as model inputs for real-time forecasting. Variable importance was then analyzed to evaluate the influence of each predictor for water level variations. Results indicated that the RF model exhibits the best performance for daily forecasting in terms of root mean square error (RMSE) and coefficient of determination (R2). Moreover, the highest accuracy was achieved using discharge series at 4-day-ahead and the average water level over the previous week as model inputs, with an average RMSE of 0.25 m for five stations within the lake. In addition, the previous water level was the most efficient predictor for water level forecasting, followed by discharge from the Yangtze River. Based on the performance of the soft computing methods, RF can be calibrated to provide information or simulation scenarios for water management and decision-making. |
Author | Zhang, Yanhui Yang, Guishan Dai, Xue Li, Bing Wan, Rongrong |
Author_xml | – sequence: 1 givenname: Bing surname: Li fullname: Li, Bing organization: Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China, University of Chinese Academy of Sciences, Beijing 100049, China – sequence: 2 givenname: Guishan surname: Yang fullname: Yang, Guishan organization: Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China – sequence: 3 givenname: Rongrong surname: Wan fullname: Wan, Rongrong organization: Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China – sequence: 4 givenname: Xue surname: Dai fullname: Dai, Xue organization: Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China, University of Chinese Academy of Sciences, Beijing 100049, China – sequence: 5 givenname: Yanhui surname: Zhang fullname: Zhang, Yanhui organization: Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China |
BookMark | eNptkc2uFCEQhYm5Js69uvIFSFyaHqGgf3BnJv7cZBJd6JpU03CbsQdGYDTzDL60tKMb44KQos75UtS5JTchBkvIc862wLvuVZi3wHi3hU4-IhsAkE2v2vaGbBgD1XDo-yfkNudDLTupxIb83MXjCZPPMdDoaMIwxSN1MdlcMq0VjWW2ieaCxefiDS70aMscp7yqaG3SU7KTN8VfEQt-tfQHlmpa7He7vKZIDWZbEefpsipWz6d4wfBA96vYB7qbfcCn5LHDJdtnf-478uXd28-7D83-4_v73Zt9Y6RgpZED4yAZn0ZgPQ6ja0F16PoeO2bEKDi4ofa4VKbn9UDH0BpuBW8nBbwXd-T-yp0iHvQp-SOmi47o9e-HmB40pvrVxWpnFKhplK0QRk4cVuyoOGuFcczJobJeXFmnFL-d69L0IZ5TqONrrqCtxmGAquJXlUkx52SdNn5daAwloV80Z3rNT4dZr_npGk71vPzH83fS_6l_Ad5_nYM |
CitedBy_id | crossref_primary_10_1007_s00477_023_02545_7 crossref_primary_10_5194_hess_25_5981_2021 crossref_primary_10_3390_w10101372 crossref_primary_10_1016_j_jhydrol_2019_124540 crossref_primary_10_1016_j_ejrh_2022_101054 crossref_primary_10_1016_j_advwatres_2018_01_003 crossref_primary_10_2166_nh_2017_044 crossref_primary_10_3390_su16198517 crossref_primary_10_1007_s11356_018_3387_y crossref_primary_10_3390_w16030472 crossref_primary_10_1016_j_envsoft_2022_105582 crossref_primary_10_1007_s11356_025_35933_3 crossref_primary_10_1016_j_pdisas_2025_100415 crossref_primary_10_1007_s00024_024_03486_0 crossref_primary_10_1016_j_patcog_2019_01_036 crossref_primary_10_1016_j_jhydrol_2020_125531 crossref_primary_10_1016_j_jhydrol_2021_126506 crossref_primary_10_2166_nh_2016_003 crossref_primary_10_1080_02626667_2021_1906429 crossref_primary_10_1111_1752_1688_13040 crossref_primary_10_5194_npg_29_301_2022 crossref_primary_10_1016_j_jhydrol_2022_128810 crossref_primary_10_1002_hyp_70083 crossref_primary_10_1029_2020WR029409 crossref_primary_10_3390_w14132070 crossref_primary_10_1029_2020WR028831 crossref_primary_10_1007_s12145_023_00951_7 crossref_primary_10_2166_hydro_2021_111 crossref_primary_10_1080_23311916_2022_2143051 crossref_primary_10_3390_rs15194659 crossref_primary_10_1016_j_jhydrol_2022_127728 crossref_primary_10_1016_j_engappai_2023_107073 crossref_primary_10_2139_ssrn_4187674 crossref_primary_10_1016_j_jhydrol_2023_130304 crossref_primary_10_1007_s11356_020_10917_7 crossref_primary_10_1016_j_jhydrol_2023_130025 crossref_primary_10_3390_w16233388 crossref_primary_10_1088_1757_899X_1197_1_012021 crossref_primary_10_1007_s44288_024_00079_1 crossref_primary_10_1016_j_agwat_2020_106090 crossref_primary_10_1002_rvr2_71 crossref_primary_10_1007_s41101_025_00348_1 crossref_primary_10_3390_rs14040952 crossref_primary_10_1016_j_scitotenv_2023_167718 crossref_primary_10_1007_s00477_021_02023_y crossref_primary_10_1109_JSTARS_2024_3507023 crossref_primary_10_1080_02626667_2020_1754419 crossref_primary_10_3390_w13070920 crossref_primary_10_1016_j_envsoft_2017_12_021 crossref_primary_10_3389_frwa_2020_00008 crossref_primary_10_1016_j_jhydrol_2020_124783 crossref_primary_10_1016_j_advwatres_2020_103819 crossref_primary_10_3390_w13152095 crossref_primary_10_1155_2022_6955271 crossref_primary_10_1016_j_ecolind_2017_07_033 crossref_primary_10_2478_quageo_2022_0009 crossref_primary_10_3390_w12113015 crossref_primary_10_1002_cpe_7231 crossref_primary_10_1016_j_jhydrol_2018_11_025 crossref_primary_10_1016_j_gloenvcha_2018_07_001 crossref_primary_10_3390_w15183191 crossref_primary_10_1080_17457300_2021_1983844 crossref_primary_10_3390_environments9070085 crossref_primary_10_1007_s13201_018_0742_6 crossref_primary_10_1016_j_asej_2024_102854 crossref_primary_10_28978_nesciences_424674 crossref_primary_10_1080_19942060_2024_2449124 crossref_primary_10_1007_s00704_020_03263_8 crossref_primary_10_1155_2023_9947603 crossref_primary_10_12677_JWRR_2018_75051 crossref_primary_10_1007_s12237_022_01070_0 crossref_primary_10_1007_s11053_023_10284_3 crossref_primary_10_1080_23249676_2017_1355759 crossref_primary_10_1007_s11269_024_03915_8 crossref_primary_10_1016_j_jhydrol_2025_132663 crossref_primary_10_1029_2022WR034290 crossref_primary_10_3390_w16192771 crossref_primary_10_1007_s00704_024_05146_8 crossref_primary_10_1038_s41598_022_22057_8 crossref_primary_10_3390_hydrology9070117 crossref_primary_10_1016_j_ecolind_2024_112983 crossref_primary_10_3390_w14244029 crossref_primary_10_1029_2021WR031048 crossref_primary_10_1016_j_rse_2023_113657 crossref_primary_10_1007_s10661_019_7821_5 crossref_primary_10_1016_j_jenvman_2023_117461 crossref_primary_10_1016_j_envsoft_2023_105766 crossref_primary_10_3390_w12051342 crossref_primary_10_1016_j_jhydrol_2024_132276 crossref_primary_10_1007_s11069_023_06211_7 crossref_primary_10_1016_j_scitotenv_2022_158968 crossref_primary_10_1016_j_jhydrol_2020_124934 crossref_primary_10_1080_09599916_2020_1832558 crossref_primary_10_1007_s12665_024_11888_5 crossref_primary_10_3390_rs16040654 crossref_primary_10_1007_s11269_017_1865_5 crossref_primary_10_1007_s12665_018_7898_0 crossref_primary_10_1016_j_jhydrol_2022_127654 crossref_primary_10_3389_frwa_2021_652100 crossref_primary_10_1016_j_scitotenv_2018_02_140 crossref_primary_10_1016_j_jhydrol_2024_130861 crossref_primary_10_1029_2018WR023044 crossref_primary_10_1016_j_ins_2017_08_060 crossref_primary_10_3390_rs13010056 crossref_primary_10_1016_j_envsoft_2023_105684 crossref_primary_10_3390_w17030433 crossref_primary_10_1002_hyp_13391 crossref_primary_10_3390_w10010056 crossref_primary_10_1016_j_microrel_2019_06_063 crossref_primary_10_1080_01431161_2020_1766148 crossref_primary_10_1007_s12517_020_05965_9 crossref_primary_10_1109_JSTARS_2022_3182646 crossref_primary_10_1016_j_ejrh_2023_101385 crossref_primary_10_1016_j_ejrh_2022_101244 crossref_primary_10_3390_su142214934 crossref_primary_10_3390_rs16122163 crossref_primary_10_1029_2023WR035433 crossref_primary_10_3390_soilsystems5040057 crossref_primary_10_1016_j_envsoft_2020_104761 crossref_primary_10_1016_j_jhydrol_2020_125168 crossref_primary_10_1016_j_scitotenv_2023_167595 crossref_primary_10_3389_feart_2022_927462 crossref_primary_10_1109_ACCESS_2021_3094735 |
Cites_doi | 10.1016/j.eswa.2015.02.001 10.1623/hysj.51.4.563 10.1061/(ASCE)1084-0699(2006)11:3(199) 10.1080/02508060.2015.986617 10.1016/0022-1694(83)90045-8 10.1002/hyp.7163 10.5194/hess-10-1-2006 10.1016/j.jhydrol.2004.12.001 10.1002/hyp.7110 10.1016/j.jhydrol.2008.03.020 10.1016/j.ecoleng.2008.05.018 10.1016/j.neucom.2013.09.010 10.1016/j.cageo.2009.09.014 10.1016/j.engappai.2015.09.010 10.1016/j.oregeorev.2015.01.001 10.1061/(ASCE)HE.1943-5584.0000835 10.1007/s11269-013-0382-4 10.1007/s10750-008-9466-1 10.21236/ADA164453 10.1007/s11269-010-9628-6 10.1007/s10201-015-0454-7 10.1016/j.jenvman.2015.02.034 10.3390/w7052494 10.1016/j.jhydrol.2010.11.002 10.1007/s11269-006-9022-6 10.1016/j.eswa.2006.07.007 10.1007/s11769-014-0724-z 10.1029/95WR01955 10.1623/hysj.51.4.599 10.1016/j.ecolind.2014.12.028 10.1016/j.jenvman.2006.09.009 10.1016/S0278-6125(05)80010-X 10.2166/wst.2014.396 10.1016/j.eswa.2011.11.020 10.1016/j.patrec.2010.03.014 10.5194/hessd-7-7957-2010 10.2166/nh.2015.150 10.1029/2005WR004362 10.1016/j.jhydrol.2013.03.049 10.1007/s11269-011-9824-z 10.2166/hydro.2010.032 10.1002/joc.1307 10.1007/s11442-015-1167-x 10.1023/B:STCO.0000035301.49549.88 10.1177/030913330102500104 10.1002/hyp.6951 10.1023/A:1010933404324 10.1016/j.jhydrol.2015.09.028 |
ContentType | Journal Article |
Copyright | Copyright IWA Publishing Dec 2016 |
Copyright_xml | – notice: Copyright IWA Publishing Dec 2016 |
DBID | AAYXX CITATION 7QH 7TG 7UA AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ KL. L.G PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY DOA |
DOI | 10.2166/nh.2016.264 |
DatabaseName | CrossRef Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central (subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2224-7955 |
EndPage | 83 |
ExternalDocumentID | oai_doaj_org_article_fc929db4533c4d12b214b91053cf0f48 10_2166_nh_2016_264 |
GeographicLocations | China Poyang Lake Yangtze River |
GeographicLocations_xml | – name: Yangtze River – name: China – name: Poyang Lake |
GroupedDBID | 4.4 5GY 7XC 8FE 8FH AAJVE AAQKY AAYXX ABFYC ABLGR AECGI AENEX AEUYN AFKRA AFRAH AJXRC ALMA_UNASSIGNED_HOLDINGS ATCPS BENPR BHPHI BKSAR CCPQU CITATION EJD FRP GEUZO GROUPED_DOAJ HCIFZ LK5 M7R PATMY PCBAR PHGZM PHGZT PYCSY ~02 7QH 7TG 7UA AZQEC C1K DWQXO F1W GNUQQ H96 KL. L.G PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c430t-48012401db207a8bf5296af77a60c3b312f8db2149c719c7260aec1e315d92173 |
IEDL.DBID | BENPR |
ISSN | 0029-1277 1998-9563 |
IngestDate | Wed Aug 27 01:22:49 EDT 2025 Mon Jun 30 08:10:10 EDT 2025 Thu Apr 24 23:03:48 EDT 2025 Tue Jul 01 00:26:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | S1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c430t-48012401db207a8bf5296af77a60c3b312f8db2149c719c7260aec1e315d92173 |
Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 |
OpenAccessLink | https://doaj.org/article/fc929db4533c4d12b214b91053cf0f48 |
PQID | 1925453882 |
PQPubID | 2044530 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fc929db4533c4d12b214b91053cf0f48 proquest_journals_1925453882 crossref_citationtrail_10_2166_nh_2016_264 crossref_primary_10_2166_nh_2016_264 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-01 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Hydrology Research |
PublicationYear | 2016 |
Publisher | IWA Publishing |
Publisher_xml | – name: IWA Publishing |
References | Breiman (2020032610223952100_HYDROLOGY-D-15-00264C6) 2001; 45 Huang (2020032610223952100_HYDROLOGY-D-15-00264C27) 2007; 33 Were (2020032610223952100_HYDROLOGY-D-15-00264C57) 2015; 52 Hsu (2020032610223952100_HYDROLOGY-D-15-00264C25) 1995; 31 Malekipirbazari (2020032610223952100_HYDROLOGY-D-15-00264C41) 2015; 42 Guo (2020032610223952100_HYDROLOGY-D-15-00264C23) 2012; 67 Aqil (2020032610223952100_HYDROLOGY-D-15-00264C3) 2007; 85 Kumar (2020032610223952100_HYDROLOGY-D-15-00264C34) 2008; 22 Rodriguez-Galiano (2020032610223952100_HYDROLOGY-D-15-00264C47) 2015; 71 Dai (2020032610223952100_HYDROLOGY-D-15-00264C11) 2015; 25 Smola (2020032610223952100_HYDROLOGY-D-15-00264C50) 2004; 14 Altunkaynak (2020032610223952100_HYDROLOGY-D-15-00264C1) 2007; 21 Hu (2020032610223952100_HYDROLOGY-D-15-00264C26) 2008; 34 Jiang (2020032610223952100_HYDROLOGY-D-15-00264C29) 1997; 12 Li (2020032610223952100_HYDROLOGY-D-15-00264C38) 2013; 19 Panagoulia (2020032610223952100_HYDROLOGY-D-15-00264C45) 2006; 51 Genuer (2020032610223952100_HYDROLOGY-D-15-00264C17) 2010; 31 Lai (2020032610223952100_HYDROLOGY-D-15-00264C35) 2013; 492 Huang (2020032610223952100_HYDROLOGY-D-15-00264C28) 2015; 16 Mustafa (2020032610223952100_HYDROLOGY-D-15-00264C43) 2012; 62 Yoon (2020032610223952100_HYDROLOGY-D-15-00264C59) 2011; 396 Polikar (2020032610223952100_HYDROLOGY-D-15-00264C46) 2012 Belmans (2020032610223952100_HYDROLOGY-D-15-00264C5) 1983; 63 Gholami (2020032610223952100_HYDROLOGY-D-15-00264C18) 2015; 529 Wantzen (2020032610223952100_HYDROLOGY-D-15-00264C55) 2008; 613 Trichakis (2020032610223952100_HYDROLOGY-D-15-00264C53) 2011; 25 Alvisi (2020032610223952100_HYDROLOGY-D-15-00264C2) 2006; 10 Francke (2020032610223952100_HYDROLOGY-D-15-00264C16) 2008; 22 Team (2020032610223952100_HYDROLOGY-D-15-00264C52) 2014 Sulaiman (2020032610223952100_HYDROLOGY-D-15-00264C51) 2011; 25 Bao (2020032610223952100_HYDROLOGY-D-15-00264C4) 2014; 129 Li (2020032610223952100_HYDROLOGY-D-15-00264C37) 2015; 25 Cui (2020032610223952100_HYDROLOGY-D-15-00264C10) 2009; 23 Kecman (2020032610223952100_HYDROLOGY-D-15-00264C30) 2001 Chau (2020032610223952100_HYDROLOGY-D-15-00264C8) 2010; 12 Callegari (2020032610223952100_HYDROLOGY-D-15-00264C7) 2015; 7 Lin (2020032610223952100_HYDROLOGY-D-15-00264C40) 2006; 51 Kirchner (2020032610223952100_HYDROLOGY-D-15-00264C32) 2006; 42 Guo (2020032610223952100_HYDROLOGY-D-15-00264C21) 2008; 355 Shankman (2020032610223952100_HYDROLOGY-D-15-00264C49) 2006; 26 El-Shafie (2020032610223952100_HYDROLOGY-D-15-00264C14) 2010; 7 Wei (2020032610223952100_HYDROLOGY-D-15-00264C56) 2012; 39 Hipni (2020032610223952100_HYDROLOGY-D-15-00264C24) 2013; 27 Dawson (2020032610223952100_HYDROLOGY-D-15-00264C13) 2001; 25 Lan (2020032610223952100_HYDROLOGY-D-15-00264C36) 2014; 70 Feng (2020032610223952100_HYDROLOGY-D-15-00264C15) 2005; 24 Ye (2020032610223952100_HYDROLOGY-D-15-00264C58) 2014; 39 Li (2020032610223952100_HYDROLOGY-D-15-00264C39) 2015; 46 Daliakopoulos (2020032610223952100_HYDROLOGY-D-15-00264C12) 2005; 309 Vapnik (2020032610223952100_HYDROLOGY-D-15-00264C54) 2013 Khan (2020032610223952100_HYDROLOGY-D-15-00264C31) 2006; 11 Kourgialas (2020032610223952100_HYDROLOGY-D-15-00264C33) 2015; 154 2020032610223952100_HYDROLOGY-D-15-00264C48 Ghorbani (2020032610223952100_HYDROLOGY-D-15-00264C19) 2010; 36 Chen (2020032610223952100_HYDROLOGY-D-15-00264C9) 2015; 46 |
References_xml | – volume: 42 start-page: 4621 issue: 10 year: 2015 ident: 2020032610223952100_HYDROLOGY-D-15-00264C41 article-title: Risk assessment in social lending via random forests publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.02.001 – volume: 51 start-page: 563 issue: 4 year: 2006 ident: 2020032610223952100_HYDROLOGY-D-15-00264C45 article-title: Artificial neural networks and high and low flows in various climate regimes publication-title: Hydrolog. Sci. J. doi: 10.1623/hysj.51.4.563 – volume: 11 start-page: 199 issue: 3 year: 2006 ident: 2020032610223952100_HYDROLOGY-D-15-00264C31 article-title: Application of support vector machine in lake water level prediction publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(2006)11:3(199) – volume: 39 start-page: 983 issue: 7 year: 2014 ident: 2020032610223952100_HYDROLOGY-D-15-00264C58 article-title: Factors influencing water level changes in China's largest freshwater lake, Poyang Lake, in the past 50 years publication-title: Water Int. doi: 10.1080/02508060.2015.986617 – volume: 63 start-page: 271 issue: 3 year: 1983 ident: 2020032610223952100_HYDROLOGY-D-15-00264C5 article-title: Simulation model of the water balance of a cropped soil: SWATRE publication-title: J. Hydrol. doi: 10.1016/0022-1694(83)90045-8 – volume-title: The Nature of Statistical Learning Theory year: 2013 ident: 2020032610223952100_HYDROLOGY-D-15-00264C54 – volume: 23 start-page: 342 issue: 2 year: 2009 ident: 2020032610223952100_HYDROLOGY-D-15-00264C10 article-title: Monitoring the impact of backflow and dredging on water clarity using MODIS images of Poyang Lake, China publication-title: Hydrol. Process. doi: 10.1002/hyp.7163 – volume: 10 start-page: 1 issue: 1 year: 2006 ident: 2020032610223952100_HYDROLOGY-D-15-00264C2 article-title: Water level forecasting through fuzzy logic and artificial neural network approaches publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-10-1-2006 – volume: 309 start-page: 229 issue: 1 year: 2005 ident: 2020032610223952100_HYDROLOGY-D-15-00264C12 article-title: Groundwater level forecasting using artificial neural networks publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2004.12.001 – volume: 22 start-page: 4892 issue: 25 year: 2008 ident: 2020032610223952100_HYDROLOGY-D-15-00264C16 article-title: Estimation of suspended sediment concentration and yield using linear models, random forests and quantile regression forests publication-title: Hydrol. Process. doi: 10.1002/hyp.7110 – volume: 355 start-page: 106 issue: 1 year: 2008 ident: 2020032610223952100_HYDROLOGY-D-15-00264C21 article-title: Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake basin, China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2008.03.020 – volume: 34 start-page: 30 issue: 1 year: 2008 ident: 2020032610223952100_HYDROLOGY-D-15-00264C26 article-title: Impacts of the Yangtze River water transfer on the restoration of Lake Taihu publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2008.05.018 – volume-title: Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models (Complex Adaptive Systems) year: 2001 ident: 2020032610223952100_HYDROLOGY-D-15-00264C30 – volume: 12 start-page: 219 issue: 3 year: 1997 ident: 2020032610223952100_HYDROLOGY-D-15-00264C29 article-title: A study of the impact of the three Gorges Project on the water-level of Poyang Lake publication-title: J. Natural Resour. – volume: 129 start-page: 482 year: 2014 ident: 2020032610223952100_HYDROLOGY-D-15-00264C4 article-title: Multi-step-ahead time series prediction using multiple-output support vector regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.09.010 – volume: 36 start-page: 620 issue: 5 year: 2010 ident: 2020032610223952100_HYDROLOGY-D-15-00264C19 article-title: Sea water level forecasting using genetic programming and comparing the performance with artificial neural networks publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2009.09.014 – volume-title: R: A Language and Environment for Statistical Computing year: 2014 ident: 2020032610223952100_HYDROLOGY-D-15-00264C52 – volume: 46 start-page: 258 year: 2015 ident: 2020032610223952100_HYDROLOGY-D-15-00264C9 article-title: A comparative study of population-based optimization algorithms for downstream river flow forecasting by a hybrid neural network model publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2015.09.010 – volume: 71 start-page: 804 year: 2015 ident: 2020032610223952100_HYDROLOGY-D-15-00264C47 article-title: Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2015.01.001 – volume: 67 start-page: 699 issue: 5 year: 2012 ident: 2020032610223952100_HYDROLOGY-D-15-00264C23 article-title: Annual variations in climatic and hydrological processes and related flood and drought occurrences in the Poyang Lake Basin publication-title: Acta Geographica Sinica – volume: 19 start-page: 607 issue: 3 year: 2013 ident: 2020032610223952100_HYDROLOGY-D-15-00264C38 article-title: Hydrodynamic and hydrological modeling of the Poyang Lake catchment system in China publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0000835 – volume: 27 start-page: 3803 issue: 10 year: 2013 ident: 2020032610223952100_HYDROLOGY-D-15-00264C24 article-title: Daily forecasting of dam water levels: comparing a support vector machine (SVM) model with adaptive neuro fuzzy inference system (ANFIS) publication-title: Water Resour. Manage. doi: 10.1007/s11269-013-0382-4 – volume: 62 start-page: 341 year: 2012 ident: 2020032610223952100_HYDROLOGY-D-15-00264C43 article-title: Artificial neural networks modeling in water resources engineering: infrastructure and applications publication-title: Int. J. Soc. Human Sci. – volume: 613 start-page: 1 issue: 1 year: 2008 ident: 2020032610223952100_HYDROLOGY-D-15-00264C55 article-title: Ecological effects of water-level fluctuations in lakes: an urgent issue publication-title: Hydrobiologia doi: 10.1007/s10750-008-9466-1 – ident: 2020032610223952100_HYDROLOGY-D-15-00264C48 doi: 10.21236/ADA164453 – volume-title: Ensemble Machine Learning: Methods and Applications year: 2012 ident: 2020032610223952100_HYDROLOGY-D-15-00264C46 – volume: 25 start-page: 1143 issue: 4 year: 2011 ident: 2020032610223952100_HYDROLOGY-D-15-00264C53 article-title: Artificial neural network (ANN) based modeling for karstic groundwater level simulation publication-title: Water Resour. Manage. doi: 10.1007/s11269-010-9628-6 – volume: 16 start-page: 179 issue: 3 year: 2015 ident: 2020032610223952100_HYDROLOGY-D-15-00264C28 article-title: Combination of artificial neural network and clustering techniques for predicting phytoplankton biomass of Lake Poyang, China publication-title: Limnology doi: 10.1007/s10201-015-0454-7 – volume: 154 start-page: 86 year: 2015 ident: 2020032610223952100_HYDROLOGY-D-15-00264C33 article-title: Statistical analysis and ANN modeling for predicting hydrological extremes under climate change scenarios: the example of a small Mediterranean agro-watershed publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2015.02.034 – volume: 7 start-page: 2494 issue: 5 year: 2015 ident: 2020032610223952100_HYDROLOGY-D-15-00264C7 article-title: Seasonal river discharge forecasting using support vector regression: a case study in the Italian Alps publication-title: Water doi: 10.3390/w7052494 – volume: 396 start-page: 128 issue: 1 year: 2011 ident: 2020032610223952100_HYDROLOGY-D-15-00264C59 article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.11.002 – volume: 21 start-page: 399 issue: 2 year: 2007 ident: 2020032610223952100_HYDROLOGY-D-15-00264C1 article-title: Forecasting surface water level fluctuations of Lake Van by artificial neural networks publication-title: Water Resour. Manage. doi: 10.1007/s11269-006-9022-6 – volume: 33 start-page: 847 issue: 4 year: 2007 ident: 2020032610223952100_HYDROLOGY-D-15-00264C27 article-title: Credit scoring with a data mining approach based on support vector machines publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2006.07.007 – volume: 25 start-page: 13 issue: 1 year: 2015 ident: 2020032610223952100_HYDROLOGY-D-15-00264C37 article-title: Variation of floods characteristics and their responses to climate and human activities in Poyang Lake, China publication-title: Chinese Geogr. Sci. doi: 10.1007/s11769-014-0724-z – volume: 31 start-page: 2517 issue: 10 year: 1995 ident: 2020032610223952100_HYDROLOGY-D-15-00264C25 article-title: Artificial neural network modeling of the rainfall-runoff process publication-title: Water Resour. Res. doi: 10.1029/95WR01955 – volume: 51 start-page: 599 issue: 4 year: 2006 ident: 2020032610223952100_HYDROLOGY-D-15-00264C40 article-title: Using support vector machines for long-term discharge prediction publication-title: Hydrolog. Sci. J. doi: 10.1623/hysj.51.4.599 – volume: 52 start-page: 394 year: 2015 ident: 2020032610223952100_HYDROLOGY-D-15-00264C57 article-title: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2014.12.028 – volume: 85 start-page: 215 issue: 1 year: 2007 ident: 2020032610223952100_HYDROLOGY-D-15-00264C3 article-title: Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2006.09.009 – volume: 24 start-page: 93 issue: 2 year: 2005 ident: 2020032610223952100_HYDROLOGY-D-15-00264C15 article-title: Threefold vs. fivefold cross validation in one-hidden-layer and two-hidden-layer predictive neural network modeling of machining surface roughness data publication-title: J. Manuf. Syst. doi: 10.1016/S0278-6125(05)80010-X – volume: 70 start-page: 1488 issue: 9 year: 2014 ident: 2020032610223952100_HYDROLOGY-D-15-00264C36 article-title: Forecasting performance of support vector machine for the Poyang Lake's water level publication-title: Water Sci. Technol. doi: 10.2166/wst.2014.396 – volume: 39 start-page: 5189 issue: 5 year: 2012 ident: 2020032610223952100_HYDROLOGY-D-15-00264C56 article-title: Wavelet kernel support vector machines forecasting techniques: case study on water-level predictions during typhoons publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.11.020 – volume: 31 start-page: 2225 issue: 14 year: 2010 ident: 2020032610223952100_HYDROLOGY-D-15-00264C17 article-title: Variable selection using random forests publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2010.03.014 – volume: 7 start-page: 7957 issue: 5 year: 2010 ident: 2020032610223952100_HYDROLOGY-D-15-00264C14 article-title: Generalized versus non-generalized neural network model for multi-lead inflow forecasting at Aswan High Dam publication-title: Hydrol. Earth Syst. Sci. Discuss. doi: 10.5194/hessd-7-7957-2010 – volume: 46 start-page: 912 issue: 6 year: 2015 ident: 2020032610223952100_HYDROLOGY-D-15-00264C39 article-title: Investigating a complex lake–catchment–river system using artificial neural networks: Poyang Lake (China) publication-title: Hydrol. Res. doi: 10.2166/nh.2015.150 – volume: 42 issue: 3 year: 2006 ident: 2020032610223952100_HYDROLOGY-D-15-00264C32 article-title: Getting the right answers for the right reasons: linking measurements, analyses, and models to advance the science of hydrology publication-title: Water Resour. Res. doi: 10.1029/2005WR004362 – volume: 492 start-page: 228 year: 2013 ident: 2020032610223952100_HYDROLOGY-D-15-00264C35 article-title: Large-scale hydrodynamic modeling of the middle Yangtze River Basin with complex river–lake interactions publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.03.049 – volume: 25 start-page: 2525 issue: 10 year: 2011 ident: 2020032610223952100_HYDROLOGY-D-15-00264C51 article-title: Improved water level forecasting performance by using optimal steepness coefficients in an artificial neural network publication-title: Water Resour. Manage. doi: 10.1007/s11269-011-9824-z – volume: 12 start-page: 458 issue: 4 year: 2010 ident: 2020032610223952100_HYDROLOGY-D-15-00264C8 article-title: A hybrid model coupled with singular spectrum analysis for daily rainfall prediction publication-title: J. Hydroinform. doi: 10.2166/hydro.2010.032 – volume: 26 start-page: 1255 issue: 9 year: 2006 ident: 2020032610223952100_HYDROLOGY-D-15-00264C49 article-title: Flood frequency in China's Poyang Lake region: trends and teleconnections publication-title: Int. J. Climatol. doi: 10.1002/joc.1307 – volume: 25 start-page: 274 issue: 3 year: 2015 ident: 2020032610223952100_HYDROLOGY-D-15-00264C11 article-title: Non-stationary water-level fluctuation in China's Poyang Lake and its interactions with Yangtze River publication-title: J. Geogr. Sci. doi: 10.1007/s11442-015-1167-x – volume: 14 start-page: 199 issue: 3 year: 2004 ident: 2020032610223952100_HYDROLOGY-D-15-00264C50 article-title: A tutorial on support vector regression publication-title: Stat. Comput. doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 25 start-page: 80 issue: 1 year: 2001 ident: 2020032610223952100_HYDROLOGY-D-15-00264C13 article-title: Hydrological modelling using artificial neural networks publication-title: Prog. Phys. Geog. doi: 10.1177/030913330102500104 – volume: 22 start-page: 3488 issue: 17 year: 2008 ident: 2020032610223952100_HYDROLOGY-D-15-00264C34 article-title: Bayesian dynamic modelling for nonstationary hydroclimatic time series forecasting along with uncertainty quantification publication-title: Hydrol. Process. doi: 10.1002/hyp.6951 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 2020032610223952100_HYDROLOGY-D-15-00264C6 article-title: Random forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 529 start-page: 1060 year: 2015 ident: 2020032610223952100_HYDROLOGY-D-15-00264C18 article-title: Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.09.028 |
SSID | ssj0026493 ssj0061028 |
Score | 2.4623506 |
Snippet | Modeling of hydrological time series is essential for sustainable development and management of lake water resources. This study aims to develop an efficient... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 69 |
SubjectTerms | Accuracy Aquifers Artificial intelligence Artificial neural networks Carbon Case studies Computer simulation Daily forecasts Decision making Decision trees Discharge Explicit knowledge Forecasting Groundwater Hydrologic models Hydrology Information dissemination Lake water lake water level Lakes Mathematical models Mean square values Methods Neural networks poyang lake Precipitation random forests Regression analysis Resource management Rivers Root-mean-square errors Soft computing Statistical methods Statistical prediction Support vector machines support vector regression Sustainable development Time lag Time series Trends variable importance analysis Water levels Water management Water resources Water resources management |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLnCpCgV1C1Rz4IQU8HsTbhQVoapUPRSJm-VHDFWXLNrdquI39E93xsmuikDi0kMOSSaO5bH9faPxzDB2oHTmIou2kjbaSpuUqroJovI8WW-z9CFRvPPlV3txpT9fm-t_Sn3RmbA-PXA_cMc5IoCnoJGWRJ2EDFLogBhnVMw86xLmi5i3NKb6PdgSbBZ_coPL2VjVR-ZJYe1xRy4IYY-k1Y-wqKTsf7IjF5g5f8NeD_wQTvt-bbJXbbfF1odS5bcPb9mfs1XlQJhmQKhJ0ztA6omNzQHvoMRUAUUKlSTM2FpfJnpOUoAv4X5G7hlSCTUx8T9b-I2ccwYTOkJ0Ah4ighuU1LMkQd98mz747ga-kPCPDkrd7W12df7p-9lFNVRUqKJWfFFRrhiEcJGC5GNfh0xeV5_HY295VEEJmetEI9zEscALjR3fRtEqYVKDxovaYWvdtGvfMcgSyQL3oo7GotHT1MlylZXm0RpvjB2xw-XYujikG6eqFxOHZgcpwnW3jhThUBEjdrASvu-zbDwv9pGUtBKh1NjlAU4YN0wY99KEGbG9pYrdsF7nDnkuUkmF5sb7__GPXbZBfe6PveyxtcXsV7uP5GURPpR5-hfR7-pY priority: 102 providerName: Directory of Open Access Journals |
Title | Comparison of random forests and other statistical methods for the prediction of lake water level: a case study of the Poyang Lake in China |
URI | https://www.proquest.com/docview/1925453882 https://doaj.org/article/fc929db4533c4d12b214b91053cf0f48 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BTtwwELXocqCXCihVtwU0B06VAnYce7NcECAQQoBQVSRulmPHUHWbbHe3QnwDP82M412EWnHIIfHESjL2zJuMPY-xHVkELoKos1w7nRXK-6wcViKz3GurQ24rT_udL6_02U1xfqtu0w-3aVpWObeJ0VD71tE_8j1EIujsJQLCg_GfjFijKLuaKDTesWU0wWXZY8tHJ1fX3-e2WJP7jHnlIU5rpWW3Qy8XWu81lIoQejfXxSufFEv3_2OZo7s5XWUfEk6Ew06xa2ypbtbZSqIsv3_8yJ6OFwyC0AZAl-Pb34AQFDubAp5B3FsFtGMoFmPG3jq66ClJATbCeEJpGlINdTGyv2p4QOw5gREtJdoHCw6dHMQStCRB91y3j7a5gwsS_tlA5N_eYDenJz-Oz7LErJC5QvJZRjVj0JULX-V8YMsqUPbVhsHAau5kJUUeSmzD6MkNBB4Y9NjaiVoK5YcYxMhPrNe0Tf2ZQcgRNHArSqc0Bj_D0msugyy408oqpfvs2_zbGpfKjhP7xchg-EGKMM29IUUYVESf7SyEx121jf-LHZGSFiJUIjteaCd3Js04ExwiP1_hmJGu8CKn16kQHCnpAg9F2WebcxWbNG-n5mWUfXm7-St7T0_TLWzZZL3Z5G-9hfBkVm2nMbgdw_tnZR_kmQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9FAuqLxEoMAeygXJdB_2xqmEKlpapTSNKtRKvS3rXW9bNbVDElTlN_Bf-huZ8SMIgbj1kIOz45XtGc9869mZD2BTxYGLIPJIaqejOPE-SvuZiCz32uogbeap3vl4pAdn8Zfz5HwF7tpaGNpW2frEylH70tE38i1EIhjsFQLCncn3iFijKLvaUmjUZnGUL25xyTb7ePgZ9ftOyoP9071B1LAKRC5WfB5RvxQMY8JnkvdsmgXKPNrQ61nNncqUkCHFMVw5uJ7AHwJ-mzuRK5H4PgJ4hfM-gNVYaS47sLq7Pzr52vp-TeG6ymP30Y0kWtUVgVJovVVQ6kPoD1LHf8TAiirgr0hQhbeDdXjU4FL2qTakx7CSF09graFIv1w8hZ97S8ZCVgaGIc6XNwwhL042Y3jEqlouRhVKVfNnnK2mp56RFMNBNplSWohMgaYY2-uc3SLWnbIxbV3aZpY5DKqsanlLEnTOSbmwxQUbkvBVwSq-72dwdi_P_Dl0irLIXwALEkEKtyJ1icbFVj_1mqugYu50YpNEd-F9-2yNa9qcE9vG2OByhxRhiktDijCoiC5sLoUndXePf4vtkpKWItSSu_qjnF6Y5g03wSHS9BnaqHKxF5JuJ0MwligXeIjTLmy0KjaNn5iZ31b98v_Db2FtcHo8NMPD0dEreEhXVm-q2YDOfPojf43QaJ69aeyRwbf7fgV-AVTsHpw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTgJeEH9FxwA_jBek0NhOnBQJIfan2tioKsSkvRnHjjdEl5S2aOpn4Bvx6bhzkiIE4m0PeWh8tVLfxb_f9Xx3ADsy8TH3vIyEsipKUueifFjwyMROGeWFKRzlO38Yq8PT5P1ZerYBP7tcGDpW2e2JYaN2taX_yAfIRBDsJRLCgW-PRUz2R29n3yLqIEWR1q6dRmMix-XqCt23xZujfdT1CyFGB5_2DqO2w0BkExkvI6qdgpDGXSHizOSFpyik8VlmVGxlIbnwOY6hF2EzjheSf1NaXkqeuiGSeYnz3oDNjLyiHmzuHownHzscUATdIaY9xC0lVbLJDhRcqUFFYRCuXgmV_IGHoW3AX6gQoG50F-60HJW9a4zqHmyU1X241bZLv1g9gB976-6FrPYM4c7VlwzpL062YPiJhbwuRtlKoRA0zta0ql6QFMNBNptTiIjMgqaYmq8lu0LeO2dTOsb0mhlmEWBZKH9LEvSdSb0y1Tk7IeEvFQu9vx_C6bWs-SPoVXVVPgbmBRKW2PDcpgodr2HuVCy9TGKrUpOmqg8vu7XVti15Tp03phpdH1KEri40KUKjIvqwsxaeNZU-_i22S0pai1B57nCjnp_r9m3X3iLrdAXaq7SJ44J-ToHELJXWxz7J-7DdqVi3e8ZC_7bwrf8PP4ebaPr65Gh8_ARu04M152u2obecfy-fIktaFs9ac2Tw-brfgF-rtyLR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+random+forests+and+other+statistical+methods+for+the+prediction+of+lake+water+level%3A+a+case+study+of+the+Poyang+Lake+in+China&rft.jtitle=Hydrology+research&rft.au=Li%2C+Bing&rft.au=Yang%2C+Guishan&rft.au=Wan%2C+Rongrong&rft.au=Dai%2C+Xue&rft.date=2016-12-01&rft.pub=IWA+Publishing&rft.issn=1998-9563&rft.eissn=2224-7955&rft.volume=47&rft.issue=S1&rft.spage=69&rft_id=info:doi/10.2166%2Fnh.2016.264&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-1277&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-1277&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-1277&client=summon |