Independent Vector Analysis for Feature Extraction in Motor Imagery Classification

Independent vector analysis (IVA) can be viewed as an extension of independent component analysis (ICA) to multiple datasets. It exploits the statistical dependency between different datasets through mutual information. In the context of motor imagery classification based on electroencephalogram (EE...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 16; p. 5428
Main Authors Moraes, Caroline Pires Alavez, dos Santos, Lucas Heck, Fantinato, Denis Gustavo, Neves, Aline, Adali, Tülay
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 22.08.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Independent vector analysis (IVA) can be viewed as an extension of independent component analysis (ICA) to multiple datasets. It exploits the statistical dependency between different datasets through mutual information. In the context of motor imagery classification based on electroencephalogram (EEG) signals for the brain–computer interface (BCI), several methods have been proposed to extract features efficiently, mainly based on common spatial patterns, filter banks, and deep learning. However, most methods use only one dataset at a time, which may not be sufficient for dealing with a multi-source retrieving problem in certain scenarios. From this perspective, this paper proposes an original approach for feature extraction through multiple datasets based on IVA to improve the classification of EEG-based motor imagery movements. The IVA components were used as features to classify imagined movements using consolidated classifiers (support vector machines and K-nearest neighbors) and deep classifiers (EEGNet and EEGInception). The results show an interesting performance concerning the clustering of MI-based BCI patients, and the proposed method reached an average accuracy of 86.7%.
AbstractList Independent vector analysis (IVA) can be viewed as an extension of independent component analysis (ICA) to multiple datasets. It exploits the statistical dependency between different datasets through mutual information. In the context of motor imagery classification based on electroencephalogram (EEG) signals for the brain–computer interface (BCI), several methods have been proposed to extract features efficiently, mainly based on common spatial patterns, filter banks, and deep learning. However, most methods use only one dataset at a time, which may not be sufficient for dealing with a multi-source retrieving problem in certain scenarios. From this perspective, this paper proposes an original approach for feature extraction through multiple datasets based on IVA to improve the classification of EEG-based motor imagery movements. The IVA components were used as features to classify imagined movements using consolidated classifiers (support vector machines and K-nearest neighbors) and deep classifiers (EEGNet and EEGInception). The results show an interesting performance concerning the clustering of MI-based BCI patients, and the proposed method reached an average accuracy of 86.7%.
Independent vector analysis (IVA) can be viewed as an extension of independent component analysis (ICA) to multiple datasets. It exploits the statistical dependency between different datasets through mutual information. In the context of motor imagery classification based on electroencephalogram (EEG) signals for the brain–computer interface (BCI), several methods have been proposed to extract features efficiently, mainly based on common spatial patterns, filter banks, and deep learning. However, most methods use only one dataset at a time, which may not be sufficient for dealing with a multi-source retrieving problem in certain scenarios. From this perspective, this paper proposes an original approach for feature extraction through multiple datasets based on IVA to improve the classification of EEG-based motor imagery movements. The IVA components were used as features to classify imagined movements using consolidated classifiers (support vector machines and K-nearest neighbors) and deep classifiers (EEGNet and EEGInception). The results show an interesting performance concerning the clustering of MI-based BCI patients, and the proposed method reached an average accuracy of 86.7 % .
Independent vector analysis (IVA) can be viewed as an extension of independent component analysis (ICA) to multiple datasets. It exploits the statistical dependency between different datasets through mutual information. In the context of motor imagery classification based on electroencephalogram (EEG) signals for the brain-computer interface (BCI), several methods have been proposed to extract features efficiently, mainly based on common spatial patterns, filter banks, and deep learning. However, most methods use only one dataset at a time, which may not be sufficient for dealing with a multi-source retrieving problem in certain scenarios. From this perspective, this paper proposes an original approach for feature extraction through multiple datasets based on IVA to improve the classification of EEG-based motor imagery movements. The IVA components were used as features to classify imagined movements using consolidated classifiers (support vector machines and K-nearest neighbors) and deep classifiers (EEGNet and EEGInception). The results show an interesting performance concerning the clustering of MI-based BCI patients, and the proposed method reached an average accuracy of 86.7%.Independent vector analysis (IVA) can be viewed as an extension of independent component analysis (ICA) to multiple datasets. It exploits the statistical dependency between different datasets through mutual information. In the context of motor imagery classification based on electroencephalogram (EEG) signals for the brain-computer interface (BCI), several methods have been proposed to extract features efficiently, mainly based on common spatial patterns, filter banks, and deep learning. However, most methods use only one dataset at a time, which may not be sufficient for dealing with a multi-source retrieving problem in certain scenarios. From this perspective, this paper proposes an original approach for feature extraction through multiple datasets based on IVA to improve the classification of EEG-based motor imagery movements. The IVA components were used as features to classify imagined movements using consolidated classifiers (support vector machines and K-nearest neighbors) and deep classifiers (EEGNet and EEGInception). The results show an interesting performance concerning the clustering of MI-based BCI patients, and the proposed method reached an average accuracy of 86.7%.
Author Fantinato, Denis Gustavo
dos Santos, Lucas Heck
Neves, Aline
Adali, Tülay
Moraes, Caroline Pires Alavez
AuthorAffiliation 3 Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County (UMBC), Baltimore, MD 21250, USA; adali@umbc.edu
1 Center for Engineering, Modeling and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André 09280-560, SP, Brazil; heck.l@ufabc.edu.br (L.H.d.S.); aline.neves@ufabc.edu.br (A.N.)
2 Department of Computer Engineering and Automation (DCA), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-852, SP, Brazil; denisf@unicamp.br
AuthorAffiliation_xml – name: 2 Department of Computer Engineering and Automation (DCA), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-852, SP, Brazil; denisf@unicamp.br
– name: 3 Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County (UMBC), Baltimore, MD 21250, USA; adali@umbc.edu
– name: 1 Center for Engineering, Modeling and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André 09280-560, SP, Brazil; heck.l@ufabc.edu.br (L.H.d.S.); aline.neves@ufabc.edu.br (A.N.)
Author_xml – sequence: 1
  givenname: Caroline Pires Alavez
  orcidid: 0000-0001-7175-0966
  surname: Moraes
  fullname: Moraes, Caroline Pires Alavez
– sequence: 2
  givenname: Lucas Heck
  orcidid: 0000-0002-8789-8938
  surname: dos Santos
  fullname: dos Santos, Lucas Heck
– sequence: 3
  givenname: Denis Gustavo
  orcidid: 0000-0002-5009-3431
  surname: Fantinato
  fullname: Fantinato, Denis Gustavo
– sequence: 4
  givenname: Aline
  orcidid: 0000-0002-0924-2036
  surname: Neves
  fullname: Neves, Aline
– sequence: 5
  givenname: Tülay
  orcidid: 0000-0003-0594-2796
  surname: Adali
  fullname: Adali, Tülay
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39205122$$D View this record in MEDLINE/PubMed
BookMark eNpdkktvEzEQgC3Uij7gwB9AK3GhhxQ_d-0TqqK2RCpCQsDVmvWOg6PNOti7qPn3dZoStVzGY8-nT6PxnJGjIQ5IyDtGL4Uw9FPmktVKcv2KnDLJ5UxzTo-e5SfkLOcVpVwIoV-TE2E4VYzzU_J9MXS4wRKGsfqFboypuhqg3-aQK18uNwjjlLC6vh8TuDHEoQpD9TXuwMUalpi21byHnIMPDnb1N-TYQ5_x7dN5Tn7eXP-Yf5ndfbtdzK_uZk4KOs64AlTIGs3Qce0Y1ChazTyFDmnrusZxrn1tgIJkstXItEDlHNQdbTovxTlZ7L1dhJXdpLCGtLURgn18iGlpIY3B9WiLR9e1V6YFJ5mvQavWUNHKRnnN6qa4Pu9dm6ldY-fKNBL0L6QvK0P4bZfxr2VMKGOEKYaPT4YU_0yYR7sO2WHfw4BxylZQYxpTU6kK-uE_dBWnVIb-SGnONJeiUO-ft3To5d_fFeBiD7gUc07oDwijdrcX9rAX4gF5hKml
Cites_doi 10.2307/1403797
10.1016/j.neucom.2016.08.082
10.3390/s19061423
10.1002/hbm.23730
10.1088/1741-2560/13/2/026002
10.1109/TBME.2024.3364704
10.1016/j.neuroimage.2011.10.010
10.3389/fnsys.2014.00106
10.1053/apmr.2001.24286
10.1109/ICASSP43922.2022.9747224
10.1088/1741-2552/aace8c
10.1109/TSP.2006.889983
10.1109/ICASSP49357.2023.10096698
10.1007/11679363_21
10.1111/spc3.12257
10.1016/j.actpsy.2014.02.011
10.1109/MSP.2014.2300511
10.1109/TSP.2011.2181836
10.1109/MIS.2008.41
10.1109/ICASSP48485.2024.10447397
10.1016/j.neures.2021.09.002
10.1088/1741-2552/aca220
10.1109/ICASSP.2013.6638234
10.1109/TNSRE.2020.3048106
10.1016/j.compbiomed.2015.02.010
10.1109/ACCESS.2021.3110882
10.1109/TIM.2016.2608479
10.3389/fnins.2018.00525
10.1016/j.neuroimage.2007.11.019
10.1109/TNSRE.2020.2987709
10.1109/86.712230
10.1109/EHB47216.2019.8969877
10.1109/ICASSP49357.2023.10095727
10.1016/0167-6911(88)90082-5
10.1016/S0013-4694(97)00080-1
10.1109/TBME.2004.826692
10.1109/JPROC.2015.2461624
10.1016/j.jmva.2008.03.001
10.1016/j.bspc.2016.09.007
10.1016/j.jneumeth.2015.03.019
10.1109/EMBC.2012.6346299
10.1113/jphysiol.2006.125948
10.1109/BCI51272.2021.9385291
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s24165428
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_8f6866f59bac41f6a85b903b475f8167
PMC11359939
39205122
10_3390_s24165428
Genre Journal Article
GrantInformation_xml – fundername: São Paulo Research Foundation (FAPESP)
  grantid: 2023/00640-1
– fundername: US National Science Foundation (NSF)
  grantid: 2316420
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
  grantid: 88887.595656/2020-00
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  grantid: 88887.595656/2020-00
– fundername: US National Science Foundation
  grantid: NSF-2316420
– fundername: São Paulo Research Foundation
  grantid: 2023/00640-1
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c430t-25ae5e1781ec28c1a6e3b81f0ade0bcd7c228f69a0a414b8e183e5cca6d07df43
IEDL.DBID 7X7
ISSN 1424-8220
IngestDate Wed Aug 27 01:24:13 EDT 2025
Thu Aug 21 18:31:52 EDT 2025
Fri Jul 11 11:35:06 EDT 2025
Sat Jul 26 02:41:19 EDT 2025
Wed Feb 19 02:04:41 EST 2025
Tue Jul 01 03:51:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords brain–computer interface
motor imagery
independent vector analysis
electroencephalogram
autoregressive model
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-25ae5e1781ec28c1a6e3b81f0ade0bcd7c228f69a0a414b8e183e5cca6d07df43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0924-2036
0000-0001-7175-0966
0000-0002-8789-8938
0000-0002-5009-3431
0000-0003-0594-2796
OpenAccessLink https://www.proquest.com/docview/3098218243?pq-origsite=%requestingapplication%
PMID 39205122
PQID 3098218243
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_8f6866f59bac41f6a85b903b475f8167
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11359939
proquest_miscellaneous_3099796045
proquest_journals_3098218243
pubmed_primary_39205122
crossref_primary_10_3390_s24165428
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240822
PublicationDateYYYYMMDD 2024-08-22
PublicationDate_xml – month: 8
  year: 2024
  text: 20240822
  day: 22
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Hou (ref_14) 2022; 176
Li (ref_29) 2007; 55
Wolpaw (ref_1) 2007; 579
Pfurtscheller (ref_8) 1997; 103
Debarnot (ref_11) 2014; 149
Allen (ref_24) 2012; 59
Adali (ref_19) 2014; 31
Blankertz (ref_38) 2004; 51
Pfurtscheller (ref_32) 1998; 6
ref_34
Lu (ref_12) 2015; 60
ref_30
Tiwari (ref_40) 2021; 9
Belyaeva (ref_46) 2024; 71
Wang (ref_20) 2020; 28
ref_39
ref_16
Lawhern (ref_36) 2018; 15
Kargin (ref_31) 2008; 99
Laney (ref_27) 2015; 247
Jackson (ref_9) 2001; 82
Kevric (ref_15) 2017; 31
Adali (ref_21) 2015; 103
Rommel (ref_42) 2022; 19
Fix (ref_35) 1989; 57
Hornero (ref_37) 2020; 28
ref_25
Adali (ref_45) 2018; 3
ref_23
Schirrmeister (ref_41) 2017; 38
ref_44
ref_43
Anderson (ref_17) 2011; 60
Kappes (ref_10) 2016; 10
ref_3
Stoica (ref_33) 1988; 11
Chen (ref_22) 2017; 66
ref_28
Nijholt (ref_2) 2008; 23
ref_26
Lee (ref_18) 2008; 40
ref_5
ref_7
Ameri (ref_13) 2016; 218
Geronimo (ref_4) 2016; 13
ref_6
References_xml – volume: 57
  start-page: 238
  year: 1989
  ident: ref_35
  article-title: Discriminatory analysis. Nonparametric discrimination: Consistency properties
  publication-title: Int. Stat. Rev. Int. Stat.
  doi: 10.2307/1403797
– volume: 218
  start-page: 382
  year: 2016
  ident: ref_13
  article-title: Projective dictionary pair learning for EEG signal classification in brain computer interface applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.08.082
– ident: ref_30
– ident: ref_7
  doi: 10.3390/s19061423
– volume: 38
  start-page: 5391
  year: 2017
  ident: ref_41
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23730
– ident: ref_34
– volume: 13
  start-page: 026002
  year: 2016
  ident: ref_4
  article-title: Performance predictors of brain-computer interfaces in patients with amyotrophic lateral sclerosis
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/13/2/026002
– volume: 71
  start-page: 2189
  year: 2024
  ident: ref_46
  article-title: Learning Spatiotemporal Brain Dynamics in Adolescents via Multimodal MEG and fMRI Data Fusion Using Joint Tensor/Matrix Decomposition
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2024.3364704
– volume: 59
  start-page: 4141
  year: 2012
  ident: ref_24
  article-title: Capturing inter-subject variability with group independent component analysis of fMRI data: A simulation study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.010
– ident: ref_26
  doi: 10.3389/fnsys.2014.00106
– volume: 82
  start-page: 1133
  year: 2001
  ident: ref_9
  article-title: Potential role of mental practice using motor imagery in neurologic rehabilitation
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1053/apmr.2001.24286
– ident: ref_28
  doi: 10.1109/ICASSP43922.2022.9747224
– volume: 15
  start-page: 056013
  year: 2018
  ident: ref_36
  article-title: EEGNet: A compact convolutional neural network for EEG-based brain-computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aace8c
– volume: 55
  start-page: 1803
  year: 2007
  ident: ref_29
  article-title: Nonorthogonal joint diagonalization free of degenerate solution
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.889983
– ident: ref_43
  doi: 10.1109/ICASSP49357.2023.10096698
– ident: ref_16
  doi: 10.1007/11679363_21
– volume: 10
  start-page: 405
  year: 2016
  ident: ref_10
  article-title: Mental simulation as substitute for experience
  publication-title: Soc. Personal. Psychol. Compass
  doi: 10.1111/spc3.12257
– volume: 149
  start-page: 40
  year: 2014
  ident: ref_11
  article-title: When music tempo affects the temporal congruence between physical practice and motor imagery
  publication-title: Acta Psychol.
  doi: 10.1016/j.actpsy.2014.02.011
– volume: 31
  start-page: 18
  year: 2014
  ident: ref_19
  article-title: Diversity in independent component and vector analyses: Identifiability, algorithms, and applications in medical imaging
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2014.2300511
– volume: 60
  start-page: 1672
  year: 2011
  ident: ref_17
  article-title: Joint blind source separation with multivariate Gaussian model: Algorithms and performance analysis
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2011.2181836
– volume: 23
  start-page: 72
  year: 2008
  ident: ref_2
  article-title: Brain-Computer Interfacing for intelligent systems
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2008.41
– ident: ref_44
  doi: 10.1109/ICASSP48485.2024.10447397
– volume: 176
  start-page: 40
  year: 2022
  ident: ref_14
  article-title: A novel method for classification of multi-class motor imagery tasks based on feature fusion
  publication-title: Neurosci. Res.
  doi: 10.1016/j.neures.2021.09.002
– volume: 19
  start-page: 066020
  year: 2022
  ident: ref_42
  article-title: Data augmentation for learning predictive models on EEG: A systematic comparison
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aca220
– ident: ref_25
  doi: 10.1109/ICASSP.2013.6638234
– volume: 28
  start-page: 2773
  year: 2020
  ident: ref_37
  article-title: EEG-inception: A novel deep convolutional neural network for assistive ERP-based brain-computer interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.3048106
– volume: 60
  start-page: 32
  year: 2015
  ident: ref_12
  article-title: Structure constrained semi-nonnegative matrix factorization for EEG-based motor imagery classification
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.02.010
– volume: 9
  start-page: 126698
  year: 2021
  ident: ref_40
  article-title: A novel channel selection method for BCI classification using dynamic channel relevance
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3110882
– volume: 66
  start-page: 1770
  year: 2017
  ident: ref_22
  article-title: Independent vector analysis applied to remove muscle artifacts in EEG data
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2016.2608479
– ident: ref_23
  doi: 10.3389/fnins.2018.00525
– volume: 40
  start-page: 86
  year: 2008
  ident: ref_18
  article-title: Independent vector analysis (IVA): Multivariate approach for fMRI group study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.11.019
– volume: 28
  start-page: 1271
  year: 2020
  ident: ref_20
  article-title: High-density surface EMG denoising using independent vector analysis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.2987709
– volume: 6
  start-page: 316
  year: 1998
  ident: ref_32
  article-title: Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.712230
– ident: ref_5
  doi: 10.1109/EHB47216.2019.8969877
– ident: ref_39
  doi: 10.1109/ICASSP49357.2023.10095727
– volume: 11
  start-page: 99
  year: 1988
  ident: ref_33
  article-title: A high-order Yule-Walker method for estimation of the AR parameters of an ARMA model
  publication-title: Syst. Control Lett.
  doi: 10.1016/0167-6911(88)90082-5
– volume: 103
  start-page: 642
  year: 1997
  ident: ref_8
  article-title: EEG-based discrimination between imagination of right and left hand movement
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/S0013-4694(97)00080-1
– volume: 3
  start-page: 7100404
  year: 2018
  ident: ref_45
  article-title: ICA and IVA for data fusion: An overview and a new approach based on disjoint subspaces
  publication-title: IEEE Sens. Lett.
– volume: 51
  start-page: 1044
  year: 2004
  ident: ref_38
  article-title: The BCI competition 2003: Progress and perspectives in detection and discrimination of EEG single trials
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.826692
– volume: 103
  start-page: 1478
  year: 2015
  ident: ref_21
  article-title: Multimodal data fusion using source separation: Two effective models based on ICA and IVA and their properties
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2461624
– volume: 99
  start-page: 2508
  year: 2008
  ident: ref_31
  article-title: Curve forecasting by functional autoregression
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2008.03.001
– volume: 31
  start-page: 398
  year: 2017
  ident: ref_15
  article-title: Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.09.007
– volume: 247
  start-page: 32
  year: 2015
  ident: ref_27
  article-title: Capturing subject variability in fMRI data: A graph-theoretical analysis of GICA vs. IVA
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.03.019
– ident: ref_6
  doi: 10.1109/EMBC.2012.6346299
– volume: 579
  start-page: 613
  year: 2007
  ident: ref_1
  article-title: Brain-Computer Interfaces as new brain output pathways
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2006.125948
– ident: ref_3
  doi: 10.1109/BCI51272.2021.9385291
SSID ssj0023338
Score 2.4263673
Snippet Independent vector analysis (IVA) can be viewed as an extension of independent component analysis (ICA) to multiple datasets. It exploits the statistical...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 5428
SubjectTerms Accuracy
Algorithms
autoregressive model
Brain-Computer Interfaces
brain–computer interface
Classification
Datasets
Dependence
electroencephalogram
Electroencephalography
Electroencephalography - methods
Entropy
Humans
Imagination - physiology
independent vector analysis
Methods
motor imagery
Movement - physiology
Signal Processing, Computer-Assisted
Support Vector Machine
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB2hPcEB7QK7hC3IIK5RE3_FOQJq1SKVA6Kot8hxHNHDpqtuKsG_Z8b5UIOQuHCNLcWZF3veS-w3AO-FtnS-mse2ciKWzuiYDqXFiVelQnruffAt2HzRq638vFO7s1JftCesswfuAjc3tTZa1yovrZNpra1RZZ6IUmaqNngXWn0x5w1iqpdaApVX5yMkUNTPHzBPUWUmM8k-waT_b8zyzw2SZxlneQlPe6rIPnRDvIJHvnkGT84MBJ_D1_VYxbZl38MHeDbYjDCko4wY3uno2eJne-yOMLB9wzYH6ri-I_-KXyzUxaQdQwGkF7BdLr59WsV9lYTYSZG0MVfWK59mJvWOG5da7UVp0jqxlU9KV2WOcwxibhMrU1kaj5PYKwROV0lW1VJcw0VzaPxLYEJXFdnnKK9IyDgrRa0kSihrbS6kjeDdEL3ivjPDKFBEUIiLMcQRfKS4jh3IvzpcQFSLHtXiX6hGMBtQKfpJ9VCIJDdkOC9FBG_HZpwO9I_DNv5wCn3yjAxnVAQ3HYjjSJAK4hLEeQRmAu9kqNOWZv8jWG6nqVDI5PJX_-PhbuExR2pEX6Y5n8FFezz510ht2vJNeIt_A-Q698I
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5RuNADKvSVllam4hqa-BXnUCGKQIC0PVRsxS1yHIcitVkashL8-844m4hUqLcomcNoxhN_nx_fAOwLbel-NY9t5UQsndExXUqLE69KhfDc-6BbMPumz-by4kpdrcHQY3MVwLsnqR31k5q3vw7u_zwcYsF_IcaJlP3zHc5C1HfJPIMNfMyoPmdy3EzgAmlYLyo0NZ9MRUGx_ymY-e9pyUfTz-kL2FrhRnbUJ3ob1nyzA88fqQm-hO_nY0vbjv0Iq_Fs0BxhiE0Zwb1l69nJfdf29xnYTcNmCzI8_01iFg8sNMmk40MhY69gfnpyeXwWr1omxE6KpIu5sl75NDOpd9y41GovSpPWia18Uroqc5ybWuc2sTKVpfFY0V5hFnWVZFUtxWtYbxaNfwtM6KoiLR3lFbEaZ6WolUQ-Za3NhbQRfBqiV9z2yhgFMgoKcTGGOIKvFNfRgMSsw4tFe12saqNAh4zWtcpL62Raa2tUmSeilJmqDQ6kCHaHrBTDAClEkhtSn5cigr3xM9YGbXjYxi-WwSbPSH1GRfCmT-LoCeJC_B9xHoGZpHfi6vRLc_Mz6G-nqVAI6_J3__frPWxyREC0AM35Lqx37dJ_QATTlR_D-PwL-9PxHg
  priority: 102
  providerName: Scholars Portal
Title Independent Vector Analysis for Feature Extraction in Motor Imagery Classification
URI https://www.ncbi.nlm.nih.gov/pubmed/39205122
https://www.proquest.com/docview/3098218243
https://www.proquest.com/docview/3099796045
https://pubmed.ncbi.nlm.nih.gov/PMC11359939
https://doaj.org/article/8f6866f59bac41f6a85b903b475f8167
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be4FDxZuUsjKIa9TErziniqJdWqStUEXR3iLHcUoPJGU3K8G_74yTTbtVxcWHxIfRjMf-Zjz-BuCT0JbeV_PYVk7E0hkd06O0OPGqVAjPvQ-8BfMzfXIhvy3UYki4rYayys2eGDbqqnWUIz8USW6IbVyKo-s_MXWNotvVoYXGY9gl6jIq6coWtwGXwPirZxMSGNofrvC0ov5MZusMClT9D-HL-2WSd86d2TPYGwAj-9xb-Dk88s0LeHqHRvAlnJ-OvWw79jOk4dmGbIQhKGWE89ZLz6Z_u2X_kIFdNWze0sTT38Ri8Y-F7phUNxRM9QouZtMfX07ioVdC7KRIupgr65VPM5N6x41LrfaiNGmd2Monpasyx7mpdW4TK1NZGo-u7BWaT1dJVtVSvIadpm38W2BCVxWR6CivKJxxVopaSQykrLW5kDaCjxvtFdc9JUaBoQSpuBhVHMEx6XWcQCzW4UO7vCwGpyhQIKN1rfLSOpnW2hpV5okoZaZqgysogoONVYrBtVbF7UKI4MP4G52Cbjps49t1mJNnRDujInjTG3GUBAEhbkScR2C2zLsl6vaf5upXIN5OU6EQz-X7_5frHTzhCH0o88z5Aex0y7V_j9ClKydhfeJoZl8nsHs8Pft-PglpABzn0twAeG70Ag
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEG8CBQyCY1THj8Q5IMSj1S7t9oBatLfgOA700KTsZgX9U_xGZpzNtosQt14TK5rMw_7G9nwD8EqmluqrRWwrJ2PlTBpTUVrMvS41wnPvA2_B5DAdHatPUz3dgN9DLQxdqxzmxDBRV62jPfIdyXNDbONKvj37EVPXKDpdHVpo9G6x789_Yso2fzP-iPZ9LcTe7tGHUbzsKhA7JXkXC2299klmEu-EcYlNvSxNUnNbeV66KnNCmDrNLbcqUaXx6PRe44-mFc-qWkn87jW4jgsvp4jKphcJnsR8r2cvkjLnO3NcHakflFlb80JrgH_h2b-vZV5a5_Zuw60lQGXveo-6Axu-uQtbl2gL78Hn8ap3bse-hG1_NpCbMATBjHDlYubZ7q9u1hdOsJOGTVoaOD4l1oxzFrpx0j2l4Br34fhKtPgANpu28Y-AybSqiLRHe03pk7NK1lph4matzaWyEbwctFec9RQcBaYupOJipeII3pNeVwOINTs8aGffimUQFiiQSdNa56V1KqlTa3SZc1mqTNcGPTaC7cEqxTKU58WF40XwYvUag5BOVmzj20UYk2dEc6MjeNgbcSUJAlCc-ISIwKyZd03U9TfNyfdA9J0kUiN-zB__X67ncGN0NDkoDsaH-0_gpkDYRbveQmzDZjdb-KcIm7ryWfBVBl-vOjj-AN8WLhE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiF6QLwJFDAIjtEmfsU5IAS0qy6lFUIU7S04iUN7ICm7WUH_Gr-OGefRLkLceo2taDIP-5vY8w3AC6Et1Vfz0JaFCGVhdEhFaWHkVK4QnjvneQsODvXekXw_V_MN-D3UwtC1ymFN9At12RT0j3wiotQQ27gUk6q_FvFxZ_r69EdIHaTopHVop9G5yL47-4np2_LVbAdt_ZLz6e7nd3th32EgLKSI2pAr65SLExO7gpsittqJ3MRVZEsX5UWZFJybSqc2sjKWuXEYAE7hR-sySspKCnzvFbiaCBVTjCXz82RPYO7XMRkJkUaTJe6U1BvKrO1_vk3Av7Dt31c0L-x505twower7E3nXbdgw9W3YesCheEd-DQb--i27Is_AmAD0QlDQMwIY64Wju3-ahddEQU7qdlBQxNn34lB44z5zpx0Z8m7yV04uhQt3oPNuqndA2BClyUR-CinKJUqrBSVkpjEWWtTIW0AzwftZacdHUeGaQypOBtVHMBb0us4gRi0_YNm8S3rAzJDgYzWlUpzW8i40taoPI1ELhNVGfTeALYHq2R9WC-zcycM4Nk4jAFJpyy2ds3Kz0kTorxRAdzvjDhKgmAUF0HOAzBr5l0TdX2kPjn2pN9xLBRiyfTh_-V6CtcwLLIPs8P9R3CdIwKjH-Ccb8Nmu1i5x4ig2vyJd1UGXy87Nv4AlTIyRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Independent+Vector+Analysis+for+Feature+Extraction+in+Motor+Imagery+Classification&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Caroline+Pires+Alavez+Moraes&rft.au=Lucas+Heck+dos+Santos&rft.au=Fantinato%2C+Denis+Gustavo&rft.au=Neves%2C+Aline&rft.date=2024-08-22&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=16&rft.spage=5428&rft_id=info:doi/10.3390%2Fs24165428&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon