Independent Vector Analysis for Feature Extraction in Motor Imagery Classification
Independent vector analysis (IVA) can be viewed as an extension of independent component analysis (ICA) to multiple datasets. It exploits the statistical dependency between different datasets through mutual information. In the context of motor imagery classification based on electroencephalogram (EE...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 16; p. 5428 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
22.08.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Independent vector analysis (IVA) can be viewed as an extension of independent component analysis (ICA) to multiple datasets. It exploits the statistical dependency between different datasets through mutual information. In the context of motor imagery classification based on electroencephalogram (EEG) signals for the brain–computer interface (BCI), several methods have been proposed to extract features efficiently, mainly based on common spatial patterns, filter banks, and deep learning. However, most methods use only one dataset at a time, which may not be sufficient for dealing with a multi-source retrieving problem in certain scenarios. From this perspective, this paper proposes an original approach for feature extraction through multiple datasets based on IVA to improve the classification of EEG-based motor imagery movements. The IVA components were used as features to classify imagined movements using consolidated classifiers (support vector machines and K-nearest neighbors) and deep classifiers (EEGNet and EEGInception). The results show an interesting performance concerning the clustering of MI-based BCI patients, and the proposed method reached an average accuracy of 86.7%. |
---|---|
AbstractList | Independent vector analysis (IVA) can be viewed as an extension of independent component analysis (ICA) to multiple datasets. It exploits the statistical dependency between different datasets through mutual information. In the context of motor imagery classification based on electroencephalogram (EEG) signals for the brain–computer interface (BCI), several methods have been proposed to extract features efficiently, mainly based on common spatial patterns, filter banks, and deep learning. However, most methods use only one dataset at a time, which may not be sufficient for dealing with a multi-source retrieving problem in certain scenarios. From this perspective, this paper proposes an original approach for feature extraction through multiple datasets based on IVA to improve the classification of EEG-based motor imagery movements. The IVA components were used as features to classify imagined movements using consolidated classifiers (support vector machines and K-nearest neighbors) and deep classifiers (EEGNet and EEGInception). The results show an interesting performance concerning the clustering of MI-based BCI patients, and the proposed method reached an average accuracy of 86.7%. Independent vector analysis (IVA) can be viewed as an extension of independent component analysis (ICA) to multiple datasets. It exploits the statistical dependency between different datasets through mutual information. In the context of motor imagery classification based on electroencephalogram (EEG) signals for the brain–computer interface (BCI), several methods have been proposed to extract features efficiently, mainly based on common spatial patterns, filter banks, and deep learning. However, most methods use only one dataset at a time, which may not be sufficient for dealing with a multi-source retrieving problem in certain scenarios. From this perspective, this paper proposes an original approach for feature extraction through multiple datasets based on IVA to improve the classification of EEG-based motor imagery movements. The IVA components were used as features to classify imagined movements using consolidated classifiers (support vector machines and K-nearest neighbors) and deep classifiers (EEGNet and EEGInception). The results show an interesting performance concerning the clustering of MI-based BCI patients, and the proposed method reached an average accuracy of 86.7 % . Independent vector analysis (IVA) can be viewed as an extension of independent component analysis (ICA) to multiple datasets. It exploits the statistical dependency between different datasets through mutual information. In the context of motor imagery classification based on electroencephalogram (EEG) signals for the brain-computer interface (BCI), several methods have been proposed to extract features efficiently, mainly based on common spatial patterns, filter banks, and deep learning. However, most methods use only one dataset at a time, which may not be sufficient for dealing with a multi-source retrieving problem in certain scenarios. From this perspective, this paper proposes an original approach for feature extraction through multiple datasets based on IVA to improve the classification of EEG-based motor imagery movements. The IVA components were used as features to classify imagined movements using consolidated classifiers (support vector machines and K-nearest neighbors) and deep classifiers (EEGNet and EEGInception). The results show an interesting performance concerning the clustering of MI-based BCI patients, and the proposed method reached an average accuracy of 86.7%.Independent vector analysis (IVA) can be viewed as an extension of independent component analysis (ICA) to multiple datasets. It exploits the statistical dependency between different datasets through mutual information. In the context of motor imagery classification based on electroencephalogram (EEG) signals for the brain-computer interface (BCI), several methods have been proposed to extract features efficiently, mainly based on common spatial patterns, filter banks, and deep learning. However, most methods use only one dataset at a time, which may not be sufficient for dealing with a multi-source retrieving problem in certain scenarios. From this perspective, this paper proposes an original approach for feature extraction through multiple datasets based on IVA to improve the classification of EEG-based motor imagery movements. The IVA components were used as features to classify imagined movements using consolidated classifiers (support vector machines and K-nearest neighbors) and deep classifiers (EEGNet and EEGInception). The results show an interesting performance concerning the clustering of MI-based BCI patients, and the proposed method reached an average accuracy of 86.7%. |
Author | Fantinato, Denis Gustavo dos Santos, Lucas Heck Neves, Aline Adali, Tülay Moraes, Caroline Pires Alavez |
AuthorAffiliation | 3 Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County (UMBC), Baltimore, MD 21250, USA; adali@umbc.edu 1 Center for Engineering, Modeling and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André 09280-560, SP, Brazil; heck.l@ufabc.edu.br (L.H.d.S.); aline.neves@ufabc.edu.br (A.N.) 2 Department of Computer Engineering and Automation (DCA), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-852, SP, Brazil; denisf@unicamp.br |
AuthorAffiliation_xml | – name: 2 Department of Computer Engineering and Automation (DCA), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-852, SP, Brazil; denisf@unicamp.br – name: 3 Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County (UMBC), Baltimore, MD 21250, USA; adali@umbc.edu – name: 1 Center for Engineering, Modeling and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André 09280-560, SP, Brazil; heck.l@ufabc.edu.br (L.H.d.S.); aline.neves@ufabc.edu.br (A.N.) |
Author_xml | – sequence: 1 givenname: Caroline Pires Alavez orcidid: 0000-0001-7175-0966 surname: Moraes fullname: Moraes, Caroline Pires Alavez – sequence: 2 givenname: Lucas Heck orcidid: 0000-0002-8789-8938 surname: dos Santos fullname: dos Santos, Lucas Heck – sequence: 3 givenname: Denis Gustavo orcidid: 0000-0002-5009-3431 surname: Fantinato fullname: Fantinato, Denis Gustavo – sequence: 4 givenname: Aline orcidid: 0000-0002-0924-2036 surname: Neves fullname: Neves, Aline – sequence: 5 givenname: Tülay orcidid: 0000-0003-0594-2796 surname: Adali fullname: Adali, Tülay |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39205122$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkktvEzEQgC3Uij7gwB9AK3GhhxQ_d-0TqqK2RCpCQsDVmvWOg6PNOti7qPn3dZoStVzGY8-nT6PxnJGjIQ5IyDtGL4Uw9FPmktVKcv2KnDLJ5UxzTo-e5SfkLOcVpVwIoV-TE2E4VYzzU_J9MXS4wRKGsfqFboypuhqg3-aQK18uNwjjlLC6vh8TuDHEoQpD9TXuwMUalpi21byHnIMPDnb1N-TYQ5_x7dN5Tn7eXP-Yf5ndfbtdzK_uZk4KOs64AlTIGs3Qce0Y1ChazTyFDmnrusZxrn1tgIJkstXItEDlHNQdbTovxTlZ7L1dhJXdpLCGtLURgn18iGlpIY3B9WiLR9e1V6YFJ5mvQavWUNHKRnnN6qa4Pu9dm6ldY-fKNBL0L6QvK0P4bZfxr2VMKGOEKYaPT4YU_0yYR7sO2WHfw4BxylZQYxpTU6kK-uE_dBWnVIb-SGnONJeiUO-ft3To5d_fFeBiD7gUc07oDwijdrcX9rAX4gF5hKml |
Cites_doi | 10.2307/1403797 10.1016/j.neucom.2016.08.082 10.3390/s19061423 10.1002/hbm.23730 10.1088/1741-2560/13/2/026002 10.1109/TBME.2024.3364704 10.1016/j.neuroimage.2011.10.010 10.3389/fnsys.2014.00106 10.1053/apmr.2001.24286 10.1109/ICASSP43922.2022.9747224 10.1088/1741-2552/aace8c 10.1109/TSP.2006.889983 10.1109/ICASSP49357.2023.10096698 10.1007/11679363_21 10.1111/spc3.12257 10.1016/j.actpsy.2014.02.011 10.1109/MSP.2014.2300511 10.1109/TSP.2011.2181836 10.1109/MIS.2008.41 10.1109/ICASSP48485.2024.10447397 10.1016/j.neures.2021.09.002 10.1088/1741-2552/aca220 10.1109/ICASSP.2013.6638234 10.1109/TNSRE.2020.3048106 10.1016/j.compbiomed.2015.02.010 10.1109/ACCESS.2021.3110882 10.1109/TIM.2016.2608479 10.3389/fnins.2018.00525 10.1016/j.neuroimage.2007.11.019 10.1109/TNSRE.2020.2987709 10.1109/86.712230 10.1109/EHB47216.2019.8969877 10.1109/ICASSP49357.2023.10095727 10.1016/0167-6911(88)90082-5 10.1016/S0013-4694(97)00080-1 10.1109/TBME.2004.826692 10.1109/JPROC.2015.2461624 10.1016/j.jmva.2008.03.001 10.1016/j.bspc.2016.09.007 10.1016/j.jneumeth.2015.03.019 10.1109/EMBC.2012.6346299 10.1113/jphysiol.2006.125948 10.1109/BCI51272.2021.9385291 |
ContentType | Journal Article |
Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s24165428 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_8f6866f59bac41f6a85b903b475f8167 PMC11359939 39205122 10_3390_s24165428 |
Genre | Journal Article |
GrantInformation_xml | – fundername: São Paulo Research Foundation (FAPESP) grantid: 2023/00640-1 – fundername: US National Science Foundation (NSF) grantid: 2316420 – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) grantid: 88887.595656/2020-00 – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior grantid: 88887.595656/2020-00 – fundername: US National Science Foundation grantid: NSF-2316420 – fundername: São Paulo Research Foundation grantid: 2023/00640-1 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c430t-25ae5e1781ec28c1a6e3b81f0ade0bcd7c228f69a0a414b8e183e5cca6d07df43 |
IEDL.DBID | 7X7 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:24:13 EDT 2025 Thu Aug 21 18:31:52 EDT 2025 Fri Jul 11 11:35:06 EDT 2025 Sat Jul 26 02:41:19 EDT 2025 Wed Feb 19 02:04:41 EST 2025 Tue Jul 01 03:51:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | brain–computer interface motor imagery independent vector analysis electroencephalogram autoregressive model |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c430t-25ae5e1781ec28c1a6e3b81f0ade0bcd7c228f69a0a414b8e183e5cca6d07df43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0924-2036 0000-0001-7175-0966 0000-0002-8789-8938 0000-0002-5009-3431 0000-0003-0594-2796 |
OpenAccessLink | https://www.proquest.com/docview/3098218243?pq-origsite=%requestingapplication% |
PMID | 39205122 |
PQID | 3098218243 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8f6866f59bac41f6a85b903b475f8167 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11359939 proquest_miscellaneous_3099796045 proquest_journals_3098218243 pubmed_primary_39205122 crossref_primary_10_3390_s24165428 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240822 |
PublicationDateYYYYMMDD | 2024-08-22 |
PublicationDate_xml | – month: 8 year: 2024 text: 20240822 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Hou (ref_14) 2022; 176 Li (ref_29) 2007; 55 Wolpaw (ref_1) 2007; 579 Pfurtscheller (ref_8) 1997; 103 Debarnot (ref_11) 2014; 149 Allen (ref_24) 2012; 59 Adali (ref_19) 2014; 31 Blankertz (ref_38) 2004; 51 Pfurtscheller (ref_32) 1998; 6 ref_34 Lu (ref_12) 2015; 60 ref_30 Tiwari (ref_40) 2021; 9 Belyaeva (ref_46) 2024; 71 Wang (ref_20) 2020; 28 ref_39 ref_16 Lawhern (ref_36) 2018; 15 Kargin (ref_31) 2008; 99 Laney (ref_27) 2015; 247 Jackson (ref_9) 2001; 82 Kevric (ref_15) 2017; 31 Adali (ref_21) 2015; 103 Rommel (ref_42) 2022; 19 Fix (ref_35) 1989; 57 Hornero (ref_37) 2020; 28 ref_25 Adali (ref_45) 2018; 3 ref_23 Schirrmeister (ref_41) 2017; 38 ref_44 ref_43 Anderson (ref_17) 2011; 60 Kappes (ref_10) 2016; 10 ref_3 Stoica (ref_33) 1988; 11 Chen (ref_22) 2017; 66 ref_28 Nijholt (ref_2) 2008; 23 ref_26 Lee (ref_18) 2008; 40 ref_5 ref_7 Ameri (ref_13) 2016; 218 Geronimo (ref_4) 2016; 13 ref_6 |
References_xml | – volume: 57 start-page: 238 year: 1989 ident: ref_35 article-title: Discriminatory analysis. Nonparametric discrimination: Consistency properties publication-title: Int. Stat. Rev. Int. Stat. doi: 10.2307/1403797 – volume: 218 start-page: 382 year: 2016 ident: ref_13 article-title: Projective dictionary pair learning for EEG signal classification in brain computer interface applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.08.082 – ident: ref_30 – ident: ref_7 doi: 10.3390/s19061423 – volume: 38 start-page: 5391 year: 2017 ident: ref_41 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23730 – ident: ref_34 – volume: 13 start-page: 026002 year: 2016 ident: ref_4 article-title: Performance predictors of brain-computer interfaces in patients with amyotrophic lateral sclerosis publication-title: J. Neural Eng. doi: 10.1088/1741-2560/13/2/026002 – volume: 71 start-page: 2189 year: 2024 ident: ref_46 article-title: Learning Spatiotemporal Brain Dynamics in Adolescents via Multimodal MEG and fMRI Data Fusion Using Joint Tensor/Matrix Decomposition publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2024.3364704 – volume: 59 start-page: 4141 year: 2012 ident: ref_24 article-title: Capturing inter-subject variability with group independent component analysis of fMRI data: A simulation study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.010 – ident: ref_26 doi: 10.3389/fnsys.2014.00106 – volume: 82 start-page: 1133 year: 2001 ident: ref_9 article-title: Potential role of mental practice using motor imagery in neurologic rehabilitation publication-title: Arch. Phys. Med. Rehabil. doi: 10.1053/apmr.2001.24286 – ident: ref_28 doi: 10.1109/ICASSP43922.2022.9747224 – volume: 15 start-page: 056013 year: 2018 ident: ref_36 article-title: EEGNet: A compact convolutional neural network for EEG-based brain-computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aace8c – volume: 55 start-page: 1803 year: 2007 ident: ref_29 article-title: Nonorthogonal joint diagonalization free of degenerate solution publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2006.889983 – ident: ref_43 doi: 10.1109/ICASSP49357.2023.10096698 – ident: ref_16 doi: 10.1007/11679363_21 – volume: 10 start-page: 405 year: 2016 ident: ref_10 article-title: Mental simulation as substitute for experience publication-title: Soc. Personal. Psychol. Compass doi: 10.1111/spc3.12257 – volume: 149 start-page: 40 year: 2014 ident: ref_11 article-title: When music tempo affects the temporal congruence between physical practice and motor imagery publication-title: Acta Psychol. doi: 10.1016/j.actpsy.2014.02.011 – volume: 31 start-page: 18 year: 2014 ident: ref_19 article-title: Diversity in independent component and vector analyses: Identifiability, algorithms, and applications in medical imaging publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2014.2300511 – volume: 60 start-page: 1672 year: 2011 ident: ref_17 article-title: Joint blind source separation with multivariate Gaussian model: Algorithms and performance analysis publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2011.2181836 – volume: 23 start-page: 72 year: 2008 ident: ref_2 article-title: Brain-Computer Interfacing for intelligent systems publication-title: IEEE Intell. Syst. doi: 10.1109/MIS.2008.41 – ident: ref_44 doi: 10.1109/ICASSP48485.2024.10447397 – volume: 176 start-page: 40 year: 2022 ident: ref_14 article-title: A novel method for classification of multi-class motor imagery tasks based on feature fusion publication-title: Neurosci. Res. doi: 10.1016/j.neures.2021.09.002 – volume: 19 start-page: 066020 year: 2022 ident: ref_42 article-title: Data augmentation for learning predictive models on EEG: A systematic comparison publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aca220 – ident: ref_25 doi: 10.1109/ICASSP.2013.6638234 – volume: 28 start-page: 2773 year: 2020 ident: ref_37 article-title: EEG-inception: A novel deep convolutional neural network for assistive ERP-based brain-computer interfaces publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.3048106 – volume: 60 start-page: 32 year: 2015 ident: ref_12 article-title: Structure constrained semi-nonnegative matrix factorization for EEG-based motor imagery classification publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2015.02.010 – volume: 9 start-page: 126698 year: 2021 ident: ref_40 article-title: A novel channel selection method for BCI classification using dynamic channel relevance publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3110882 – volume: 66 start-page: 1770 year: 2017 ident: ref_22 article-title: Independent vector analysis applied to remove muscle artifacts in EEG data publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2016.2608479 – ident: ref_23 doi: 10.3389/fnins.2018.00525 – volume: 40 start-page: 86 year: 2008 ident: ref_18 article-title: Independent vector analysis (IVA): Multivariate approach for fMRI group study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.11.019 – volume: 28 start-page: 1271 year: 2020 ident: ref_20 article-title: High-density surface EMG denoising using independent vector analysis publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.2987709 – volume: 6 start-page: 316 year: 1998 ident: ref_32 article-title: Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.712230 – ident: ref_5 doi: 10.1109/EHB47216.2019.8969877 – ident: ref_39 doi: 10.1109/ICASSP49357.2023.10095727 – volume: 11 start-page: 99 year: 1988 ident: ref_33 article-title: A high-order Yule-Walker method for estimation of the AR parameters of an ARMA model publication-title: Syst. Control Lett. doi: 10.1016/0167-6911(88)90082-5 – volume: 103 start-page: 642 year: 1997 ident: ref_8 article-title: EEG-based discrimination between imagination of right and left hand movement publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/S0013-4694(97)00080-1 – volume: 3 start-page: 7100404 year: 2018 ident: ref_45 article-title: ICA and IVA for data fusion: An overview and a new approach based on disjoint subspaces publication-title: IEEE Sens. Lett. – volume: 51 start-page: 1044 year: 2004 ident: ref_38 article-title: The BCI competition 2003: Progress and perspectives in detection and discrimination of EEG single trials publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.826692 – volume: 103 start-page: 1478 year: 2015 ident: ref_21 article-title: Multimodal data fusion using source separation: Two effective models based on ICA and IVA and their properties publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2461624 – volume: 99 start-page: 2508 year: 2008 ident: ref_31 article-title: Curve forecasting by functional autoregression publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2008.03.001 – volume: 31 start-page: 398 year: 2017 ident: ref_15 article-title: Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2016.09.007 – volume: 247 start-page: 32 year: 2015 ident: ref_27 article-title: Capturing subject variability in fMRI data: A graph-theoretical analysis of GICA vs. IVA publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.03.019 – ident: ref_6 doi: 10.1109/EMBC.2012.6346299 – volume: 579 start-page: 613 year: 2007 ident: ref_1 article-title: Brain-Computer Interfaces as new brain output pathways publication-title: J. Physiol. doi: 10.1113/jphysiol.2006.125948 – ident: ref_3 doi: 10.1109/BCI51272.2021.9385291 |
SSID | ssj0023338 |
Score | 2.4263673 |
Snippet | Independent vector analysis (IVA) can be viewed as an extension of independent component analysis (ICA) to multiple datasets. It exploits the statistical... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 5428 |
SubjectTerms | Accuracy Algorithms autoregressive model Brain-Computer Interfaces brain–computer interface Classification Datasets Dependence electroencephalogram Electroencephalography Electroencephalography - methods Entropy Humans Imagination - physiology independent vector analysis Methods motor imagery Movement - physiology Signal Processing, Computer-Assisted Support Vector Machine Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB2hPcEB7QK7hC3IIK5RE3_FOQJq1SKVA6Kot8hxHNHDpqtuKsG_Z8b5UIOQuHCNLcWZF3veS-w3AO-FtnS-mse2ciKWzuiYDqXFiVelQnruffAt2HzRq638vFO7s1JftCesswfuAjc3tTZa1yovrZNpra1RZZ6IUmaqNngXWn0x5w1iqpdaApVX5yMkUNTPHzBPUWUmM8k-waT_b8zyzw2SZxlneQlPe6rIPnRDvIJHvnkGT84MBJ_D1_VYxbZl38MHeDbYjDCko4wY3uno2eJne-yOMLB9wzYH6ri-I_-KXyzUxaQdQwGkF7BdLr59WsV9lYTYSZG0MVfWK59mJvWOG5da7UVp0jqxlU9KV2WOcwxibhMrU1kaj5PYKwROV0lW1VJcw0VzaPxLYEJXFdnnKK9IyDgrRa0kSihrbS6kjeDdEL3ivjPDKFBEUIiLMcQRfKS4jh3IvzpcQFSLHtXiX6hGMBtQKfpJ9VCIJDdkOC9FBG_HZpwO9I_DNv5wCn3yjAxnVAQ3HYjjSJAK4hLEeQRmAu9kqNOWZv8jWG6nqVDI5PJX_-PhbuExR2pEX6Y5n8FFezz510ht2vJNeIt_A-Q698I priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5RuNADKvSVllam4hqa-BXnUCGKQIC0PVRsxS1yHIcitVkashL8-844m4hUqLcomcNoxhN_nx_fAOwLbel-NY9t5UQsndExXUqLE69KhfDc-6BbMPumz-by4kpdrcHQY3MVwLsnqR31k5q3vw7u_zwcYsF_IcaJlP3zHc5C1HfJPIMNfMyoPmdy3EzgAmlYLyo0NZ9MRUGx_ymY-e9pyUfTz-kL2FrhRnbUJ3ob1nyzA88fqQm-hO_nY0vbjv0Iq_Fs0BxhiE0Zwb1l69nJfdf29xnYTcNmCzI8_01iFg8sNMmk40MhY69gfnpyeXwWr1omxE6KpIu5sl75NDOpd9y41GovSpPWia18Uroqc5ybWuc2sTKVpfFY0V5hFnWVZFUtxWtYbxaNfwtM6KoiLR3lFbEaZ6WolUQ-Za3NhbQRfBqiV9z2yhgFMgoKcTGGOIKvFNfRgMSsw4tFe12saqNAh4zWtcpL62Raa2tUmSeilJmqDQ6kCHaHrBTDAClEkhtSn5cigr3xM9YGbXjYxi-WwSbPSH1GRfCmT-LoCeJC_B9xHoGZpHfi6vRLc_Mz6G-nqVAI6_J3__frPWxyREC0AM35Lqx37dJ_QATTlR_D-PwL-9PxHg priority: 102 providerName: Scholars Portal |
Title | Independent Vector Analysis for Feature Extraction in Motor Imagery Classification |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39205122 https://www.proquest.com/docview/3098218243 https://www.proquest.com/docview/3099796045 https://pubmed.ncbi.nlm.nih.gov/PMC11359939 https://doaj.org/article/8f6866f59bac41f6a85b903b475f8167 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be4FDxZuUsjKIa9TErziniqJdWqStUEXR3iLHcUoPJGU3K8G_74yTTbtVxcWHxIfRjMf-Zjz-BuCT0JbeV_PYVk7E0hkd06O0OPGqVAjPvQ-8BfMzfXIhvy3UYki4rYayys2eGDbqqnWUIz8USW6IbVyKo-s_MXWNotvVoYXGY9gl6jIq6coWtwGXwPirZxMSGNofrvC0ov5MZusMClT9D-HL-2WSd86d2TPYGwAj-9xb-Dk88s0LeHqHRvAlnJ-OvWw79jOk4dmGbIQhKGWE89ZLz6Z_u2X_kIFdNWze0sTT38Ri8Y-F7phUNxRM9QouZtMfX07ioVdC7KRIupgr65VPM5N6x41LrfaiNGmd2Monpasyx7mpdW4TK1NZGo-u7BWaT1dJVtVSvIadpm38W2BCVxWR6CivKJxxVopaSQykrLW5kDaCjxvtFdc9JUaBoQSpuBhVHMEx6XWcQCzW4UO7vCwGpyhQIKN1rfLSOpnW2hpV5okoZaZqgysogoONVYrBtVbF7UKI4MP4G52Cbjps49t1mJNnRDujInjTG3GUBAEhbkScR2C2zLsl6vaf5upXIN5OU6EQz-X7_5frHTzhCH0o88z5Aex0y7V_j9ClKydhfeJoZl8nsHs8Pft-PglpABzn0twAeG70Ag |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEG8CBQyCY1THj8Q5IMSj1S7t9oBatLfgOA700KTsZgX9U_xGZpzNtosQt14TK5rMw_7G9nwD8EqmluqrRWwrJ2PlTBpTUVrMvS41wnPvA2_B5DAdHatPUz3dgN9DLQxdqxzmxDBRV62jPfIdyXNDbONKvj37EVPXKDpdHVpo9G6x789_Yso2fzP-iPZ9LcTe7tGHUbzsKhA7JXkXC2299klmEu-EcYlNvSxNUnNbeV66KnNCmDrNLbcqUaXx6PRe44-mFc-qWkn87jW4jgsvp4jKphcJnsR8r2cvkjLnO3NcHakflFlb80JrgH_h2b-vZV5a5_Zuw60lQGXveo-6Axu-uQtbl2gL78Hn8ap3bse-hG1_NpCbMATBjHDlYubZ7q9u1hdOsJOGTVoaOD4l1oxzFrpx0j2l4Br34fhKtPgANpu28Y-AybSqiLRHe03pk7NK1lph4matzaWyEbwctFec9RQcBaYupOJipeII3pNeVwOINTs8aGffimUQFiiQSdNa56V1KqlTa3SZc1mqTNcGPTaC7cEqxTKU58WF40XwYvUag5BOVmzj20UYk2dEc6MjeNgbcSUJAlCc-ISIwKyZd03U9TfNyfdA9J0kUiN-zB__X67ncGN0NDkoDsaH-0_gpkDYRbveQmzDZjdb-KcIm7ryWfBVBl-vOjj-AN8WLhE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiF6QLwJFDAIjtEmfsU5IAS0qy6lFUIU7S04iUN7ICm7WUH_Gr-OGefRLkLceo2taDIP-5vY8w3AC6Et1Vfz0JaFCGVhdEhFaWHkVK4QnjvneQsODvXekXw_V_MN-D3UwtC1ymFN9At12RT0j3wiotQQ27gUk6q_FvFxZ_r69EdIHaTopHVop9G5yL47-4np2_LVbAdt_ZLz6e7nd3th32EgLKSI2pAr65SLExO7gpsittqJ3MRVZEsX5UWZFJybSqc2sjKWuXEYAE7hR-sySspKCnzvFbiaCBVTjCXz82RPYO7XMRkJkUaTJe6U1BvKrO1_vk3Av7Dt31c0L-x505twower7E3nXbdgw9W3YesCheEd-DQb--i27Is_AmAD0QlDQMwIY64Wju3-ahddEQU7qdlBQxNn34lB44z5zpx0Z8m7yV04uhQt3oPNuqndA2BClyUR-CinKJUqrBSVkpjEWWtTIW0AzwftZacdHUeGaQypOBtVHMBb0us4gRi0_YNm8S3rAzJDgYzWlUpzW8i40taoPI1ELhNVGfTeALYHq2R9WC-zcycM4Nk4jAFJpyy2ds3Kz0kTorxRAdzvjDhKgmAUF0HOAzBr5l0TdX2kPjn2pN9xLBRiyfTh_-V6CtcwLLIPs8P9R3CdIwKjH-Ccb8Nmu1i5x4ig2vyJd1UGXy87Nv4AlTIyRw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Independent+Vector+Analysis+for+Feature+Extraction+in+Motor+Imagery+Classification&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Caroline+Pires+Alavez+Moraes&rft.au=Lucas+Heck+dos+Santos&rft.au=Fantinato%2C+Denis+Gustavo&rft.au=Neves%2C+Aline&rft.date=2024-08-22&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=16&rft.spage=5428&rft_id=info:doi/10.3390%2Fs24165428&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |