Sample-to-sample fluctuations of power spectrum of a random motion in a periodic Sinai model
The Sinai model of a tracer diffusing in a quenched Brownian potential is a much-studied problem exhibiting a logarithmically slow anomalous diffusion due to the growth of energy barriers with the system size. However, if the potential is random but periodic, the regime of anomalous diffusion crosse...
Saved in:
Published in | Physical review. E Vol. 94; no. 3-1; p. 032131 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.09.2016
|
Online Access | Get more information |
Cover
Loading…
Abstract | The Sinai model of a tracer diffusing in a quenched Brownian potential is a much-studied problem exhibiting a logarithmically slow anomalous diffusion due to the growth of energy barriers with the system size. However, if the potential is random but periodic, the regime of anomalous diffusion crosses over to one of normal diffusion once a tracer has diffused over a few periods of the system. Here we consider a system in which the potential is given by a Brownian bridge on a finite interval (0,L) and then periodically repeated over the whole real line and study the power spectrum S(f) of the diffusive process x(t) in such a potential. We show that for most of realizations of x(t) in a given realization of the potential, the low-frequency behavior is S(f)∼A/f^{2}, i.e., the same as for standard Brownian motion, and the amplitude A is a disorder-dependent random variable with a finite support. Focusing on the statistical properties of this random variable, we determine the moments of A of arbitrary, negative, or positive order k and demonstrate that they exhibit a multifractal dependence on k and a rather unusual dependence on the temperature and on the periodicity L, which are supported by atypical realizations of the periodic disorder. We finally show that the distribution of A has a log-normal left tail and exhibits an essential singularity close to the right edge of the support, which is related to the Lifshitz singularity. Our findings are based both on analytic results and on extensive numerical simulations of the process x(t). |
---|---|
AbstractList | The Sinai model of a tracer diffusing in a quenched Brownian potential is a much-studied problem exhibiting a logarithmically slow anomalous diffusion due to the growth of energy barriers with the system size. However, if the potential is random but periodic, the regime of anomalous diffusion crosses over to one of normal diffusion once a tracer has diffused over a few periods of the system. Here we consider a system in which the potential is given by a Brownian bridge on a finite interval (0,L) and then periodically repeated over the whole real line and study the power spectrum S(f) of the diffusive process x(t) in such a potential. We show that for most of realizations of x(t) in a given realization of the potential, the low-frequency behavior is S(f)∼A/f^{2}, i.e., the same as for standard Brownian motion, and the amplitude A is a disorder-dependent random variable with a finite support. Focusing on the statistical properties of this random variable, we determine the moments of A of arbitrary, negative, or positive order k and demonstrate that they exhibit a multifractal dependence on k and a rather unusual dependence on the temperature and on the periodicity L, which are supported by atypical realizations of the periodic disorder. We finally show that the distribution of A has a log-normal left tail and exhibits an essential singularity close to the right edge of the support, which is related to the Lifshitz singularity. Our findings are based both on analytic results and on extensive numerical simulations of the process x(t). |
Author | Marinari, Enzo Dean, David S Iorio, Antonio Oshanin, Gleb |
Author_xml | – sequence: 1 givenname: David S surname: Dean fullname: Dean, David S organization: Université Bordeaux and CNRS, Laboratoire Ondes et Matière d'Aquitaine (LOMA), UMR 5798, F-33400 Talence, France – sequence: 2 givenname: Antonio surname: Iorio fullname: Iorio, Antonio organization: Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy – sequence: 3 givenname: Enzo surname: Marinari fullname: Marinari, Enzo organization: INFN, Sezione di Roma 1 and Nanotech-CNR, UOS di Roma, P.le A. Moro 2, I-00185 Roma, Italy – sequence: 4 givenname: Gleb surname: Oshanin fullname: Oshanin, Gleb organization: CNRS, UMR 7600, Laboratoire de Physique Théorique de la Matière Condensée, F-75005, Paris, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27739768$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j99KwzAYxYMobs69gBeSF0j9vqRL2ksZcwoDxemdMNIkxUjTlKZV9vZu_rk6h3N-HDgX5LSNrSPkCiFDBHHz9L5Pz-5zlZV5BoKjwBMy5bkCBrAQEzJP6QMAUEKpkJ-TCVdKlEoWU_K21aFrHBsiSz-O1s1ohlEPPraJxpp28cv1NHXODP0YjommvW5tDDTEI0V9e4g61_tovaFb32p_qKxrLslZrZvk5n86I693q5flPds8rh-WtxtmcgED46KS1mqBKkcsKsFVIbTDwlalMShxYetC81qWUphKYW5rqRzAAcNKGaX5jFz_7nZjFZzddb0Put_v_m_yb-dtVzw |
CitedBy_id | crossref_primary_10_1088_1367_2630_ab7bf1 crossref_primary_10_1088_1367_2630_abd313 crossref_primary_10_1088_1367_2630_aaa67c crossref_primary_10_1088_1367_2630_ab7538 crossref_primary_10_1088_1751_8121_aad372 crossref_primary_10_1088_1751_8121_aadef0 crossref_primary_10_1103_PhysRevE_106_014137 crossref_primary_10_1088_1367_2630_ac8f65 crossref_primary_10_1088_1367_2630_ac44e6 crossref_primary_10_1103_PhysRevX_9_011019 crossref_primary_10_1088_1751_8121_ab306c crossref_primary_10_1103_PhysRevE_96_032132 crossref_primary_10_1038_s41467_021_26465_8 crossref_primary_10_1039_C8CP05238G crossref_primary_10_1088_1367_2630_ab2f52 crossref_primary_10_1088_1367_2630_ac7df8 crossref_primary_10_1103_PhysRevE_106_054142 crossref_primary_10_1103_PhysRevE_94_052130 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1103/PhysRevE.94.032131 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2470-0053 |
ExternalDocumentID | 27739768 |
Genre | Journal Article |
GroupedDBID | 3MX 53G 5VS AEQTI AFGMR AGDNE ALMA_UNASSIGNED_HOLDINGS AUAIK EBS EJD NPBMV NPM ROL S7W |
ID | FETCH-LOGICAL-c430t-23b6dda3174118b32783ae18db9cc1615df8a2f6963cb714df67e002781b7c7a2 |
IngestDate | Fri May 24 00:01:56 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3-1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c430t-23b6dda3174118b32783ae18db9cc1615df8a2f6963cb714df67e002781b7c7a2 |
OpenAccessLink | https://hal.science/hal-01396689 |
PMID | 27739768 |
ParticipantIDs | pubmed_primary_27739768 |
PublicationCentury | 2000 |
PublicationDate | 2016-Sep |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-Sep |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physical review. E |
PublicationTitleAlternate | Phys Rev E |
PublicationYear | 2016 |
SSID | ssj0001609712 |
Score | 2.203082 |
Snippet | The Sinai model of a tracer diffusing in a quenched Brownian potential is a much-studied problem exhibiting a logarithmically slow anomalous diffusion due to... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 032131 |
Title | Sample-to-sample fluctuations of power spectrum of a random motion in a periodic Sinai model |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27739768 |
Volume | 94 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYCqFIvFVBe5SEfeosc9mG8myOC8KhUWhWQOCAhv1aslOxGJOmBU386M_ZuskpApb1sVnZkbfb7PB5PPN8Q8lUnQZZKmN_qSEvGueJMdlPNpIyMkFoq64S0v1-Ji1v-7e7ortX60zi1NBmrjn5-Na_kf1CFNsAVs2T_AdnpoNAA94AvXAFhuL4L42uJ2r5sXLKRu2tn_QkmhExPtw2xBlrbZVM-TQY-FxIWJ1MO2r58D4Y7JGoX56XJdfs6L2Tuq-M0vdafNZg-0aUzS184tT6A6o7Gz8KolyUMWGkTgNEoZ3HvJ8z_dScIesXztP3H6FEWXs3gvG9VMxQRiulZK1hJnMmKOJaxCbz8b21ffRHjikcxCxvmMoij0C8Ci5Y8QEUJ_H2_7O9ep8s7i18GNIYDh22UJOhYpX_vnVPXrruWyFKSop28qqI9LkYnUGErqnOtgvhw8XlQTboaY25n4jyUm1Xyqdpa0GPPkzXSssU6-eCxG30m9_NsoU220DKjji20Zgu2SOrZQj1baF5AU80W6thCHVs2yO1Z7-bkglW1NZjmcTBmUayEMRK8Rw5bTBVjwRVpw9Sorta4CzAwhaNMgH3WKgm5yURi3d_UoUp0IqNNslyUhd0mNEuViKUJUMcI3MFuyg18am1iDf6t4Dtky7-Wh6EXUHmoX9iXN3t2yccZwfbISgYz1u6D-zdWBw6jF81ZWzA |
link.rule.ids | 783 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sample-to-sample+fluctuations+of+power+spectrum+of+a+random+motion+in+a+periodic+Sinai+model&rft.jtitle=Physical+review.+E&rft.au=Dean%2C+David+S&rft.au=Iorio%2C+Antonio&rft.au=Marinari%2C+Enzo&rft.au=Oshanin%2C+Gleb&rft.date=2016-09-01&rft.eissn=2470-0053&rft.volume=94&rft.issue=3-1&rft.spage=032131&rft_id=info:doi/10.1103%2FPhysRevE.94.032131&rft_id=info%3Apmid%2F27739768&rft_id=info%3Apmid%2F27739768&rft.externalDocID=27739768 |