Sample-to-sample fluctuations of power spectrum of a random motion in a periodic Sinai model

The Sinai model of a tracer diffusing in a quenched Brownian potential is a much-studied problem exhibiting a logarithmically slow anomalous diffusion due to the growth of energy barriers with the system size. However, if the potential is random but periodic, the regime of anomalous diffusion crosse...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. E Vol. 94; no. 3-1; p. 032131
Main Authors Dean, David S, Iorio, Antonio, Marinari, Enzo, Oshanin, Gleb
Format Journal Article
LanguageEnglish
Published United States 01.09.2016
Online AccessGet more information

Cover

Loading…
Abstract The Sinai model of a tracer diffusing in a quenched Brownian potential is a much-studied problem exhibiting a logarithmically slow anomalous diffusion due to the growth of energy barriers with the system size. However, if the potential is random but periodic, the regime of anomalous diffusion crosses over to one of normal diffusion once a tracer has diffused over a few periods of the system. Here we consider a system in which the potential is given by a Brownian bridge on a finite interval (0,L) and then periodically repeated over the whole real line and study the power spectrum S(f) of the diffusive process x(t) in such a potential. We show that for most of realizations of x(t) in a given realization of the potential, the low-frequency behavior is S(f)∼A/f^{2}, i.e., the same as for standard Brownian motion, and the amplitude A is a disorder-dependent random variable with a finite support. Focusing on the statistical properties of this random variable, we determine the moments of A of arbitrary, negative, or positive order k and demonstrate that they exhibit a multifractal dependence on k and a rather unusual dependence on the temperature and on the periodicity L, which are supported by atypical realizations of the periodic disorder. We finally show that the distribution of A has a log-normal left tail and exhibits an essential singularity close to the right edge of the support, which is related to the Lifshitz singularity. Our findings are based both on analytic results and on extensive numerical simulations of the process x(t).
AbstractList The Sinai model of a tracer diffusing in a quenched Brownian potential is a much-studied problem exhibiting a logarithmically slow anomalous diffusion due to the growth of energy barriers with the system size. However, if the potential is random but periodic, the regime of anomalous diffusion crosses over to one of normal diffusion once a tracer has diffused over a few periods of the system. Here we consider a system in which the potential is given by a Brownian bridge on a finite interval (0,L) and then periodically repeated over the whole real line and study the power spectrum S(f) of the diffusive process x(t) in such a potential. We show that for most of realizations of x(t) in a given realization of the potential, the low-frequency behavior is S(f)∼A/f^{2}, i.e., the same as for standard Brownian motion, and the amplitude A is a disorder-dependent random variable with a finite support. Focusing on the statistical properties of this random variable, we determine the moments of A of arbitrary, negative, or positive order k and demonstrate that they exhibit a multifractal dependence on k and a rather unusual dependence on the temperature and on the periodicity L, which are supported by atypical realizations of the periodic disorder. We finally show that the distribution of A has a log-normal left tail and exhibits an essential singularity close to the right edge of the support, which is related to the Lifshitz singularity. Our findings are based both on analytic results and on extensive numerical simulations of the process x(t).
Author Marinari, Enzo
Dean, David S
Iorio, Antonio
Oshanin, Gleb
Author_xml – sequence: 1
  givenname: David S
  surname: Dean
  fullname: Dean, David S
  organization: Université Bordeaux and CNRS, Laboratoire Ondes et Matière d'Aquitaine (LOMA), UMR 5798, F-33400 Talence, France
– sequence: 2
  givenname: Antonio
  surname: Iorio
  fullname: Iorio, Antonio
  organization: Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy
– sequence: 3
  givenname: Enzo
  surname: Marinari
  fullname: Marinari, Enzo
  organization: INFN, Sezione di Roma 1 and Nanotech-CNR, UOS di Roma, P.le A. Moro 2, I-00185 Roma, Italy
– sequence: 4
  givenname: Gleb
  surname: Oshanin
  fullname: Oshanin, Gleb
  organization: CNRS, UMR 7600, Laboratoire de Physique Théorique de la Matière Condensée, F-75005, Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27739768$$D View this record in MEDLINE/PubMed
BookMark eNo1j99KwzAYxYMobs69gBeSF0j9vqRL2ksZcwoDxemdMNIkxUjTlKZV9vZu_rk6h3N-HDgX5LSNrSPkCiFDBHHz9L5Pz-5zlZV5BoKjwBMy5bkCBrAQEzJP6QMAUEKpkJ-TCVdKlEoWU_K21aFrHBsiSz-O1s1ohlEPPraJxpp28cv1NHXODP0YjommvW5tDDTEI0V9e4g61_tovaFb32p_qKxrLslZrZvk5n86I693q5flPds8rh-WtxtmcgED46KS1mqBKkcsKsFVIbTDwlalMShxYetC81qWUphKYW5rqRzAAcNKGaX5jFz_7nZjFZzddb0Put_v_m_yb-dtVzw
CitedBy_id crossref_primary_10_1088_1367_2630_ab7bf1
crossref_primary_10_1088_1367_2630_abd313
crossref_primary_10_1088_1367_2630_aaa67c
crossref_primary_10_1088_1367_2630_ab7538
crossref_primary_10_1088_1751_8121_aad372
crossref_primary_10_1088_1751_8121_aadef0
crossref_primary_10_1103_PhysRevE_106_014137
crossref_primary_10_1088_1367_2630_ac8f65
crossref_primary_10_1088_1367_2630_ac44e6
crossref_primary_10_1103_PhysRevX_9_011019
crossref_primary_10_1088_1751_8121_ab306c
crossref_primary_10_1103_PhysRevE_96_032132
crossref_primary_10_1038_s41467_021_26465_8
crossref_primary_10_1039_C8CP05238G
crossref_primary_10_1088_1367_2630_ab2f52
crossref_primary_10_1088_1367_2630_ac7df8
crossref_primary_10_1103_PhysRevE_106_054142
crossref_primary_10_1103_PhysRevE_94_052130
ContentType Journal Article
DBID NPM
DOI 10.1103/PhysRevE.94.032131
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 2470-0053
ExternalDocumentID 27739768
Genre Journal Article
GroupedDBID 3MX
53G
5VS
AEQTI
AFGMR
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
EBS
EJD
NPBMV
NPM
ROL
S7W
ID FETCH-LOGICAL-c430t-23b6dda3174118b32783ae18db9cc1615df8a2f6963cb714df67e002781b7c7a2
IngestDate Fri May 24 00:01:56 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3-1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c430t-23b6dda3174118b32783ae18db9cc1615df8a2f6963cb714df67e002781b7c7a2
OpenAccessLink https://hal.science/hal-01396689
PMID 27739768
ParticipantIDs pubmed_primary_27739768
PublicationCentury 2000
PublicationDate 2016-Sep
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-Sep
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review. E
PublicationTitleAlternate Phys Rev E
PublicationYear 2016
SSID ssj0001609712
Score 2.203082
Snippet The Sinai model of a tracer diffusing in a quenched Brownian potential is a much-studied problem exhibiting a logarithmically slow anomalous diffusion due to...
SourceID pubmed
SourceType Index Database
StartPage 032131
Title Sample-to-sample fluctuations of power spectrum of a random motion in a periodic Sinai model
URI https://www.ncbi.nlm.nih.gov/pubmed/27739768
Volume 94
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYCqFIvFVBe5SEfeosc9mG8myOC8KhUWhWQOCAhv1aslOxGJOmBU386M_ZuskpApb1sVnZkbfb7PB5PPN8Q8lUnQZZKmN_qSEvGueJMdlPNpIyMkFoq64S0v1-Ji1v-7e7ortX60zi1NBmrjn5-Na_kf1CFNsAVs2T_AdnpoNAA94AvXAFhuL4L42uJ2r5sXLKRu2tn_QkmhExPtw2xBlrbZVM-TQY-FxIWJ1MO2r58D4Y7JGoX56XJdfs6L2Tuq-M0vdafNZg-0aUzS184tT6A6o7Gz8KolyUMWGkTgNEoZ3HvJ8z_dScIesXztP3H6FEWXs3gvG9VMxQRiulZK1hJnMmKOJaxCbz8b21ffRHjikcxCxvmMoij0C8Ci5Y8QEUJ_H2_7O9ep8s7i18GNIYDh22UJOhYpX_vnVPXrruWyFKSop28qqI9LkYnUGErqnOtgvhw8XlQTboaY25n4jyUm1Xyqdpa0GPPkzXSssU6-eCxG30m9_NsoU220DKjji20Zgu2SOrZQj1baF5AU80W6thCHVs2yO1Z7-bkglW1NZjmcTBmUayEMRK8Rw5bTBVjwRVpw9Sorta4CzAwhaNMgH3WKgm5yURi3d_UoUp0IqNNslyUhd0mNEuViKUJUMcI3MFuyg18am1iDf6t4Dtky7-Wh6EXUHmoX9iXN3t2yccZwfbISgYz1u6D-zdWBw6jF81ZWzA
link.rule.ids 783
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sample-to-sample+fluctuations+of+power+spectrum+of+a+random+motion+in+a+periodic+Sinai+model&rft.jtitle=Physical+review.+E&rft.au=Dean%2C+David+S&rft.au=Iorio%2C+Antonio&rft.au=Marinari%2C+Enzo&rft.au=Oshanin%2C+Gleb&rft.date=2016-09-01&rft.eissn=2470-0053&rft.volume=94&rft.issue=3-1&rft.spage=032131&rft_id=info:doi/10.1103%2FPhysRevE.94.032131&rft_id=info%3Apmid%2F27739768&rft_id=info%3Apmid%2F27739768&rft.externalDocID=27739768