Non-Uniformity Correction of Spatial Object Images Using Multi-Scale Residual Cycle Network (CycleMRSNet)

Ground-based telescopes often encounter challenges such as stray light and vignetting when capturing space objects, leading to non-uniform image backgrounds. This not only weakens the signal-to-noise ratio for target tracking but also reduces the accuracy of recognition systems. To address this chal...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 5; p. 1389
Main Authors Jiang, Chunfeng, Li, Zhengwei, Wang, Yubo, Chen, Tao
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 25.02.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ground-based telescopes often encounter challenges such as stray light and vignetting when capturing space objects, leading to non-uniform image backgrounds. This not only weakens the signal-to-noise ratio for target tracking but also reduces the accuracy of recognition systems. To address this challenge, We have proposed a novel network architecture called CycleMRSNet, which is based on the CycleGAN framework and incorporates a multi-scale attention mechanism to enhance image processing capabilities. Specifically, we have introduced a multi-scale feature extraction module (MSFEM) at the front end of the generator and embedded an efficient multi-scale attention residual block (EMA-residual block) within the Resnet backbone network. This design improves the efficiency of feature extraction and increases the focus on multi-scale information in high-dimensional feature maps, enabling the network to more comprehensively understand and concentrate on key areas within images, thereby capably correcting non-uniform backgrounds. To evaluate the performance of CycleMRSNet, we trained the model using a small-scale dataset and conducted corrections on simulated and real images within the test set. Experimental results showed that our model achieved scores of PSNR 32.7923, SSIM 0.9814, and FID 1.9212 in the test set, outperforming other methods. These metrics suggest that our approach significantly improves the correction of non-uniform backgrounds and enhances the robustness of the system.
AbstractList Ground-based telescopes often encounter challenges such as stray light and vignetting when capturing space objects, leading to non-uniform image backgrounds. This not only weakens the signal-to-noise ratio for target tracking but also reduces the accuracy of recognition systems. To address this challenge, We have proposed a novel network architecture called CycleMRSNet, which is based on the CycleGAN framework and incorporates a multi-scale attention mechanism to enhance image processing capabilities. Specifically, we have introduced a multi-scale feature extraction module (MSFEM) at the front end of the generator and embedded an efficient multi-scale attention residual block (EMA-residual block) within the Resnet backbone network. This design improves the efficiency of feature extraction and increases the focus on multi-scale information in high-dimensional feature maps, enabling the network to more comprehensively understand and concentrate on key areas within images, thereby capably correcting non-uniform backgrounds. To evaluate the performance of CycleMRSNet, we trained the model using a small-scale dataset and conducted corrections on simulated and real images within the test set. Experimental results showed that our model achieved scores of PSNR 32.7923, SSIM 0.9814, and FID 1.9212 in the test set, outperforming other methods. These metrics suggest that our approach significantly improves the correction of non-uniform backgrounds and enhances the robustness of the system.
Ground-based telescopes often encounter challenges such as stray light and vignetting when capturing space objects, leading to non-uniform image backgrounds. This not only weakens the signal-to-noise ratio for target tracking but also reduces the accuracy of recognition systems. To address this challenge, We have proposed a novel network architecture called CycleMRSNet, which is based on the CycleGAN framework and incorporates a multi-scale attention mechanism to enhance image processing capabilities. Specifically, we have introduced a multi-scale feature extraction module (MSFEM) at the front end of the generator and embedded an efficient multi-scale attention residual block (EMA-residual block) within the Resnet backbone network. This design improves the efficiency of feature extraction and increases the focus on multi-scale information in high-dimensional feature maps, enabling the network to more comprehensively understand and concentrate on key areas within images, thereby capably correcting non-uniform backgrounds. To evaluate the performance of CycleMRSNet, we trained the model using a small-scale dataset and conducted corrections on simulated and real images within the test set. Experimental results showed that our model achieved scores of PSNR 32.7923, SSIM 0.9814, and FID 1.9212 in the test set, outperforming other methods. These metrics suggest that our approach significantly improves the correction of non-uniform backgrounds and enhances the robustness of the system.Ground-based telescopes often encounter challenges such as stray light and vignetting when capturing space objects, leading to non-uniform image backgrounds. This not only weakens the signal-to-noise ratio for target tracking but also reduces the accuracy of recognition systems. To address this challenge, We have proposed a novel network architecture called CycleMRSNet, which is based on the CycleGAN framework and incorporates a multi-scale attention mechanism to enhance image processing capabilities. Specifically, we have introduced a multi-scale feature extraction module (MSFEM) at the front end of the generator and embedded an efficient multi-scale attention residual block (EMA-residual block) within the Resnet backbone network. This design improves the efficiency of feature extraction and increases the focus on multi-scale information in high-dimensional feature maps, enabling the network to more comprehensively understand and concentrate on key areas within images, thereby capably correcting non-uniform backgrounds. To evaluate the performance of CycleMRSNet, we trained the model using a small-scale dataset and conducted corrections on simulated and real images within the test set. Experimental results showed that our model achieved scores of PSNR 32.7923, SSIM 0.9814, and FID 1.9212 in the test set, outperforming other methods. These metrics suggest that our approach significantly improves the correction of non-uniform backgrounds and enhances the robustness of the system.
Author Wang, Yubo
Chen, Tao
Li, Zhengwei
Jiang, Chunfeng
AuthorAffiliation 1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; jiangcf6512@163.com (C.J.)
2 University of Chinese Academy of Sciences, Beijing 100049, China; chent@ciomp.ac.cn
AuthorAffiliation_xml – name: 1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; jiangcf6512@163.com (C.J.)
– name: 2 University of Chinese Academy of Sciences, Beijing 100049, China; chent@ciomp.ac.cn
Author_xml – sequence: 1
  givenname: Chunfeng
  surname: Jiang
  fullname: Jiang, Chunfeng
– sequence: 2
  givenname: Zhengwei
  surname: Li
  fullname: Li, Zhengwei
– sequence: 3
  givenname: Yubo
  surname: Wang
  fullname: Wang, Yubo
– sequence: 4
  givenname: Tao
  surname: Chen
  fullname: Chen, Tao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40096212$$D View this record in MEDLINE/PubMed
BookMark eNpdkktvGyEURlGVqnm0i_6BCqmbZDEtj4EZVlVl9WEpDymu14gBxsWdAQeYVv73xXZqJV3BvRwdfbrcc3Dig7cAvMXoA6UCfUyEIYZpK16AM1yTumoJQSdP7qfgPKU1QoRS2r4CpzVCghNMzoC7Db5aeteHOLq8hbMQo9XZBQ9DDxcblZ0a4F23Lk04H9XKJrhMzq_gzTRkVy20Giy8t8mZqYCzrS7lrc1_QvwFL_flzf2iNK5eg5e9GpJ983hegOXXLz9m36vru2_z2efrStcU5YoQo5HoG04b0SvOaqWbRiMqlECGCm0M58RwRFjXoc5SXHctU5q0lOyYhl6A-cFrglrLTXSjilsZlJP7RogrqWJ2JZjshG01NlYojmux0zDRsdrYhhre8L64Ph1cm6kbrdHW56iGZ9LnL979lKvwW2IsEOGEFcPloyGGh8mmLEeXtB0G5W2YkqS4aYlgdI--_w9dhyn6MqsdxSlDpK0L9e5ppGOWf19agKsDoGNIKdr-iGAkd-sij-tC_wL2LrAL
Cites_doi 10.1145/3422622
10.1109/ICCV48922.2021.00986
10.1109/TPAMI.2015.2439281
10.1002/jemt.20767
10.1364/OE.24.013738
10.3390/rs14225738
10.3390/rs14215598
10.1364/AO.57.00D155
10.1109/ICASSP49357.2023.10096516
10.1117/12.280308
10.1109/CVPR42600.2020.00821
10.1051/aas:1996206
10.1364/OE.27.010765
10.3390/rs14215618
10.1364/OE.26.031767
10.1364/AO.56.004358
10.1109/CVPR52688.2022.01278
10.3390/rs14215510
10.3390/s23031157
10.1364/OE.434024
10.3390/rs14215517
10.1364/JOSAA.20.000470
10.1364/OE.23.033902
10.1007/s10043-017-0303-5
10.1109/ICCV.2017.244
10.1609/aaai.v31i1.11231
10.1109/NSSMIC.2018.8824446
10.1109/CVPR52733.2024.00275
10.1038/s41592-021-01080-z
10.3390/rs14195056
10.1109/CVPR52729.2023.00380
10.3390/sym10110612
10.1109/CVPR.2017.19
10.1016/j.compag.2024.108612
10.1038/nmeth.3323
10.3390/s23031086
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25051389
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (NC Live)
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
Publicly Available Content Database
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_b9e8c1de9a614985ac59b54de73d676f
PMC11902625
40096212
10_3390_s25051389
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62475258
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c430t-22dc09f76379fa654ac77c039a90d39cdd662d6025bb0be314b85ac283239a973
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:15:43 EDT 2025
Thu Aug 21 18:34:25 EDT 2025
Fri Jul 11 01:57:40 EDT 2025
Fri Jul 25 21:28:05 EDT 2025
Thu Mar 20 02:21:29 EDT 2025
Tue Jul 01 05:30:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords non-uniform image
CycleMRSNet
multi-scale attention
ground-based telescopes
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-22dc09f76379fa654ac77c039a90d39cdd662d6025bb0be314b85ac283239a973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25051389
PMID 40096212
PQID 3176350284
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_b9e8c1de9a614985ac59b54de73d676f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11902625
proquest_miscellaneous_3178295325
proquest_journals_3176350284
pubmed_primary_40096212
crossref_primary_10_3390_s25051389
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250225
PublicationDateYYYYMMDD 2025-02-25
PublicationDate_xml – month: 2
  year: 2025
  text: 20250225
  day: 25
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Smith (ref_42) 2015; 12
Wang (ref_16) 2021; 29
Harris (ref_3) 1997; Volume 3061
He (ref_24) 2018; 57
ref_36
ref_13
ref_35
ref_34
ref_33
ref_32
ref_31
ref_30
Takagi (ref_8) 2017; 24
Kuang (ref_23) 2017; 10
ref_19
ref_18
ref_17
ref_38
Goodfellow (ref_12) 2020; 63
ref_37
Stanciu (ref_43) 2010; 73
Horisaki (ref_7) 2017; 56
Ando (ref_5) 2015; 23
ref_25
ref_22
Dong (ref_10) 2015; 38
ref_21
Fang (ref_11) 2021; 18
Ju (ref_14) 2018; 26
ref_20
ref_41
ref_40
ref_1
Chen (ref_39) 2024; 217
Horisaki (ref_6) 2016; 24
ref_29
ref_28
ref_27
ref_26
ref_9
Manfroid (ref_2) 1996; 118
Tian (ref_15) 2019; 27
Torres (ref_4) 2003; 20
References_xml – volume: 63
  start-page: 139
  year: 2020
  ident: ref_12
  article-title: Generative adversarial networks
  publication-title: Commun. ACM
  doi: 10.1145/3422622
– ident: ref_9
– ident: ref_32
  doi: 10.1109/ICCV48922.2021.00986
– volume: 38
  start-page: 295
  year: 2015
  ident: ref_10
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2439281
– volume: 73
  start-page: 165
  year: 2010
  ident: ref_43
  article-title: Automated compensation of light attenuation in confocal microscopy by exact histogram specification
  publication-title: Microsc. Res. Tech.
  doi: 10.1002/jemt.20767
– volume: 24
  start-page: 13738
  year: 2016
  ident: ref_6
  article-title: Learning-based imaging through scattering media
  publication-title: Opt. Express
  doi: 10.1364/OE.24.013738
– ident: ref_21
  doi: 10.3390/rs14225738
– ident: ref_18
  doi: 10.3390/rs14215598
– volume: 57
  start-page: D155
  year: 2018
  ident: ref_24
  article-title: Single-image-based nonuniformity correction of uncooled long-wave infrared detectors: A deep-learning approach
  publication-title: Appl. Opt.
  doi: 10.1364/AO.57.00D155
– ident: ref_36
  doi: 10.1109/ICASSP49357.2023.10096516
– ident: ref_40
– volume: Volume 3061
  start-page: 895
  year: 1997
  ident: ref_3
  article-title: Nonuniformity correction using the constant-statistics constraint: Aanalog and digital implementations
  publication-title: Proceedings of the Infrared Technology and Applications XXIII
  doi: 10.1117/12.280308
– ident: ref_34
  doi: 10.1109/CVPR42600.2020.00821
– volume: 118
  start-page: 391
  year: 1996
  ident: ref_2
  article-title: On CCD standard stars and flat-field calibration
  publication-title: Astron. Astrophys. Suppl. Ser.
  doi: 10.1051/aas:1996206
– ident: ref_35
– volume: 27
  start-page: 10765
  year: 2019
  ident: ref_15
  article-title: DNN-based aberration correction in a wavefront sensorless adaptive optics system
  publication-title: Opt. Express
  doi: 10.1364/OE.27.010765
– ident: ref_19
  doi: 10.3390/rs14215618
– volume: 26
  start-page: 31767
  year: 2018
  ident: ref_14
  article-title: Feature-based phase retrieval wavefront sensing approach using machine learning
  publication-title: Opt. Express
  doi: 10.1364/OE.26.031767
– volume: 56
  start-page: 4358
  year: 2017
  ident: ref_7
  article-title: Learning-based focusing through scattering media
  publication-title: Appl. Opt.
  doi: 10.1364/AO.56.004358
– ident: ref_37
  doi: 10.1109/CVPR52688.2022.01278
– ident: ref_20
  doi: 10.3390/rs14215510
– ident: ref_1
  doi: 10.3390/s23031157
– volume: 29
  start-page: 25960
  year: 2021
  ident: ref_16
  article-title: Deep learning wavefront sensing for fine phasing of segmented mirrors
  publication-title: Opt. Express
  doi: 10.1364/OE.434024
– ident: ref_17
  doi: 10.3390/rs14215517
– ident: ref_31
– volume: 20
  start-page: 470
  year: 2003
  ident: ref_4
  article-title: Kalman filtering for adaptive nonuniformity correction in infrared focal-plane arrays
  publication-title: JOSA A
  doi: 10.1364/JOSAA.20.000470
– volume: 23
  start-page: 33902
  year: 2015
  ident: ref_5
  article-title: Speckle-learning-based object recognition through scattering media
  publication-title: Opt. Express
  doi: 10.1364/OE.23.033902
– volume: 24
  start-page: 117
  year: 2017
  ident: ref_8
  article-title: Object recognition through a multi-mode fiber
  publication-title: Opt. Rev.
  doi: 10.1007/s10043-017-0303-5
– ident: ref_29
– ident: ref_33
  doi: 10.1109/ICCV.2017.244
– ident: ref_38
  doi: 10.1609/aaai.v31i1.11231
– ident: ref_26
  doi: 10.1109/NSSMIC.2018.8824446
– ident: ref_27
  doi: 10.1109/CVPR52733.2024.00275
– volume: 18
  start-page: 406
  year: 2021
  ident: ref_11
  article-title: Deep learning-based point-scanning super-resolution imaging
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01080-z
– ident: ref_22
  doi: 10.3390/rs14195056
– volume: 10
  start-page: 7800615
  year: 2017
  ident: ref_23
  article-title: Single infrared image optical noise removal using a deep convolutional neural network
  publication-title: IEEE Photonics J.
– ident: ref_28
  doi: 10.1109/CVPR52729.2023.00380
– ident: ref_41
– ident: ref_25
  doi: 10.3390/sym10110612
– ident: ref_13
  doi: 10.1109/CVPR.2017.19
– volume: 217
  start-page: 108612
  year: 2024
  ident: ref_39
  article-title: Efficient and lightweight grape and picking point synchronous detection model based on key point detection
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.108612
– volume: 12
  start-page: 404
  year: 2015
  ident: ref_42
  article-title: CIDRE: An illumination-correction method for optical microscopy
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3323
– ident: ref_30
  doi: 10.3390/s23031086
SSID ssj0023338
Score 2.4466481
Snippet Ground-based telescopes often encounter challenges such as stray light and vignetting when capturing space objects, leading to non-uniform image backgrounds....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1389
SubjectTerms Algorithms
CycleMRSNet
Datasets
Deep learning
ground-based telescopes
Light
multi-scale attention
non-uniform image
Random variables
Telescopes
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB7Ekx7Et_VFFA96KHaTtGmOurisgiv4AG-leRQ92BV3PfjvnUm7y64IXjw2DTSdSTLfl8wD4ET5UuSJF3GH83BaVca5UzzmFVfWiypxIVzsdpD1n-TNc_o8U-qLfMKa9MCN4M6N9rntOK9LNCQ6T0ubapNK55Vwmcoq2n3R5k3IVEu1BDKvJo-QQFJ_PiJDT1dyc9YnJOn_DVn-dJCcsTi9VVhpoSK7aIa4Bgu-XoflmQSCG_A6GNYxwkZCnginWZdqbYRIBTasGJUbxunF7gwdtrDrN9w7Riw4CbAQeBs_oIY8u_ejEJLFul_4ITZoPMPZaXi8vX_AhrNNeOpdPXb7cVs8IbZSJOOYc2cTXeH2oXRVZqksrVI2EbrUiRPaOpdl3GUIeYxJjBcdaUi4VLmI-iixBYv1sPY7wJRBnkNMyRstcVUZS3nbJbfCV5lTeQTHE6EW702OjAK5BUm-mEo-gksS97QDpbUODajsolV28ZeyI9ifKKto19qoQASEqAlxkozgaPoaVwldfZS1H36GPjnXqeBpBNuNbqcjkUTj0IJHkM9pfW6o82_q15eQibuDcIojg9z9j5_bgyVOxYUpXj7dh8Xxx6c_QMQzNodhcn8DHFn_PA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be4EDgvJKKZVBPZSD1cR24viEYNWlIHUrtVTqLYofgR5ISrM99N8z42TTLkIcY1vKaMbj-caeB8CeDrUs0yB5JkS8rap56bXgohHaBdmkPqaLHS-Ko3P17SK_GC_c-jGscnUmxoPad47uyA_QzqFtRGuoPl795tQ1il5XxxYaD2EzQ0tDIV3l_MvkcEn0v4ZqQhJd-4OezD09zK3ZoFiq_1_48u8wyXt2Z_4UnoyAkX0aJPwMHoR2Cx7fKyP4HC4XXcsRPBL-RFDNZtRxI-YrsK5h1HQYNxk7sXTlwr7-whOkZzFUgMX0W36GcgrsNPQxMYvNbvFHbDHEh7P9-Hl8eoYDH17A-fzw--yIjy0UuFMyXXIhvEtNg6zTpqmLXNVOa5dKU5vUS-O8LwrhCwQ-1qY2yEzZMq8d9S-iNVq-hI22a8NrYNqit0P-UrBGoW5ZR9XblXAyNIXXZQLvV0ytroZKGRV6GMT5auJ8Ap-J3dMCKm4dB7rrH9WoK5U1oXSZD6ZG7GCIntzYXPmgpS900SSwsxJWNWpcX93tjwTeTdOoK_QAUrehu4lrSmFyKfIEXg2ynShR5MyhHU-gXJP6GqnrM-3lz1iPO0NQJdCP3P4_XW_gkaDmwZQPn-_AxvL6JrxFRLO0u3Hb_gHOwfYI
  priority: 102
  providerName: ProQuest
Title Non-Uniformity Correction of Spatial Object Images Using Multi-Scale Residual Cycle Network (CycleMRSNet)
URI https://www.ncbi.nlm.nih.gov/pubmed/40096212
https://www.proquest.com/docview/3176350284
https://www.proquest.com/docview/3178295325
https://pubmed.ncbi.nlm.nih.gov/PMC11902625
https://doaj.org/article/b9e8c1de9a614985ac59b54de73d676f
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_t4wUeJr4JjMogHuAhkNpOHD9MiFUrA6kFdVTqWxR_hE2CBNpOYv_97pw2WtDES6TEJ8W6s32_n-27A3itfCnyxIt4yHnYrSrj3Cke84or60WVuBAuNplmp3P5ZZEudmBbY3OjwNWt1I7qSc2XP9_9_XP1ASf8ETFOpOzvV-TG6cBtF_bRISkqZDCR3WECF0jD2qRCffGeKwoZ-2-Dmf_elrzhfsb34GCDG9nH1tD3YcfXD-DujWyCD-Fi2tQxYkiCoYit2YgKb4SwBdZUjGoP41hjXw3tvLDPv3AhWbFwY4CFKNz4DM3l2cyvQnwWG13hj9i0vSbO3oTXyewMP7x9BPPxyffRabyppBBbKZJ1zLmzia5wLVG6KrNUllYpmwhd6sQJbZ3LMu4yxD_GJMaLoTR5WloqY0QySjyGvbqp_VNgyiDpIdrkjZY4xYylJO6SW-GrzKk8gldbpRa_24QZBRIN0nzRaT6CY1J3J0A5rsOHZvmj2EyZwmif26HzukQIoak_qTapdF4Jl6msiuBwa6xiO24KhEMIoRA0yQheds04ZegcpKx9cxlkcq5TwdMInrS27XoiidOhO48g71m919V-S31xHtJyDxFbcaSTz_7fr-dwh1MNYQqLTw9hb7289C8Q2KzNAHbVQuEzH38awP7xyfTbbBA2CQZhQF8DcAb71Q
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaBBIeoWduJ4wNCsLDs0u4i9SH1FuJH2h5ISrMV6p_iNzLjbJYuQtx6jG051njG8409D4CXypciT7yIB5yH26oyzp3iMa-4sl5UiQvhYtNZNt6XXw7SgzX41cfCkFtlfyaGg9o1lu7IN1HPoW5EbSjfnfyIqWoUva72JTQ6ttjy5z_RZGvfTj7i_r7ifPRpbziOF1UFYitFMo85dzbRFc6mdFVmqSytUjYRutSJE9o6l2XcZYgFjEmMFwNp8rS0VNKHxiiB816Bq1KgJqfI9NHnpYEn0N7rshdhZ7LZErygh8AVnRdKA_wLz_7tlnlBz41uwc0FQGXvO466DWu-vgM3LqQtvAvHs6aOEawS3kUQz4ZU4SPER7CmYlTkGJmafTV0xcMm3_HEallwTWAh3DfeRb7wbMe3IRCMDc_xR2zW-aOz1-FzurOLDW_uwf6lEPc-rNdN7R8CUwatK7LPvNESZdlYyhYvuRW-ypzKI3jRE7U46TJzFGjREOWLJeUj-EDkXg6gZNqhoTk9LBayWRjtcztwXpeIVTStJ9Umlc4r4TKVVRFs9JtVLCS8Lf7wYwTPl90om_TgUta-OQtjcq5TwdMIHnR7u1yJJOMRcUME-cquryx1tac-Pgr5vwcI4jjarY_-v65ncG28N90utiezrcdwnVPhYorFTzdgfX565p8gmpqbp4GFGXy7bJn5DXcCMf0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHgTKGAQSHCINmsncXxAiG676lK6VFsq9ZbGj0APJKXZCvWv8euYcZKlixC3HjexstZ4xvN99jwAXklXiCxyIhxx7k-rijCzkoe85NI4UUbWp4vtzdKdw_jjUXK0Br_6XBgKq-z3RL9R29rQGfkQ_Rz6RvSG8bDswiL2tybvT3-E1EGKblr7dhqtiuy6i59I35p30y1c69ecT7a_jHfCrsNAaGIRLULOrYlUiV-WqizSJC6MlCYSqlCRFcpYm6bcpogLtI60E6NYZ0lhqL0PjZECv3sN1iWxogGsb27P9udLuieQ_bW1jIRQ0bAhsEHXgise0DcK-Be6_TtI85LXm9yGWx1cZR9a_boDa666CzcvFTG8ByezugoRuhL6RUjPxtTvw2dLsLpk1PIYVZx91nTgw6bfcf9qmA9UYD75NzxALXFs7hqfFsbGF_hHbNZGp7M3_ufe_AAfvL0Ph1ci3gcwqOrKPQImNXItYmtOqxgtWxuqHR9zI1yZWpkF8LIXan7a1unIkd-Q5POl5APYJHEvB1Bpbf-gPvuad5aaa-UyM7JOFYhcFM0nUTqJrZPCpjItA9joFyvv7L3J_2hnAC-Wr9FS6fqlqFx97sdkXCWCJwE8bNd2OZOYqCSiiACylVVfmerqm-rkm68GPkJIx5HFPv7_vJ7DdbSX_NN0tvsEbnDqYkyJ-ckGDBZn5-4pQquFftbpMIPjqzab37bNN48
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-Uniformity+Correction+of+Spatial+Object+Images+Using+Multi-Scale+Residual+Cycle+Network+%28CycleMRSNet%29&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Jiang%2C+Chunfeng&rft.au=Li%2C+Zhengwei&rft.au=Wang%2C+Yubo&rft.au=Chen%2C+Tao&rft.date=2025-02-25&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=5&rft.spage=1389&rft_id=info:doi/10.3390%2Fs25051389&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon