Non-Uniformity Correction of Spatial Object Images Using Multi-Scale Residual Cycle Network (CycleMRSNet)
Ground-based telescopes often encounter challenges such as stray light and vignetting when capturing space objects, leading to non-uniform image backgrounds. This not only weakens the signal-to-noise ratio for target tracking but also reduces the accuracy of recognition systems. To address this chal...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 5; p. 1389 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
25.02.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ground-based telescopes often encounter challenges such as stray light and vignetting when capturing space objects, leading to non-uniform image backgrounds. This not only weakens the signal-to-noise ratio for target tracking but also reduces the accuracy of recognition systems. To address this challenge, We have proposed a novel network architecture called CycleMRSNet, which is based on the CycleGAN framework and incorporates a multi-scale attention mechanism to enhance image processing capabilities. Specifically, we have introduced a multi-scale feature extraction module (MSFEM) at the front end of the generator and embedded an efficient multi-scale attention residual block (EMA-residual block) within the Resnet backbone network. This design improves the efficiency of feature extraction and increases the focus on multi-scale information in high-dimensional feature maps, enabling the network to more comprehensively understand and concentrate on key areas within images, thereby capably correcting non-uniform backgrounds. To evaluate the performance of CycleMRSNet, we trained the model using a small-scale dataset and conducted corrections on simulated and real images within the test set. Experimental results showed that our model achieved scores of PSNR 32.7923, SSIM 0.9814, and FID 1.9212 in the test set, outperforming other methods. These metrics suggest that our approach significantly improves the correction of non-uniform backgrounds and enhances the robustness of the system. |
---|---|
AbstractList | Ground-based telescopes often encounter challenges such as stray light and vignetting when capturing space objects, leading to non-uniform image backgrounds. This not only weakens the signal-to-noise ratio for target tracking but also reduces the accuracy of recognition systems. To address this challenge, We have proposed a novel network architecture called CycleMRSNet, which is based on the CycleGAN framework and incorporates a multi-scale attention mechanism to enhance image processing capabilities. Specifically, we have introduced a multi-scale feature extraction module (MSFEM) at the front end of the generator and embedded an efficient multi-scale attention residual block (EMA-residual block) within the Resnet backbone network. This design improves the efficiency of feature extraction and increases the focus on multi-scale information in high-dimensional feature maps, enabling the network to more comprehensively understand and concentrate on key areas within images, thereby capably correcting non-uniform backgrounds. To evaluate the performance of CycleMRSNet, we trained the model using a small-scale dataset and conducted corrections on simulated and real images within the test set. Experimental results showed that our model achieved scores of PSNR 32.7923, SSIM 0.9814, and FID 1.9212 in the test set, outperforming other methods. These metrics suggest that our approach significantly improves the correction of non-uniform backgrounds and enhances the robustness of the system. Ground-based telescopes often encounter challenges such as stray light and vignetting when capturing space objects, leading to non-uniform image backgrounds. This not only weakens the signal-to-noise ratio for target tracking but also reduces the accuracy of recognition systems. To address this challenge, We have proposed a novel network architecture called CycleMRSNet, which is based on the CycleGAN framework and incorporates a multi-scale attention mechanism to enhance image processing capabilities. Specifically, we have introduced a multi-scale feature extraction module (MSFEM) at the front end of the generator and embedded an efficient multi-scale attention residual block (EMA-residual block) within the Resnet backbone network. This design improves the efficiency of feature extraction and increases the focus on multi-scale information in high-dimensional feature maps, enabling the network to more comprehensively understand and concentrate on key areas within images, thereby capably correcting non-uniform backgrounds. To evaluate the performance of CycleMRSNet, we trained the model using a small-scale dataset and conducted corrections on simulated and real images within the test set. Experimental results showed that our model achieved scores of PSNR 32.7923, SSIM 0.9814, and FID 1.9212 in the test set, outperforming other methods. These metrics suggest that our approach significantly improves the correction of non-uniform backgrounds and enhances the robustness of the system.Ground-based telescopes often encounter challenges such as stray light and vignetting when capturing space objects, leading to non-uniform image backgrounds. This not only weakens the signal-to-noise ratio for target tracking but also reduces the accuracy of recognition systems. To address this challenge, We have proposed a novel network architecture called CycleMRSNet, which is based on the CycleGAN framework and incorporates a multi-scale attention mechanism to enhance image processing capabilities. Specifically, we have introduced a multi-scale feature extraction module (MSFEM) at the front end of the generator and embedded an efficient multi-scale attention residual block (EMA-residual block) within the Resnet backbone network. This design improves the efficiency of feature extraction and increases the focus on multi-scale information in high-dimensional feature maps, enabling the network to more comprehensively understand and concentrate on key areas within images, thereby capably correcting non-uniform backgrounds. To evaluate the performance of CycleMRSNet, we trained the model using a small-scale dataset and conducted corrections on simulated and real images within the test set. Experimental results showed that our model achieved scores of PSNR 32.7923, SSIM 0.9814, and FID 1.9212 in the test set, outperforming other methods. These metrics suggest that our approach significantly improves the correction of non-uniform backgrounds and enhances the robustness of the system. |
Author | Wang, Yubo Chen, Tao Li, Zhengwei Jiang, Chunfeng |
AuthorAffiliation | 1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; jiangcf6512@163.com (C.J.) 2 University of Chinese Academy of Sciences, Beijing 100049, China; chent@ciomp.ac.cn |
AuthorAffiliation_xml | – name: 1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; jiangcf6512@163.com (C.J.) – name: 2 University of Chinese Academy of Sciences, Beijing 100049, China; chent@ciomp.ac.cn |
Author_xml | – sequence: 1 givenname: Chunfeng surname: Jiang fullname: Jiang, Chunfeng – sequence: 2 givenname: Zhengwei surname: Li fullname: Li, Zhengwei – sequence: 3 givenname: Yubo surname: Wang fullname: Wang, Yubo – sequence: 4 givenname: Tao surname: Chen fullname: Chen, Tao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40096212$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkktvGyEURlGVqnm0i_6BCqmbZDEtj4EZVlVl9WEpDymu14gBxsWdAQeYVv73xXZqJV3BvRwdfbrcc3Dig7cAvMXoA6UCfUyEIYZpK16AM1yTumoJQSdP7qfgPKU1QoRS2r4CpzVCghNMzoC7Db5aeteHOLq8hbMQo9XZBQ9DDxcblZ0a4F23Lk04H9XKJrhMzq_gzTRkVy20Giy8t8mZqYCzrS7lrc1_QvwFL_flzf2iNK5eg5e9GpJ983hegOXXLz9m36vru2_z2efrStcU5YoQo5HoG04b0SvOaqWbRiMqlECGCm0M58RwRFjXoc5SXHctU5q0lOyYhl6A-cFrglrLTXSjilsZlJP7RogrqWJ2JZjshG01NlYojmux0zDRsdrYhhre8L64Ph1cm6kbrdHW56iGZ9LnL979lKvwW2IsEOGEFcPloyGGh8mmLEeXtB0G5W2YkqS4aYlgdI--_w9dhyn6MqsdxSlDpK0L9e5ppGOWf19agKsDoGNIKdr-iGAkd-sij-tC_wL2LrAL |
Cites_doi | 10.1145/3422622 10.1109/ICCV48922.2021.00986 10.1109/TPAMI.2015.2439281 10.1002/jemt.20767 10.1364/OE.24.013738 10.3390/rs14225738 10.3390/rs14215598 10.1364/AO.57.00D155 10.1109/ICASSP49357.2023.10096516 10.1117/12.280308 10.1109/CVPR42600.2020.00821 10.1051/aas:1996206 10.1364/OE.27.010765 10.3390/rs14215618 10.1364/OE.26.031767 10.1364/AO.56.004358 10.1109/CVPR52688.2022.01278 10.3390/rs14215510 10.3390/s23031157 10.1364/OE.434024 10.3390/rs14215517 10.1364/JOSAA.20.000470 10.1364/OE.23.033902 10.1007/s10043-017-0303-5 10.1109/ICCV.2017.244 10.1609/aaai.v31i1.11231 10.1109/NSSMIC.2018.8824446 10.1109/CVPR52733.2024.00275 10.1038/s41592-021-01080-z 10.3390/rs14195056 10.1109/CVPR52729.2023.00380 10.3390/sym10110612 10.1109/CVPR.2017.19 10.1016/j.compag.2024.108612 10.1038/nmeth.3323 10.3390/s23031086 |
ContentType | Journal Article |
Copyright | 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s25051389 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (NC Live) ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_b9e8c1de9a614985ac59b54de73d676f PMC11902625 40096212 10_3390_s25051389 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62475258 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c430t-22dc09f76379fa654ac77c039a90d39cdd662d6025bb0be314b85ac283239a973 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:15:43 EDT 2025 Thu Aug 21 18:34:25 EDT 2025 Fri Jul 11 01:57:40 EDT 2025 Fri Jul 25 21:28:05 EDT 2025 Thu Mar 20 02:21:29 EDT 2025 Tue Jul 01 05:30:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | non-uniform image CycleMRSNet multi-scale attention ground-based telescopes |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c430t-22dc09f76379fa654ac77c039a90d39cdd662d6025bb0be314b85ac283239a973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25051389 |
PMID | 40096212 |
PQID | 3176350284 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b9e8c1de9a614985ac59b54de73d676f pubmedcentral_primary_oai_pubmedcentral_nih_gov_11902625 proquest_miscellaneous_3178295325 proquest_journals_3176350284 pubmed_primary_40096212 crossref_primary_10_3390_s25051389 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250225 |
PublicationDateYYYYMMDD | 2025-02-25 |
PublicationDate_xml | – month: 2 year: 2025 text: 20250225 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Smith (ref_42) 2015; 12 Wang (ref_16) 2021; 29 Harris (ref_3) 1997; Volume 3061 He (ref_24) 2018; 57 ref_36 ref_13 ref_35 ref_34 ref_33 ref_32 ref_31 ref_30 Takagi (ref_8) 2017; 24 Kuang (ref_23) 2017; 10 ref_19 ref_18 ref_17 ref_38 Goodfellow (ref_12) 2020; 63 ref_37 Stanciu (ref_43) 2010; 73 Horisaki (ref_7) 2017; 56 Ando (ref_5) 2015; 23 ref_25 ref_22 Dong (ref_10) 2015; 38 ref_21 Fang (ref_11) 2021; 18 Ju (ref_14) 2018; 26 ref_20 ref_41 ref_40 ref_1 Chen (ref_39) 2024; 217 Horisaki (ref_6) 2016; 24 ref_29 ref_28 ref_27 ref_26 ref_9 Manfroid (ref_2) 1996; 118 Tian (ref_15) 2019; 27 Torres (ref_4) 2003; 20 |
References_xml | – volume: 63 start-page: 139 year: 2020 ident: ref_12 article-title: Generative adversarial networks publication-title: Commun. ACM doi: 10.1145/3422622 – ident: ref_9 – ident: ref_32 doi: 10.1109/ICCV48922.2021.00986 – volume: 38 start-page: 295 year: 2015 ident: ref_10 article-title: Image super-resolution using deep convolutional networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2439281 – volume: 73 start-page: 165 year: 2010 ident: ref_43 article-title: Automated compensation of light attenuation in confocal microscopy by exact histogram specification publication-title: Microsc. Res. Tech. doi: 10.1002/jemt.20767 – volume: 24 start-page: 13738 year: 2016 ident: ref_6 article-title: Learning-based imaging through scattering media publication-title: Opt. Express doi: 10.1364/OE.24.013738 – ident: ref_21 doi: 10.3390/rs14225738 – ident: ref_18 doi: 10.3390/rs14215598 – volume: 57 start-page: D155 year: 2018 ident: ref_24 article-title: Single-image-based nonuniformity correction of uncooled long-wave infrared detectors: A deep-learning approach publication-title: Appl. Opt. doi: 10.1364/AO.57.00D155 – ident: ref_36 doi: 10.1109/ICASSP49357.2023.10096516 – ident: ref_40 – volume: Volume 3061 start-page: 895 year: 1997 ident: ref_3 article-title: Nonuniformity correction using the constant-statistics constraint: Aanalog and digital implementations publication-title: Proceedings of the Infrared Technology and Applications XXIII doi: 10.1117/12.280308 – ident: ref_34 doi: 10.1109/CVPR42600.2020.00821 – volume: 118 start-page: 391 year: 1996 ident: ref_2 article-title: On CCD standard stars and flat-field calibration publication-title: Astron. Astrophys. Suppl. Ser. doi: 10.1051/aas:1996206 – ident: ref_35 – volume: 27 start-page: 10765 year: 2019 ident: ref_15 article-title: DNN-based aberration correction in a wavefront sensorless adaptive optics system publication-title: Opt. Express doi: 10.1364/OE.27.010765 – ident: ref_19 doi: 10.3390/rs14215618 – volume: 26 start-page: 31767 year: 2018 ident: ref_14 article-title: Feature-based phase retrieval wavefront sensing approach using machine learning publication-title: Opt. Express doi: 10.1364/OE.26.031767 – volume: 56 start-page: 4358 year: 2017 ident: ref_7 article-title: Learning-based focusing through scattering media publication-title: Appl. Opt. doi: 10.1364/AO.56.004358 – ident: ref_37 doi: 10.1109/CVPR52688.2022.01278 – ident: ref_20 doi: 10.3390/rs14215510 – ident: ref_1 doi: 10.3390/s23031157 – volume: 29 start-page: 25960 year: 2021 ident: ref_16 article-title: Deep learning wavefront sensing for fine phasing of segmented mirrors publication-title: Opt. Express doi: 10.1364/OE.434024 – ident: ref_17 doi: 10.3390/rs14215517 – ident: ref_31 – volume: 20 start-page: 470 year: 2003 ident: ref_4 article-title: Kalman filtering for adaptive nonuniformity correction in infrared focal-plane arrays publication-title: JOSA A doi: 10.1364/JOSAA.20.000470 – volume: 23 start-page: 33902 year: 2015 ident: ref_5 article-title: Speckle-learning-based object recognition through scattering media publication-title: Opt. Express doi: 10.1364/OE.23.033902 – volume: 24 start-page: 117 year: 2017 ident: ref_8 article-title: Object recognition through a multi-mode fiber publication-title: Opt. Rev. doi: 10.1007/s10043-017-0303-5 – ident: ref_29 – ident: ref_33 doi: 10.1109/ICCV.2017.244 – ident: ref_38 doi: 10.1609/aaai.v31i1.11231 – ident: ref_26 doi: 10.1109/NSSMIC.2018.8824446 – ident: ref_27 doi: 10.1109/CVPR52733.2024.00275 – volume: 18 start-page: 406 year: 2021 ident: ref_11 article-title: Deep learning-based point-scanning super-resolution imaging publication-title: Nat. Methods doi: 10.1038/s41592-021-01080-z – ident: ref_22 doi: 10.3390/rs14195056 – volume: 10 start-page: 7800615 year: 2017 ident: ref_23 article-title: Single infrared image optical noise removal using a deep convolutional neural network publication-title: IEEE Photonics J. – ident: ref_28 doi: 10.1109/CVPR52729.2023.00380 – ident: ref_41 – ident: ref_25 doi: 10.3390/sym10110612 – ident: ref_13 doi: 10.1109/CVPR.2017.19 – volume: 217 start-page: 108612 year: 2024 ident: ref_39 article-title: Efficient and lightweight grape and picking point synchronous detection model based on key point detection publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2024.108612 – volume: 12 start-page: 404 year: 2015 ident: ref_42 article-title: CIDRE: An illumination-correction method for optical microscopy publication-title: Nat. Methods doi: 10.1038/nmeth.3323 – ident: ref_30 doi: 10.3390/s23031086 |
SSID | ssj0023338 |
Score | 2.4466481 |
Snippet | Ground-based telescopes often encounter challenges such as stray light and vignetting when capturing space objects, leading to non-uniform image backgrounds.... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1389 |
SubjectTerms | Algorithms CycleMRSNet Datasets Deep learning ground-based telescopes Light multi-scale attention non-uniform image Random variables Telescopes |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB7Ekx7Et_VFFA96KHaTtGmOurisgiv4AG-leRQ92BV3PfjvnUm7y64IXjw2DTSdSTLfl8wD4ET5UuSJF3GH83BaVca5UzzmFVfWiypxIVzsdpD1n-TNc_o8U-qLfMKa9MCN4M6N9rntOK9LNCQ6T0ubapNK55Vwmcoq2n3R5k3IVEu1BDKvJo-QQFJ_PiJDT1dyc9YnJOn_DVn-dJCcsTi9VVhpoSK7aIa4Bgu-XoflmQSCG_A6GNYxwkZCnginWZdqbYRIBTasGJUbxunF7gwdtrDrN9w7Riw4CbAQeBs_oIY8u_ejEJLFul_4ITZoPMPZaXi8vX_AhrNNeOpdPXb7cVs8IbZSJOOYc2cTXeH2oXRVZqksrVI2EbrUiRPaOpdl3GUIeYxJjBcdaUi4VLmI-iixBYv1sPY7wJRBnkNMyRstcVUZS3nbJbfCV5lTeQTHE6EW702OjAK5BUm-mEo-gksS97QDpbUODajsolV28ZeyI9ifKKto19qoQASEqAlxkozgaPoaVwldfZS1H36GPjnXqeBpBNuNbqcjkUTj0IJHkM9pfW6o82_q15eQibuDcIojg9z9j5_bgyVOxYUpXj7dh8Xxx6c_QMQzNodhcn8DHFn_PA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be4EDgvJKKZVBPZSD1cR24viEYNWlIHUrtVTqLYofgR5ISrM99N8z42TTLkIcY1vKaMbj-caeB8CeDrUs0yB5JkS8rap56bXgohHaBdmkPqaLHS-Ko3P17SK_GC_c-jGscnUmxoPad47uyA_QzqFtRGuoPl795tQ1il5XxxYaD2EzQ0tDIV3l_MvkcEn0v4ZqQhJd-4OezD09zK3ZoFiq_1_48u8wyXt2Z_4UnoyAkX0aJPwMHoR2Cx7fKyP4HC4XXcsRPBL-RFDNZtRxI-YrsK5h1HQYNxk7sXTlwr7-whOkZzFUgMX0W36GcgrsNPQxMYvNbvFHbDHEh7P9-Hl8eoYDH17A-fzw--yIjy0UuFMyXXIhvEtNg6zTpqmLXNVOa5dKU5vUS-O8LwrhCwQ-1qY2yEzZMq8d9S-iNVq-hI22a8NrYNqit0P-UrBGoW5ZR9XblXAyNIXXZQLvV0ytroZKGRV6GMT5auJ8Ap-J3dMCKm4dB7rrH9WoK5U1oXSZD6ZG7GCIntzYXPmgpS900SSwsxJWNWpcX93tjwTeTdOoK_QAUrehu4lrSmFyKfIEXg2ynShR5MyhHU-gXJP6GqnrM-3lz1iPO0NQJdCP3P4_XW_gkaDmwZQPn-_AxvL6JrxFRLO0u3Hb_gHOwfYI priority: 102 providerName: ProQuest |
Title | Non-Uniformity Correction of Spatial Object Images Using Multi-Scale Residual Cycle Network (CycleMRSNet) |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40096212 https://www.proquest.com/docview/3176350284 https://www.proquest.com/docview/3178295325 https://pubmed.ncbi.nlm.nih.gov/PMC11902625 https://doaj.org/article/b9e8c1de9a614985ac59b54de73d676f |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_t4wUeJr4JjMogHuAhkNpOHD9MiFUrA6kFdVTqWxR_hE2CBNpOYv_97pw2WtDES6TEJ8W6s32_n-27A3itfCnyxIt4yHnYrSrj3Cke84or60WVuBAuNplmp3P5ZZEudmBbY3OjwNWt1I7qSc2XP9_9_XP1ASf8ETFOpOzvV-TG6cBtF_bRISkqZDCR3WECF0jD2qRCffGeKwoZ-2-Dmf_elrzhfsb34GCDG9nH1tD3YcfXD-DujWyCD-Fi2tQxYkiCoYit2YgKb4SwBdZUjGoP41hjXw3tvLDPv3AhWbFwY4CFKNz4DM3l2cyvQnwWG13hj9i0vSbO3oTXyewMP7x9BPPxyffRabyppBBbKZJ1zLmzia5wLVG6KrNUllYpmwhd6sQJbZ3LMu4yxD_GJMaLoTR5WloqY0QySjyGvbqp_VNgyiDpIdrkjZY4xYylJO6SW-GrzKk8gldbpRa_24QZBRIN0nzRaT6CY1J3J0A5rsOHZvmj2EyZwmif26HzukQIoak_qTapdF4Jl6msiuBwa6xiO24KhEMIoRA0yQheds04ZegcpKx9cxlkcq5TwdMInrS27XoiidOhO48g71m919V-S31xHtJyDxFbcaSTz_7fr-dwh1MNYQqLTw9hb7289C8Q2KzNAHbVQuEzH38awP7xyfTbbBA2CQZhQF8DcAb71Q |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaBBIeoWduJ4wNCsLDs0u4i9SH1FuJH2h5ISrMV6p_iNzLjbJYuQtx6jG051njG8409D4CXypciT7yIB5yH26oyzp3iMa-4sl5UiQvhYtNZNt6XXw7SgzX41cfCkFtlfyaGg9o1lu7IN1HPoW5EbSjfnfyIqWoUva72JTQ6ttjy5z_RZGvfTj7i_r7ifPRpbziOF1UFYitFMo85dzbRFc6mdFVmqSytUjYRutSJE9o6l2XcZYgFjEmMFwNp8rS0VNKHxiiB816Bq1KgJqfI9NHnpYEn0N7rshdhZ7LZErygh8AVnRdKA_wLz_7tlnlBz41uwc0FQGXvO466DWu-vgM3LqQtvAvHs6aOEawS3kUQz4ZU4SPER7CmYlTkGJmafTV0xcMm3_HEallwTWAh3DfeRb7wbMe3IRCMDc_xR2zW-aOz1-FzurOLDW_uwf6lEPc-rNdN7R8CUwatK7LPvNESZdlYyhYvuRW-ypzKI3jRE7U46TJzFGjREOWLJeUj-EDkXg6gZNqhoTk9LBayWRjtcztwXpeIVTStJ9Umlc4r4TKVVRFs9JtVLCS8Lf7wYwTPl90om_TgUta-OQtjcq5TwdMIHnR7u1yJJOMRcUME-cquryx1tac-Pgr5vwcI4jjarY_-v65ncG28N90utiezrcdwnVPhYorFTzdgfX565p8gmpqbp4GFGXy7bJn5DXcCMf0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHgTKGAQSHCINmsncXxAiG676lK6VFsq9ZbGj0APJKXZCvWv8euYcZKlixC3HjexstZ4xvN99jwAXklXiCxyIhxx7k-rijCzkoe85NI4UUbWp4vtzdKdw_jjUXK0Br_6XBgKq-z3RL9R29rQGfkQ_Rz6RvSG8bDswiL2tybvT3-E1EGKblr7dhqtiuy6i59I35p30y1c69ecT7a_jHfCrsNAaGIRLULOrYlUiV-WqizSJC6MlCYSqlCRFcpYm6bcpogLtI60E6NYZ0lhqL0PjZECv3sN1iWxogGsb27P9udLuieQ_bW1jIRQ0bAhsEHXgise0DcK-Be6_TtI85LXm9yGWx1cZR9a_boDa666CzcvFTG8ByezugoRuhL6RUjPxtTvw2dLsLpk1PIYVZx91nTgw6bfcf9qmA9UYD75NzxALXFs7hqfFsbGF_hHbNZGp7M3_ufe_AAfvL0Ph1ci3gcwqOrKPQImNXItYmtOqxgtWxuqHR9zI1yZWpkF8LIXan7a1unIkd-Q5POl5APYJHEvB1Bpbf-gPvuad5aaa-UyM7JOFYhcFM0nUTqJrZPCpjItA9joFyvv7L3J_2hnAC-Wr9FS6fqlqFx97sdkXCWCJwE8bNd2OZOYqCSiiACylVVfmerqm-rkm68GPkJIx5HFPv7_vJ7DdbSX_NN0tvsEbnDqYkyJ-ckGDBZn5-4pQquFftbpMIPjqzab37bNN48 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-Uniformity+Correction+of+Spatial+Object+Images+Using+Multi-Scale+Residual+Cycle+Network+%28CycleMRSNet%29&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Jiang%2C+Chunfeng&rft.au=Li%2C+Zhengwei&rft.au=Wang%2C+Yubo&rft.au=Chen%2C+Tao&rft.date=2025-02-25&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=5&rft.spage=1389&rft_id=info:doi/10.3390%2Fs25051389&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |