Toward a better understanding of the enhancing/embrittling effects of impurities in Nickel grain boundaries

The fracture path follows grain boundaries (GB) in most metallic system under tensile test. In general, impurities, even in ppm concentration, that segregate to these boundaries can remarkably change materials mechanical properties. Predicting impurities segregation effects in Nickel super-alloys mi...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 9; no. 1; pp. 14024 - 10
Main Authors Bentria, El Tayeb, Lefkaier, Ibn Khaldoun, Benghia, Ali, Bentria, Bachir, Kanoun, Mohammed Benali, Goumri-Said, Souraya
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 01.10.2019
Nature Publishing Group UK
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The fracture path follows grain boundaries (GB) in most metallic system under tensile test. In general, impurities, even in ppm concentration, that segregate to these boundaries can remarkably change materials mechanical properties. Predicting impurities segregation effects in Nickel super-alloys might not be seen as intuitive and perhaps more fundamental understanding is needed. We performed a density functional theory calculation to elucidate the effect of eight light elements (B, C, N, O, Al, Si, P and S) and twelve transition metal elements (Tc, Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, Ta, W, Re) on Nickel ∑5(210) grain boundary formation and its Ni free surface. The effect of impurities was carefully examined by calculating different properties such as segregation, binding and cohesive energies, strengthening/embrittling potency and the theoretical tensile strength. Additionally, we employed the electron density differences and magnetic effects to explain why and how impurities such as B, S, V, Nb, Mn and W affect Nickel ∑5 GB. We used the generated data calculated on equal footing, to develop a fundamental understanding on impurity effect. A clear and strong correlation is found between difference in magnetic moment change between isolated and imbedded impurity atom on one hand and the tensile strength on the other hand. The higher the loss of the magnetic moment, the more the impurity consolidates the GB.
AbstractList The fracture path follows grain boundaries (GB) in most metallic system under tensile test. In general, impurities, even in ppm concentration, that segregate to these boundaries can remarkably change materials mechanical properties. Predicting impurities segregation effects in Nickel super-alloys might not be seen as intuitive and perhaps more fundamental understanding is needed. We performed a density functional theory calculation to elucidate the effect of eight light elements (B, C, N, O, Al, Si, P and S) and twelve transition metal elements (Tc, Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, Ta, W, Re) on Nickel ∑5(210) grain boundary formation and its Ni free surface. The effect of impurities was carefully examined by calculating different properties such as segregation, binding and cohesive energies, strengthening/embrittling potency and the theoretical tensile strength. Additionally, we employed the electron density differences and magnetic effects to explain why and how impurities such as B, S, V, Nb, Mn and W affect Nickel ∑5 GB. We used the generated data calculated on equal footing, to develop a fundamental understanding on impurity effect. A clear and strong correlation is found between difference in magnetic moment change between isolated and imbedded impurity atom on one hand and the tensile strength on the other hand. The higher the loss of the magnetic moment, the more the impurity consolidates the GB.
Abstract The fracture path follows grain boundaries (GB) in most metallic system under tensile test. In general, impurities, even in ppm concentration, that segregate to these boundaries can remarkably change materials mechanical properties. Predicting impurities segregation effects in Nickel super-alloys might not be seen as intuitive and perhaps more fundamental understanding is needed. We performed a density functional theory calculation to elucidate the effect of eight light elements (B, C, N, O, Al, Si, P and S) and twelve transition metal elements (Tc, Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, Ta, W, Re) on Nickel ∑5(210) grain boundary formation and its Ni free surface. The effect of impurities was carefully examined by calculating different properties such as segregation, binding and cohesive energies, strengthening/embrittling potency and the theoretical tensile strength. Additionally, we employed the electron density differences and magnetic effects to explain why and how impurities such as B, S, V, Nb, Mn and W affect Nickel ∑5 GB. We used the generated data calculated on equal footing, to develop a fundamental understanding on impurity effect. A clear and strong correlation is found between difference in magnetic moment change between isolated and imbedded impurity atom on one hand and the tensile strength on the other hand. The higher the loss of the magnetic moment, the more the impurity consolidates the GB.
The fracture path follows grain boundaries (GB) in most metallic system under tensile test. In general, impurities, even in ppm concentration, that segregate to these boundaries can remarkably change materials mechanical properties. Predicting impurities segregation effects in Nickel super-alloys might not be seen as intuitive and perhaps more fundamental understanding is needed. We performed a density functional theory calculation to elucidate the effect of eight light elements (B, C, N, O, Al, Si, P and S) and twelve transition metal elements (Tc, Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, Ta, W, Re) on Nickel ∑5(210) grain boundary formation and its Ni free surface. The effect of impurities was carefully examined by calculating different properties such as segregation, binding and cohesive energies, strengthening/embrittling potency and the theoretical tensile strength. Additionally, we employed the electron density differences and magnetic effects to explain why and how impurities such as B, S, V, Nb, Mn and W affect Nickel ∑5 GB. We used the generated data calculated on equal footing, to develop a fundamental understanding on impurity effect. A clear and strong correlation is found between difference in magnetic moment change between isolated and imbedded impurity atom on one hand and the tensile strength on the other hand. The higher the loss of the magnetic moment, the more the impurity consolidates the GB.
ArticleNumber 14024
Author Kanoun, Mohammed Benali
Bentria, El Tayeb
Bentria, Bachir
Lefkaier, Ibn Khaldoun
Goumri-Said, Souraya
Benghia, Ali
Author_xml – sequence: 1
  givenname: El Tayeb
  orcidid: 0000-0003-1924-5705
  surname: Bentria
  fullname: Bentria, El Tayeb
  organization: Laboratoire Physique des matériaux, Université Ammar Telidji de Laghouat; BP 37 G, Laghouat, 03000, Algeria
– sequence: 2
  givenname: Ibn Khaldoun
  surname: Lefkaier
  fullname: Lefkaier, Ibn Khaldoun
  organization: Laboratoire Physique des matériaux, Université Ammar Telidji de Laghouat; BP 37 G, Laghouat, 03000, Algeria
– sequence: 3
  givenname: Ali
  surname: Benghia
  fullname: Benghia, Ali
  organization: Laboratoire Physique des matériaux, Université Ammar Telidji de Laghouat; BP 37 G, Laghouat, 03000, Algeria
– sequence: 4
  givenname: Bachir
  surname: Bentria
  fullname: Bentria, Bachir
  organization: Laboratoire Physique des matériaux, Université Ammar Telidji de Laghouat; BP 37 G, Laghouat, 03000, Algeria
– sequence: 5
  givenname: Mohammed Benali
  orcidid: 0000-0002-2334-7889
  surname: Kanoun
  fullname: Kanoun, Mohammed Benali
  organization: Physics Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Saudi Arabia
– sequence: 6
  givenname: Souraya
  orcidid: 0000-0002-9333-7862
  surname: Goumri-Said
  fullname: Goumri-Said, Souraya
  email: sosaid@alfaisal.edu
  organization: College of Science, Physics department, Alfaisal University, P.O. Box 50927, Riyadh, 11533, Saudi Arabia. sosaid@alfaisal.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31575898$$D View this record in MEDLINE/PubMed
BookMark eNpdkU9vFSEUxYmpsbX2C7gwk7jpZixwYZjZmJjGf0mjm7omDHN5j3YGnsBo_Pbl9dWmyga459yTe_N7SY5CDEjIa0bfMQr9RRZMDn1L2dBKCh1r4Rk54VTIlgPnR0_ex-Qs5xtaj-SDYMMLcgxMKtkP_Qm5vY6_TZoa04xYCqZmDROmXEyYfNg00TVliw2GrQm2Fi5wGZMvZd6L6Bzakvcmv-zWWveYGx-ab97e4txskqmfMdZIk6r0ijx3Zs549nCfkh-fPl5ffmmvvn_-evnhqrUCaGk575y1kglASx0HYUYjcHBMgZj6XgzC8M7Q0UzOdWrkwnE7QDcJayiDScEpeX_I3a3jgpPFUJKZ9S75xaQ_Ohqv_1WC3-pN_KU7pUApXgPOHwJS_LliLnrx2eI8m4BxzZoDpUwpCX21vv3PehPXFOp69y4OIOV-In5w2RRzTugeh2FU73HqA05dcep7nBpq05unazy2_IUHdwz8nto
CitedBy_id crossref_primary_10_1016_j_actamat_2021_117500
crossref_primary_10_1103_PhysRevMaterials_5_013602
crossref_primary_10_3390_nano10040691
crossref_primary_10_1016_j_matchar_2023_112845
crossref_primary_10_1016_j_nme_2021_101055
crossref_primary_10_1021_acsomega_3c07561
Cites_doi 10.1103/PhysRevB.23.5048
10.1103/PhysRevB.79.144114
10.1126/science.1104624
10.5772/66427
10.1088/0953-8984/16/23/013
10.1088/0305-4608/10/6/006
10.1016/0921-5093(89)90372-9
10.1134/S1028335808080089
10.2514/1.18239
10.2320/matertrans.47.2682
10.1016/j.scriptamat.2012.11.019
10.1103/PhysRevB.60.7149
10.1063/1.3042211
10.1103/PhysRevLett.45.566
10.1016/j.msea.2013.04.047
10.4028/www.scientific.net/AMR.278.192
10.1016/j.actamat.2014.08.047
10.1088/0965-0393/21/7/075005
10.1007/BF00549796
10.1016/j.pmatsci.2011.01.008
10.1524/zkri.220.5.567.65075
10.1103/PhysRevB.56.15629
ContentType Journal Article
Copyright 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2019
Copyright_xml – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2019
DBID NPM
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/s41598-019-50361-3
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Science Journals
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 10
ExternalDocumentID 10_1038_s41598_019_50361_3
31575898
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
NPM
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
7XB
8FK
K9.
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c430t-226fcc5143ec0f234aba4e9f1734d88494a26a0badff67b24f2c936d4ca013d73
IEDL.DBID RPM
ISSN 2045-2322
IngestDate Tue Sep 17 21:17:17 EDT 2024
Tue Aug 27 04:26:52 EDT 2024
Fri Sep 13 10:39:45 EDT 2024
Fri Aug 23 01:26:43 EDT 2024
Sat Sep 28 08:46:07 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-226fcc5143ec0f234aba4e9f1734d88494a26a0badff67b24f2c936d4ca013d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1924-5705
0000-0002-9333-7862
0000-0002-2334-7889
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773772/
PMID 31575898
PQID 2300233557
PQPubID 2041939
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6773772
proquest_miscellaneous_2300177538
proquest_journals_2300233557
crossref_primary_10_1038_s41598_019_50361_3
pubmed_primary_31575898
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Scientific reports
PublicationTitleAlternate Sci Rep
PublicationYear 2019
Publisher Nature Publishing Group
Nature Publishing Group UK
Publisher_xml – name: Nature Publishing Group
– name: Nature Publishing Group UK
References JR Rice (50361_CR8) 1989; 107
Y Masatake (50361_CR17) 2004; 16
DM Ceperley (50361_CR12) 1980; 45
WT Geng (50361_CR3) 1999; 60
M Yamaguchi (50361_CR16) 2005; 307
VI Razumovskiy (50361_CR6) 2015; 82
VI Razumovskiy (50361_CR5) 2011; 278
ZX Tian (50361_CR22) 2009; 79
S Sanyal (50361_CR7) 2008; 93
TM Pollock (50361_CR1) 2006; 22
50361_CR19
ET Bentria (50361_CR15) 2013; 577
AV Logunov (50361_CR4) 2008; 53
JP Perdew (50361_CR13) 1981; 23
M Yamaguchi (50361_CR9) 2006; 47
M Všianská (50361_CR2) 2011; 56
P Lejček (50361_CR10) 2013; 68
AM Tahir (50361_CR18) 2013; 21
AK Jena (50361_CR20) 1984; 19
50361_CR21
M Seah (50361_CR23) 1980; 10
EG Moroni (50361_CR14) 1997; 56
SJ Clark (50361_CR11) 2005; 220
References_xml – volume: 23
  start-page: 5048
  year: 1981
  ident: 50361_CR13
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.23.5048
  contributor:
    fullname: JP Perdew
– volume: 79
  start-page: 144114
  year: 2009
  ident: 50361_CR22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.144114
  contributor:
    fullname: ZX Tian
– volume: 307
  start-page: 393
  year: 2005
  ident: 50361_CR16
  publication-title: Science.
  doi: 10.1126/science.1104624
  contributor:
    fullname: M Yamaguchi
– ident: 50361_CR19
  doi: 10.5772/66427
– volume: 16
  start-page: 3933
  year: 2004
  ident: 50361_CR17
  publication-title: J. Phys. Condens Matter.
  doi: 10.1088/0953-8984/16/23/013
  contributor:
    fullname: Y Masatake
– volume: 10
  start-page: 1043
  year: 1980
  ident: 50361_CR23
  publication-title: J. Phys. F: Metal Phys.
  doi: 10.1088/0305-4608/10/6/006
  contributor:
    fullname: M Seah
– volume: 107
  start-page: 23
  year: 1989
  ident: 50361_CR8
  publication-title: Mater. Sci. Eng. A Struct. Mater.
  doi: 10.1016/0921-5093(89)90372-9
  contributor:
    fullname: JR Rice
– volume: 53
  start-page: 438
  year: 2008
  ident: 50361_CR4
  publication-title: Dokl Phys.
  doi: 10.1134/S1028335808080089
  contributor:
    fullname: AV Logunov
– volume: 22
  start-page: 361
  year: 2006
  ident: 50361_CR1
  publication-title: J. Propul Power
  doi: 10.2514/1.18239
  contributor:
    fullname: TM Pollock
– volume: 47
  start-page: 2682
  year: 2006
  ident: 50361_CR9
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.47.2682
  contributor:
    fullname: M Yamaguchi
– volume: 68
  start-page: 547
  year: 2013
  ident: 50361_CR10
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2012.11.019
  contributor:
    fullname: P Lejček
– volume: 60
  start-page: 7149
  year: 1999
  ident: 50361_CR3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.60.7149
  contributor:
    fullname: WT Geng
– volume: 93
  start-page: 223113
  year: 2008
  ident: 50361_CR7
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3042211
  contributor:
    fullname: S Sanyal
– volume: 45
  start-page: 566
  year: 1980
  ident: 50361_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.566
  contributor:
    fullname: DM Ceperley
– volume: 577
  start-page: 197
  year: 2013
  ident: 50361_CR15
  publication-title: Mater. Sci. Eng. A.
  doi: 10.1016/j.msea.2013.04.047
  contributor:
    fullname: ET Bentria
– volume: 278
  start-page: 192
  year: 2011
  ident: 50361_CR5
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.278.192
  contributor:
    fullname: VI Razumovskiy
– ident: 50361_CR21
– volume: 82
  start-page: 369
  year: 2015
  ident: 50361_CR6
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.08.047
  contributor:
    fullname: VI Razumovskiy
– volume: 21
  start-page: 075005
  year: 2013
  ident: 50361_CR18
  publication-title: Model. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/21/7/075005
  contributor:
    fullname: AM Tahir
– volume: 19
  start-page: 3121
  year: 1984
  ident: 50361_CR20
  publication-title: J Mater Sci.
  doi: 10.1007/BF00549796
  contributor:
    fullname: AK Jena
– volume: 56
  start-page: 817
  year: 2011
  ident: 50361_CR2
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2011.01.008
  contributor:
    fullname: M Všianská
– volume: 220
  start-page: 567
  year: 2005
  ident: 50361_CR11
  publication-title: Zeitschrift für Kristallographie
  doi: 10.1524/zkri.220.5.567.65075
  contributor:
    fullname: SJ Clark
– volume: 56
  start-page: 15629
  year: 1997
  ident: 50361_CR14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.56.15629
  contributor:
    fullname: EG Moroni
SSID ssj0000529419
Score 2.3649573
Snippet The fracture path follows grain boundaries (GB) in most metallic system under tensile test. In general, impurities, even in ppm concentration, that segregate...
Abstract The fracture path follows grain boundaries (GB) in most metallic system under tensile test. In general, impurities, even in ppm concentration, that...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 14024
SubjectTerms Boundaries
Chromium
Grain boundaries
Impurities
Light effects
Mechanical properties
Nickel
Tensile strength
SummonAdditionalLinks – databaseName: ProQuest_Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxtBEB_UUvClaG1t6gdb8K0sl7vd3N4-iYgSBPukkLdjPzVYL7FeHvrfd2bvkhoFn3chYWZu5zcfvxmAExtGwsvScK-pzOiD4yZGwXMq2mkbRGkp33H9qxzfyqvJaLIB4yUXhtoql29ieqj9zFGOPEOojO4FvaPKjKUsgGuz0_kTp_1RVGftl2lswoe8QFiBlq0mapVtoXqWzHXPmhmKKntGz0XsslzzEb7iORfrnukN3HzdNfnCDV3uwKceP7KzTuG7sBGaz_Cx2yj5dw8eblIbLDPMJp4OW7wkr7BZZAj4WGjuacxGc5cFYmy1LXHSWd_aQZemj3PaaodRNJs2DK3lIfxmd7RNgtm0h4kC7C9we3lxcz7m_T4F7qQYthyRVnSOEFJww1gIaayRQcdcCemrSmppitIMrfExlsoWMhZOi9JLZxAoeiW-wlYza8I3YFEhrkCw4lwVpTcjo4oqqMJHiU5XWz-An0tZ1vNubEadyt2iqjvJ1yj5Okm-FgM4XIq77j-h5_q_wgfwY3WMxk8VDdOE2aK7kyuMuKoB7HfaWf2cyBGJVhpP1JreVhdosPb6STO9TwO2S6UERh3f3_9bB7BdkPmkzr5D2Gr_LMIRIpTWHifj-wcc5ejX
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5REFIvFbS0LI_KlXqrXDa2N44PVYVQEaoEJ1biFvkJKyDLIyuVf8-Mk12xLZeebSXKZJz5JjPffABfXRzJoErLg6EyY4ie25QkL6hoZ1yUpaP_Hadn5clY_b4YXazAXO6oN-Djq6kd6UmNH26-_7l_-okH_kdHGa8OHjEIEVGsMHyEH-SCyzewJpRU5PGnPdzvZn0Lo7LWBw1h5wgmRM-jef0yy7HqHwD6dx_li8B0vAHvekTJDjsX2ISV2LyH9U5j8ukDXJ_nxlhmmcvMHTZ7SWdh08QQArLYXNHgjebyIBKHq22Jpc76Zg_aNLm9I507zKvZpGHoP9fxhl2SvgRzWZmJUu4tGB__Oj864b3CAvdKDluO2Ct5T5gp-mESUllnVTSp0FKFqlJGWVHaobMhpVI7oZLwRpZBeYvQMWj5EVabaRO3gSWNSAPhi_dVUsGOrBZV1CIkhWHYuDCAb3Nb1nfdII06F8BlVXeWr9HydbZ8LQewNzd3PfeJGrMlRBgIkPQAviyW8ThQjcM2cTrr9hQac7BqAJ-6t7O4nSwQm1YGV_TSe1tsoFHbyyvN5CqP3C61lpiH7PzXQ-zCW0HelFv_9mC1fZjFfYQwrfuc_fIZmxDuDw
  priority: 102
  providerName: Scholars Portal
Title Toward a better understanding of the enhancing/embrittling effects of impurities in Nickel grain boundaries
URI https://www.ncbi.nlm.nih.gov/pubmed/31575898
https://www.proquest.com/docview/2300233557/abstract/
https://search.proquest.com/docview/2300177538
https://pubmed.ncbi.nlm.nih.gov/PMC6773772
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB2SlEIvpd91my4q9FYcry3Zko5tSAiFDaEksDejz2RJVrs03kP_fUeyvey2t158kYyN59nzxvNmBuCLdjW1rFG5lTHNaJ3Jlfc0L2PSTmpHGx3_d8wum4sb9mNezw-gHmthkmjf6MVJeFiehMVd0laul6YYdWLF1ey04ZwiKywO4ZBTuhOi9w29K8lKORTITKkoHtFJxUKyUuY1frDLPA7PoSUSFSHFvj_6h2T-rZXccT7nL-D5wBrJt_7uXsKBC6_gaT9H8vdruL9O4leiiE7VOWSzW7JCVp4gzSMu3MXmGuG2cLFOq-tiJToZBB1x02K5jrPsMHYmi0AQI_fugdzGGRJEp-lLMax-AzfnZ9enF_kwRSE3jE67HPmVNybyImemvqJMacWc9CWnzArBJFNVo6ZaWe8brivmKyNpY5lRSA8tp2_hKKyCew_Ec2QTSFGMEZ5ZVSteCccr6xm6WqltBl_HZ9mu-2YZbUpyU9H2RmjRCG0yQkszOB4fdzu8OI8tRkTIIpAE8Qw-b5cR8jGPoYJbbfo9Jcc4S2TwrrfO9nKjWTPge3bbbojttPdXEGWprfaAqg__feZHeFZFkCWp3zEcdb827hNSlk5PEKhzPoEn388ur35OUuCPxxkTkwTeP0pa8po
link.rule.ids 230,315,733,786,790,870,891,12083,21416,24346,27957,27958,31754,31755,33779,33780,43345,43840,53827,53829,74102,74659
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB5BKgQXVF4lUMBI3NAq2bWzXp8QVK0CtBFCqdSb5WcbFTZpszn033dm1wkNSJxtKdHMrOeb5wfwwYYR96I0mVdUZvTBZSZGnuVUtFM28NJSvuNkUo5Pxbez0VlKuC1TW-X6TWwfaj93lCMfIFRG94LeUX5aXGXEGkXV1UShcR92BMdQpQc7Xw4nP35usixUxxK5StMyQ14NluixaKosV9kIX-8849se6R-Y-Xe35B33c7QLjxNuZJ87RT-Be6F-Cg86JsmbZ3A5bdtfmWG2nc9hq7tDK2weGQI9FuoLWq9Rnw8CTWo1Dc2is9TSQZdmvxfEZofRM5vVDK3kMvxi58QiwWzLv0SB9XM4PTqcHoyzxKOQOcGHTYYIKzpHyCi4YSy4MNaIoGIuufBVJZQwRWmG1vgYS2kLEQuneOmFMwgQveQvoFfP6_ASWJSIJxCkOFdF4c3IyKIKsvBRoLNV1vfh41qWetGty9BtmZtXupO8RsnrVvKa92F_LW6dPp2l_qPoPrzfHKPRUyXD1GG-6u7kEiOtqg97nXY2P8dzRKCVwhO5pbfNBVqovX1Szy7axdqllByjjVf__1vv4OF4enKsj79Ovr-GRwWZUtvdtw-95noV3iBKaezbZIq3-2zpcA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZKKxAXRHk1tBQjcUNWdtfOen1CFW3UFqg4tFJulp9tVLoJZHPg3zPjdUIDEmdb2tXM2PON5_ER8t6GEfeiNswrTDP64JiJkbMSk3bKBl5bfO_4elGfXonzyWiS658WuaxydSemi9rPHL6RDwEqg3sB7yiHMZdFfDsef5z_YMgghZnWTKfxgOyAlyyQzUBO5Pq9BTNaolS5b6bgzXABvgv7y0rFRnCPl4xv-qZ_AOffdZP3HNH4KXmSESQ96lW-S7ZC-4w87Dklfz0nt5epEJYaalOnDl3eb1-hs0gB8tHQ3uCgjfZ6GLBnq-uwK53m4g7cNL2bI68dxNF02lKwl9vwnV4jnwS1iYkJQ-wX5Gp8cvnplGVGBeYELzoGWCs6hxgpuCJWXBhrRFCxlFz4phFKmKo2hTU-xlraSsTKKV574QxARS_5S7LdztqwR2iUgCwArjjXROHNyMiqCbLyUYDbVdYPyIeVLPW8H5yhU8KbN7qXvAbJ6yR5zQfkYCVunQ_RQv9R-YC8Wy-D-WNOw7Rhtuz3lBJirmZAXvXaWX-Ol4BFGwUrckNv6w04WntzpZ3epBHbtZQc4o7X__-tt-QR2KD-cnbxeZ88rtCSUpnfAdnufi7DG4ArnT1MdvgbpfTsNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+a+better+understanding+of+the+enhancing%2Fembrittling+effects+of+impurities+in+Nickel+grain+boundaries&rft.jtitle=Scientific+reports&rft.au=Bentria%2C+El+Tayeb&rft.au=Lefkaier%2C+Ibn+Khaldoun&rft.au=Benghia%2C+Ali&rft.au=Bentria%2C+Bachir&rft.date=2019-10-01&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-019-50361-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_019_50361_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon