Dual-horizon peridynamics

Summary In this paper, we develop a dual‐horizon peridynamics (DH‐PD) formulation that naturally includes varying horizon sizes and completely solves the ‘ghost force’ issue. Therefore, the concept of dual horizon is introduced to consider the unbalanced interactions between the particles with diffe...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in engineering Vol. 108; no. 12; pp. 1451 - 1476
Main Authors Ren, Huilong, Zhuang, Xiaoying, Cai, Yongchang, Rabczuk, Timon
Format Journal Article
LanguageEnglish
Published Bognor Regis Blackwell Publishing Ltd 21.12.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary In this paper, we develop a dual‐horizon peridynamics (DH‐PD) formulation that naturally includes varying horizon sizes and completely solves the ‘ghost force’ issue. Therefore, the concept of dual horizon is introduced to consider the unbalanced interactions between the particles with different horizon sizes. The present formulation fulfills both the balances of linear momentum and angular momentum exactly. Neither the ‘partial stress tensor’ nor the ‘slice’ technique is needed to ameliorate the ghost force issue. We will show that the traditional peridynamics can be derived as a special case of the present DH‐PD. All three peridynamic formulations, namely, bond‐based, ordinary state‐based, and non‐ordinary state‐based peridynamics, can be implemented within the DH‐PD framework. Our DH‐PD formulation allows for h‐adaptivity and can be implemented in any existing peridynamics code with minimal changes. A simple adaptive refinement procedure is proposed, reducing the computational cost. Both two‐dimensional and three‐dimensional examples including the Kalthoff–Winkler experiment and plate with branching cracks are tested to demonstrate the capability of the method. Copyright © 2016 John Wiley & Sons, Ltd.
AbstractList Summary In this paper, we develop a dual-horizon peridynamics (DH-PD) formulation that naturally includes varying horizon sizes and completely solves the 'ghost force' issue. Therefore, the concept of dual horizon is introduced to consider the unbalanced interactions between the particles with different horizon sizes. The present formulation fulfills both the balances of linear momentum and angular momentum exactly. Neither the 'partial stress tensor' nor the 'slice' technique is needed to ameliorate the ghost force issue. We will show that the traditional peridynamics can be derived as a special case of the present DH-PD. All three peridynamic formulations, namely, bond-based, ordinary state-based, and non-ordinary state-based peridynamics, can be implemented within the DH-PD framework. Our DH-PD formulation allows for h-adaptivity and can be implemented in any existing peridynamics code with minimal changes. A simple adaptive refinement procedure is proposed, reducing the computational cost. Both two-dimensional and three-dimensional examples including the Kalthoff-Winkler experiment and plate with branching cracks are tested to demonstrate the capability of the method. Copyright © 2016 John Wiley & Sons, Ltd.
In this paper, we develop a dual-horizon peridynamics (DH-PD) formulation that naturally includes varying horizon sizes and completely solves the 'ghost force' issue. Therefore, the concept of dual horizon is introduced to consider the unbalanced interactions between the particles with different horizon sizes. The present formulation fulfills both the balances of linear momentum and angular momentum exactly. Neither the 'partial stress tensor' nor the 'slice' technique is needed to ameliorate the ghost force issue. We will show that the traditional peridynamics can be derived as a special case of the present DH-PD. All three peridynamic formulations, namely, bond-based, ordinary state-based, and non-ordinary state-based peridynamics, can be implemented within the DH-PD framework. Our DH-PD formulation allows for h-adaptivity and can be implemented in any existing peridynamics code with minimal changes. A simple adaptive refinement procedure is proposed, reducing the computational cost. Both two-dimensional and three-dimensional examples including the Kalthoff-Winkler experiment and plate with branching cracks are tested to demonstrate the capability of the method.
Summary In this paper, we develop a dual‐horizon peridynamics (DH‐PD) formulation that naturally includes varying horizon sizes and completely solves the ‘ghost force’ issue. Therefore, the concept of dual horizon is introduced to consider the unbalanced interactions between the particles with different horizon sizes. The present formulation fulfills both the balances of linear momentum and angular momentum exactly. Neither the ‘partial stress tensor’ nor the ‘slice’ technique is needed to ameliorate the ghost force issue. We will show that the traditional peridynamics can be derived as a special case of the present DH‐PD. All three peridynamic formulations, namely, bond‐based, ordinary state‐based, and non‐ordinary state‐based peridynamics, can be implemented within the DH‐PD framework. Our DH‐PD formulation allows for h‐adaptivity and can be implemented in any existing peridynamics code with minimal changes. A simple adaptive refinement procedure is proposed, reducing the computational cost. Both two‐dimensional and three‐dimensional examples including the Kalthoff–Winkler experiment and plate with branching cracks are tested to demonstrate the capability of the method. Copyright © 2016 John Wiley & Sons, Ltd.
In this paper, we develop a dual‐horizon peridynamics (DH‐PD) formulation that naturally includes varying horizon sizes and completely solves the ‘ghost force’ issue. Therefore, the concept of dual horizon is introduced to consider the unbalanced interactions between the particles with different horizon sizes. The present formulation fulfills both the balances of linear momentum and angular momentum exactly. Neither the ‘partial stress tensor’ nor the ‘slice’ technique is needed to ameliorate the ghost force issue. We will show that the traditional peridynamics can be derived as a special case of the present DH‐PD. All three peridynamic formulations, namely, bond‐based, ordinary state‐based, and non‐ordinary state‐based peridynamics, can be implemented within the DH‐PD framework. Our DH‐PD formulation allows for h ‐adaptivity and can be implemented in any existing peridynamics code with minimal changes. A simple adaptive refinement procedure is proposed, reducing the computational cost. Both two‐dimensional and three‐dimensional examples including the Kalthoff–Winkler experiment and plate with branching cracks are tested to demonstrate the capability of the method. Copyright © 2016 John Wiley & Sons, Ltd.
Author Ren, Huilong
Zhuang, Xiaoying
Cai, Yongchang
Rabczuk, Timon
Author_xml – sequence: 1
  givenname: Huilong
  surname: Ren
  fullname: Ren, Huilong
  organization: Chair of Computational Mechanics, Bauhaus University Weimar, 99423, Weimar, Germany
– sequence: 2
  givenname: Xiaoying
  surname: Zhuang
  fullname: Zhuang, Xiaoying
  organization: State Key Laboratory of Disaster Reduction in Civil Engineering, College of Civil Engineering, Tongji University, 200092, Shanghai, China
– sequence: 3
  givenname: Yongchang
  surname: Cai
  fullname: Cai, Yongchang
  organization: State Key Laboratory of Disaster Reduction in Civil Engineering, College of Civil Engineering, Tongji University, 200092, Shanghai, China
– sequence: 4
  givenname: Timon
  surname: Rabczuk
  fullname: Rabczuk, Timon
  email: timon.rabczuk@tdt.edu.vn, Correspondence to: Timon Rabczuk, Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam and Xiaoying Zhuang, Tongji University, 1239 Siping Road, Shanghai, 200092 ;, timon.rabczuk@tdt.edu.vnzhuang@ikm.uni-hannover.de
  organization: Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
BookMark eNp10MFLwzAUBvAgE9ym4NWb4MVL50vTNM1RtjmFOkEmgpeQpilmtulMWnT-9XZMJoqe3uH93uPjG6Cera1G6BjDCAOEF7bSIxpStof6GDgLIATWQ_1uxQPKE3yABt4vATCmQProZNLKMniunfmo7elKO5OvrayM8odov5Cl10dfc4gerqaL8XWQ3s1uxpdpoCICLMgJkTKRGSSZVgTnoGOGIeeEZnlMechlonPFixhCJWmekYIrkJJwUuSx4hkZovPt35WrX1vtG1EZr3RZSqvr1gucxBFlFBju6NkvuqxbZ7t0nYpoFAEQ2qnRVilXe-90IZRpZGNq2zhpSoFBbJoSXVNi09R3gt3ByplKuvVfNNjSN1Pq9b9OzG-nP73xjX7feeleRMwIo-JxPhPpIqXR0_xeTMgnvjGG5Q
CODEN IJNMBH
CitedBy_id crossref_primary_10_1007_s12205_019_0172_5
crossref_primary_10_1007_s00161_020_00915_y
crossref_primary_10_1016_j_commatsci_2019_109405
crossref_primary_10_1016_j_engfracmech_2022_108362
crossref_primary_10_1016_j_enggeo_2019_105373
crossref_primary_10_1007_s11709_018_0459_5
crossref_primary_10_1007_s00466_023_02365_0
crossref_primary_10_1016_j_ijimpeng_2025_105255
crossref_primary_10_1016_j_enganabound_2022_01_015
crossref_primary_10_1007_s12205_019_2047_1
crossref_primary_10_3390_math9222848
crossref_primary_10_1007_s11709_016_0376_4
crossref_primary_10_1016_j_mechrescom_2023_104220
crossref_primary_10_1016_j_enganabound_2024_105829
crossref_primary_10_1016_j_ijimpeng_2022_104207
crossref_primary_10_1016_j_cma_2021_114085
crossref_primary_10_1016_j_compstruc_2018_06_008
crossref_primary_10_1007_s12205_022_2155_1
crossref_primary_10_1016_j_camwa_2023_10_016
crossref_primary_10_1016_j_ijsolstr_2017_09_010
crossref_primary_10_1007_s00603_024_04153_5
crossref_primary_10_1016_j_ijimpeng_2019_103340
crossref_primary_10_1007_s40571_019_00277_6
crossref_primary_10_1007_s00366_022_01730_6
crossref_primary_10_1016_j_engfracmech_2018_05_014
crossref_primary_10_1016_j_ijimpeng_2019_103466
crossref_primary_10_1016_j_ijimpeng_2025_105268
crossref_primary_10_1016_j_cma_2022_115665
crossref_primary_10_1016_j_ijimpeng_2025_105269
crossref_primary_10_1007_s12205_021_2031_4
crossref_primary_10_1007_s42102_023_00115_7
crossref_primary_10_1016_j_wear_2023_205110
crossref_primary_10_1016_j_cma_2022_115669
crossref_primary_10_1007_s00366_022_01656_z
crossref_primary_10_1016_j_heliyon_2024_e33126
crossref_primary_10_3390_app9061137
crossref_primary_10_1016_j_ijimpeng_2021_104023
crossref_primary_10_1016_j_cma_2021_114294
crossref_primary_10_1016_j_ceramint_2018_03_214
crossref_primary_10_1002_nme_6602
crossref_primary_10_1016_j_enggeo_2018_06_004
crossref_primary_10_1007_s00366_022_01777_5
crossref_primary_10_1007_s10237_017_0876_8
crossref_primary_10_1016_j_conbuildmat_2023_134519
crossref_primary_10_1016_j_engfracmech_2017_11_017
crossref_primary_10_1016_j_jrmge_2024_09_026
crossref_primary_10_1007_s11831_023_09891_3
crossref_primary_10_3390_en11061461
crossref_primary_10_1103_PhysRevE_107_035001
crossref_primary_10_1007_s11709_019_0548_0
crossref_primary_10_1016_j_dt_2020_03_006
crossref_primary_10_1016_j_enganabound_2024_04_001
crossref_primary_10_1007_s42102_020_00038_7
crossref_primary_10_1016_j_tafmec_2021_102930
crossref_primary_10_1007_s11709_021_0730_z
crossref_primary_10_1016_j_ijimpeng_2021_104033
crossref_primary_10_1016_j_cma_2022_115451
crossref_primary_10_1007_s12205_022_0280_5
crossref_primary_10_1016_j_euromechsol_2018_09_003
crossref_primary_10_1016_j_ijimpeng_2021_104038
crossref_primary_10_1016_j_cma_2022_115210
crossref_primary_10_1016_j_compstruct_2019_01_078
crossref_primary_10_1007_s11709_018_0469_3
crossref_primary_10_1016_j_euromechsol_2018_09_007
crossref_primary_10_1016_j_engfracmech_2025_111046
crossref_primary_10_1016_j_enggeo_2016_11_022
crossref_primary_10_1016_j_ijimpeng_2024_105062
crossref_primary_10_1016_j_jeurceramsoc_2023_08_027
crossref_primary_10_1016_j_ijimpeng_2024_105060
crossref_primary_10_1016_j_ijimpeng_2019_103363
crossref_primary_10_1007_s12205_022_0182_6
crossref_primary_10_1016_j_cma_2022_115208
crossref_primary_10_1016_j_engfracmech_2022_108338
crossref_primary_10_1016_j_tafmec_2020_102527
crossref_primary_10_1007_s11709_023_0978_6
crossref_primary_10_1016_j_mechrescom_2023_104113
crossref_primary_10_1016_j_tafmec_2020_102888
crossref_primary_10_1016_j_finel_2017_09_003
crossref_primary_10_1016_j_ijmecsci_2024_109553
crossref_primary_10_1016_j_triboint_2023_109116
crossref_primary_10_1007_s00603_021_02457_4
crossref_primary_10_1016_j_cma_2023_116730
crossref_primary_10_3390_app10207335
crossref_primary_10_1007_s11831_021_09549_y
crossref_primary_10_1007_s00366_021_01549_7
crossref_primary_10_1007_s11440_021_01183_z
crossref_primary_10_1007_s11709_017_0434_6
crossref_primary_10_1016_j_cma_2024_117260
crossref_primary_10_1016_j_ijimpeng_2019_02_001
crossref_primary_10_1016_j_undsp_2019_04_003
crossref_primary_10_1002_nag_2868
crossref_primary_10_1007_s11803_018_0460_y
crossref_primary_10_1186_s40069_018_0328_6
crossref_primary_10_1007_s00339_023_06931_4
crossref_primary_10_1016_j_cma_2024_117137
crossref_primary_10_3390_en13020387
crossref_primary_10_1016_j_ijimpeng_2018_10_009
crossref_primary_10_1007_s11709_023_0023_9
crossref_primary_10_1016_j_dt_2020_02_021
crossref_primary_10_1007_s11709_020_0675_7
crossref_primary_10_1007_s12205_022_2354_9
crossref_primary_10_1016_j_jmrt_2023_02_104
crossref_primary_10_1016_j_compstruc_2023_106985
crossref_primary_10_1016_j_dt_2020_02_015
crossref_primary_10_1016_j_triboint_2017_08_009
crossref_primary_10_1016_j_mechmat_2019_103133
crossref_primary_10_1016_j_ijimpeng_2018_08_008
crossref_primary_10_1016_j_tafmec_2023_104144
crossref_primary_10_1002_nag_3729
crossref_primary_10_1016_j_enggeo_2021_106024
crossref_primary_10_1177_1056789517737593
crossref_primary_10_1155_2020_8876661
crossref_primary_10_1177_10812865231173686
crossref_primary_10_1007_s00366_021_01502_8
crossref_primary_10_1007_s10704_023_00758_z
crossref_primary_10_1016_j_enggeo_2017_05_001
crossref_primary_10_1016_j_engfailanal_2024_108791
crossref_primary_10_1007_s11709_020_0641_4
crossref_primary_10_1021_acs_energyfuels_3c01627
crossref_primary_10_1007_s00707_020_02863_9
crossref_primary_10_1016_j_undsp_2018_08_001
crossref_primary_10_1007_s00707_017_2098_7
crossref_primary_10_1016_j_ijimpeng_2025_105270
crossref_primary_10_1007_s00466_020_01872_8
crossref_primary_10_1016_j_compstruct_2021_113673
crossref_primary_10_1016_j_compstruct_2020_113353
crossref_primary_10_1108_EC_07_2018_0290
crossref_primary_10_1016_j_compstruct_2020_113472
crossref_primary_10_1007_s12205_022_0874_y
crossref_primary_10_1007_s12205_020_0780_0
crossref_primary_10_1007_s42102_022_00094_1
crossref_primary_10_1016_j_apm_2020_12_004
crossref_primary_10_1016_j_compgeo_2022_104837
crossref_primary_10_1007_s00466_017_1439_7
crossref_primary_10_1007_s00366_021_01537_x
crossref_primary_10_1016_j_enganabound_2019_09_020
crossref_primary_10_2139_ssrn_4458848
crossref_primary_10_1016_j_finel_2017_10_007
crossref_primary_10_1016_j_tafmec_2020_102563
crossref_primary_10_1016_j_euromechsol_2021_104380
crossref_primary_10_1016_j_cma_2025_117891
crossref_primary_10_1007_s11440_020_00913_z
crossref_primary_10_1016_j_enganabound_2021_07_010
crossref_primary_10_1016_j_ijimpeng_2018_09_011
crossref_primary_10_1007_s12205_022_1292_x
crossref_primary_10_1016_j_ijimpeng_2018_09_012
crossref_primary_10_1016_j_enggeo_2025_108028
crossref_primary_10_1016_j_ijmecsci_2020_106245
crossref_primary_10_1016_j_commatsci_2022_111747
crossref_primary_10_1155_2021_8897826
crossref_primary_10_1007_s11043_020_09458_w
crossref_primary_10_1016_j_ijimpeng_2019_103445
crossref_primary_10_1016_j_jmps_2022_105186
crossref_primary_10_1016_j_advengsoft_2018_08_014
crossref_primary_10_1007_s12205_019_0963_8
crossref_primary_10_1080_15376494_2023_2216691
crossref_primary_10_1016_j_ijimpeng_2018_03_002
crossref_primary_10_1016_j_compstruct_2017_11_050
crossref_primary_10_1016_j_compstruct_2025_118942
crossref_primary_10_1007_s11709_019_0605_8
crossref_primary_10_1007_s11709_020_0627_2
crossref_primary_10_1016_j_ijsolstr_2019_11_004
crossref_primary_10_1016_j_enganabound_2019_03_008
crossref_primary_10_1002_nme_7081
crossref_primary_10_1016_j_cma_2022_115712
crossref_primary_10_1007_s00366_021_01550_0
crossref_primary_10_1016_j_enggeo_2017_03_004
crossref_primary_10_1016_j_ijimpeng_2017_09_019
crossref_primary_10_1016_j_enganabound_2020_11_011
crossref_primary_10_1016_j_ijsolstr_2021_111366
crossref_primary_10_1016_j_tws_2021_108562
crossref_primary_10_1016_j_tafmec_2019_102393
crossref_primary_10_1007_s00707_019_02471_2
crossref_primary_10_1016_j_cma_2018_08_033
crossref_primary_10_1016_j_cma_2016_12_031
crossref_primary_10_1002_nag_3882
crossref_primary_10_1016_j_jmps_2024_105758
crossref_primary_10_1007_s42102_023_00112_w
crossref_primary_10_1016_j_compstruct_2018_07_008
crossref_primary_10_1016_j_compstruc_2020_106327
crossref_primary_10_1016_j_engfracmech_2022_108982
crossref_primary_10_1016_j_jtbi_2017_01_026
crossref_primary_10_1007_s00366_024_02014_x
crossref_primary_10_1155_2021_6654812
crossref_primary_10_1016_j_ijimpeng_2024_105110
crossref_primary_10_3390_en14092393
crossref_primary_10_1007_s11709_017_0435_5
crossref_primary_10_1007_s12205_022_2331_3
crossref_primary_10_1016_j_enggeo_2019_105306
crossref_primary_10_1016_j_compstruc_2023_106971
crossref_primary_10_1007_s11440_022_01725_z
crossref_primary_10_1007_s12205_022_1967_3
crossref_primary_10_1007_s10704_021_00567_2
crossref_primary_10_1016_j_compgeo_2023_105756
crossref_primary_10_1016_j_compgeo_2022_104987
crossref_primary_10_1007_s11709_019_0529_3
crossref_primary_10_1016_j_enganabound_2018_01_010
crossref_primary_10_1016_j_cma_2018_08_016
crossref_primary_10_1007_s11709_017_0447_1
crossref_primary_10_1007_s00366_024_01983_3
crossref_primary_10_1016_j_ijimpeng_2019_05_019
crossref_primary_10_1016_j_euromechsol_2020_104174
crossref_primary_10_1016_j_ijimpeng_2017_08_008
crossref_primary_10_1007_s00366_023_01808_9
crossref_primary_10_1007_s11709_020_0573_z
crossref_primary_10_1016_j_compgeo_2022_104752
crossref_primary_10_1016_j_cma_2023_115904
crossref_primary_10_1007_s12205_021_0298_0
crossref_primary_10_1016_j_jrmge_2023_02_017
crossref_primary_10_1016_j_engfracmech_2023_109097
crossref_primary_10_1016_j_engfracmech_2023_109099
crossref_primary_10_1016_j_camwa_2017_06_045
crossref_primary_10_1016_j_tafmec_2018_02_007
crossref_primary_10_1016_j_engfailanal_2024_108138
crossref_primary_10_1155_2022_7001654
crossref_primary_10_1007_s11709_020_0629_0
crossref_primary_10_1063_5_0238868
crossref_primary_10_1007_s11709_021_0772_2
crossref_primary_10_1016_j_compstruc_2020_106235
crossref_primary_10_3934_matersci_2024030
crossref_primary_10_1016_j_compstruct_2017_12_058
crossref_primary_10_1007_s12205_021_1162_y
crossref_primary_10_1016_j_cnsns_2015_10_003
crossref_primary_10_32604_cmc_2020_012948
crossref_primary_10_3390_en11102818
crossref_primary_10_1016_j_ijmecsci_2018_06_020
crossref_primary_10_1016_j_enggeo_2018_04_008
crossref_primary_10_3390_jmse12060921
crossref_primary_10_1016_j_enggeo_2017_02_001
crossref_primary_10_1016_j_ijimpeng_2024_105161
crossref_primary_10_1016_j_ijimpeng_2019_103393
crossref_primary_10_1002_nme_6182
crossref_primary_10_1007_s11440_017_0558_9
crossref_primary_10_1007_s00366_021_01582_6
crossref_primary_10_1007_s10064_020_02099_w
crossref_primary_10_1016_j_tafmec_2018_02_005
crossref_primary_10_1002_nag_3200
crossref_primary_10_1016_j_euromechsol_2017_08_010
crossref_primary_10_1007_s00339_022_05355_w
crossref_primary_10_1007_s00366_024_01995_z
crossref_primary_10_1016_j_euromechsol_2023_104927
crossref_primary_10_1016_j_tafmec_2019_04_013
crossref_primary_10_1007_s00158_020_02608_1
crossref_primary_10_1016_j_ijimpeng_2025_105226
crossref_primary_10_3390_ma9120977
crossref_primary_10_1016_j_jngse_2019_03_018
crossref_primary_10_1016_j_enganabound_2025_106133
crossref_primary_10_1590_1679_78255022
crossref_primary_10_1007_s00603_018_1717_5
crossref_primary_10_1007_s00366_021_01506_4
crossref_primary_10_1016_j_compstruc_2018_08_007
crossref_primary_10_1007_s42102_020_00040_z
crossref_primary_10_1016_j_ijimpeng_2024_105037
crossref_primary_10_1016_j_ijimpeng_2019_04_027
crossref_primary_10_1016_j_engfracmech_2024_110023
crossref_primary_10_1007_s10704_019_00412_7
crossref_primary_10_1007_s00466_019_01695_2
crossref_primary_10_1007_s11223_022_00421_3
crossref_primary_10_1016_j_wear_2023_204954
crossref_primary_10_1002_nme_7060
crossref_primary_10_1007_s11709_021_0773_1
crossref_primary_10_1016_j_tws_2024_112341
crossref_primary_10_32604_cmes_2022_020792
crossref_primary_10_1016_j_engfracmech_2017_12_019
crossref_primary_10_1016_j_engfracmech_2017_12_018
crossref_primary_10_1016_j_cma_2019_112700
crossref_primary_10_1016_j_enganabound_2020_03_012
crossref_primary_10_1016_j_cma_2022_114680
crossref_primary_10_1007_s11709_019_0595_6
crossref_primary_10_1007_s00466_021_02072_8
crossref_primary_10_1016_j_enganabound_2020_03_016
crossref_primary_10_1016_j_ijimpeng_2024_105145
crossref_primary_10_1177_10812865231170228
crossref_primary_10_1016_j_jbiomech_2018_03_019
crossref_primary_10_1007_s11709_022_0863_8
crossref_primary_10_1007_s12205_022_1416_3
crossref_primary_10_1007_s11440_018_0701_2
crossref_primary_10_1016_j_ijrmms_2019_03_007
crossref_primary_10_1016_j_engfracmech_2018_08_028
crossref_primary_10_1016_j_compstruc_2021_106682
crossref_primary_10_1007_s00366_023_01886_9
crossref_primary_10_1016_j_ijthermalsci_2024_109024
crossref_primary_10_1007_s11440_016_0510_4
crossref_primary_10_1002_nme_7296
crossref_primary_10_3390_w10091122
crossref_primary_10_1007_s10704_023_00695_x
crossref_primary_10_1016_j_cma_2023_116016
crossref_primary_10_1016_j_jcsr_2018_02_008
crossref_primary_10_1007_s11709_018_0452_z
crossref_primary_10_1016_j_compstruct_2022_115552
crossref_primary_10_1007_s40571_023_00556_3
crossref_primary_10_1002_nme_7000
crossref_primary_10_1007_s11709_019_0565_z
crossref_primary_10_3390_met9010107
crossref_primary_10_1016_j_tafmec_2021_103129
crossref_primary_10_1016_j_enganabound_2022_05_023
crossref_primary_10_1016_j_dt_2019_11_005
crossref_primary_10_1016_j_undsp_2018_05_002
crossref_primary_10_1177_1081286518803411
crossref_primary_10_1007_s11709_019_0552_4
crossref_primary_10_1061__ASCE_EM_1943_7889_0001876
crossref_primary_10_1016_j_cma_2020_113132
crossref_primary_10_1016_j_jmps_2020_104024
crossref_primary_10_1016_j_engfracmech_2023_109181
crossref_primary_10_1016_j_enganabound_2019_05_024
crossref_primary_10_1007_s10704_016_0139_1
crossref_primary_10_1016_j_enganabound_2019_05_030
crossref_primary_10_1016_j_apm_2024_01_040
crossref_primary_10_1016_j_enganabound_2024_01_004
crossref_primary_10_1016_j_compstruc_2022_106847
crossref_primary_10_1007_s11709_019_0563_1
crossref_primary_10_1016_j_enganabound_2022_05_015
crossref_primary_10_1016_j_engfailanal_2025_109409
crossref_primary_10_1016_j_compstruct_2018_11_034
crossref_primary_10_1016_j_jrmge_2024_05_044
crossref_primary_10_1007_s11709_018_0450_1
crossref_primary_10_1007_s11709_018_0496_0
crossref_primary_10_1016_j_enggeo_2017_09_013
crossref_primary_10_1007_s11709_019_0540_8
crossref_primary_10_1007_s42102_021_00073_y
crossref_primary_10_1016_j_ijimpeng_2021_103855
crossref_primary_10_1016_j_compgeo_2023_105913
crossref_primary_10_1016_j_engfracmech_2019_106708
crossref_primary_10_1016_j_apm_2022_12_006
crossref_primary_10_1016_j_engfracmech_2018_02_009
crossref_primary_10_1007_s11709_021_0738_4
crossref_primary_10_1016_j_ijmecsci_2019_07_007
crossref_primary_10_1016_j_cma_2019_112625
crossref_primary_10_1016_j_engfracmech_2018_02_006
crossref_primary_10_1115_1_4047746
crossref_primary_10_1007_s12665_022_10590_8
crossref_primary_10_1016_j_compstruc_2024_107395
crossref_primary_10_1016_j_cma_2019_112621
crossref_primary_10_1016_j_engfracmech_2018_09_019
crossref_primary_10_1177_1081286520910221
crossref_primary_10_1007_s11709_018_0462_x
crossref_primary_10_1016_j_enggeo_2017_02_022
crossref_primary_10_1016_j_ijsolstr_2016_11_015
crossref_primary_10_1007_s11440_022_01766_4
crossref_primary_10_1007_s00161_019_00830_x
crossref_primary_10_1016_j_ijsolstr_2024_113113
crossref_primary_10_1016_j_cma_2018_06_015
crossref_primary_10_1007_s10338_020_00173_0
crossref_primary_10_1016_j_ijimpeng_2017_04_022
crossref_primary_10_1016_j_ijimpeng_2021_103866
crossref_primary_10_1016_j_enganabound_2017_10_006
crossref_primary_10_1016_j_tafmec_2019_102328
crossref_primary_10_1016_j_enggeo_2019_05_005
crossref_primary_10_1016_j_enggeo_2021_105992
crossref_primary_10_1016_j_tafmec_2022_103415
crossref_primary_10_32604_cmes_2024_046770
crossref_primary_10_1016_j_mechmat_2022_104417
crossref_primary_10_1016_j_cma_2023_116054
crossref_primary_10_1016_j_tafmec_2023_103840
crossref_primary_10_1016_j_finel_2018_09_002
crossref_primary_10_1016_j_cma_2017_11_022
crossref_primary_10_1016_j_cma_2019_112751
crossref_primary_10_1016_j_tws_2022_109622
crossref_primary_10_1007_s00366_023_01920_w
crossref_primary_10_1002_nag_3157
crossref_primary_10_1007_s11709_020_0614_7
crossref_primary_10_1007_s12205_018_1162_8
crossref_primary_10_1016_j_undsp_2018_04_005
crossref_primary_10_1016_j_undsp_2018_04_006
crossref_primary_10_1007_s42102_021_00050_5
crossref_primary_10_1016_j_undsp_2018_04_004
crossref_primary_10_1016_j_camwa_2021_11_010
crossref_primary_10_1016_j_enganabound_2022_04_029
crossref_primary_10_1016_j_engfracmech_2021_108205
crossref_primary_10_1016_j_compstruc_2019_03_005
crossref_primary_10_1016_j_compstruct_2017_08_071
crossref_primary_10_1016_j_euromechsol_2016_08_009
crossref_primary_10_1016_j_jrmge_2019_02_003
crossref_primary_10_1016_j_tafmec_2023_103854
crossref_primary_10_1016_j_engfracmech_2025_110817
crossref_primary_10_1016_j_euromechsol_2019_103810
crossref_primary_10_1016_j_compstruct_2022_116454
crossref_primary_10_1016_j_compstruct_2018_04_066
crossref_primary_10_1016_j_apm_2022_05_025
crossref_primary_10_3390_en9121018
crossref_primary_10_1016_j_compstruc_2021_106504
crossref_primary_10_1016_j_ijimpeng_2020_103544
crossref_primary_10_1007_s00366_021_01540_2
crossref_primary_10_1016_j_ijimpeng_2020_103530
crossref_primary_10_1016_j_ijimpeng_2020_103652
crossref_primary_10_1007_s12205_018_3022_y
crossref_primary_10_1016_j_tafmec_2023_103980
crossref_primary_10_1016_j_ijimpeng_2019_01_013
crossref_primary_10_1016_j_tafmec_2018_09_015
crossref_primary_10_1016_j_jmps_2024_105546
crossref_primary_10_1007_s00419_024_02731_1
crossref_primary_10_1007_s42102_023_00099_4
crossref_primary_10_1007_s11709_020_0615_6
crossref_primary_10_1016_j_cma_2020_113038
crossref_primary_10_1016_j_ijmecsci_2019_06_008
crossref_primary_10_1007_s42102_021_00051_4
crossref_primary_10_1002_zamm_202400449
crossref_primary_10_1016_j_cma_2020_113398
crossref_primary_10_1016_j_cma_2021_114520
crossref_primary_10_1016_j_ijimpeng_2020_103776
crossref_primary_10_1007_s11709_019_0588_5
crossref_primary_10_1007_s10704_018_0273_z
crossref_primary_10_1016_j_triboint_2018_01_029
crossref_primary_10_1007_s11709_017_0396_8
crossref_primary_10_1016_j_compstruc_2017_10_014
crossref_primary_10_1016_j_engfracmech_2020_107086
crossref_primary_10_1016_j_ijimpeng_2019_01_001
crossref_primary_10_1007_s00419_017_1329_7
crossref_primary_10_1007_s00419_024_02646_x
crossref_primary_10_1007_s11709_019_0553_3
crossref_primary_10_1016_j_tafmec_2022_103572
crossref_primary_10_1007_s11709_021_0695_y
crossref_primary_10_1016_j_compgeo_2024_106382
crossref_primary_10_1016_j_jmps_2021_104469
crossref_primary_10_1016_j_apm_2023_07_023
crossref_primary_10_1016_j_engfracmech_2019_03_031
crossref_primary_10_1007_s11440_018_0645_6
crossref_primary_10_1016_j_cma_2020_113270
crossref_primary_10_32604_cmc_2021_014688
crossref_primary_10_1016_j_cnsns_2020_105687
crossref_primary_10_1016_j_compgeo_2022_105000
crossref_primary_10_1016_j_compstruc_2017_10_008
crossref_primary_10_1016_j_ijimpeng_2021_103948
crossref_primary_10_1016_j_tafmec_2018_04_011
crossref_primary_10_1016_j_compstruc_2023_107179
crossref_primary_10_1016_j_triboint_2018_01_038
crossref_primary_10_3390_app122111123
crossref_primary_10_3390_en12060965
crossref_primary_10_1016_j_engfracmech_2018_01_016
crossref_primary_10_1002_nme_7330
crossref_primary_10_1016_j_tafmec_2023_103757
crossref_primary_10_1016_j_tafmec_2022_103489
crossref_primary_10_1016_j_tws_2020_107405
crossref_primary_10_1016_j_cma_2024_117225
crossref_primary_10_1016_j_engfracmech_2023_109459
crossref_primary_10_1007_s11709_024_1043_9
crossref_primary_10_1007_s11831_022_09820_w
crossref_primary_10_1080_01495739_2020_1843378
crossref_primary_10_1016_j_advengsoft_2018_03_012
crossref_primary_10_1016_j_engfracmech_2019_106567
crossref_primary_10_3390_app8122350
crossref_primary_10_1016_j_ijimpeng_2022_104282
crossref_primary_10_1016_j_tafmec_2022_103482
crossref_primary_10_1007_s41745_017_0041_5
crossref_primary_10_1016_j_tafmec_2022_103480
crossref_primary_10_1371_journal_pone_0275626
crossref_primary_10_1016_j_ijimpeng_2018_11_006
crossref_primary_10_1016_j_ijimpeng_2021_103918
crossref_primary_10_1007_s12205_021_0458_2
crossref_primary_10_1016_j_compstruc_2024_107408
crossref_primary_10_1016_j_ijsolstr_2023_112230
crossref_primary_10_1016_j_ijplas_2021_102991
crossref_primary_10_1007_s12205_020_0247_3
crossref_primary_10_1061__ASCE_GM_1943_5622_0001225
crossref_primary_10_1007_s00603_021_02519_7
crossref_primary_10_1016_j_enggeo_2020_105784
crossref_primary_10_1016_j_tafmec_2022_103357
crossref_primary_10_1016_j_apm_2023_08_026
crossref_primary_10_1007_s00366_021_01536_y
crossref_primary_10_1016_j_ijimpeng_2020_103740
crossref_primary_10_1016_j_ijimpeng_2022_104274
crossref_primary_10_1016_j_cma_2024_117455
crossref_primary_10_1016_j_engfracmech_2021_108135
crossref_primary_10_1007_s11709_025_1144_0
crossref_primary_10_1016_j_compgeo_2023_106061
crossref_primary_10_1016_j_euromechsol_2020_103981
crossref_primary_10_1007_s40430_025_05436_w
crossref_primary_10_1016_j_ijimpeng_2020_103747
crossref_primary_10_1155_2021_8854318
crossref_primary_10_1007_s42102_021_00065_y
crossref_primary_10_1016_j_enggeo_2022_106884
crossref_primary_10_1016_j_engfracmech_2021_108142
crossref_primary_10_1016_j_cma_2024_117200
crossref_primary_10_1016_j_engfracmech_2024_109872
crossref_primary_10_1002_nag_3292
crossref_primary_10_1007_s10237_017_0989_0
crossref_primary_10_1016_j_engfracmech_2019_106782
crossref_primary_10_3390_app14104000
crossref_primary_10_1016_j_engfracmech_2018_11_021
crossref_primary_10_1016_j_cma_2019_06_027
crossref_primary_10_1007_s42102_021_00076_9
crossref_primary_10_1016_j_enganabound_2021_08_020
crossref_primary_10_1007_s11440_021_01406_3
crossref_primary_10_1016_j_compstruc_2017_03_019
crossref_primary_10_1016_j_tafmec_2022_103259
crossref_primary_10_3390_en12020271
crossref_primary_10_1016_j_cma_2024_117315
crossref_primary_10_1016_j_engfracmech_2022_109022
crossref_primary_10_1103_PhysRevE_96_053002
crossref_primary_10_1016_j_enganabound_2022_03_015
crossref_primary_10_1016_j_engstruct_2017_03_068
crossref_primary_10_1016_j_engfracmech_2021_108036
crossref_primary_10_32604_cmes_2023_026922
crossref_primary_10_1007_s00366_022_01763_x
crossref_primary_10_1016_j_cmpb_2022_106820
crossref_primary_10_1016_j_apm_2020_05_005
crossref_primary_10_1002_nme_5596
crossref_primary_10_1016_j_cma_2021_113809
crossref_primary_10_1016_j_tafmec_2024_104423
crossref_primary_10_1002_suco_202000113
crossref_primary_10_1016_j_enggeo_2019_03_014
crossref_primary_10_1016_j_compgeo_2020_103864
crossref_primary_10_1016_j_cscm_2021_e00852
crossref_primary_10_1016_j_engfracmech_2023_109654
crossref_primary_10_1016_j_ijimpeng_2018_12_005
crossref_primary_10_1016_j_triboint_2023_108422
crossref_primary_10_1016_j_ijimpeng_2018_12_004
crossref_primary_10_1016_j_cma_2019_112592
crossref_primary_10_1007_s42102_022_00089_y
crossref_primary_10_1016_j_cma_2020_113462
crossref_primary_10_1007_s10704_022_00659_7
crossref_primary_10_1007_s11709_022_0802_8
crossref_primary_10_1016_j_apm_2017_09_024
crossref_primary_10_1016_j_apm_2020_11_014
crossref_primary_10_1016_j_cma_2023_116691
crossref_primary_10_1016_j_ijimpeng_2021_104085
crossref_primary_10_1016_j_ijimpeng_2021_104084
crossref_primary_10_1007_s11709_020_0621_8
crossref_primary_10_1007_s00466_022_02153_2
crossref_primary_10_1016_j_enganabound_2019_12_008
crossref_primary_10_1007_s10704_018_0277_8
crossref_primary_10_1016_j_ijimpeng_2017_10_007
crossref_primary_10_1016_j_cma_2021_113736
crossref_primary_10_1016_j_ijimpeng_2018_06_004
crossref_primary_10_1186_s13662_022_03732_6
crossref_primary_10_1016_j_ijimpeng_2022_104231
crossref_primary_10_1016_j_engfracmech_2021_108179
crossref_primary_10_1016_j_enganabound_2024_105993
crossref_primary_10_1016_j_cma_2023_116580
crossref_primary_10_1016_j_cma_2022_115193
crossref_primary_10_1016_j_compgeo_2024_106796
crossref_primary_10_1016_j_engfracmech_2018_11_054
crossref_primary_10_1007_s42102_024_00117_z
crossref_primary_10_1016_j_undsp_2018_06_003
crossref_primary_10_1016_j_enggeo_2019_105396
crossref_primary_10_1016_j_enggeo_2019_105278
crossref_primary_10_1016_j_tafmec_2024_104401
crossref_primary_10_1007_s11709_019_0535_5
crossref_primary_10_1016_j_tafmec_2020_102505
crossref_primary_10_1016_j_ijimpeng_2023_104657
crossref_primary_10_1007_s00366_022_01619_4
crossref_primary_10_1007_s11069_022_05647_7
crossref_primary_10_1002_nme_6527
crossref_primary_10_1007_s00366_022_01696_5
crossref_primary_10_1016_j_cma_2023_116230
crossref_primary_10_1016_j_cma_2018_11_001
crossref_primary_10_1016_j_tafmec_2020_102850
crossref_primary_10_1007_s00603_022_03008_1
crossref_primary_10_1016_j_compstruct_2019_03_035
crossref_primary_10_1016_j_engfracmech_2022_108265
crossref_primary_10_1007_s10999_024_09712_w
crossref_primary_10_1007_s00466_020_01843_z
crossref_primary_10_1007_s00161_021_01000_8
crossref_primary_10_1016_j_ijimpeng_2021_104061
crossref_primary_10_1016_j_ijimpeng_2021_104060
crossref_primary_10_1108_EC_12_2017_0520
crossref_primary_10_1016_j_engfracmech_2020_106969
crossref_primary_10_1007_s12205_019_1831_2
crossref_primary_10_1016_j_cma_2020_113558
crossref_primary_10_1007_s11709_020_0657_9
crossref_primary_10_1016_j_compgeo_2019_103237
crossref_primary_10_1007_s00466_019_01733_z
crossref_primary_10_1016_j_ijfatigue_2023_107698
crossref_primary_10_1002_nme_6773
crossref_primary_10_1007_s11709_019_0546_2
crossref_primary_10_1016_j_tafmec_2020_102852
crossref_primary_10_1016_j_cma_2021_113716
crossref_primary_10_1016_j_compstruc_2023_107108
crossref_primary_10_1016_j_jcp_2023_112277
crossref_primary_10_1002_nme_5786
crossref_primary_10_1007_s11440_018_0709_7
crossref_primary_10_1016_j_ijimpeng_2017_11_016
crossref_primary_10_1016_j_compstruc_2023_107216
crossref_primary_10_1016_j_cma_2021_113963
crossref_primary_10_1016_j_compstruc_2024_107518
crossref_primary_10_1016_j_cma_2021_113962
crossref_primary_10_1016_j_ijfatigue_2024_108612
crossref_primary_10_1016_j_ijimpeng_2017_05_017
crossref_primary_10_1016_j_tafmec_2020_102840
crossref_primary_10_1016_j_ijimpeng_2020_103802
crossref_primary_10_1007_s42102_022_00087_0
crossref_primary_10_1016_j_ijmecsci_2023_108485
Cites_doi 10.1016/j.advengsoft.2014.09.016
10.1088/0965-0393/19/4/045003
10.1016/S0020-7683(01)00188-3
10.1016/j.ijsolstr.2008.10.029
10.1007/s00466-013-0914-z
10.1016/0022-5096(94)90003-5
10.1023/A:1007658224458
10.1002/nme.4477
10.1016/j.nucengdes.2006.10.002
10.1016/j.compstruc.2008.08.010
10.4236/eng.2014.66034
10.1016/j.compstruct.2011.07.019
10.1103/PhysRevLett.74.5096
10.1016/S0065-2156(10)44002-8
10.1002/nme.430
10.1016/j.compstruc.2004.11.026
10.1007/s10704-010-9442-4
10.1016/j.cma.2010.03.031
10.1007/s00466-013-0885-0
10.1002/nme.1652
10.1007/s00466-013-0912-1
10.1016/j.cma.2014.08.025
10.1016/j.compstruc.2014.09.017
10.1002/nag.2356
10.1002/nme.1151
10.1016/j.engfracmech.2013.06.006
10.1002/nme.2439
10.1007/s00466-013-0948-2
10.1007/s10659-007-9125-1
10.1007/s00466-013-0891-2
10.21236/ADA301760
10.1016/j.tafmec.2013.12.003
10.1016/j.tafmec.2014.06.006
10.1016/S0022-5096(99)00029-0
10.1007/s00466-013-0952-6
10.1016/j.engfracmech.2015.10.042
10.1016/j.ijsolstr.2014.09.003
10.1007/s10704-014-9970-4
10.1007/s00466-013-0855-6
10.1007/s11709-013-0187-9
10.1002/nme.941
10.1002/nme.1797
10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M
10.1023/A:1007432017290
ContentType Journal Article
Copyright Copyright © 2016 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2016 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.5257
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
Civil Engineering Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 1476
ExternalDocumentID 4268604471
10_1002_nme_5257
NME5257
ark_67375_WNG_LTL54ZNR_D
Genre article
GrantInformation_xml – fundername: Ministry of Science and Technology of China
  funderid: SLDRCE14-B-28; SLDRCE14-B-31
– fundername: National Basic Research Program of China
  funderid: 973 Program: 2011CB013800
– fundername: NSFC
  funderid: 51474157
– fundername: Science and Technology Commission of Shanghai Municipality
  funderid: 16QA1404000
– fundername: FP7 Marie Curie Actions ITN‐INSIST and IIF‐HYDROFRAC
  funderid: 623667
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHQN
AAMMB
AAMNL
AAYCA
ACYXJ
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c4307-d33aa8ab08bec31d0e6710d935bd65929a8edc9f602ca5db3f9c0aa393fd6c9b3
IEDL.DBID DR2
ISSN 0029-5981
IngestDate Fri Jul 11 00:55:23 EDT 2025
Fri Jul 25 12:17:59 EDT 2025
Thu Apr 24 22:55:57 EDT 2025
Tue Jul 01 04:32:02 EDT 2025
Wed Aug 20 07:27:18 EDT 2025
Wed Oct 30 09:51:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4307-d33aa8ab08bec31d0e6710d935bd65929a8edc9f602ca5db3f9c0aa393fd6c9b3
Notes FP7 Marie Curie Actions ITN-INSIST and IIF-HYDROFRAC - No. 623667
Ministry of Science and Technology of China - No. SLDRCE14-B-28; No. SLDRCE14-B-31
NSFC - No. 51474157
istex:597FB08B1ECD4F000E39E394885212832A856A39
ArticleID:NME5257
National Basic Research Program of China - No. 973 Program: 2011CB013800
ark:/67375/WNG-LTL54ZNR-D
Science and Technology Commission of Shanghai Municipality - No. 16QA1404000
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1845440035
PQPubID 996376
PageCount 26
ParticipantIDs proquest_miscellaneous_1864575071
proquest_journals_1845440035
crossref_citationtrail_10_1002_nme_5257
crossref_primary_10_1002_nme_5257
wiley_primary_10_1002_nme_5257_NME5257
istex_primary_ark_67375_WNG_LTL54ZNR_D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 21 December 2016
PublicationDateYYYYMMDD 2016-12-21
PublicationDate_xml – month: 12
  year: 2016
  text: 21 December 2016
  day: 21
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Oterkus E, Madenci E, Weckner O, Silling S, Bogert P, Tessler A. Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot. Composite Structures 2012; 94: 839-850.
Areias P, Dias-da-Costa D, Sargado JM, Rabczuk T. Element-wise algorithm for modeling ductile fracture with the Rousselier yield function. Computational Mechanics 2013; 52(6): 1429-1443.
Silling SA, Askari E. A meshfree method based on the peridynamic model of solid mechanics. Computers & Structures 2005; 83(17): 1526-1535.
Wang P, Yang T, Yu Q, Liu H, Zhang P. Characterization on jointed rock masses based on PFC2D. Frontiers of Structural and Civil Engineering 2013; 7(1): 32-38.
Areias P, Rabczuk T, Camanho PP. Initially rigid cohesive laws and fracture based on edge rotations. Computational Mechanics 2013; 52(4): 931-947.
Zhuang X, Zhu H, Augarde C. An improved meshless Shepard and least square method possessing the delta property and requiring no singular weight function. Computational Mechanics 2014; 53: 343-357.
Warren TL, Silling SA, Askari A, Weckner O, Epton MA, Xu J. A non-ordinary state-based peridynamic method to model solid material deformation and fracture. International Journal of Solids and Structures 2008; 46: 1186-1195.
Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering 2010; 199(37): 2437-2455.
Gravouil A, Moes N, Belytschko T. Non-planar 3D crack growth by the extended finite element and level sets - part ii: level set update. International Journal for Numerical Methods in Engineering 2002; 53: 2569-2586.
Yu K, Xin XJ, Lease KB. A new adaptive integration method for the peridynamic theory. Modelling and Simulation in Materials Science and Engineering 2011; 19(4): 045003.
Rabczuk T, Belytschko T. Cracking particles: a simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering 2004; 61(13): 2316-2343.
Dipasquale D, Zaccariotto M, Galvanetto U. Crack propagation with adaptive grid refinement in 2D peridynamics. International Journal of Fracture 2014; 190(1-2): 1-22.
Nguyen-Thanh N, Muthu J, Zhuang X, Rabczuk T. An adaptive three-dimensional RHT-splines formulation in linear elasto-statics and elasto-dynamics. Computational Mechanics; 53(2): 369-385.
Talebi H, Silani M, Rabczuk T. Concurrent multiscale modelling of three dimensional crack and dislocation propagation. Advances in Engineering Software 2015; 80: 82-92.
Rabczuk T, Areias PMA, Belytschko T. A simplified mesh-free method for shear bands with cohesive surfaces. International Journal for Numerical Methods in Engineering 2007; 69(5): 993-1021.
Silling SA. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids 2000; 48(1): 175-209.
Lai X, Ren B, Fan H, Li S, Wu CT, Regueiro RA, Liu L. Peridynamics simulations of geomaterial fragmentation by impulse loads. International Journal for Numerical and Analytical Methods in Geomechanics 2015.
Amiri F, Anitescu C, Arroyo M, Bordas S, Rabczuk T. XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics 2014; 53(1): 45-57.
Zhuang X, Cai Y, Augarde C. A meshless sub-region radial point interpolation method for accurate calculation of crack tip fields. Theoretical and Applied Fracture Mechanics 2014; 69: 118-125.
Ha YD, Bobaru F. Studies of dynamic crack propagation and crack branching with peridynamics. International Journal of Fracture 2010; 162: 229-244.
Xu X-P, Needleman A. Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids 1994; 42(9): 1397-1434.
Nguyen-Thanh N, Valizadeh N, Nguyen MN, Nguyen-Xuan H, Zhuang X, Areias P, Zi G, Bazilevs Y, De Lorenzis L, Rabczuk T. An extended isogeometric thin shell analysis based on Kirchhoff-Love theory. Computer Methods in Applied Mechanics and Engineering 2015; 284: 265-291.
Belytschko T, Moës N, Usui S, Parimi C. Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 2001; 50(4): 993-1013.
Belytschko T, Chen H, Xu J, Zi G. Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. International Journal for Numerical Methods in Engineering 2003; 58(12): 1873-1905.
Areias P, Rabczuk T. Finite strain fracture of plates and shells with configurational forces and edge rotation. International Journal for Numerical Methods in Engineering 2013; 94(12), 1099-1122.
Gerstle W, Sau N, Silling S. Peridynamic modeling of concrete structures. Nuclear Engineering and Design 2007; 237(12): 1250-1258.
Song J-H, Areias PMA, Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes. International Journal for Numerical Methods in Engineering 2006; 67(6): 868-893.
Batra RC, Ravinsankar MVS. Three-dimensional numerical simulation of the Kalthoff experiment. International Journal of fracture 2000; 105(2): 161-186.
Graff KF. Wave Motion in Elastic Solids. Clarendon: Oxford, 1975.
Silling SA, Lehoucq RB. Peridynamic theory of solid mechanics. Advances in Applied Mechanics 2010; 44: 73-168.
Bobaru F, Ha YD. Adaptive refinement and multiscale modeling in 2D peridynamics. Journal for Multiscale Computational Engineering 2011; 9(635-659).
Li S, Liu WK, Rosakis AJ, Belytschko T, Hao W. Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition. International Journal of Solids and Structures 2002; 39(5): 1213-1240.
OGrady J, Foster J. Peridynamic plates and flat shells: a non-ordinary, state-based model. International Journal of Solids and Structures 2014; 51: 4572-4579.
Sharon E, Gross SP, Fineberg J. Local crack branching as a mechanism for instability in dynamic fracture. Physical Review Letters 1995; 74(25): 5096.
Areias PMA, Rabczuk T, Camanho PP. Finite strain fracture of 2D problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics 2014; 72: 50-63.
Moyer ET, Miraglia MJ. Peridynamic solutions for Timoshenko beams. Engineering 2014; 6: Article ID:46262.
Bobaru F, Yang M, Alves LF, Silling SA, Askari E, Xu J. Convergence, adaptive refinement, and scaling in 1D peridynamics. International Journal for Numerical Methods in Engineering 2009; 77(6): 852-877.
Silling SA. Dynamic fracture modeling with a meshfree peridynamic code. Computational Fluid and Solid Mechanics 2003: 641-644.
Rabczuk T, Zi G, Bordas S. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures 2010; 88: 1391-1411.
Talebi H, Silani M, Bordas S, Kerfriden P, Rabczuk T. A computational library for multiscale modelling of material failure. Computational Mechanics 2014; 53(5): 1047-1071.
Ravi-Chandar K. Dynamic fracture of nominally brittle materials. International Journal of Fracture 1998; 90(1-2): 83-102.
Silling SA, Epton M, Weckner O, Xu J, Askari E. Peridynamic states and constitutive modeling. Journal of Elasticity 2007; 88(2): 151-184.
Budarapu P, Gracie R, Bordas S, Rabczuk T. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics 2014; 53(6): 1129-1148.
Areias P, Msekh MA, Rabczuk T. Damage and fracture algorithm using the screened Poisson equation and local remeshing. Engineering Fracture Mechanics 2016: 116-143.
Areias P, Rabczuk T, Dias-da-Costa D. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics 2013; 110: 113-137.
Cai Y, Zhu H, Zhuang X. A continuous/discontinuous deformation analysis (CDDA) method based on deformable blocks for fracture modeling. Frontiers of Structural and Civil Engineering 2013; 7(4): 369-378.
Ghorashi S, Valizadeh N, Mohammadi S, Rabczuk T. T-spline based XIGA for fracture analysis of orthotropic media. Computers & Structures 2015; 147: 138-146.
Cheng KW, Fries TP. Higher-order XFEM for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering. 10.1002/nme.2768.
2015; 284
2002; 39
1995; 74
2001; 50
2004; 61
2002; 53
2000; 48
2015; 147
2014; 190
2008
2003; 58
1975
2014; 69
1995
2010; 162
2015; 80
2003
2005; 83
2013; 7
2011; 19
53
2011; 9
1994; 42
2012; 94
2010; 88
2009; 77
2010; 44
2007; 237
2006; 67
2000; 105
2013; 94
2013; 52
2010; 199
1998; 90
2008; 46
2016
2015
2013; 110
2014
2014; 51
2014; 72
2007; 88
2014; 6
2007; 69
2014; 53
Graff KF (e_1_2_9_49_1) 1975
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_39_1
Nguyen‐Thanh N (e_1_2_9_19_1); 53
e_1_2_9_16_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
Cai Y (e_1_2_9_21_1) 2013; 7
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
Askari E (e_1_2_9_37_1) 2008
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_46_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
Bobaru F (e_1_2_9_35_1) 2011; 9
e_1_2_9_3_1
Cheng KW (e_1_2_9_23_1)
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
Silling SA (e_1_2_9_48_1) 2003
e_1_2_9_29_1
References_xml – reference: Bobaru F, Ha YD. Adaptive refinement and multiscale modeling in 2D peridynamics. Journal for Multiscale Computational Engineering 2011; 9(635-659).
– reference: Silling SA, Lehoucq RB. Peridynamic theory of solid mechanics. Advances in Applied Mechanics 2010; 44: 73-168.
– reference: Rabczuk T, Areias PMA, Belytschko T. A simplified mesh-free method for shear bands with cohesive surfaces. International Journal for Numerical Methods in Engineering 2007; 69(5): 993-1021.
– reference: Nguyen-Thanh N, Muthu J, Zhuang X, Rabczuk T. An adaptive three-dimensional RHT-splines formulation in linear elasto-statics and elasto-dynamics. Computational Mechanics; 53(2): 369-385.
– reference: Cai Y, Zhu H, Zhuang X. A continuous/discontinuous deformation analysis (CDDA) method based on deformable blocks for fracture modeling. Frontiers of Structural and Civil Engineering 2013; 7(4): 369-378.
– reference: OGrady J, Foster J. Peridynamic plates and flat shells: a non-ordinary, state-based model. International Journal of Solids and Structures 2014; 51: 4572-4579.
– reference: Areias PMA, Rabczuk T, Camanho PP. Finite strain fracture of 2D problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics 2014; 72: 50-63.
– reference: Sharon E, Gross SP, Fineberg J. Local crack branching as a mechanism for instability in dynamic fracture. Physical Review Letters 1995; 74(25): 5096.
– reference: Areias P, Dias-da-Costa D, Sargado JM, Rabczuk T. Element-wise algorithm for modeling ductile fracture with the Rousselier yield function. Computational Mechanics 2013; 52(6): 1429-1443.
– reference: Cheng KW, Fries TP. Higher-order XFEM for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering. 10.1002/nme.2768.
– reference: Moyer ET, Miraglia MJ. Peridynamic solutions for Timoshenko beams. Engineering 2014; 6: Article ID:46262.
– reference: Dipasquale D, Zaccariotto M, Galvanetto U. Crack propagation with adaptive grid refinement in 2D peridynamics. International Journal of Fracture 2014; 190(1-2): 1-22.
– reference: Yu K, Xin XJ, Lease KB. A new adaptive integration method for the peridynamic theory. Modelling and Simulation in Materials Science and Engineering 2011; 19(4): 045003.
– reference: Amiri F, Anitescu C, Arroyo M, Bordas S, Rabczuk T. XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics 2014; 53(1): 45-57.
– reference: Belytschko T, Chen H, Xu J, Zi G. Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. International Journal for Numerical Methods in Engineering 2003; 58(12): 1873-1905.
– reference: Talebi H, Silani M, Bordas S, Kerfriden P, Rabczuk T. A computational library for multiscale modelling of material failure. Computational Mechanics 2014; 53(5): 1047-1071.
– reference: Lai X, Ren B, Fan H, Li S, Wu CT, Regueiro RA, Liu L. Peridynamics simulations of geomaterial fragmentation by impulse loads. International Journal for Numerical and Analytical Methods in Geomechanics 2015.
– reference: Graff KF. Wave Motion in Elastic Solids. Clarendon: Oxford, 1975.
– reference: Areias P, Rabczuk T, Camanho PP. Initially rigid cohesive laws and fracture based on edge rotations. Computational Mechanics 2013; 52(4): 931-947.
– reference: Zhuang X, Zhu H, Augarde C. An improved meshless Shepard and least square method possessing the delta property and requiring no singular weight function. Computational Mechanics 2014; 53: 343-357.
– reference: Wang P, Yang T, Yu Q, Liu H, Zhang P. Characterization on jointed rock masses based on PFC2D. Frontiers of Structural and Civil Engineering 2013; 7(1): 32-38.
– reference: Rabczuk T, Zi G, Bordas S. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures 2010; 88: 1391-1411.
– reference: Silling SA, Epton M, Weckner O, Xu J, Askari E. Peridynamic states and constitutive modeling. Journal of Elasticity 2007; 88(2): 151-184.
– reference: Areias P, Rabczuk T, Dias-da-Costa D. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics 2013; 110: 113-137.
– reference: Talebi H, Silani M, Rabczuk T. Concurrent multiscale modelling of three dimensional crack and dislocation propagation. Advances in Engineering Software 2015; 80: 82-92.
– reference: Oterkus E, Madenci E, Weckner O, Silling S, Bogert P, Tessler A. Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot. Composite Structures 2012; 94: 839-850.
– reference: Gravouil A, Moes N, Belytschko T. Non-planar 3D crack growth by the extended finite element and level sets - part ii: level set update. International Journal for Numerical Methods in Engineering 2002; 53: 2569-2586.
– reference: Song J-H, Areias PMA, Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes. International Journal for Numerical Methods in Engineering 2006; 67(6): 868-893.
– reference: Xu X-P, Needleman A. Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids 1994; 42(9): 1397-1434.
– reference: Ha YD, Bobaru F. Studies of dynamic crack propagation and crack branching with peridynamics. International Journal of Fracture 2010; 162: 229-244.
– reference: Budarapu P, Gracie R, Bordas S, Rabczuk T. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics 2014; 53(6): 1129-1148.
– reference: Areias P, Msekh MA, Rabczuk T. Damage and fracture algorithm using the screened Poisson equation and local remeshing. Engineering Fracture Mechanics 2016: 116-143.
– reference: Silling SA, Askari E. A meshfree method based on the peridynamic model of solid mechanics. Computers & Structures 2005; 83(17): 1526-1535.
– reference: Silling SA. Dynamic fracture modeling with a meshfree peridynamic code. Computational Fluid and Solid Mechanics 2003: 641-644.
– reference: Areias P, Rabczuk T. Finite strain fracture of plates and shells with configurational forces and edge rotation. International Journal for Numerical Methods in Engineering 2013; 94(12), 1099-1122.
– reference: Nguyen-Thanh N, Valizadeh N, Nguyen MN, Nguyen-Xuan H, Zhuang X, Areias P, Zi G, Bazilevs Y, De Lorenzis L, Rabczuk T. An extended isogeometric thin shell analysis based on Kirchhoff-Love theory. Computer Methods in Applied Mechanics and Engineering 2015; 284: 265-291.
– reference: Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering 2010; 199(37): 2437-2455.
– reference: Ravi-Chandar K. Dynamic fracture of nominally brittle materials. International Journal of Fracture 1998; 90(1-2): 83-102.
– reference: Belytschko T, Moës N, Usui S, Parimi C. Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 2001; 50(4): 993-1013.
– reference: Li S, Liu WK, Rosakis AJ, Belytschko T, Hao W. Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition. International Journal of Solids and Structures 2002; 39(5): 1213-1240.
– reference: Bobaru F, Yang M, Alves LF, Silling SA, Askari E, Xu J. Convergence, adaptive refinement, and scaling in 1D peridynamics. International Journal for Numerical Methods in Engineering 2009; 77(6): 852-877.
– reference: Batra RC, Ravinsankar MVS. Three-dimensional numerical simulation of the Kalthoff experiment. International Journal of fracture 2000; 105(2): 161-186.
– reference: Rabczuk T, Belytschko T. Cracking particles: a simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering 2004; 61(13): 2316-2343.
– reference: Ghorashi S, Valizadeh N, Mohammadi S, Rabczuk T. T-spline based XIGA for fracture analysis of orthotropic media. Computers & Structures 2015; 147: 138-146.
– reference: Gerstle W, Sau N, Silling S. Peridynamic modeling of concrete structures. Nuclear Engineering and Design 2007; 237(12): 1250-1258.
– reference: Warren TL, Silling SA, Askari A, Weckner O, Epton MA, Xu J. A non-ordinary state-based peridynamic method to model solid material deformation and fracture. International Journal of Solids and Structures 2008; 46: 1186-1195.
– reference: Zhuang X, Cai Y, Augarde C. A meshless sub-region radial point interpolation method for accurate calculation of crack tip fields. Theoretical and Applied Fracture Mechanics 2014; 69: 118-125.
– reference: Silling SA. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids 2000; 48(1): 175-209.
– volume: 190
  start-page: 1
  issue: 1‐2
  year: 2014
  end-page: 22
  article-title: Crack propagation with adaptive grid refinement in 2D peridynamics
  publication-title: International Journal of Fracture
– volume: 53
  start-page: 2569
  year: 2002
  end-page: 2586
  article-title: Non‐planar 3D crack growth by the extended finite element and level sets – part ii: level set update
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 237
  start-page: 1250
  issue: 12
  year: 2007
  end-page: 1258
  article-title: Peridynamic modeling of concrete structures
  publication-title: Nuclear Engineering and Design
– volume: 88
  start-page: 1391
  year: 2010
  end-page: 1411
  article-title: On three‐dimensional modelling of crack growth using partition of unity methods
  publication-title: Computers & Structures
– volume: 46
  start-page: 1186
  year: 2008
  end-page: 1195
  article-title: A non‐ordinary state‐based peridynamic method to model solid material deformation and fracture
  publication-title: International Journal of Solids and Structures
– volume: 7
  start-page: 32
  issue: 1
  year: 2013
  end-page: 38
  publication-title: Characterization on jointed rock masses based on PFC2D. Frontiers of Structural and Civil Engineering
– volume: 44
  start-page: 73
  year: 2010
  end-page: 168
  article-title: Peridynamic theory of solid mechanics
  publication-title: Advances in Applied Mechanics
– volume: 80
  start-page: 82
  year: 2015
  end-page: 92
  article-title: Concurrent multiscale modelling of three dimensional crack and dislocation propagation
  publication-title: Advances in Engineering Software
– volume: 42
  start-page: 1397
  issue: 9
  year: 1994
  end-page: 1434
  article-title: Numerical simulations of fast crack growth in brittle solids
  publication-title: Journal of the Mechanics and Physics of Solids
– volume: 50
  start-page: 993
  issue: 4
  year: 2001
  end-page: 1013
  article-title: Arbitrary discontinuities in finite elements
  publication-title: International Journal for Numerical Methods in Engineering
– year: 1975
– volume: 53
  start-page: 1129
  issue: 6
  year: 2014
  end-page: 1148
  article-title: An adaptive multiscale method for quasi‐static crack growth
  publication-title: Computational Mechanics
– volume: 53
  start-page: 369
  issue: 2
  end-page: 385
  article-title: An adaptive three‐dimensional RHT‐splines formulation in linear elasto‐statics and elasto‐dynamics
  publication-title: Computational Mechanics
– volume: 105
  start-page: 161
  issue: 2
  year: 2000
  end-page: 186
  article-title: Three‐dimensional numerical simulation of the Kalthoff experiment
  publication-title: International Journal of fracture
– volume: 77
  start-page: 852
  issue: 6
  year: 2009
  end-page: 877
  article-title: Convergence, adaptive refinement, and scaling in 1D peridynamics
  publication-title: International Journal for Numerical Methods in Engineering
– year: 2014
– volume: 7
  start-page: 369
  issue: 4
  year: 2013
  end-page: 378
  publication-title: A continuous/discontinuous deformation analysis (CDDA) method based on deformable blocks for fracture modeling. Frontiers of Structural and Civil Engineering
– year: 2008
– volume: 9
  issue: 635‐659
  year: 2011
  article-title: Adaptive refinement and multiscale modeling in 2D peridynamics
  publication-title: Journal for Multiscale Computational Engineering
– volume: 58
  start-page: 1873
  issue: 12
  year: 2003
  end-page: 1905
  article-title: Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 53
  start-page: 1047
  issue: 5
  year: 2014
  end-page: 1071
  article-title: A computational library for multiscale modelling of material failure
  publication-title: Computational Mechanics
– volume: 94
  start-page: 839
  year: 2012
  end-page: 850
  article-title: Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot
  publication-title: Composite Structures
– year: 2015
  article-title: Peridynamics simulations of geomaterial fragmentation by impulse loads
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
– volume: 88
  start-page: 151
  issue: 2
  year: 2007
  end-page: 184
  article-title: Peridynamic states and constitutive modeling
  publication-title: Journal of Elasticity
– volume: 162
  start-page: 229
  year: 2010
  end-page: 244
  article-title: Studies of dynamic crack propagation and crack branching with peridynamics
  publication-title: International Journal of Fracture
– volume: 69
  start-page: 118
  year: 2014
  end-page: 125
  article-title: A meshless sub‐region radial point interpolation method for accurate calculation of crack tip fields
  publication-title: Theoretical and Applied Fracture Mechanics
– volume: 19
  issue: 4
  year: 2011
  article-title: A new adaptive integration method for the peridynamic theory
  publication-title: Modelling and Simulation in Materials Science and Engineering
– volume: 67
  start-page: 868
  issue: 6
  year: 2006
  end-page: 893
  article-title: A method for dynamic crack and shear band propagation with phantom nodes
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 94
  start-page: 1099
  issue: 12
  year: 2013
  end-page: 1122
  article-title: Finite strain fracture of plates and shells with configurational forces and edge rotation
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 74
  start-page: 5096
  issue: 25
  year: 1995
  article-title: Local crack branching as a mechanism for instability in dynamic fracture
  publication-title: Physical Review Letters
– volume: 69
  start-page: 993
  issue: 5
  year: 2007
  end-page: 1021
  article-title: A simplified mesh‐free method for shear bands with cohesive surfaces
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 147
  start-page: 138
  year: 2015
  end-page: 146
  article-title: T‐spline based XIGA for fracture analysis of orthotropic media
  publication-title: Computers & Structures
– volume: 52
  start-page: 1429
  issue: 6
  year: 2013
  end-page: 1443
  article-title: Element‐wise algorithm for modeling ductile fracture with the Rousselier yield function
  publication-title: Computational Mechanics
– volume: 83
  start-page: 1526
  issue: 17
  year: 2005
  end-page: 1535
  article-title: A meshfree method based on the peridynamic model of solid mechanics
  publication-title: Computers & Structures
– volume: 61
  start-page: 2316
  issue: 13
  year: 2004
  end-page: 2343
  article-title: Cracking particles: a simplified meshfree method for arbitrary evolving cracks
  publication-title: International Journal for Numerical Methods in Engineering
– start-page: 641
  year: 2003
  end-page: 644
  article-title: Dynamic fracture modeling with a meshfree peridynamic code
  publication-title: Computational Fluid and Solid Mechanics
– volume: 6
  start-page: Article ID:46262
  year: 2014
  article-title: Peridynamic solutions for Timoshenko beams
  publication-title: Engineering
– volume: 51
  start-page: 4572
  year: 2014
  end-page: 4579
  article-title: Peridynamic plates and flat shells: a non‐ordinary, state‐based model
  publication-title: International Journal of Solids and Structures
– year: 1995
– volume: 53
  start-page: 45
  issue: 1
  year: 2014
  end-page: 57
  article-title: XLME interpolants, a seamless bridge between XFEM and enriched meshless methods
  publication-title: Computational Mechanics
– volume: 52
  start-page: 931
  issue: 4
  year: 2013
  end-page: 947
  article-title: Initially rigid cohesive laws and fracture based on edge rotations
  publication-title: Computational Mechanics
– volume: 39
  start-page: 1213
  issue: 5
  year: 2002
  end-page: 1240
  article-title: Mesh‐free Galerkin simulations of dynamic shear band propagation and failure mode transition
  publication-title: International Journal of Solids and Structures
– volume: 72
  start-page: 50
  year: 2014
  end-page: 63
  article-title: Finite strain fracture of 2D problems with injected anisotropic softening elements
  publication-title: Theoretical and Applied Fracture Mechanics
– article-title: Higher‐order XFEM for curved strong and weak discontinuities
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 199
  start-page: 2437
  issue: 37
  year: 2010
  end-page: 2455
  article-title: A simple and robust three‐dimensional cracking‐particle method without enrichment
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 110
  start-page: 113
  year: 2013
  end-page: 137
  article-title: Element‐wise fracture algorithm based on rotation of edges
  publication-title: Engineering Fracture Mechanics
– volume: 284
  start-page: 265
  year: 2015
  end-page: 291
  article-title: An extended isogeometric thin shell analysis based on Kirchhoff‐Love theory
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 53
  start-page: 343
  year: 2014
  end-page: 357
  article-title: An improved meshless Shepard and least square method possessing the delta property and requiring no singular weight function
  publication-title: Computational Mechanics
– volume: 48
  start-page: 175
  issue: 1
  year: 2000
  end-page: 209
  article-title: Reformulation of elasticity theory for discontinuities and long‐range forces
  publication-title: Journal of the Mechanics and Physics of Solids
– volume: 90
  start-page: 83
  issue: 1‐2
  year: 1998
  end-page: 102
  article-title: Dynamic fracture of nominally brittle materials
  publication-title: International Journal of Fracture
– start-page: 116
  year: 2016
  end-page: 143
  article-title: Damage and fracture algorithm using the screened Poisson equation and local remeshing
  publication-title: Engineering Fracture Mechanics
– ident: e_1_2_9_16_1
  doi: 10.1016/j.advengsoft.2014.09.016
– ident: e_1_2_9_38_1
  doi: 10.1088/0965-0393/19/4/045003
– ident: e_1_2_9_43_1
  doi: 10.1016/S0020-7683(01)00188-3
– ident: e_1_2_9_40_1
  doi: 10.1016/j.ijsolstr.2008.10.029
– volume: 53
  start-page: 369
  issue: 2
  ident: e_1_2_9_19_1
  article-title: An adaptive three‐dimensional RHT‐splines formulation in linear elasto‐statics and elasto‐dynamics
  publication-title: Computational Mechanics
  doi: 10.1007/s00466-013-0914-z
– ident: e_1_2_9_41_1
  doi: 10.1016/0022-5096(94)90003-5
– ident: e_1_2_9_42_1
  doi: 10.1023/A:1007658224458
– ident: e_1_2_9_7_1
  doi: 10.1002/nme.4477
– ident: e_1_2_9_27_1
  doi: 10.1016/j.nucengdes.2006.10.002
– start-page: 641
  year: 2003
  ident: e_1_2_9_48_1
  article-title: Dynamic fracture modeling with a meshfree peridynamic code
  publication-title: Computational Fluid and Solid Mechanics
– ident: e_1_2_9_9_1
  doi: 10.1016/j.compstruc.2008.08.010
– ident: e_1_2_9_29_1
  doi: 10.4236/eng.2014.66034
– ident: e_1_2_9_28_1
  doi: 10.1016/j.compstruct.2011.07.019
– ident: e_1_2_9_50_1
  doi: 10.1103/PhysRevLett.74.5096
– volume-title: Wave Motion in Elastic Solids
  year: 1975
  ident: e_1_2_9_49_1
– ident: e_1_2_9_39_1
  doi: 10.1016/S0065-2156(10)44002-8
– ident: e_1_2_9_24_1
  doi: 10.1002/nme.430
– ident: e_1_2_9_32_1
  doi: 10.1016/j.compstruc.2004.11.026
– ident: e_1_2_9_52_1
  doi: 10.1007/s10704-010-9442-4
– ident: e_1_2_9_47_1
  doi: 10.1016/j.cma.2010.03.031
– ident: e_1_2_9_4_1
  doi: 10.1007/s00466-013-0885-0
– ident: e_1_2_9_33_1
– ident: e_1_2_9_45_1
  doi: 10.1002/nme.1652
– ident: e_1_2_9_12_1
  doi: 10.1007/s00466-013-0912-1
– ident: e_1_2_9_15_1
  doi: 10.1016/j.cma.2014.08.025
– ident: e_1_2_9_14_1
  doi: 10.1016/j.compstruc.2014.09.017
– ident: e_1_2_9_26_1
  doi: 10.1002/nag.2356
– volume: 9
  issue: 635
  year: 2011
  ident: e_1_2_9_35_1
  article-title: Adaptive refinement and multiscale modeling in 2D peridynamics
  publication-title: Journal for Multiscale Computational Engineering
– ident: e_1_2_9_10_1
  doi: 10.1002/nme.1151
– ident: e_1_2_9_5_1
  doi: 10.1016/j.engfracmech.2013.06.006
– ident: e_1_2_9_34_1
  doi: 10.1002/nme.2439
– ident: e_1_2_9_17_1
  doi: 10.1007/s00466-013-0948-2
– ident: e_1_2_9_31_1
  doi: 10.1007/s10659-007-9125-1
– volume: 7
  start-page: 369
  issue: 4
  year: 2013
  ident: e_1_2_9_21_1
  publication-title: A continuous/discontinuous deformation analysis (CDDA) method based on deformable blocks for fracture modeling. Frontiers of Structural and Civil Engineering
– ident: e_1_2_9_11_1
  doi: 10.1007/s00466-013-0891-2
– ident: e_1_2_9_20_1
  doi: 10.21236/ADA301760
– ident: e_1_2_9_13_1
  doi: 10.1016/j.tafmec.2013.12.003
– ident: e_1_2_9_3_1
  doi: 10.1016/j.tafmec.2014.06.006
– ident: e_1_2_9_25_1
  doi: 10.1016/S0022-5096(99)00029-0
– ident: e_1_2_9_18_1
  doi: 10.1007/s00466-013-0952-6
– volume-title: Journal of Physics: Conference Series
  year: 2008
  ident: e_1_2_9_37_1
– ident: e_1_2_9_2_1
  doi: 10.1016/j.engfracmech.2015.10.042
– ident: e_1_2_9_30_1
  doi: 10.1016/j.ijsolstr.2014.09.003
– ident: e_1_2_9_36_1
  doi: 10.1007/s10704-014-9970-4
– ident: e_1_2_9_6_1
  doi: 10.1007/s00466-013-0855-6
– ident: e_1_2_9_22_1
  doi: 10.1007/s11709-013-0187-9
– ident: e_1_2_9_44_1
  doi: 10.1002/nme.941
– ident: e_1_2_9_46_1
  doi: 10.1002/nme.1797
– ident: e_1_2_9_8_1
  doi: 10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M
– ident: e_1_2_9_51_1
  doi: 10.1023/A:1007432017290
– ident: e_1_2_9_23_1
  article-title: Higher‐order XFEM for curved strong and weak discontinuities
  publication-title: International Journal for Numerical Methods in Engineering
SSID ssj0011503
Score 2.6553595
Snippet Summary In this paper, we develop a dual‐horizon peridynamics (DH‐PD) formulation that naturally includes varying horizon sizes and completely solves the...
In this paper, we develop a dual‐horizon peridynamics (DH‐PD) formulation that naturally includes varying horizon sizes and completely solves the ‘ghost force’...
Summary In this paper, we develop a dual-horizon peridynamics (DH-PD) formulation that naturally includes varying horizon sizes and completely solves the...
In this paper, we develop a dual-horizon peridynamics (DH-PD) formulation that naturally includes varying horizon sizes and completely solves the 'ghost force'...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1451
SubjectTerms adaptive refinement
Angular momentum
Bonding
Computational efficiency
Cracks
dual horizon
ghost force
Ghosts
Horizon
horizon variable
Mathematical models
Numerical analysis
peridynamics
spurious wave reflection
Title Dual-horizon peridynamics
URI https://api.istex.fr/ark:/67375/WNG-LTL54ZNR-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.5257
https://www.proquest.com/docview/1845440035
https://www.proquest.com/docview/1864575071
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SL3rwLVarVBA9bbvbJOvmKLZapO1BLBY9hLwWpbqVbgvSkz_B3-gvMbMvqiiIp2XZWZLMZJJvdybfIHSksFAQb3ECqV2HqNBzpE-xIzzDCBNCUQ3nnbs9v90nVwM6yLIq4SxMyg9R_HADz0jWa3BwIeP6HGnos6kBladdfiFVC_DQdcEcBTgH59kdlAVezjvrNur5i192okVQ6usXmDkPVpPd5mIV3ef9TJNMhrXpRNbU7BuF4_8GsoZWMhBaPUtnzTpaMNEGWs0AaTVz93gDLc-xFdq7bkHxGm-iveZUPH28vT-Mxo-zUVQFxmSdlrePt1D_onVz3naySguOIsASqTEWIhDSDaxJsadd41vkoRmmUkPclYnAaMVC320oQbXEIVOuEJjhUPuKSbyNStEoMjuoSjwWnmJfW2ASEubpQBDgz_Fd4xJlR1lGJ7nWucpoyKEaxhNPCZQb3OqD00TysJB8Sak3fpA5TgxXCIjxEFLVTim_7V3yzk2HkrveNW-WUSW3LM-8NOb265YSAsFU21bx2PoXBE1EZEZTkPGJhbQWidm2EjP-2hne67bguvtXwT20ZPFXUgep4VVQaTKemn2LcSbyIJnNn3sx93k
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NahsxEB6c-ND0EDdpQxI7qQulPa2za0nrFTmV2q6T2nsIDgmlILSSlhS76-IfKD71EfqMfZJo9g-npFByWpYdIWlGs_qkkb4BeKuIVBhvcYJIuw5VsedEPiOO9AynXErFNN53HoX-4Jpe3rLbCpwXd2Eyfohyww09I_1fo4PjhvTZBmvod9NCLs8tqGJC73Q9dVVyRyHSIcX5DsYDr2CeddtnRckHc1EV1frzAdDchKvpfNOvwdeipdkxk0lrtYxaav0XieMTu_ICdnMc2vyQDZw9qJhkH2o5Jm3mHr_Yh-cbhIX2bVSyvC5eQr27ktM_v37fzebf1rOkiaTJOstwv3gF1_3e-OPAyZMtOIoiUaQmRMpARm5grUo87Rrfgg_NCYs0hl65DIxWPPbdtpJMRyTmypWScBJrX_GIHMB2MkvMITSpx-MO8bXFJjHlng4kRQod3zUuVbaXR_C-ULtQORM5JsSYioxDuS2sPgRLJd-Ukj8y9o1HZN6llisF5HyCp9U6TNyEn8RwPGT0S3glukfQKEwrckddCLvAZZRiPNXWVX62LoZxE5mY2QplfGpRrQVjtq7Ujv9sjAhHPXwe_6_ga3g2GI-GYngRfq7DjoVjaVqktteA7eV8ZU4s5FlGp-nQvgfuGfuU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkKpyKJSHeLVdJASn7DrrB_GxYllouxtVCASiB8uxHYGALNqHVHHqT-hv7C_Bk5cWRCXUUxRlItsznvhzZvwNwI6h2mC8JYgSSwJm0jBIBKeBDp1kUmvDLZ537sfi-Ix9u-AXZVYlnoUp-CHqH27oGfn3Gh383qatKdLQO9dEKs83MMcEiXBGd05q6igEOrRK7-AyCiviWdJuVW8-WYrmUKu_nuDMabSaLzfdBfhZdbTIMrlpTsZJ0zw843D8v5EswvsShTa-FNPmA8y4bAkWSkTaKP19tATzU3SF_q5fc7yOlmGzM9G3f3__uRoMrx8GWQMpk21R3360Amfdw9OD46AstRAYhjSRllKtI52QyNuUhpY44aGHlZQnFgOvUkfOGpkK0jaa24Sm0hCtqaSpFUYmdBVms0Hm1qDBQpnuU2E9MkmZDG2kGRLoCOIIM36U67BXaV2Zkoccy2HcqoJBua28PhTPJbdryfuCe-MFmd3ccLWAHt5grto-V-fxkeqd9ji7jE9UZx22Ksuq0k1Hym9vOWMYTfVt1Y-9g2HURGduMEEZwTym9VDMt5Wb8Z-dUXH_EK8brxX8DG9_dLqq9zX-vgnvPBbLayK1wy2YHQ8n7qPHO-PkUz6xHwEdFPpM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual%E2%80%90horizon+peridynamics&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Ren%2C+Huilong&rft.au=Zhuang%2C+Xiaoying&rft.au=Cai%2C+Yongchang&rft.au=Rabczuk%2C+Timon&rft.date=2016-12-21&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=108&rft.issue=12&rft.spage=1451&rft.epage=1476&rft_id=info:doi/10.1002%2Fnme.5257&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nme_5257
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon