Dual-horizon peridynamics
Summary In this paper, we develop a dual‐horizon peridynamics (DH‐PD) formulation that naturally includes varying horizon sizes and completely solves the ‘ghost force’ issue. Therefore, the concept of dual horizon is introduced to consider the unbalanced interactions between the particles with diffe...
Saved in:
Published in | International journal for numerical methods in engineering Vol. 108; no. 12; pp. 1451 - 1476 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Blackwell Publishing Ltd
21.12.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
In this paper, we develop a dual‐horizon peridynamics (DH‐PD) formulation that naturally includes varying horizon sizes and completely solves the ‘ghost force’ issue. Therefore, the concept of dual horizon is introduced to consider the unbalanced interactions between the particles with different horizon sizes. The present formulation fulfills both the balances of linear momentum and angular momentum exactly. Neither the ‘partial stress tensor’ nor the ‘slice’ technique is needed to ameliorate the ghost force issue. We will show that the traditional peridynamics can be derived as a special case of the present DH‐PD. All three peridynamic formulations, namely, bond‐based, ordinary state‐based, and non‐ordinary state‐based peridynamics, can be implemented within the DH‐PD framework. Our DH‐PD formulation allows for h‐adaptivity and can be implemented in any existing peridynamics code with minimal changes. A simple adaptive refinement procedure is proposed, reducing the computational cost. Both two‐dimensional and three‐dimensional examples including the Kalthoff–Winkler experiment and plate with branching cracks are tested to demonstrate the capability of the method. Copyright © 2016 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Summary In this paper, we develop a dual-horizon peridynamics (DH-PD) formulation that naturally includes varying horizon sizes and completely solves the 'ghost force' issue. Therefore, the concept of dual horizon is introduced to consider the unbalanced interactions between the particles with different horizon sizes. The present formulation fulfills both the balances of linear momentum and angular momentum exactly. Neither the 'partial stress tensor' nor the 'slice' technique is needed to ameliorate the ghost force issue. We will show that the traditional peridynamics can be derived as a special case of the present DH-PD. All three peridynamic formulations, namely, bond-based, ordinary state-based, and non-ordinary state-based peridynamics, can be implemented within the DH-PD framework. Our DH-PD formulation allows for h-adaptivity and can be implemented in any existing peridynamics code with minimal changes. A simple adaptive refinement procedure is proposed, reducing the computational cost. Both two-dimensional and three-dimensional examples including the Kalthoff-Winkler experiment and plate with branching cracks are tested to demonstrate the capability of the method. Copyright © 2016 John Wiley & Sons, Ltd. In this paper, we develop a dual-horizon peridynamics (DH-PD) formulation that naturally includes varying horizon sizes and completely solves the 'ghost force' issue. Therefore, the concept of dual horizon is introduced to consider the unbalanced interactions between the particles with different horizon sizes. The present formulation fulfills both the balances of linear momentum and angular momentum exactly. Neither the 'partial stress tensor' nor the 'slice' technique is needed to ameliorate the ghost force issue. We will show that the traditional peridynamics can be derived as a special case of the present DH-PD. All three peridynamic formulations, namely, bond-based, ordinary state-based, and non-ordinary state-based peridynamics, can be implemented within the DH-PD framework. Our DH-PD formulation allows for h-adaptivity and can be implemented in any existing peridynamics code with minimal changes. A simple adaptive refinement procedure is proposed, reducing the computational cost. Both two-dimensional and three-dimensional examples including the Kalthoff-Winkler experiment and plate with branching cracks are tested to demonstrate the capability of the method. Summary In this paper, we develop a dual‐horizon peridynamics (DH‐PD) formulation that naturally includes varying horizon sizes and completely solves the ‘ghost force’ issue. Therefore, the concept of dual horizon is introduced to consider the unbalanced interactions between the particles with different horizon sizes. The present formulation fulfills both the balances of linear momentum and angular momentum exactly. Neither the ‘partial stress tensor’ nor the ‘slice’ technique is needed to ameliorate the ghost force issue. We will show that the traditional peridynamics can be derived as a special case of the present DH‐PD. All three peridynamic formulations, namely, bond‐based, ordinary state‐based, and non‐ordinary state‐based peridynamics, can be implemented within the DH‐PD framework. Our DH‐PD formulation allows for h‐adaptivity and can be implemented in any existing peridynamics code with minimal changes. A simple adaptive refinement procedure is proposed, reducing the computational cost. Both two‐dimensional and three‐dimensional examples including the Kalthoff–Winkler experiment and plate with branching cracks are tested to demonstrate the capability of the method. Copyright © 2016 John Wiley & Sons, Ltd. In this paper, we develop a dual‐horizon peridynamics (DH‐PD) formulation that naturally includes varying horizon sizes and completely solves the ‘ghost force’ issue. Therefore, the concept of dual horizon is introduced to consider the unbalanced interactions between the particles with different horizon sizes. The present formulation fulfills both the balances of linear momentum and angular momentum exactly. Neither the ‘partial stress tensor’ nor the ‘slice’ technique is needed to ameliorate the ghost force issue. We will show that the traditional peridynamics can be derived as a special case of the present DH‐PD. All three peridynamic formulations, namely, bond‐based, ordinary state‐based, and non‐ordinary state‐based peridynamics, can be implemented within the DH‐PD framework. Our DH‐PD formulation allows for h ‐adaptivity and can be implemented in any existing peridynamics code with minimal changes. A simple adaptive refinement procedure is proposed, reducing the computational cost. Both two‐dimensional and three‐dimensional examples including the Kalthoff–Winkler experiment and plate with branching cracks are tested to demonstrate the capability of the method. Copyright © 2016 John Wiley & Sons, Ltd. |
Author | Ren, Huilong Zhuang, Xiaoying Cai, Yongchang Rabczuk, Timon |
Author_xml | – sequence: 1 givenname: Huilong surname: Ren fullname: Ren, Huilong organization: Chair of Computational Mechanics, Bauhaus University Weimar, 99423, Weimar, Germany – sequence: 2 givenname: Xiaoying surname: Zhuang fullname: Zhuang, Xiaoying organization: State Key Laboratory of Disaster Reduction in Civil Engineering, College of Civil Engineering, Tongji University, 200092, Shanghai, China – sequence: 3 givenname: Yongchang surname: Cai fullname: Cai, Yongchang organization: State Key Laboratory of Disaster Reduction in Civil Engineering, College of Civil Engineering, Tongji University, 200092, Shanghai, China – sequence: 4 givenname: Timon surname: Rabczuk fullname: Rabczuk, Timon email: timon.rabczuk@tdt.edu.vn, Correspondence to: Timon Rabczuk, Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam and Xiaoying Zhuang, Tongji University, 1239 Siping Road, Shanghai, 200092 ;, timon.rabczuk@tdt.edu.vnzhuang@ikm.uni-hannover.de organization: Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam |
BookMark | eNp10MFLwzAUBvAgE9ym4NWb4MVL50vTNM1RtjmFOkEmgpeQpilmtulMWnT-9XZMJoqe3uH93uPjG6Cera1G6BjDCAOEF7bSIxpStof6GDgLIATWQ_1uxQPKE3yABt4vATCmQProZNLKMniunfmo7elKO5OvrayM8odov5Cl10dfc4gerqaL8XWQ3s1uxpdpoCICLMgJkTKRGSSZVgTnoGOGIeeEZnlMechlonPFixhCJWmekYIrkJJwUuSx4hkZovPt35WrX1vtG1EZr3RZSqvr1gucxBFlFBju6NkvuqxbZ7t0nYpoFAEQ2qnRVilXe-90IZRpZGNq2zhpSoFBbJoSXVNi09R3gt3ByplKuvVfNNjSN1Pq9b9OzG-nP73xjX7feeleRMwIo-JxPhPpIqXR0_xeTMgnvjGG5Q |
CODEN | IJNMBH |
CitedBy_id | crossref_primary_10_1007_s12205_019_0172_5 crossref_primary_10_1007_s00161_020_00915_y crossref_primary_10_1016_j_commatsci_2019_109405 crossref_primary_10_1016_j_engfracmech_2022_108362 crossref_primary_10_1016_j_enggeo_2019_105373 crossref_primary_10_1007_s11709_018_0459_5 crossref_primary_10_1007_s00466_023_02365_0 crossref_primary_10_1016_j_ijimpeng_2025_105255 crossref_primary_10_1016_j_enganabound_2022_01_015 crossref_primary_10_1007_s12205_019_2047_1 crossref_primary_10_3390_math9222848 crossref_primary_10_1007_s11709_016_0376_4 crossref_primary_10_1016_j_mechrescom_2023_104220 crossref_primary_10_1016_j_enganabound_2024_105829 crossref_primary_10_1016_j_ijimpeng_2022_104207 crossref_primary_10_1016_j_cma_2021_114085 crossref_primary_10_1016_j_compstruc_2018_06_008 crossref_primary_10_1007_s12205_022_2155_1 crossref_primary_10_1016_j_camwa_2023_10_016 crossref_primary_10_1016_j_ijsolstr_2017_09_010 crossref_primary_10_1007_s00603_024_04153_5 crossref_primary_10_1016_j_ijimpeng_2019_103340 crossref_primary_10_1007_s40571_019_00277_6 crossref_primary_10_1007_s00366_022_01730_6 crossref_primary_10_1016_j_engfracmech_2018_05_014 crossref_primary_10_1016_j_ijimpeng_2019_103466 crossref_primary_10_1016_j_ijimpeng_2025_105268 crossref_primary_10_1016_j_cma_2022_115665 crossref_primary_10_1016_j_ijimpeng_2025_105269 crossref_primary_10_1007_s12205_021_2031_4 crossref_primary_10_1007_s42102_023_00115_7 crossref_primary_10_1016_j_wear_2023_205110 crossref_primary_10_1016_j_cma_2022_115669 crossref_primary_10_1007_s00366_022_01656_z crossref_primary_10_1016_j_heliyon_2024_e33126 crossref_primary_10_3390_app9061137 crossref_primary_10_1016_j_ijimpeng_2021_104023 crossref_primary_10_1016_j_cma_2021_114294 crossref_primary_10_1016_j_ceramint_2018_03_214 crossref_primary_10_1002_nme_6602 crossref_primary_10_1016_j_enggeo_2018_06_004 crossref_primary_10_1007_s00366_022_01777_5 crossref_primary_10_1007_s10237_017_0876_8 crossref_primary_10_1016_j_conbuildmat_2023_134519 crossref_primary_10_1016_j_engfracmech_2017_11_017 crossref_primary_10_1016_j_jrmge_2024_09_026 crossref_primary_10_1007_s11831_023_09891_3 crossref_primary_10_3390_en11061461 crossref_primary_10_1103_PhysRevE_107_035001 crossref_primary_10_1007_s11709_019_0548_0 crossref_primary_10_1016_j_dt_2020_03_006 crossref_primary_10_1016_j_enganabound_2024_04_001 crossref_primary_10_1007_s42102_020_00038_7 crossref_primary_10_1016_j_tafmec_2021_102930 crossref_primary_10_1007_s11709_021_0730_z crossref_primary_10_1016_j_ijimpeng_2021_104033 crossref_primary_10_1016_j_cma_2022_115451 crossref_primary_10_1007_s12205_022_0280_5 crossref_primary_10_1016_j_euromechsol_2018_09_003 crossref_primary_10_1016_j_ijimpeng_2021_104038 crossref_primary_10_1016_j_cma_2022_115210 crossref_primary_10_1016_j_compstruct_2019_01_078 crossref_primary_10_1007_s11709_018_0469_3 crossref_primary_10_1016_j_euromechsol_2018_09_007 crossref_primary_10_1016_j_engfracmech_2025_111046 crossref_primary_10_1016_j_enggeo_2016_11_022 crossref_primary_10_1016_j_ijimpeng_2024_105062 crossref_primary_10_1016_j_jeurceramsoc_2023_08_027 crossref_primary_10_1016_j_ijimpeng_2024_105060 crossref_primary_10_1016_j_ijimpeng_2019_103363 crossref_primary_10_1007_s12205_022_0182_6 crossref_primary_10_1016_j_cma_2022_115208 crossref_primary_10_1016_j_engfracmech_2022_108338 crossref_primary_10_1016_j_tafmec_2020_102527 crossref_primary_10_1007_s11709_023_0978_6 crossref_primary_10_1016_j_mechrescom_2023_104113 crossref_primary_10_1016_j_tafmec_2020_102888 crossref_primary_10_1016_j_finel_2017_09_003 crossref_primary_10_1016_j_ijmecsci_2024_109553 crossref_primary_10_1016_j_triboint_2023_109116 crossref_primary_10_1007_s00603_021_02457_4 crossref_primary_10_1016_j_cma_2023_116730 crossref_primary_10_3390_app10207335 crossref_primary_10_1007_s11831_021_09549_y crossref_primary_10_1007_s00366_021_01549_7 crossref_primary_10_1007_s11440_021_01183_z crossref_primary_10_1007_s11709_017_0434_6 crossref_primary_10_1016_j_cma_2024_117260 crossref_primary_10_1016_j_ijimpeng_2019_02_001 crossref_primary_10_1016_j_undsp_2019_04_003 crossref_primary_10_1002_nag_2868 crossref_primary_10_1007_s11803_018_0460_y crossref_primary_10_1186_s40069_018_0328_6 crossref_primary_10_1007_s00339_023_06931_4 crossref_primary_10_1016_j_cma_2024_117137 crossref_primary_10_3390_en13020387 crossref_primary_10_1016_j_ijimpeng_2018_10_009 crossref_primary_10_1007_s11709_023_0023_9 crossref_primary_10_1016_j_dt_2020_02_021 crossref_primary_10_1007_s11709_020_0675_7 crossref_primary_10_1007_s12205_022_2354_9 crossref_primary_10_1016_j_jmrt_2023_02_104 crossref_primary_10_1016_j_compstruc_2023_106985 crossref_primary_10_1016_j_dt_2020_02_015 crossref_primary_10_1016_j_triboint_2017_08_009 crossref_primary_10_1016_j_mechmat_2019_103133 crossref_primary_10_1016_j_ijimpeng_2018_08_008 crossref_primary_10_1016_j_tafmec_2023_104144 crossref_primary_10_1002_nag_3729 crossref_primary_10_1016_j_enggeo_2021_106024 crossref_primary_10_1177_1056789517737593 crossref_primary_10_1155_2020_8876661 crossref_primary_10_1177_10812865231173686 crossref_primary_10_1007_s00366_021_01502_8 crossref_primary_10_1007_s10704_023_00758_z crossref_primary_10_1016_j_enggeo_2017_05_001 crossref_primary_10_1016_j_engfailanal_2024_108791 crossref_primary_10_1007_s11709_020_0641_4 crossref_primary_10_1021_acs_energyfuels_3c01627 crossref_primary_10_1007_s00707_020_02863_9 crossref_primary_10_1016_j_undsp_2018_08_001 crossref_primary_10_1007_s00707_017_2098_7 crossref_primary_10_1016_j_ijimpeng_2025_105270 crossref_primary_10_1007_s00466_020_01872_8 crossref_primary_10_1016_j_compstruct_2021_113673 crossref_primary_10_1016_j_compstruct_2020_113353 crossref_primary_10_1108_EC_07_2018_0290 crossref_primary_10_1016_j_compstruct_2020_113472 crossref_primary_10_1007_s12205_022_0874_y crossref_primary_10_1007_s12205_020_0780_0 crossref_primary_10_1007_s42102_022_00094_1 crossref_primary_10_1016_j_apm_2020_12_004 crossref_primary_10_1016_j_compgeo_2022_104837 crossref_primary_10_1007_s00466_017_1439_7 crossref_primary_10_1007_s00366_021_01537_x crossref_primary_10_1016_j_enganabound_2019_09_020 crossref_primary_10_2139_ssrn_4458848 crossref_primary_10_1016_j_finel_2017_10_007 crossref_primary_10_1016_j_tafmec_2020_102563 crossref_primary_10_1016_j_euromechsol_2021_104380 crossref_primary_10_1016_j_cma_2025_117891 crossref_primary_10_1007_s11440_020_00913_z crossref_primary_10_1016_j_enganabound_2021_07_010 crossref_primary_10_1016_j_ijimpeng_2018_09_011 crossref_primary_10_1007_s12205_022_1292_x crossref_primary_10_1016_j_ijimpeng_2018_09_012 crossref_primary_10_1016_j_enggeo_2025_108028 crossref_primary_10_1016_j_ijmecsci_2020_106245 crossref_primary_10_1016_j_commatsci_2022_111747 crossref_primary_10_1155_2021_8897826 crossref_primary_10_1007_s11043_020_09458_w crossref_primary_10_1016_j_ijimpeng_2019_103445 crossref_primary_10_1016_j_jmps_2022_105186 crossref_primary_10_1016_j_advengsoft_2018_08_014 crossref_primary_10_1007_s12205_019_0963_8 crossref_primary_10_1080_15376494_2023_2216691 crossref_primary_10_1016_j_ijimpeng_2018_03_002 crossref_primary_10_1016_j_compstruct_2017_11_050 crossref_primary_10_1016_j_compstruct_2025_118942 crossref_primary_10_1007_s11709_019_0605_8 crossref_primary_10_1007_s11709_020_0627_2 crossref_primary_10_1016_j_ijsolstr_2019_11_004 crossref_primary_10_1016_j_enganabound_2019_03_008 crossref_primary_10_1002_nme_7081 crossref_primary_10_1016_j_cma_2022_115712 crossref_primary_10_1007_s00366_021_01550_0 crossref_primary_10_1016_j_enggeo_2017_03_004 crossref_primary_10_1016_j_ijimpeng_2017_09_019 crossref_primary_10_1016_j_enganabound_2020_11_011 crossref_primary_10_1016_j_ijsolstr_2021_111366 crossref_primary_10_1016_j_tws_2021_108562 crossref_primary_10_1016_j_tafmec_2019_102393 crossref_primary_10_1007_s00707_019_02471_2 crossref_primary_10_1016_j_cma_2018_08_033 crossref_primary_10_1016_j_cma_2016_12_031 crossref_primary_10_1002_nag_3882 crossref_primary_10_1016_j_jmps_2024_105758 crossref_primary_10_1007_s42102_023_00112_w crossref_primary_10_1016_j_compstruct_2018_07_008 crossref_primary_10_1016_j_compstruc_2020_106327 crossref_primary_10_1016_j_engfracmech_2022_108982 crossref_primary_10_1016_j_jtbi_2017_01_026 crossref_primary_10_1007_s00366_024_02014_x crossref_primary_10_1155_2021_6654812 crossref_primary_10_1016_j_ijimpeng_2024_105110 crossref_primary_10_3390_en14092393 crossref_primary_10_1007_s11709_017_0435_5 crossref_primary_10_1007_s12205_022_2331_3 crossref_primary_10_1016_j_enggeo_2019_105306 crossref_primary_10_1016_j_compstruc_2023_106971 crossref_primary_10_1007_s11440_022_01725_z crossref_primary_10_1007_s12205_022_1967_3 crossref_primary_10_1007_s10704_021_00567_2 crossref_primary_10_1016_j_compgeo_2023_105756 crossref_primary_10_1016_j_compgeo_2022_104987 crossref_primary_10_1007_s11709_019_0529_3 crossref_primary_10_1016_j_enganabound_2018_01_010 crossref_primary_10_1016_j_cma_2018_08_016 crossref_primary_10_1007_s11709_017_0447_1 crossref_primary_10_1007_s00366_024_01983_3 crossref_primary_10_1016_j_ijimpeng_2019_05_019 crossref_primary_10_1016_j_euromechsol_2020_104174 crossref_primary_10_1016_j_ijimpeng_2017_08_008 crossref_primary_10_1007_s00366_023_01808_9 crossref_primary_10_1007_s11709_020_0573_z crossref_primary_10_1016_j_compgeo_2022_104752 crossref_primary_10_1016_j_cma_2023_115904 crossref_primary_10_1007_s12205_021_0298_0 crossref_primary_10_1016_j_jrmge_2023_02_017 crossref_primary_10_1016_j_engfracmech_2023_109097 crossref_primary_10_1016_j_engfracmech_2023_109099 crossref_primary_10_1016_j_camwa_2017_06_045 crossref_primary_10_1016_j_tafmec_2018_02_007 crossref_primary_10_1016_j_engfailanal_2024_108138 crossref_primary_10_1155_2022_7001654 crossref_primary_10_1007_s11709_020_0629_0 crossref_primary_10_1063_5_0238868 crossref_primary_10_1007_s11709_021_0772_2 crossref_primary_10_1016_j_compstruc_2020_106235 crossref_primary_10_3934_matersci_2024030 crossref_primary_10_1016_j_compstruct_2017_12_058 crossref_primary_10_1007_s12205_021_1162_y crossref_primary_10_1016_j_cnsns_2015_10_003 crossref_primary_10_32604_cmc_2020_012948 crossref_primary_10_3390_en11102818 crossref_primary_10_1016_j_ijmecsci_2018_06_020 crossref_primary_10_1016_j_enggeo_2018_04_008 crossref_primary_10_3390_jmse12060921 crossref_primary_10_1016_j_enggeo_2017_02_001 crossref_primary_10_1016_j_ijimpeng_2024_105161 crossref_primary_10_1016_j_ijimpeng_2019_103393 crossref_primary_10_1002_nme_6182 crossref_primary_10_1007_s11440_017_0558_9 crossref_primary_10_1007_s00366_021_01582_6 crossref_primary_10_1007_s10064_020_02099_w crossref_primary_10_1016_j_tafmec_2018_02_005 crossref_primary_10_1002_nag_3200 crossref_primary_10_1016_j_euromechsol_2017_08_010 crossref_primary_10_1007_s00339_022_05355_w crossref_primary_10_1007_s00366_024_01995_z crossref_primary_10_1016_j_euromechsol_2023_104927 crossref_primary_10_1016_j_tafmec_2019_04_013 crossref_primary_10_1007_s00158_020_02608_1 crossref_primary_10_1016_j_ijimpeng_2025_105226 crossref_primary_10_3390_ma9120977 crossref_primary_10_1016_j_jngse_2019_03_018 crossref_primary_10_1016_j_enganabound_2025_106133 crossref_primary_10_1590_1679_78255022 crossref_primary_10_1007_s00603_018_1717_5 crossref_primary_10_1007_s00366_021_01506_4 crossref_primary_10_1016_j_compstruc_2018_08_007 crossref_primary_10_1007_s42102_020_00040_z crossref_primary_10_1016_j_ijimpeng_2024_105037 crossref_primary_10_1016_j_ijimpeng_2019_04_027 crossref_primary_10_1016_j_engfracmech_2024_110023 crossref_primary_10_1007_s10704_019_00412_7 crossref_primary_10_1007_s00466_019_01695_2 crossref_primary_10_1007_s11223_022_00421_3 crossref_primary_10_1016_j_wear_2023_204954 crossref_primary_10_1002_nme_7060 crossref_primary_10_1007_s11709_021_0773_1 crossref_primary_10_1016_j_tws_2024_112341 crossref_primary_10_32604_cmes_2022_020792 crossref_primary_10_1016_j_engfracmech_2017_12_019 crossref_primary_10_1016_j_engfracmech_2017_12_018 crossref_primary_10_1016_j_cma_2019_112700 crossref_primary_10_1016_j_enganabound_2020_03_012 crossref_primary_10_1016_j_cma_2022_114680 crossref_primary_10_1007_s11709_019_0595_6 crossref_primary_10_1007_s00466_021_02072_8 crossref_primary_10_1016_j_enganabound_2020_03_016 crossref_primary_10_1016_j_ijimpeng_2024_105145 crossref_primary_10_1177_10812865231170228 crossref_primary_10_1016_j_jbiomech_2018_03_019 crossref_primary_10_1007_s11709_022_0863_8 crossref_primary_10_1007_s12205_022_1416_3 crossref_primary_10_1007_s11440_018_0701_2 crossref_primary_10_1016_j_ijrmms_2019_03_007 crossref_primary_10_1016_j_engfracmech_2018_08_028 crossref_primary_10_1016_j_compstruc_2021_106682 crossref_primary_10_1007_s00366_023_01886_9 crossref_primary_10_1016_j_ijthermalsci_2024_109024 crossref_primary_10_1007_s11440_016_0510_4 crossref_primary_10_1002_nme_7296 crossref_primary_10_3390_w10091122 crossref_primary_10_1007_s10704_023_00695_x crossref_primary_10_1016_j_cma_2023_116016 crossref_primary_10_1016_j_jcsr_2018_02_008 crossref_primary_10_1007_s11709_018_0452_z crossref_primary_10_1016_j_compstruct_2022_115552 crossref_primary_10_1007_s40571_023_00556_3 crossref_primary_10_1002_nme_7000 crossref_primary_10_1007_s11709_019_0565_z crossref_primary_10_3390_met9010107 crossref_primary_10_1016_j_tafmec_2021_103129 crossref_primary_10_1016_j_enganabound_2022_05_023 crossref_primary_10_1016_j_dt_2019_11_005 crossref_primary_10_1016_j_undsp_2018_05_002 crossref_primary_10_1177_1081286518803411 crossref_primary_10_1007_s11709_019_0552_4 crossref_primary_10_1061__ASCE_EM_1943_7889_0001876 crossref_primary_10_1016_j_cma_2020_113132 crossref_primary_10_1016_j_jmps_2020_104024 crossref_primary_10_1016_j_engfracmech_2023_109181 crossref_primary_10_1016_j_enganabound_2019_05_024 crossref_primary_10_1007_s10704_016_0139_1 crossref_primary_10_1016_j_enganabound_2019_05_030 crossref_primary_10_1016_j_apm_2024_01_040 crossref_primary_10_1016_j_enganabound_2024_01_004 crossref_primary_10_1016_j_compstruc_2022_106847 crossref_primary_10_1007_s11709_019_0563_1 crossref_primary_10_1016_j_enganabound_2022_05_015 crossref_primary_10_1016_j_engfailanal_2025_109409 crossref_primary_10_1016_j_compstruct_2018_11_034 crossref_primary_10_1016_j_jrmge_2024_05_044 crossref_primary_10_1007_s11709_018_0450_1 crossref_primary_10_1007_s11709_018_0496_0 crossref_primary_10_1016_j_enggeo_2017_09_013 crossref_primary_10_1007_s11709_019_0540_8 crossref_primary_10_1007_s42102_021_00073_y crossref_primary_10_1016_j_ijimpeng_2021_103855 crossref_primary_10_1016_j_compgeo_2023_105913 crossref_primary_10_1016_j_engfracmech_2019_106708 crossref_primary_10_1016_j_apm_2022_12_006 crossref_primary_10_1016_j_engfracmech_2018_02_009 crossref_primary_10_1007_s11709_021_0738_4 crossref_primary_10_1016_j_ijmecsci_2019_07_007 crossref_primary_10_1016_j_cma_2019_112625 crossref_primary_10_1016_j_engfracmech_2018_02_006 crossref_primary_10_1115_1_4047746 crossref_primary_10_1007_s12665_022_10590_8 crossref_primary_10_1016_j_compstruc_2024_107395 crossref_primary_10_1016_j_cma_2019_112621 crossref_primary_10_1016_j_engfracmech_2018_09_019 crossref_primary_10_1177_1081286520910221 crossref_primary_10_1007_s11709_018_0462_x crossref_primary_10_1016_j_enggeo_2017_02_022 crossref_primary_10_1016_j_ijsolstr_2016_11_015 crossref_primary_10_1007_s11440_022_01766_4 crossref_primary_10_1007_s00161_019_00830_x crossref_primary_10_1016_j_ijsolstr_2024_113113 crossref_primary_10_1016_j_cma_2018_06_015 crossref_primary_10_1007_s10338_020_00173_0 crossref_primary_10_1016_j_ijimpeng_2017_04_022 crossref_primary_10_1016_j_ijimpeng_2021_103866 crossref_primary_10_1016_j_enganabound_2017_10_006 crossref_primary_10_1016_j_tafmec_2019_102328 crossref_primary_10_1016_j_enggeo_2019_05_005 crossref_primary_10_1016_j_enggeo_2021_105992 crossref_primary_10_1016_j_tafmec_2022_103415 crossref_primary_10_32604_cmes_2024_046770 crossref_primary_10_1016_j_mechmat_2022_104417 crossref_primary_10_1016_j_cma_2023_116054 crossref_primary_10_1016_j_tafmec_2023_103840 crossref_primary_10_1016_j_finel_2018_09_002 crossref_primary_10_1016_j_cma_2017_11_022 crossref_primary_10_1016_j_cma_2019_112751 crossref_primary_10_1016_j_tws_2022_109622 crossref_primary_10_1007_s00366_023_01920_w crossref_primary_10_1002_nag_3157 crossref_primary_10_1007_s11709_020_0614_7 crossref_primary_10_1007_s12205_018_1162_8 crossref_primary_10_1016_j_undsp_2018_04_005 crossref_primary_10_1016_j_undsp_2018_04_006 crossref_primary_10_1007_s42102_021_00050_5 crossref_primary_10_1016_j_undsp_2018_04_004 crossref_primary_10_1016_j_camwa_2021_11_010 crossref_primary_10_1016_j_enganabound_2022_04_029 crossref_primary_10_1016_j_engfracmech_2021_108205 crossref_primary_10_1016_j_compstruc_2019_03_005 crossref_primary_10_1016_j_compstruct_2017_08_071 crossref_primary_10_1016_j_euromechsol_2016_08_009 crossref_primary_10_1016_j_jrmge_2019_02_003 crossref_primary_10_1016_j_tafmec_2023_103854 crossref_primary_10_1016_j_engfracmech_2025_110817 crossref_primary_10_1016_j_euromechsol_2019_103810 crossref_primary_10_1016_j_compstruct_2022_116454 crossref_primary_10_1016_j_compstruct_2018_04_066 crossref_primary_10_1016_j_apm_2022_05_025 crossref_primary_10_3390_en9121018 crossref_primary_10_1016_j_compstruc_2021_106504 crossref_primary_10_1016_j_ijimpeng_2020_103544 crossref_primary_10_1007_s00366_021_01540_2 crossref_primary_10_1016_j_ijimpeng_2020_103530 crossref_primary_10_1016_j_ijimpeng_2020_103652 crossref_primary_10_1007_s12205_018_3022_y crossref_primary_10_1016_j_tafmec_2023_103980 crossref_primary_10_1016_j_ijimpeng_2019_01_013 crossref_primary_10_1016_j_tafmec_2018_09_015 crossref_primary_10_1016_j_jmps_2024_105546 crossref_primary_10_1007_s00419_024_02731_1 crossref_primary_10_1007_s42102_023_00099_4 crossref_primary_10_1007_s11709_020_0615_6 crossref_primary_10_1016_j_cma_2020_113038 crossref_primary_10_1016_j_ijmecsci_2019_06_008 crossref_primary_10_1007_s42102_021_00051_4 crossref_primary_10_1002_zamm_202400449 crossref_primary_10_1016_j_cma_2020_113398 crossref_primary_10_1016_j_cma_2021_114520 crossref_primary_10_1016_j_ijimpeng_2020_103776 crossref_primary_10_1007_s11709_019_0588_5 crossref_primary_10_1007_s10704_018_0273_z crossref_primary_10_1016_j_triboint_2018_01_029 crossref_primary_10_1007_s11709_017_0396_8 crossref_primary_10_1016_j_compstruc_2017_10_014 crossref_primary_10_1016_j_engfracmech_2020_107086 crossref_primary_10_1016_j_ijimpeng_2019_01_001 crossref_primary_10_1007_s00419_017_1329_7 crossref_primary_10_1007_s00419_024_02646_x crossref_primary_10_1007_s11709_019_0553_3 crossref_primary_10_1016_j_tafmec_2022_103572 crossref_primary_10_1007_s11709_021_0695_y crossref_primary_10_1016_j_compgeo_2024_106382 crossref_primary_10_1016_j_jmps_2021_104469 crossref_primary_10_1016_j_apm_2023_07_023 crossref_primary_10_1016_j_engfracmech_2019_03_031 crossref_primary_10_1007_s11440_018_0645_6 crossref_primary_10_1016_j_cma_2020_113270 crossref_primary_10_32604_cmc_2021_014688 crossref_primary_10_1016_j_cnsns_2020_105687 crossref_primary_10_1016_j_compgeo_2022_105000 crossref_primary_10_1016_j_compstruc_2017_10_008 crossref_primary_10_1016_j_ijimpeng_2021_103948 crossref_primary_10_1016_j_tafmec_2018_04_011 crossref_primary_10_1016_j_compstruc_2023_107179 crossref_primary_10_1016_j_triboint_2018_01_038 crossref_primary_10_3390_app122111123 crossref_primary_10_3390_en12060965 crossref_primary_10_1016_j_engfracmech_2018_01_016 crossref_primary_10_1002_nme_7330 crossref_primary_10_1016_j_tafmec_2023_103757 crossref_primary_10_1016_j_tafmec_2022_103489 crossref_primary_10_1016_j_tws_2020_107405 crossref_primary_10_1016_j_cma_2024_117225 crossref_primary_10_1016_j_engfracmech_2023_109459 crossref_primary_10_1007_s11709_024_1043_9 crossref_primary_10_1007_s11831_022_09820_w crossref_primary_10_1080_01495739_2020_1843378 crossref_primary_10_1016_j_advengsoft_2018_03_012 crossref_primary_10_1016_j_engfracmech_2019_106567 crossref_primary_10_3390_app8122350 crossref_primary_10_1016_j_ijimpeng_2022_104282 crossref_primary_10_1016_j_tafmec_2022_103482 crossref_primary_10_1007_s41745_017_0041_5 crossref_primary_10_1016_j_tafmec_2022_103480 crossref_primary_10_1371_journal_pone_0275626 crossref_primary_10_1016_j_ijimpeng_2018_11_006 crossref_primary_10_1016_j_ijimpeng_2021_103918 crossref_primary_10_1007_s12205_021_0458_2 crossref_primary_10_1016_j_compstruc_2024_107408 crossref_primary_10_1016_j_ijsolstr_2023_112230 crossref_primary_10_1016_j_ijplas_2021_102991 crossref_primary_10_1007_s12205_020_0247_3 crossref_primary_10_1061__ASCE_GM_1943_5622_0001225 crossref_primary_10_1007_s00603_021_02519_7 crossref_primary_10_1016_j_enggeo_2020_105784 crossref_primary_10_1016_j_tafmec_2022_103357 crossref_primary_10_1016_j_apm_2023_08_026 crossref_primary_10_1007_s00366_021_01536_y crossref_primary_10_1016_j_ijimpeng_2020_103740 crossref_primary_10_1016_j_ijimpeng_2022_104274 crossref_primary_10_1016_j_cma_2024_117455 crossref_primary_10_1016_j_engfracmech_2021_108135 crossref_primary_10_1007_s11709_025_1144_0 crossref_primary_10_1016_j_compgeo_2023_106061 crossref_primary_10_1016_j_euromechsol_2020_103981 crossref_primary_10_1007_s40430_025_05436_w crossref_primary_10_1016_j_ijimpeng_2020_103747 crossref_primary_10_1155_2021_8854318 crossref_primary_10_1007_s42102_021_00065_y crossref_primary_10_1016_j_enggeo_2022_106884 crossref_primary_10_1016_j_engfracmech_2021_108142 crossref_primary_10_1016_j_cma_2024_117200 crossref_primary_10_1016_j_engfracmech_2024_109872 crossref_primary_10_1002_nag_3292 crossref_primary_10_1007_s10237_017_0989_0 crossref_primary_10_1016_j_engfracmech_2019_106782 crossref_primary_10_3390_app14104000 crossref_primary_10_1016_j_engfracmech_2018_11_021 crossref_primary_10_1016_j_cma_2019_06_027 crossref_primary_10_1007_s42102_021_00076_9 crossref_primary_10_1016_j_enganabound_2021_08_020 crossref_primary_10_1007_s11440_021_01406_3 crossref_primary_10_1016_j_compstruc_2017_03_019 crossref_primary_10_1016_j_tafmec_2022_103259 crossref_primary_10_3390_en12020271 crossref_primary_10_1016_j_cma_2024_117315 crossref_primary_10_1016_j_engfracmech_2022_109022 crossref_primary_10_1103_PhysRevE_96_053002 crossref_primary_10_1016_j_enganabound_2022_03_015 crossref_primary_10_1016_j_engstruct_2017_03_068 crossref_primary_10_1016_j_engfracmech_2021_108036 crossref_primary_10_32604_cmes_2023_026922 crossref_primary_10_1007_s00366_022_01763_x crossref_primary_10_1016_j_cmpb_2022_106820 crossref_primary_10_1016_j_apm_2020_05_005 crossref_primary_10_1002_nme_5596 crossref_primary_10_1016_j_cma_2021_113809 crossref_primary_10_1016_j_tafmec_2024_104423 crossref_primary_10_1002_suco_202000113 crossref_primary_10_1016_j_enggeo_2019_03_014 crossref_primary_10_1016_j_compgeo_2020_103864 crossref_primary_10_1016_j_cscm_2021_e00852 crossref_primary_10_1016_j_engfracmech_2023_109654 crossref_primary_10_1016_j_ijimpeng_2018_12_005 crossref_primary_10_1016_j_triboint_2023_108422 crossref_primary_10_1016_j_ijimpeng_2018_12_004 crossref_primary_10_1016_j_cma_2019_112592 crossref_primary_10_1007_s42102_022_00089_y crossref_primary_10_1016_j_cma_2020_113462 crossref_primary_10_1007_s10704_022_00659_7 crossref_primary_10_1007_s11709_022_0802_8 crossref_primary_10_1016_j_apm_2017_09_024 crossref_primary_10_1016_j_apm_2020_11_014 crossref_primary_10_1016_j_cma_2023_116691 crossref_primary_10_1016_j_ijimpeng_2021_104085 crossref_primary_10_1016_j_ijimpeng_2021_104084 crossref_primary_10_1007_s11709_020_0621_8 crossref_primary_10_1007_s00466_022_02153_2 crossref_primary_10_1016_j_enganabound_2019_12_008 crossref_primary_10_1007_s10704_018_0277_8 crossref_primary_10_1016_j_ijimpeng_2017_10_007 crossref_primary_10_1016_j_cma_2021_113736 crossref_primary_10_1016_j_ijimpeng_2018_06_004 crossref_primary_10_1186_s13662_022_03732_6 crossref_primary_10_1016_j_ijimpeng_2022_104231 crossref_primary_10_1016_j_engfracmech_2021_108179 crossref_primary_10_1016_j_enganabound_2024_105993 crossref_primary_10_1016_j_cma_2023_116580 crossref_primary_10_1016_j_cma_2022_115193 crossref_primary_10_1016_j_compgeo_2024_106796 crossref_primary_10_1016_j_engfracmech_2018_11_054 crossref_primary_10_1007_s42102_024_00117_z crossref_primary_10_1016_j_undsp_2018_06_003 crossref_primary_10_1016_j_enggeo_2019_105396 crossref_primary_10_1016_j_enggeo_2019_105278 crossref_primary_10_1016_j_tafmec_2024_104401 crossref_primary_10_1007_s11709_019_0535_5 crossref_primary_10_1016_j_tafmec_2020_102505 crossref_primary_10_1016_j_ijimpeng_2023_104657 crossref_primary_10_1007_s00366_022_01619_4 crossref_primary_10_1007_s11069_022_05647_7 crossref_primary_10_1002_nme_6527 crossref_primary_10_1007_s00366_022_01696_5 crossref_primary_10_1016_j_cma_2023_116230 crossref_primary_10_1016_j_cma_2018_11_001 crossref_primary_10_1016_j_tafmec_2020_102850 crossref_primary_10_1007_s00603_022_03008_1 crossref_primary_10_1016_j_compstruct_2019_03_035 crossref_primary_10_1016_j_engfracmech_2022_108265 crossref_primary_10_1007_s10999_024_09712_w crossref_primary_10_1007_s00466_020_01843_z crossref_primary_10_1007_s00161_021_01000_8 crossref_primary_10_1016_j_ijimpeng_2021_104061 crossref_primary_10_1016_j_ijimpeng_2021_104060 crossref_primary_10_1108_EC_12_2017_0520 crossref_primary_10_1016_j_engfracmech_2020_106969 crossref_primary_10_1007_s12205_019_1831_2 crossref_primary_10_1016_j_cma_2020_113558 crossref_primary_10_1007_s11709_020_0657_9 crossref_primary_10_1016_j_compgeo_2019_103237 crossref_primary_10_1007_s00466_019_01733_z crossref_primary_10_1016_j_ijfatigue_2023_107698 crossref_primary_10_1002_nme_6773 crossref_primary_10_1007_s11709_019_0546_2 crossref_primary_10_1016_j_tafmec_2020_102852 crossref_primary_10_1016_j_cma_2021_113716 crossref_primary_10_1016_j_compstruc_2023_107108 crossref_primary_10_1016_j_jcp_2023_112277 crossref_primary_10_1002_nme_5786 crossref_primary_10_1007_s11440_018_0709_7 crossref_primary_10_1016_j_ijimpeng_2017_11_016 crossref_primary_10_1016_j_compstruc_2023_107216 crossref_primary_10_1016_j_cma_2021_113963 crossref_primary_10_1016_j_compstruc_2024_107518 crossref_primary_10_1016_j_cma_2021_113962 crossref_primary_10_1016_j_ijfatigue_2024_108612 crossref_primary_10_1016_j_ijimpeng_2017_05_017 crossref_primary_10_1016_j_tafmec_2020_102840 crossref_primary_10_1016_j_ijimpeng_2020_103802 crossref_primary_10_1007_s42102_022_00087_0 crossref_primary_10_1016_j_ijmecsci_2023_108485 |
Cites_doi | 10.1016/j.advengsoft.2014.09.016 10.1088/0965-0393/19/4/045003 10.1016/S0020-7683(01)00188-3 10.1016/j.ijsolstr.2008.10.029 10.1007/s00466-013-0914-z 10.1016/0022-5096(94)90003-5 10.1023/A:1007658224458 10.1002/nme.4477 10.1016/j.nucengdes.2006.10.002 10.1016/j.compstruc.2008.08.010 10.4236/eng.2014.66034 10.1016/j.compstruct.2011.07.019 10.1103/PhysRevLett.74.5096 10.1016/S0065-2156(10)44002-8 10.1002/nme.430 10.1016/j.compstruc.2004.11.026 10.1007/s10704-010-9442-4 10.1016/j.cma.2010.03.031 10.1007/s00466-013-0885-0 10.1002/nme.1652 10.1007/s00466-013-0912-1 10.1016/j.cma.2014.08.025 10.1016/j.compstruc.2014.09.017 10.1002/nag.2356 10.1002/nme.1151 10.1016/j.engfracmech.2013.06.006 10.1002/nme.2439 10.1007/s00466-013-0948-2 10.1007/s10659-007-9125-1 10.1007/s00466-013-0891-2 10.21236/ADA301760 10.1016/j.tafmec.2013.12.003 10.1016/j.tafmec.2014.06.006 10.1016/S0022-5096(99)00029-0 10.1007/s00466-013-0952-6 10.1016/j.engfracmech.2015.10.042 10.1016/j.ijsolstr.2014.09.003 10.1007/s10704-014-9970-4 10.1007/s00466-013-0855-6 10.1007/s11709-013-0187-9 10.1002/nme.941 10.1002/nme.1797 10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M 10.1023/A:1007432017290 |
ContentType | Journal Article |
Copyright | Copyright © 2016 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2016 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1002/nme.5257 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Mathematics |
EISSN | 1097-0207 |
EndPage | 1476 |
ExternalDocumentID | 4268604471 10_1002_nme_5257 NME5257 ark_67375_WNG_LTL54ZNR_D |
Genre | article |
GrantInformation_xml | – fundername: Ministry of Science and Technology of China funderid: SLDRCE14-B-28; SLDRCE14-B-31 – fundername: National Basic Research Program of China funderid: 973 Program: 2011CB013800 – fundername: NSFC funderid: 51474157 – fundername: Science and Technology Commission of Shanghai Municipality funderid: 16QA1404000 – fundername: FP7 Marie Curie Actions ITN‐INSIST and IIF‐HYDROFRAC funderid: 623667 |
GroupedDBID | -~X .3N .4S .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWS RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAHQN AAMMB AAMNL AAYCA ACYXJ AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c4307-d33aa8ab08bec31d0e6710d935bd65929a8edc9f602ca5db3f9c0aa393fd6c9b3 |
IEDL.DBID | DR2 |
ISSN | 0029-5981 |
IngestDate | Fri Jul 11 00:55:23 EDT 2025 Fri Jul 25 12:17:59 EDT 2025 Thu Apr 24 22:55:57 EDT 2025 Tue Jul 01 04:32:02 EDT 2025 Wed Aug 20 07:27:18 EDT 2025 Wed Oct 30 09:51:51 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4307-d33aa8ab08bec31d0e6710d935bd65929a8edc9f602ca5db3f9c0aa393fd6c9b3 |
Notes | FP7 Marie Curie Actions ITN-INSIST and IIF-HYDROFRAC - No. 623667 Ministry of Science and Technology of China - No. SLDRCE14-B-28; No. SLDRCE14-B-31 NSFC - No. 51474157 istex:597FB08B1ECD4F000E39E394885212832A856A39 ArticleID:NME5257 National Basic Research Program of China - No. 973 Program: 2011CB013800 ark:/67375/WNG-LTL54ZNR-D Science and Technology Commission of Shanghai Municipality - No. 16QA1404000 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1845440035 |
PQPubID | 996376 |
PageCount | 26 |
ParticipantIDs | proquest_miscellaneous_1864575071 proquest_journals_1845440035 crossref_citationtrail_10_1002_nme_5257 crossref_primary_10_1002_nme_5257 wiley_primary_10_1002_nme_5257_NME5257 istex_primary_ark_67375_WNG_LTL54ZNR_D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 21 December 2016 |
PublicationDateYYYYMMDD | 2016-12-21 |
PublicationDate_xml | – month: 12 year: 2016 text: 21 December 2016 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal for numerical methods in engineering |
PublicationTitleAlternate | Int. J. Numer. Meth. Engng |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Oterkus E, Madenci E, Weckner O, Silling S, Bogert P, Tessler A. Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot. Composite Structures 2012; 94: 839-850. Areias P, Dias-da-Costa D, Sargado JM, Rabczuk T. Element-wise algorithm for modeling ductile fracture with the Rousselier yield function. Computational Mechanics 2013; 52(6): 1429-1443. Silling SA, Askari E. A meshfree method based on the peridynamic model of solid mechanics. Computers & Structures 2005; 83(17): 1526-1535. Wang P, Yang T, Yu Q, Liu H, Zhang P. Characterization on jointed rock masses based on PFC2D. Frontiers of Structural and Civil Engineering 2013; 7(1): 32-38. Areias P, Rabczuk T, Camanho PP. Initially rigid cohesive laws and fracture based on edge rotations. Computational Mechanics 2013; 52(4): 931-947. Zhuang X, Zhu H, Augarde C. An improved meshless Shepard and least square method possessing the delta property and requiring no singular weight function. Computational Mechanics 2014; 53: 343-357. Warren TL, Silling SA, Askari A, Weckner O, Epton MA, Xu J. A non-ordinary state-based peridynamic method to model solid material deformation and fracture. International Journal of Solids and Structures 2008; 46: 1186-1195. Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering 2010; 199(37): 2437-2455. Gravouil A, Moes N, Belytschko T. Non-planar 3D crack growth by the extended finite element and level sets - part ii: level set update. International Journal for Numerical Methods in Engineering 2002; 53: 2569-2586. Yu K, Xin XJ, Lease KB. A new adaptive integration method for the peridynamic theory. Modelling and Simulation in Materials Science and Engineering 2011; 19(4): 045003. Rabczuk T, Belytschko T. Cracking particles: a simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering 2004; 61(13): 2316-2343. Dipasquale D, Zaccariotto M, Galvanetto U. Crack propagation with adaptive grid refinement in 2D peridynamics. International Journal of Fracture 2014; 190(1-2): 1-22. Nguyen-Thanh N, Muthu J, Zhuang X, Rabczuk T. An adaptive three-dimensional RHT-splines formulation in linear elasto-statics and elasto-dynamics. Computational Mechanics; 53(2): 369-385. Talebi H, Silani M, Rabczuk T. Concurrent multiscale modelling of three dimensional crack and dislocation propagation. Advances in Engineering Software 2015; 80: 82-92. Rabczuk T, Areias PMA, Belytschko T. A simplified mesh-free method for shear bands with cohesive surfaces. International Journal for Numerical Methods in Engineering 2007; 69(5): 993-1021. Silling SA. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids 2000; 48(1): 175-209. Lai X, Ren B, Fan H, Li S, Wu CT, Regueiro RA, Liu L. Peridynamics simulations of geomaterial fragmentation by impulse loads. International Journal for Numerical and Analytical Methods in Geomechanics 2015. Amiri F, Anitescu C, Arroyo M, Bordas S, Rabczuk T. XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics 2014; 53(1): 45-57. Zhuang X, Cai Y, Augarde C. A meshless sub-region radial point interpolation method for accurate calculation of crack tip fields. Theoretical and Applied Fracture Mechanics 2014; 69: 118-125. Ha YD, Bobaru F. Studies of dynamic crack propagation and crack branching with peridynamics. International Journal of Fracture 2010; 162: 229-244. Xu X-P, Needleman A. Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids 1994; 42(9): 1397-1434. Nguyen-Thanh N, Valizadeh N, Nguyen MN, Nguyen-Xuan H, Zhuang X, Areias P, Zi G, Bazilevs Y, De Lorenzis L, Rabczuk T. An extended isogeometric thin shell analysis based on Kirchhoff-Love theory. Computer Methods in Applied Mechanics and Engineering 2015; 284: 265-291. Belytschko T, Moës N, Usui S, Parimi C. Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 2001; 50(4): 993-1013. Belytschko T, Chen H, Xu J, Zi G. Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. International Journal for Numerical Methods in Engineering 2003; 58(12): 1873-1905. Areias P, Rabczuk T. Finite strain fracture of plates and shells with configurational forces and edge rotation. International Journal for Numerical Methods in Engineering 2013; 94(12), 1099-1122. Gerstle W, Sau N, Silling S. Peridynamic modeling of concrete structures. Nuclear Engineering and Design 2007; 237(12): 1250-1258. Song J-H, Areias PMA, Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes. International Journal for Numerical Methods in Engineering 2006; 67(6): 868-893. Batra RC, Ravinsankar MVS. Three-dimensional numerical simulation of the Kalthoff experiment. International Journal of fracture 2000; 105(2): 161-186. Graff KF. Wave Motion in Elastic Solids. Clarendon: Oxford, 1975. Silling SA, Lehoucq RB. Peridynamic theory of solid mechanics. Advances in Applied Mechanics 2010; 44: 73-168. Bobaru F, Ha YD. Adaptive refinement and multiscale modeling in 2D peridynamics. Journal for Multiscale Computational Engineering 2011; 9(635-659). Li S, Liu WK, Rosakis AJ, Belytschko T, Hao W. Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition. International Journal of Solids and Structures 2002; 39(5): 1213-1240. OGrady J, Foster J. Peridynamic plates and flat shells: a non-ordinary, state-based model. International Journal of Solids and Structures 2014; 51: 4572-4579. Sharon E, Gross SP, Fineberg J. Local crack branching as a mechanism for instability in dynamic fracture. Physical Review Letters 1995; 74(25): 5096. Areias PMA, Rabczuk T, Camanho PP. Finite strain fracture of 2D problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics 2014; 72: 50-63. Moyer ET, Miraglia MJ. Peridynamic solutions for Timoshenko beams. Engineering 2014; 6: Article ID:46262. Bobaru F, Yang M, Alves LF, Silling SA, Askari E, Xu J. Convergence, adaptive refinement, and scaling in 1D peridynamics. International Journal for Numerical Methods in Engineering 2009; 77(6): 852-877. Silling SA. Dynamic fracture modeling with a meshfree peridynamic code. Computational Fluid and Solid Mechanics 2003: 641-644. Rabczuk T, Zi G, Bordas S. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures 2010; 88: 1391-1411. Talebi H, Silani M, Bordas S, Kerfriden P, Rabczuk T. A computational library for multiscale modelling of material failure. Computational Mechanics 2014; 53(5): 1047-1071. Ravi-Chandar K. Dynamic fracture of nominally brittle materials. International Journal of Fracture 1998; 90(1-2): 83-102. Silling SA, Epton M, Weckner O, Xu J, Askari E. Peridynamic states and constitutive modeling. Journal of Elasticity 2007; 88(2): 151-184. Budarapu P, Gracie R, Bordas S, Rabczuk T. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics 2014; 53(6): 1129-1148. Areias P, Msekh MA, Rabczuk T. Damage and fracture algorithm using the screened Poisson equation and local remeshing. Engineering Fracture Mechanics 2016: 116-143. Areias P, Rabczuk T, Dias-da-Costa D. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics 2013; 110: 113-137. Cai Y, Zhu H, Zhuang X. A continuous/discontinuous deformation analysis (CDDA) method based on deformable blocks for fracture modeling. Frontiers of Structural and Civil Engineering 2013; 7(4): 369-378. Ghorashi S, Valizadeh N, Mohammadi S, Rabczuk T. T-spline based XIGA for fracture analysis of orthotropic media. Computers & Structures 2015; 147: 138-146. Cheng KW, Fries TP. Higher-order XFEM for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering. 10.1002/nme.2768. 2015; 284 2002; 39 1995; 74 2001; 50 2004; 61 2002; 53 2000; 48 2015; 147 2014; 190 2008 2003; 58 1975 2014; 69 1995 2010; 162 2015; 80 2003 2005; 83 2013; 7 2011; 19 53 2011; 9 1994; 42 2012; 94 2010; 88 2009; 77 2010; 44 2007; 237 2006; 67 2000; 105 2013; 94 2013; 52 2010; 199 1998; 90 2008; 46 2016 2015 2013; 110 2014 2014; 51 2014; 72 2007; 88 2014; 6 2007; 69 2014; 53 Graff KF (e_1_2_9_49_1) 1975 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_39_1 Nguyen‐Thanh N (e_1_2_9_19_1); 53 e_1_2_9_16_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 Cai Y (e_1_2_9_21_1) 2013; 7 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 Askari E (e_1_2_9_37_1) 2008 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_46_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 Bobaru F (e_1_2_9_35_1) 2011; 9 e_1_2_9_3_1 Cheng KW (e_1_2_9_23_1) e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 Silling SA (e_1_2_9_48_1) 2003 e_1_2_9_29_1 |
References_xml | – reference: Bobaru F, Ha YD. Adaptive refinement and multiscale modeling in 2D peridynamics. Journal for Multiscale Computational Engineering 2011; 9(635-659). – reference: Silling SA, Lehoucq RB. Peridynamic theory of solid mechanics. Advances in Applied Mechanics 2010; 44: 73-168. – reference: Rabczuk T, Areias PMA, Belytschko T. A simplified mesh-free method for shear bands with cohesive surfaces. International Journal for Numerical Methods in Engineering 2007; 69(5): 993-1021. – reference: Nguyen-Thanh N, Muthu J, Zhuang X, Rabczuk T. An adaptive three-dimensional RHT-splines formulation in linear elasto-statics and elasto-dynamics. Computational Mechanics; 53(2): 369-385. – reference: Cai Y, Zhu H, Zhuang X. A continuous/discontinuous deformation analysis (CDDA) method based on deformable blocks for fracture modeling. Frontiers of Structural and Civil Engineering 2013; 7(4): 369-378. – reference: OGrady J, Foster J. Peridynamic plates and flat shells: a non-ordinary, state-based model. International Journal of Solids and Structures 2014; 51: 4572-4579. – reference: Areias PMA, Rabczuk T, Camanho PP. Finite strain fracture of 2D problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics 2014; 72: 50-63. – reference: Sharon E, Gross SP, Fineberg J. Local crack branching as a mechanism for instability in dynamic fracture. Physical Review Letters 1995; 74(25): 5096. – reference: Areias P, Dias-da-Costa D, Sargado JM, Rabczuk T. Element-wise algorithm for modeling ductile fracture with the Rousselier yield function. Computational Mechanics 2013; 52(6): 1429-1443. – reference: Cheng KW, Fries TP. Higher-order XFEM for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering. 10.1002/nme.2768. – reference: Moyer ET, Miraglia MJ. Peridynamic solutions for Timoshenko beams. Engineering 2014; 6: Article ID:46262. – reference: Dipasquale D, Zaccariotto M, Galvanetto U. Crack propagation with adaptive grid refinement in 2D peridynamics. International Journal of Fracture 2014; 190(1-2): 1-22. – reference: Yu K, Xin XJ, Lease KB. A new adaptive integration method for the peridynamic theory. Modelling and Simulation in Materials Science and Engineering 2011; 19(4): 045003. – reference: Amiri F, Anitescu C, Arroyo M, Bordas S, Rabczuk T. XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics 2014; 53(1): 45-57. – reference: Belytschko T, Chen H, Xu J, Zi G. Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. International Journal for Numerical Methods in Engineering 2003; 58(12): 1873-1905. – reference: Talebi H, Silani M, Bordas S, Kerfriden P, Rabczuk T. A computational library for multiscale modelling of material failure. Computational Mechanics 2014; 53(5): 1047-1071. – reference: Lai X, Ren B, Fan H, Li S, Wu CT, Regueiro RA, Liu L. Peridynamics simulations of geomaterial fragmentation by impulse loads. International Journal for Numerical and Analytical Methods in Geomechanics 2015. – reference: Graff KF. Wave Motion in Elastic Solids. Clarendon: Oxford, 1975. – reference: Areias P, Rabczuk T, Camanho PP. Initially rigid cohesive laws and fracture based on edge rotations. Computational Mechanics 2013; 52(4): 931-947. – reference: Zhuang X, Zhu H, Augarde C. An improved meshless Shepard and least square method possessing the delta property and requiring no singular weight function. Computational Mechanics 2014; 53: 343-357. – reference: Wang P, Yang T, Yu Q, Liu H, Zhang P. Characterization on jointed rock masses based on PFC2D. Frontiers of Structural and Civil Engineering 2013; 7(1): 32-38. – reference: Rabczuk T, Zi G, Bordas S. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures 2010; 88: 1391-1411. – reference: Silling SA, Epton M, Weckner O, Xu J, Askari E. Peridynamic states and constitutive modeling. Journal of Elasticity 2007; 88(2): 151-184. – reference: Areias P, Rabczuk T, Dias-da-Costa D. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics 2013; 110: 113-137. – reference: Talebi H, Silani M, Rabczuk T. Concurrent multiscale modelling of three dimensional crack and dislocation propagation. Advances in Engineering Software 2015; 80: 82-92. – reference: Oterkus E, Madenci E, Weckner O, Silling S, Bogert P, Tessler A. Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot. Composite Structures 2012; 94: 839-850. – reference: Gravouil A, Moes N, Belytschko T. Non-planar 3D crack growth by the extended finite element and level sets - part ii: level set update. International Journal for Numerical Methods in Engineering 2002; 53: 2569-2586. – reference: Song J-H, Areias PMA, Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes. International Journal for Numerical Methods in Engineering 2006; 67(6): 868-893. – reference: Xu X-P, Needleman A. Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids 1994; 42(9): 1397-1434. – reference: Ha YD, Bobaru F. Studies of dynamic crack propagation and crack branching with peridynamics. International Journal of Fracture 2010; 162: 229-244. – reference: Budarapu P, Gracie R, Bordas S, Rabczuk T. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics 2014; 53(6): 1129-1148. – reference: Areias P, Msekh MA, Rabczuk T. Damage and fracture algorithm using the screened Poisson equation and local remeshing. Engineering Fracture Mechanics 2016: 116-143. – reference: Silling SA, Askari E. A meshfree method based on the peridynamic model of solid mechanics. Computers & Structures 2005; 83(17): 1526-1535. – reference: Silling SA. Dynamic fracture modeling with a meshfree peridynamic code. Computational Fluid and Solid Mechanics 2003: 641-644. – reference: Areias P, Rabczuk T. Finite strain fracture of plates and shells with configurational forces and edge rotation. International Journal for Numerical Methods in Engineering 2013; 94(12), 1099-1122. – reference: Nguyen-Thanh N, Valizadeh N, Nguyen MN, Nguyen-Xuan H, Zhuang X, Areias P, Zi G, Bazilevs Y, De Lorenzis L, Rabczuk T. An extended isogeometric thin shell analysis based on Kirchhoff-Love theory. Computer Methods in Applied Mechanics and Engineering 2015; 284: 265-291. – reference: Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering 2010; 199(37): 2437-2455. – reference: Ravi-Chandar K. Dynamic fracture of nominally brittle materials. International Journal of Fracture 1998; 90(1-2): 83-102. – reference: Belytschko T, Moës N, Usui S, Parimi C. Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 2001; 50(4): 993-1013. – reference: Li S, Liu WK, Rosakis AJ, Belytschko T, Hao W. Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition. International Journal of Solids and Structures 2002; 39(5): 1213-1240. – reference: Bobaru F, Yang M, Alves LF, Silling SA, Askari E, Xu J. Convergence, adaptive refinement, and scaling in 1D peridynamics. International Journal for Numerical Methods in Engineering 2009; 77(6): 852-877. – reference: Batra RC, Ravinsankar MVS. Three-dimensional numerical simulation of the Kalthoff experiment. International Journal of fracture 2000; 105(2): 161-186. – reference: Rabczuk T, Belytschko T. Cracking particles: a simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering 2004; 61(13): 2316-2343. – reference: Ghorashi S, Valizadeh N, Mohammadi S, Rabczuk T. T-spline based XIGA for fracture analysis of orthotropic media. Computers & Structures 2015; 147: 138-146. – reference: Gerstle W, Sau N, Silling S. Peridynamic modeling of concrete structures. Nuclear Engineering and Design 2007; 237(12): 1250-1258. – reference: Warren TL, Silling SA, Askari A, Weckner O, Epton MA, Xu J. A non-ordinary state-based peridynamic method to model solid material deformation and fracture. International Journal of Solids and Structures 2008; 46: 1186-1195. – reference: Zhuang X, Cai Y, Augarde C. A meshless sub-region radial point interpolation method for accurate calculation of crack tip fields. Theoretical and Applied Fracture Mechanics 2014; 69: 118-125. – reference: Silling SA. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids 2000; 48(1): 175-209. – volume: 190 start-page: 1 issue: 1‐2 year: 2014 end-page: 22 article-title: Crack propagation with adaptive grid refinement in 2D peridynamics publication-title: International Journal of Fracture – volume: 53 start-page: 2569 year: 2002 end-page: 2586 article-title: Non‐planar 3D crack growth by the extended finite element and level sets – part ii: level set update publication-title: International Journal for Numerical Methods in Engineering – volume: 237 start-page: 1250 issue: 12 year: 2007 end-page: 1258 article-title: Peridynamic modeling of concrete structures publication-title: Nuclear Engineering and Design – volume: 88 start-page: 1391 year: 2010 end-page: 1411 article-title: On three‐dimensional modelling of crack growth using partition of unity methods publication-title: Computers & Structures – volume: 46 start-page: 1186 year: 2008 end-page: 1195 article-title: A non‐ordinary state‐based peridynamic method to model solid material deformation and fracture publication-title: International Journal of Solids and Structures – volume: 7 start-page: 32 issue: 1 year: 2013 end-page: 38 publication-title: Characterization on jointed rock masses based on PFC2D. Frontiers of Structural and Civil Engineering – volume: 44 start-page: 73 year: 2010 end-page: 168 article-title: Peridynamic theory of solid mechanics publication-title: Advances in Applied Mechanics – volume: 80 start-page: 82 year: 2015 end-page: 92 article-title: Concurrent multiscale modelling of three dimensional crack and dislocation propagation publication-title: Advances in Engineering Software – volume: 42 start-page: 1397 issue: 9 year: 1994 end-page: 1434 article-title: Numerical simulations of fast crack growth in brittle solids publication-title: Journal of the Mechanics and Physics of Solids – volume: 50 start-page: 993 issue: 4 year: 2001 end-page: 1013 article-title: Arbitrary discontinuities in finite elements publication-title: International Journal for Numerical Methods in Engineering – year: 1975 – volume: 53 start-page: 1129 issue: 6 year: 2014 end-page: 1148 article-title: An adaptive multiscale method for quasi‐static crack growth publication-title: Computational Mechanics – volume: 53 start-page: 369 issue: 2 end-page: 385 article-title: An adaptive three‐dimensional RHT‐splines formulation in linear elasto‐statics and elasto‐dynamics publication-title: Computational Mechanics – volume: 105 start-page: 161 issue: 2 year: 2000 end-page: 186 article-title: Three‐dimensional numerical simulation of the Kalthoff experiment publication-title: International Journal of fracture – volume: 77 start-page: 852 issue: 6 year: 2009 end-page: 877 article-title: Convergence, adaptive refinement, and scaling in 1D peridynamics publication-title: International Journal for Numerical Methods in Engineering – year: 2014 – volume: 7 start-page: 369 issue: 4 year: 2013 end-page: 378 publication-title: A continuous/discontinuous deformation analysis (CDDA) method based on deformable blocks for fracture modeling. Frontiers of Structural and Civil Engineering – year: 2008 – volume: 9 issue: 635‐659 year: 2011 article-title: Adaptive refinement and multiscale modeling in 2D peridynamics publication-title: Journal for Multiscale Computational Engineering – volume: 58 start-page: 1873 issue: 12 year: 2003 end-page: 1905 article-title: Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment publication-title: International Journal for Numerical Methods in Engineering – volume: 53 start-page: 1047 issue: 5 year: 2014 end-page: 1071 article-title: A computational library for multiscale modelling of material failure publication-title: Computational Mechanics – volume: 94 start-page: 839 year: 2012 end-page: 850 article-title: Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot publication-title: Composite Structures – year: 2015 article-title: Peridynamics simulations of geomaterial fragmentation by impulse loads publication-title: International Journal for Numerical and Analytical Methods in Geomechanics – volume: 88 start-page: 151 issue: 2 year: 2007 end-page: 184 article-title: Peridynamic states and constitutive modeling publication-title: Journal of Elasticity – volume: 162 start-page: 229 year: 2010 end-page: 244 article-title: Studies of dynamic crack propagation and crack branching with peridynamics publication-title: International Journal of Fracture – volume: 69 start-page: 118 year: 2014 end-page: 125 article-title: A meshless sub‐region radial point interpolation method for accurate calculation of crack tip fields publication-title: Theoretical and Applied Fracture Mechanics – volume: 19 issue: 4 year: 2011 article-title: A new adaptive integration method for the peridynamic theory publication-title: Modelling and Simulation in Materials Science and Engineering – volume: 67 start-page: 868 issue: 6 year: 2006 end-page: 893 article-title: A method for dynamic crack and shear band propagation with phantom nodes publication-title: International Journal for Numerical Methods in Engineering – volume: 94 start-page: 1099 issue: 12 year: 2013 end-page: 1122 article-title: Finite strain fracture of plates and shells with configurational forces and edge rotation publication-title: International Journal for Numerical Methods in Engineering – volume: 74 start-page: 5096 issue: 25 year: 1995 article-title: Local crack branching as a mechanism for instability in dynamic fracture publication-title: Physical Review Letters – volume: 69 start-page: 993 issue: 5 year: 2007 end-page: 1021 article-title: A simplified mesh‐free method for shear bands with cohesive surfaces publication-title: International Journal for Numerical Methods in Engineering – volume: 147 start-page: 138 year: 2015 end-page: 146 article-title: T‐spline based XIGA for fracture analysis of orthotropic media publication-title: Computers & Structures – volume: 52 start-page: 1429 issue: 6 year: 2013 end-page: 1443 article-title: Element‐wise algorithm for modeling ductile fracture with the Rousselier yield function publication-title: Computational Mechanics – volume: 83 start-page: 1526 issue: 17 year: 2005 end-page: 1535 article-title: A meshfree method based on the peridynamic model of solid mechanics publication-title: Computers & Structures – volume: 61 start-page: 2316 issue: 13 year: 2004 end-page: 2343 article-title: Cracking particles: a simplified meshfree method for arbitrary evolving cracks publication-title: International Journal for Numerical Methods in Engineering – start-page: 641 year: 2003 end-page: 644 article-title: Dynamic fracture modeling with a meshfree peridynamic code publication-title: Computational Fluid and Solid Mechanics – volume: 6 start-page: Article ID:46262 year: 2014 article-title: Peridynamic solutions for Timoshenko beams publication-title: Engineering – volume: 51 start-page: 4572 year: 2014 end-page: 4579 article-title: Peridynamic plates and flat shells: a non‐ordinary, state‐based model publication-title: International Journal of Solids and Structures – year: 1995 – volume: 53 start-page: 45 issue: 1 year: 2014 end-page: 57 article-title: XLME interpolants, a seamless bridge between XFEM and enriched meshless methods publication-title: Computational Mechanics – volume: 52 start-page: 931 issue: 4 year: 2013 end-page: 947 article-title: Initially rigid cohesive laws and fracture based on edge rotations publication-title: Computational Mechanics – volume: 39 start-page: 1213 issue: 5 year: 2002 end-page: 1240 article-title: Mesh‐free Galerkin simulations of dynamic shear band propagation and failure mode transition publication-title: International Journal of Solids and Structures – volume: 72 start-page: 50 year: 2014 end-page: 63 article-title: Finite strain fracture of 2D problems with injected anisotropic softening elements publication-title: Theoretical and Applied Fracture Mechanics – article-title: Higher‐order XFEM for curved strong and weak discontinuities publication-title: International Journal for Numerical Methods in Engineering – volume: 199 start-page: 2437 issue: 37 year: 2010 end-page: 2455 article-title: A simple and robust three‐dimensional cracking‐particle method without enrichment publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 110 start-page: 113 year: 2013 end-page: 137 article-title: Element‐wise fracture algorithm based on rotation of edges publication-title: Engineering Fracture Mechanics – volume: 284 start-page: 265 year: 2015 end-page: 291 article-title: An extended isogeometric thin shell analysis based on Kirchhoff‐Love theory publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 53 start-page: 343 year: 2014 end-page: 357 article-title: An improved meshless Shepard and least square method possessing the delta property and requiring no singular weight function publication-title: Computational Mechanics – volume: 48 start-page: 175 issue: 1 year: 2000 end-page: 209 article-title: Reformulation of elasticity theory for discontinuities and long‐range forces publication-title: Journal of the Mechanics and Physics of Solids – volume: 90 start-page: 83 issue: 1‐2 year: 1998 end-page: 102 article-title: Dynamic fracture of nominally brittle materials publication-title: International Journal of Fracture – start-page: 116 year: 2016 end-page: 143 article-title: Damage and fracture algorithm using the screened Poisson equation and local remeshing publication-title: Engineering Fracture Mechanics – ident: e_1_2_9_16_1 doi: 10.1016/j.advengsoft.2014.09.016 – ident: e_1_2_9_38_1 doi: 10.1088/0965-0393/19/4/045003 – ident: e_1_2_9_43_1 doi: 10.1016/S0020-7683(01)00188-3 – ident: e_1_2_9_40_1 doi: 10.1016/j.ijsolstr.2008.10.029 – volume: 53 start-page: 369 issue: 2 ident: e_1_2_9_19_1 article-title: An adaptive three‐dimensional RHT‐splines formulation in linear elasto‐statics and elasto‐dynamics publication-title: Computational Mechanics doi: 10.1007/s00466-013-0914-z – ident: e_1_2_9_41_1 doi: 10.1016/0022-5096(94)90003-5 – ident: e_1_2_9_42_1 doi: 10.1023/A:1007658224458 – ident: e_1_2_9_7_1 doi: 10.1002/nme.4477 – ident: e_1_2_9_27_1 doi: 10.1016/j.nucengdes.2006.10.002 – start-page: 641 year: 2003 ident: e_1_2_9_48_1 article-title: Dynamic fracture modeling with a meshfree peridynamic code publication-title: Computational Fluid and Solid Mechanics – ident: e_1_2_9_9_1 doi: 10.1016/j.compstruc.2008.08.010 – ident: e_1_2_9_29_1 doi: 10.4236/eng.2014.66034 – ident: e_1_2_9_28_1 doi: 10.1016/j.compstruct.2011.07.019 – ident: e_1_2_9_50_1 doi: 10.1103/PhysRevLett.74.5096 – volume-title: Wave Motion in Elastic Solids year: 1975 ident: e_1_2_9_49_1 – ident: e_1_2_9_39_1 doi: 10.1016/S0065-2156(10)44002-8 – ident: e_1_2_9_24_1 doi: 10.1002/nme.430 – ident: e_1_2_9_32_1 doi: 10.1016/j.compstruc.2004.11.026 – ident: e_1_2_9_52_1 doi: 10.1007/s10704-010-9442-4 – ident: e_1_2_9_47_1 doi: 10.1016/j.cma.2010.03.031 – ident: e_1_2_9_4_1 doi: 10.1007/s00466-013-0885-0 – ident: e_1_2_9_33_1 – ident: e_1_2_9_45_1 doi: 10.1002/nme.1652 – ident: e_1_2_9_12_1 doi: 10.1007/s00466-013-0912-1 – ident: e_1_2_9_15_1 doi: 10.1016/j.cma.2014.08.025 – ident: e_1_2_9_14_1 doi: 10.1016/j.compstruc.2014.09.017 – ident: e_1_2_9_26_1 doi: 10.1002/nag.2356 – volume: 9 issue: 635 year: 2011 ident: e_1_2_9_35_1 article-title: Adaptive refinement and multiscale modeling in 2D peridynamics publication-title: Journal for Multiscale Computational Engineering – ident: e_1_2_9_10_1 doi: 10.1002/nme.1151 – ident: e_1_2_9_5_1 doi: 10.1016/j.engfracmech.2013.06.006 – ident: e_1_2_9_34_1 doi: 10.1002/nme.2439 – ident: e_1_2_9_17_1 doi: 10.1007/s00466-013-0948-2 – ident: e_1_2_9_31_1 doi: 10.1007/s10659-007-9125-1 – volume: 7 start-page: 369 issue: 4 year: 2013 ident: e_1_2_9_21_1 publication-title: A continuous/discontinuous deformation analysis (CDDA) method based on deformable blocks for fracture modeling. Frontiers of Structural and Civil Engineering – ident: e_1_2_9_11_1 doi: 10.1007/s00466-013-0891-2 – ident: e_1_2_9_20_1 doi: 10.21236/ADA301760 – ident: e_1_2_9_13_1 doi: 10.1016/j.tafmec.2013.12.003 – ident: e_1_2_9_3_1 doi: 10.1016/j.tafmec.2014.06.006 – ident: e_1_2_9_25_1 doi: 10.1016/S0022-5096(99)00029-0 – ident: e_1_2_9_18_1 doi: 10.1007/s00466-013-0952-6 – volume-title: Journal of Physics: Conference Series year: 2008 ident: e_1_2_9_37_1 – ident: e_1_2_9_2_1 doi: 10.1016/j.engfracmech.2015.10.042 – ident: e_1_2_9_30_1 doi: 10.1016/j.ijsolstr.2014.09.003 – ident: e_1_2_9_36_1 doi: 10.1007/s10704-014-9970-4 – ident: e_1_2_9_6_1 doi: 10.1007/s00466-013-0855-6 – ident: e_1_2_9_22_1 doi: 10.1007/s11709-013-0187-9 – ident: e_1_2_9_44_1 doi: 10.1002/nme.941 – ident: e_1_2_9_46_1 doi: 10.1002/nme.1797 – ident: e_1_2_9_8_1 doi: 10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M – ident: e_1_2_9_51_1 doi: 10.1023/A:1007432017290 – ident: e_1_2_9_23_1 article-title: Higher‐order XFEM for curved strong and weak discontinuities publication-title: International Journal for Numerical Methods in Engineering |
SSID | ssj0011503 |
Score | 2.6553595 |
Snippet | Summary
In this paper, we develop a dual‐horizon peridynamics (DH‐PD) formulation that naturally includes varying horizon sizes and completely solves the... In this paper, we develop a dual‐horizon peridynamics (DH‐PD) formulation that naturally includes varying horizon sizes and completely solves the ‘ghost force’... Summary In this paper, we develop a dual-horizon peridynamics (DH-PD) formulation that naturally includes varying horizon sizes and completely solves the... In this paper, we develop a dual-horizon peridynamics (DH-PD) formulation that naturally includes varying horizon sizes and completely solves the 'ghost force'... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1451 |
SubjectTerms | adaptive refinement Angular momentum Bonding Computational efficiency Cracks dual horizon ghost force Ghosts Horizon horizon variable Mathematical models Numerical analysis peridynamics spurious wave reflection |
Title | Dual-horizon peridynamics |
URI | https://api.istex.fr/ark:/67375/WNG-LTL54ZNR-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.5257 https://www.proquest.com/docview/1845440035 https://www.proquest.com/docview/1864575071 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SL3rwLVarVBA9bbvbJOvmKLZapO1BLBY9hLwWpbqVbgvSkz_B3-gvMbMvqiiIp2XZWZLMZJJvdybfIHSksFAQb3ECqV2HqNBzpE-xIzzDCBNCUQ3nnbs9v90nVwM6yLIq4SxMyg9R_HADz0jWa3BwIeP6HGnos6kBladdfiFVC_DQdcEcBTgH59kdlAVezjvrNur5i192okVQ6usXmDkPVpPd5mIV3ef9TJNMhrXpRNbU7BuF4_8GsoZWMhBaPUtnzTpaMNEGWs0AaTVz93gDLc-xFdq7bkHxGm-iveZUPH28vT-Mxo-zUVQFxmSdlrePt1D_onVz3naySguOIsASqTEWIhDSDaxJsadd41vkoRmmUkPclYnAaMVC320oQbXEIVOuEJjhUPuKSbyNStEoMjuoSjwWnmJfW2ASEubpQBDgz_Fd4xJlR1lGJ7nWucpoyKEaxhNPCZQb3OqD00TysJB8Sak3fpA5TgxXCIjxEFLVTim_7V3yzk2HkrveNW-WUSW3LM-8NOb265YSAsFU21bx2PoXBE1EZEZTkPGJhbQWidm2EjP-2hne67bguvtXwT20ZPFXUgep4VVQaTKemn2LcSbyIJnNn3sx93k |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NahsxEB6c-ND0EDdpQxI7qQulPa2za0nrFTmV2q6T2nsIDgmlILSSlhS76-IfKD71EfqMfZJo9g-npFByWpYdIWlGs_qkkb4BeKuIVBhvcYJIuw5VsedEPiOO9AynXErFNN53HoX-4Jpe3rLbCpwXd2Eyfohyww09I_1fo4PjhvTZBmvod9NCLs8tqGJC73Q9dVVyRyHSIcX5DsYDr2CeddtnRckHc1EV1frzAdDchKvpfNOvwdeipdkxk0lrtYxaav0XieMTu_ICdnMc2vyQDZw9qJhkH2o5Jm3mHr_Yh-cbhIX2bVSyvC5eQr27ktM_v37fzebf1rOkiaTJOstwv3gF1_3e-OPAyZMtOIoiUaQmRMpARm5grUo87Rrfgg_NCYs0hl65DIxWPPbdtpJMRyTmypWScBJrX_GIHMB2MkvMITSpx-MO8bXFJjHlng4kRQod3zUuVbaXR_C-ULtQORM5JsSYioxDuS2sPgRLJd-Ukj8y9o1HZN6llisF5HyCp9U6TNyEn8RwPGT0S3glukfQKEwrckddCLvAZZRiPNXWVX62LoZxE5mY2QplfGpRrQVjtq7Ujv9sjAhHPXwe_6_ga3g2GI-GYngRfq7DjoVjaVqktteA7eV8ZU4s5FlGp-nQvgfuGfuU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkKpyKJSHeLVdJASn7DrrB_GxYllouxtVCASiB8uxHYGALNqHVHHqT-hv7C_Bk5cWRCXUUxRlItsznvhzZvwNwI6h2mC8JYgSSwJm0jBIBKeBDp1kUmvDLZ537sfi-Ix9u-AXZVYlnoUp-CHqH27oGfn3Gh383qatKdLQO9dEKs83MMcEiXBGd05q6igEOrRK7-AyCiviWdJuVW8-WYrmUKu_nuDMabSaLzfdBfhZdbTIMrlpTsZJ0zw843D8v5EswvsShTa-FNPmA8y4bAkWSkTaKP19tATzU3SF_q5fc7yOlmGzM9G3f3__uRoMrx8GWQMpk21R3360Amfdw9OD46AstRAYhjSRllKtI52QyNuUhpY44aGHlZQnFgOvUkfOGpkK0jaa24Sm0hCtqaSpFUYmdBVms0Hm1qDBQpnuU2E9MkmZDG2kGRLoCOIIM36U67BXaV2Zkoccy2HcqoJBua28PhTPJbdryfuCe-MFmd3ccLWAHt5grto-V-fxkeqd9ji7jE9UZx22Ksuq0k1Hym9vOWMYTfVt1Y-9g2HURGduMEEZwTym9VDMt5Wb8Z-dUXH_EK8brxX8DG9_dLqq9zX-vgnvPBbLayK1wy2YHQ8n7qPHO-PkUz6xHwEdFPpM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual%E2%80%90horizon+peridynamics&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Ren%2C+Huilong&rft.au=Zhuang%2C+Xiaoying&rft.au=Cai%2C+Yongchang&rft.au=Rabczuk%2C+Timon&rft.date=2016-12-21&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=108&rft.issue=12&rft.spage=1451&rft.epage=1476&rft_id=info:doi/10.1002%2Fnme.5257&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nme_5257 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |