Damage of prismatic lithium‐ion cells subject to bending: Test, model, and detection

The mechanically induced internal short circuit (ISC) is one of the major safety concerns of lithium‐ion batteries. Mechanical abuse tests are often performed to evaluate the integrity and safety of lithium‐ion batteries under mechanical loadings. Except for the widely explored compression‐dominated...

Full description

Saved in:
Bibliographic Details
Published inEcoMat (Beijing, China) Vol. 4; no. 6
Main Authors Li, Wei, Xing, Bobin, Watkins, Thomas R., Xia, Yong, Wang, Hsin, Zhu, Juner
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.11.2022
Wiley Blackwell (John Wiley & Sons)
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The mechanically induced internal short circuit (ISC) is one of the major safety concerns of lithium‐ion batteries. Mechanical abuse tests are often performed to evaluate the integrity and safety of lithium‐ion batteries under mechanical loadings. Except for the widely explored compression‐dominated indentation tests, bending is another typical real‐world loading condition that is tension‐dominated. To investigate the mechanical damage and ISC behavior of batteries under bending, we carried out controlled three‐point bending tests in four progressive steps on prismatic battery cells with maximum deflections ranging from 38% to 76% of the cell thickness. None of the tested cells experienced an ISC. We then conducted 3D X‐ray computed tomography (CT) scanning on the bent cells after unloading. X‐ray CT images showed three out of the four tested cells have extensive cracking in the electrode layers at the bottom side (opposite to the loading head). This indicates that cracking does not necessarily lead to an ISC under bending. Electrochemical impedance spectroscopy was also measured on the bent cells and substantial changes were observed. Both the bulk resistance and charge‐transfer resistance increased significantly after bending, which could influence the battery performance and lifespan. We then developed a detailed finite (FE) element model to further investigate the mechanical deformation and failure mechanisms. The FE model successfully predicts the load–displacement response and reproduces the deformation patterns. The findings and the FE model developed in the present study provide useful insights and tools for the battery structure and crash safety design. Testing and modeling of three‐point bending on small format prismatic cells are performed. X‐ray CT scanning, together with a high‐fidelity Finite Element model, has revealed the delamination and cracking of electrodes inside bent cells under deflections greater than 38% of the thickness. While internal short circuit is not detected, the impedance behaviors are largely impacted.
AbstractList The mechanically induced internal short circuit (ISC) is one of the major safety concerns of lithium‐ion batteries. Mechanical abuse tests are often performed to evaluate the integrity and safety of lithium‐ion batteries under mechanical loadings. Except for the widely explored compression‐dominated indentation tests, bending is another typical real‐world loading condition that is tension‐dominated. To investigate the mechanical damage and ISC behavior of batteries under bending, we carried out controlled three‐point bending tests in four progressive steps on prismatic battery cells with maximum deflections ranging from 38% to 76% of the cell thickness. None of the tested cells experienced an ISC. We then conducted 3D X‐ray computed tomography (CT) scanning on the bent cells after unloading. X‐ray CT images showed three out of the four tested cells have extensive cracking in the electrode layers at the bottom side (opposite to the loading head). This indicates that cracking does not necessarily lead to an ISC under bending. Electrochemical impedance spectroscopy was also measured on the bent cells and substantial changes were observed. Both the bulk resistance and charge‐transfer resistance increased significantly after bending, which could influence the battery performance and lifespan. We then developed a detailed finite (FE) element model to further investigate the mechanical deformation and failure mechanisms. The FE model successfully predicts the load–displacement response and reproduces the deformation patterns. The findings and the FE model developed in the present study provide useful insights and tools for the battery structure and crash safety design. Testing and modeling of three‐point bending on small format prismatic cells are performed. X‐ray CT scanning, together with a high‐fidelity Finite Element model, has revealed the delamination and cracking of electrodes inside bent cells under deflections greater than 38% of the thickness. While internal short circuit is not detected, the impedance behaviors are largely impacted.
The mechanically induced internal short circuit (ISC) is one of the major safety concerns of lithium‐ion batteries. Mechanical abuse tests are often performed to evaluate the integrity and safety of lithium‐ion batteries under mechanical loadings. Except for the widely explored compression‐dominated indentation tests, bending is another typical real‐world loading condition that is tension‐dominated. To investigate the mechanical damage and ISC behavior of batteries under bending, we carried out controlled three‐point bending tests in four progressive steps on prismatic battery cells with maximum deflections ranging from 38% to 76% of the cell thickness. None of the tested cells experienced an ISC. We then conducted 3D X‐ray computed tomography (CT) scanning on the bent cells after unloading. X‐ray CT images showed three out of the four tested cells have extensive cracking in the electrode layers at the bottom side (opposite to the loading head). This indicates that cracking does not necessarily lead to an ISC under bending. Electrochemical impedance spectroscopy was also measured on the bent cells and substantial changes were observed. Both the bulk resistance and charge‐transfer resistance increased significantly after bending, which could influence the battery performance and lifespan. We then developed a detailed finite (FE) element model to further investigate the mechanical deformation and failure mechanisms. The FE model successfully predicts the load–displacement response and reproduces the deformation patterns. The findings and the FE model developed in the present study provide useful insights and tools for the battery structure and crash safety design. image
The mechanically induced internal short circuit (ISC) is one of the major safety concerns of lithium‐ion batteries. Mechanical abuse tests are often performed to evaluate the integrity and safety of lithium‐ion batteries under mechanical loadings. Except for the widely explored compression‐dominated indentation tests, bending is another typical real‐world loading condition that is tension‐dominated. To investigate the mechanical damage and ISC behavior of batteries under bending, we carried out controlled three‐point bending tests in four progressive steps on prismatic battery cells with maximum deflections ranging from 38% to 76% of the cell thickness. None of the tested cells experienced an ISC. We then conducted 3D X‐ray computed tomography (CT) scanning on the bent cells after unloading. X‐ray CT images showed three out of the four tested cells have extensive cracking in the electrode layers at the bottom side (opposite to the loading head). This indicates that cracking does not necessarily lead to an ISC under bending. Electrochemical impedance spectroscopy was also measured on the bent cells and substantial changes were observed. Both the bulk resistance and charge‐transfer resistance increased significantly after bending, which could influence the battery performance and lifespan. We then developed a detailed finite (FE) element model to further investigate the mechanical deformation and failure mechanisms. The FE model successfully predicts the load–displacement response and reproduces the deformation patterns. The findings and the FE model developed in the present study provide useful insights and tools for the battery structure and crash safety design.
Abstract The mechanically induced internal short circuit (ISC) is one of the major safety concerns of lithium‐ion batteries. Mechanical abuse tests are often performed to evaluate the integrity and safety of lithium‐ion batteries under mechanical loadings. Except for the widely explored compression‐dominated indentation tests, bending is another typical real‐world loading condition that is tension‐dominated. To investigate the mechanical damage and ISC behavior of batteries under bending, we carried out controlled three‐point bending tests in four progressive steps on prismatic battery cells with maximum deflections ranging from 38% to 76% of the cell thickness. None of the tested cells experienced an ISC. We then conducted 3D X‐ray computed tomography (CT) scanning on the bent cells after unloading. X‐ray CT images showed three out of the four tested cells have extensive cracking in the electrode layers at the bottom side (opposite to the loading head). This indicates that cracking does not necessarily lead to an ISC under bending. Electrochemical impedance spectroscopy was also measured on the bent cells and substantial changes were observed. Both the bulk resistance and charge‐transfer resistance increased significantly after bending, which could influence the battery performance and lifespan. We then developed a detailed finite (FE) element model to further investigate the mechanical deformation and failure mechanisms. The FE model successfully predicts the load–displacement response and reproduces the deformation patterns. The findings and the FE model developed in the present study provide useful insights and tools for the battery structure and crash safety design. <boxed-text content-type='graphic' position='anchor'> <graphic href='graphic/eom212257-gra-0001-m.png' mimetype='image/png' position='anchor' specific-use='enlarged-web-image'> image </boxed-text>
Abstract The mechanically induced internal short circuit (ISC) is one of the major safety concerns of lithium‐ion batteries. Mechanical abuse tests are often performed to evaluate the integrity and safety of lithium‐ion batteries under mechanical loadings. Except for the widely explored compression‐dominated indentation tests, bending is another typical real‐world loading condition that is tension‐dominated. To investigate the mechanical damage and ISC behavior of batteries under bending, we carried out controlled three‐point bending tests in four progressive steps on prismatic battery cells with maximum deflections ranging from 38% to 76% of the cell thickness. None of the tested cells experienced an ISC. We then conducted 3D X‐ray computed tomography (CT) scanning on the bent cells after unloading. X‐ray CT images showed three out of the four tested cells have extensive cracking in the electrode layers at the bottom side (opposite to the loading head). This indicates that cracking does not necessarily lead to an ISC under bending. Electrochemical impedance spectroscopy was also measured on the bent cells and substantial changes were observed. Both the bulk resistance and charge‐transfer resistance increased significantly after bending, which could influence the battery performance and lifespan. We then developed a detailed finite (FE) element model to further investigate the mechanical deformation and failure mechanisms. The FE model successfully predicts the load–displacement response and reproduces the deformation patterns. The findings and the FE model developed in the present study provide useful insights and tools for the battery structure and crash safety design.
Author Li, Wei
Zhu, Juner
Xia, Yong
Xing, Bobin
Watkins, Thomas R.
Wang, Hsin
Author_xml – sequence: 1
  givenname: Wei
  surname: Li
  fullname: Li, Wei
  organization: Massachusetts Institute of Technology
– sequence: 2
  givenname: Bobin
  surname: Xing
  fullname: Xing, Bobin
  organization: School of Vehicle and Mobility, Tsinghua University
– sequence: 3
  givenname: Thomas R.
  surname: Watkins
  fullname: Watkins, Thomas R.
  organization: Materials Science Technology Division, Oak Ridge National Laboratory
– sequence: 4
  givenname: Yong
  surname: Xia
  fullname: Xia, Yong
  organization: School of Vehicle and Mobility, Tsinghua University
– sequence: 5
  givenname: Hsin
  surname: Wang
  fullname: Wang, Hsin
  email: wangh2@ornl.gov
  organization: Materials Science Technology Division, Oak Ridge National Laboratory
– sequence: 6
  givenname: Juner
  orcidid: 0000-0001-7072-2293
  surname: Zhu
  fullname: Zhu, Juner
  email: zhujuner@mit.edu
  organization: Northeastern University
BackLink https://www.osti.gov/biblio/1876506$$D View this record in Osti.gov
BookMark eNp9kc9OFTEUxhsDiYhsfIJGd4aL_TOdzrgzCEqCYYNum057eunNTIvt3BB2PoLP6JNwLmOMMYZu2jS_7zvnO-cF2Us5ASGvODvhjIl3kCdxwoVQ-hk5EKrVK8m13Pvr_Zwc1bphCCvWiIYfkG8f7WTXQHOgtyXWyc7R0THON3E7_frxM-ZEHYxjpXU7bMDNdM50gORjWr-n11DnYzplD-MxtclTDzMyKHpJ9oMdKxz9vg_J1_Oz69PPq8urTxenHy5XrpFMr1TwfROEAzvo0LKgGNP9wEGwzksO0kPje8ZF8G3Thr5TTGmhW6mDGqRTTh6Si8XXZ7sxmGCy5d5kG83jRy5rYwtGGsE41mIljUdAw4TvvOX9EJS3vuu0GNDr9eKV6xxNdRGz3LicEkYyvNOtYi1CbxbotuTvW8xvNnlbEmY0QsteiR7nitTbhXIl11og_GmNM7PbldntyjzuCmH2D4yl7W6Kc7Fx_L-EL5K7OML9E-bm7OqLWDQPoNumvA
CitedBy_id crossref_primary_10_1016_j_energy_2024_130536
crossref_primary_10_1016_j_psep_2024_03_033
crossref_primary_10_1002_smtd_202400029
crossref_primary_10_1016_j_apenergy_2023_121492
crossref_primary_10_1016_j_est_2024_112624
crossref_primary_10_1007_s11426_024_2314_9
crossref_primary_10_1016_j_tws_2024_111985
crossref_primary_10_1016_j_est_2024_113992
crossref_primary_10_1016_j_ijmecsci_2023_108637
crossref_primary_10_3390_batteries9040233
crossref_primary_10_1016_j_etran_2024_100324
crossref_primary_10_1088_2631_8695_ad734d
crossref_primary_10_1016_j_ijmecsci_2024_109253
Cites_doi 10.1039/c5ra17865g
10.1016/j.energy.2021.120855
10.1149/1945-7111/ab8e83
10.1016/j.jpowsour.2019.227148
10.1016/j.jpowsour.2013.06.165
10.1016/j.jpowsour.2016.11.094
10.1016/j.ijplas.2019.06.011
10.1149/1945-7111/ab9eee
10.1038/s41560‐018‐0122‐3
10.1016/S0749‐6419(00)00029‐2
10.1093/oso/9780198503675.001.0001
10.1016/j.apenergy.2018.05.007
10.1007/s11431‐017‐9296‐0
10.1016/j.est.2019.101016
10.1149/1945‐7111/aba936
10.1016/j.est.2020.101244
10.1016/j.jmps.2019.05.003
10.1016/j.engfailanal.2017.09.003
10.1016/j.jpowsour.2012.04.055
10.1016/j.est.2021.102894
10.1016/j.jpowsour.2016.10.064
10.1016/j.est.2022.103969
10.1016/j.jpowsour.2017.08.068
10.1016/j.jpowsour.2017.12.034
10.1016/j.msea.2015.11.048
10.1016/j.joule.2019.07.026
10.1039/d0ta12082k
10.1016/S0022‐5096(99)00082‐4
10.1016/j.jpowsour.2016.07.078
10.1016/j.jpowsour.2011.10.094
10.33961/jecst.2019.00528
10.1016/j.mtener.2020.100479
10.1016/j.jpowsour.2018.12.059
10.1016/j.jpowsour.2015.12.026
10.1016/j.jpowsour.2013.05.022
10.1149/2.0051809jes
10.1016/j.jpowsour.2011.04.024
10.1149/1945‐7111/ab78fa
10.1149/2.0141807jes
10.1016/j.est.2019.101039
10.1016/j.jpowsour.2012.07.057
10.1016/j.jpowsour.2018.04.003
10.1149/1945‐7111/abd452
10.1016/j.ensm.2019.06.036
10.1016/j.jpowsour.2020.228314
10.1016/j.est.2021.103270
10.1016/j.jpowsour.2013.10.058
10.1016/j.jpowsour.2019.227323
10.1016/j.ensm.2017.05.013
10.1016/j.jpowsour.2014.04.040
10.1016/j.jpowsour.2013.06.134
ContentType Journal Article
Copyright 2022 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
OTOTI
DOA
DOI 10.1002/eom2.12257
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Environmental Science Database (subscripiton)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2567-3173
EndPage n/a
ExternalDocumentID oai_doaj_org_article_c06f2c77772e402d8da19bf5dad8872b
1876506
10_1002_eom2_12257
EOM212257
Genre article
GrantInformation_xml – fundername: MIT Industrial Battery Consortium
– fundername: Office of Electricity Delivery and Energy Reliability
  funderid: DE‐AC05‐00OR22725
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BENPR
BGLVJ
BHPHI
CCPQU
EBS
EDH
GROUPED_DOAJ
HCIFZ
IAO
ITC
KB.
M~E
PATMY
PDBOC
PIMPY
PYCSY
WIN
AAYXX
CITATION
IEP
PHGZM
PHGZT
8FE
8FG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
D1I
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
OTOTI
PUEGO
ID FETCH-LOGICAL-c4307-5fd94f2ceab7f60f50079b1e208d31e3de4d9012fd646f98505727637f5b3c5c3
IEDL.DBID 24P
ISSN 2567-3173
IngestDate Wed Aug 27 01:19:14 EDT 2025
Mon Aug 28 20:01:56 EDT 2023
Wed Aug 13 11:21:38 EDT 2025
Tue Jul 01 02:50:12 EDT 2025
Thu Apr 24 22:56:05 EDT 2025
Wed Jan 22 16:26:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4307-5fd94f2ceab7f60f50079b1e208d31e3de4d9012fd646f98505727637f5b3c5c3
Notes Funding information
MIT Industrial Battery Consortium; Office of Electricity Delivery and Energy Reliability, Grant/Award Number: DE‐AC05‐00OR22725
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Electricity (OE)
AC05-00OR22725
ORCID 0000-0001-7072-2293
0000000170722293
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12257
PQID 2739529424
PQPubID 5066170
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_c06f2c77772e402d8da19bf5dad8872b
osti_scitechconnect_1876506
proquest_journals_2739529424
crossref_primary_10_1002_eom2_12257
crossref_citationtrail_10_1002_eom2_12257
wiley_primary_10_1002_eom2_12257_EOM212257
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Beijing
– name: China
PublicationTitle EcoMat (Beijing, China)
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Blackwell (John Wiley & Sons)
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Blackwell (John Wiley & Sons)
– name: Wiley
References 2018; 165
2017; 82
2012; 201
2021; 167
2000; 48
2016; 306
2020; 17
2019; 444
2020; 167
2013; 242
2020; 11
2019; 129
2011; 196
2019; 121
2019; 440
2014; 249
2018; 3
2019; 26
2018; 378
2021; 230
2001; 17
2017; 364
2012; 214
2021; 41
2014; 245
2021; 9
2021; 43
2012; 220
2019; 3
2015; 5
2016; 327
2018; 389
2018; 224
1998
2022; 48
2018; 61
2020; 465
2020
2020; 28
2020; 27
2019; 413
2017
2020; 24
2016; 336
2016; 654
2017; 341
2014; 265
2018; 10
2015; 7264
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
Dassault Systémes Simulia Corp. (e_1_2_9_44_1) 2017
e_1_2_9_10_1
e_1_2_9_35_1
Goodno BJ (e_1_2_9_39_1) 2020
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
Hill R (e_1_2_9_43_1) 1998
Standard A (e_1_2_9_32_1) 2015; 7264
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 167
  issue: 12
  year: 2020
  article-title: A large deformation and fracture model of lithium‐ion battery cells treated as a homogenized medium
  publication-title: J Electrochem Soc
– volume: 327
  start-page: 693
  year: 2016
  end-page: 701
  article-title: Deformation and failure characteristics of four types of lithium‐ion battery separators
  publication-title: J Power Sources
– volume: 17
  year: 2020
  article-title: Microscopic analysis of copper current collectors and mechanisms of fragmentation under compressive forces
  publication-title: Mater Today Energy
– volume: 341
  start-page: 156
  year: 2017
  end-page: 164
  article-title: Progressive mechanical indentation of large‐format Li‐ion cells
  publication-title: J Power Sources
– volume: 214
  start-page: 377
  year: 2012
  end-page: 385
  article-title: Mechanical testing and macro‐mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical Lithium ion battery cells
  publication-title: J Power Sources
– year: 2017
  article-title: Abaqus user manual (Version 2017)
  publication-title: Providence, RI
– volume: 26
  year: 2019
  article-title: Experimental study of the impedance behavior of 18650 lithium‐ion battery cells under deforming mechanical abuse
  publication-title: J. Energy Storage.
– volume: 654
  start-page: 329
  year: 2016
  end-page: 343
  article-title: Anisotropic viscoplasticity and fracture of fine grained metallic aluminum foil used in Li‐ion batteries
  publication-title: Mater Sci Eng A
– volume: 245
  start-page: 745
  year: 2014
  end-page: 751
  article-title: Stress evolution and capacity fade in constrained lithium‐ion pouch cells
  publication-title: J Power Sources
– volume: 9
  start-page: 7102
  issue: 11
  year: 2021
  end-page: 7113
  article-title: Quantifying and modeling of stress‐driven short‐circuits in lithium‐ion batteries in electrified vehicles
  publication-title: J Mater Chem A
– volume: 249
  start-page: 156
  year: 2014
  end-page: 162
  article-title: Thermal runaway risk evaluation of Li‐ion cells using a pinch‐torsion test
  publication-title: J Power Sources
– volume: 24
  start-page: 85
  year: 2020
  end-page: 112
  article-title: Safety issues and mechanisms of lithium‐ion battery cell upon mechanical abusive loading: a review
  publication-title: Energy Storage Mater.
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  end-page: 13
  article-title: Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium‐ion batteries
  publication-title: J Electrochem Sci Technol
– volume: 196
  start-page: 7779
  issue: 18
  year: 2011
  end-page: 7783
  article-title: Experimental simulation of internal short circuit in Li‐ion and Li‐ion‐polymer cells
  publication-title: J Power Sources
– volume: 7264
  start-page: 1
  year: 2015
  end-page: 11
  article-title: Standard test method for flexural properties of polymer matrix composite materials
  publication-title: ASTM Int D
– volume: 444
  year: 2019
  article-title: Damage analysis of cylindrical lithium‐ion cells under three‐points bending using acoustic emission
  publication-title: J Power Sources
– volume: 48
  year: 2022
  article-title: Failure behavior of prismatic Li‐ion battery cells under abuse loading condition—a combined experimental and computational study
  publication-title: J Energy Storage.
– year: 1998
– volume: 230
  year: 2021
  article-title: Impedance‐based diagnosis of internal mechanical damage for large‐format lithium‐ion batteries
  publication-title: Energy
– volume: 364
  start-page: 432
  year: 2017
  end-page: 436
  article-title: Fragmentation of copper current collectors in Li‐ion batteries during spherical indentation
  publication-title: J Power Sources
– volume: 465
  year: 2020
  article-title: Investigation on capacity loss mechanisms of lithium‐ion pouch cells under mechanical indentation conditions
  publication-title: J Power Sources
– volume: 121
  start-page: 293
  year: 2019
  end-page: 311
  article-title: Deformation and failure of lithium‐ion batteries treated as a discrete layered structure
  publication-title: Int J Plast
– volume: 167
  issue: 4
  year: 2020
  article-title: Computational modeling of heterogeneity of stress, charge, and cyclic damage in composite electrodes of Li‐ion batteries
  publication-title: J Electrochem Soc
– volume: 129
  start-page: 160
  year: 2019
  end-page: 183
  article-title: Heterogeneous damage in Li‐ion batteries: experimental analysis and theoretical modeling
  publication-title: J Mech Phys Solids
– volume: 28
  year: 2020
  article-title: Lithium‐ion cell response to mechanical abuse: three‐point bend
  publication-title: J Energy Storage
– volume: 265
  start-page: 356
  year: 2014
  end-page: 362
  article-title: Failure analysis of pinch‐torsion tests as a thermal runaway risk evaluation method of Li‐ion cells
  publication-title: J Power Sources
– volume: 167
  issue: 9
  year: 2020
  article-title: Mechanical deformation of lithium‐ion pouch cells under in‐plane loads—part I: experimental investigation
  publication-title: J Electrochem Soc
– volume: 167
  issue: 9
  year: 2020
  article-title: Mechanical deformation of lithium‐ion pouch cells under in‐plane loads—part II: computational modeling
  publication-title: J Electrochem Soc
– volume: 10
  start-page: 246
  year: 2018
  end-page: 267
  article-title: Thermal runaway mechanism of lithium ion battery for electric vehicles: a review
  publication-title: Energy Storage Mater
– volume: 336
  start-page: 332
  year: 2016
  end-page: 340
  article-title: Deformation and failure mechanisms of 18650 battery cells under axial compression
  publication-title: J Power Sources
– volume: 224
  start-page: 251
  year: 2018
  end-page: 266
  article-title: Investigation of the deformation mechanisms of lithium‐ion battery components using in‐situ micro tests
  publication-title: Appl Energy
– volume: 17
  start-page: 147
  issue: 2
  year: 2001
  end-page: 209
  article-title: Constitutive equations for metal powders: application to powder forming processes
  publication-title: Int J Plast
– volume: 242
  start-page: 325
  year: 2013
  end-page: 340
  article-title: Computational models for simulations of lithium‐ion battery cells under constrained compression tests
  publication-title: J Power Sources
– volume: 201
  start-page: 307
  year: 2012
  end-page: 321
  article-title: Calibration and finite element simulation of pouch lithium‐ion batteries for mechanical integrity
  publication-title: J Power Sources
– volume: 82
  start-page: 149
  year: 2017
  end-page: 160
  article-title: Failure behaviours of 100% SOC lithium‐ion battery modules under different impact loading conditions
  publication-title: Eng Fail Anal
– volume: 43
  year: 2021
  article-title: Direction‐dependent mechanical‐electrical‐thermal responses of large‐format prismatic Li‐ion battery under mechanical abuse
  publication-title: J Energy Storage
– volume: 27
  year: 2020
  article-title: Experiments and 3D detailed modeling for a pouch battery cell under impact loading
  publication-title: J Energy Storage.
– volume: 413
  start-page: 284
  year: 2019
  end-page: 292
  article-title: A detailed computational model for cylindrical lithium‐ion batteries under mechanical loading: from cell deformation to short‐circuit onset
  publication-title: J Power Sources
– volume: 48
  start-page: 1253
  issue: 6‐7
  year: 2000
  end-page: 1283
  article-title: Isotropic constitutive models for metallic foams
  publication-title: J Mech Phys Solids
– volume: 61
  start-page: 1472
  issue: 10
  year: 2018
  end-page: 1482
  article-title: Comparative study of mechanical‐electrical‐thermal responses of pouch, cylindrical, and prismatic lithium‐ion cells under mechanical abuse
  publication-title: Sci China Technol Sci
– volume: 5
  start-page: 80369
  issue: 98
  year: 2015
  end-page: 80380
  article-title: Modelling of cracks developed in lithium‐ion cells under mechanical loading
  publication-title: RSC Adv
– volume: 167
  issue: 16
  year: 2021
  article-title: Probing of internal short circuit in lithium‐ion pouch cells by electrochemical impedance spectroscopy under mechanical abusive conditions
  publication-title: J Electrochem Soc
– volume: 41
  year: 2021
  article-title: Study on mechanical properties and failure mechanism of 18650 Lithium‐ion battery using digital image correlation and acoustic emission
  publication-title: J Energy Storage
– volume: 378
  start-page: 153
  year: 2018
  end-page: 168
  article-title: A review of safety‐focused mechanical modeling of commercial lithium‐ion batteries
  publication-title: J Power Sources
– volume: 245
  start-page: 609
  year: 2014
  end-page: 623
  article-title: Mechanical behavior of representative volume elements of lithium‐ion battery cells under compressive loading conditions
  publication-title: J Power Sources
– volume: 3
  start-page: 1
  issue: 11
  year: 2019
  end-page: 13
  article-title: Data‐driven safety envelope of lithium‐ion batteries for electric vehicles
  publication-title: Joule
– volume: 3
  start-page: 261
  issue: 4
  year: 2018
  end-page: 266
  article-title: Safety modelling and testing of lithium‐ion batteries in electrified vehicles
  publication-title: Nat Energy
– year: 2020
– volume: 165
  start-page: A1537
  issue: 7
  year: 2018
  end-page: A1546
  article-title: State‐of‐charge dependence of mechanical response of lithium‐ion batteries: a result of internal stress
  publication-title: J Electrochem Soc
– volume: 220
  start-page: 360
  year: 2012
  end-page: 372
  article-title: Modeling and short circuit detection of 18650 Li‐ion cells under mechanical abuse conditions
  publication-title: J Power Sources
– volume: 306
  start-page: 424
  year: 2016
  end-page: 430
  article-title: Internal configuration of prismatic lithium‐ion cells at the onset of mechanically induced short circuit
  publication-title: J Power Sources
– volume: 389
  start-page: 148
  year: 2018
  end-page: 159
  article-title: Failure in lithium‐ion batteries under transverse indentation loading
  publication-title: J Power Sources
– volume: 440
  year: 2019
  article-title: Study of the influence of mechanical pressure on the performance and aging of Lithium‐ion battery cells
  publication-title: J Power Sources
– volume: 165
  start-page: A1160
  issue: 5
  year: 2018
  end-page: A1168
  article-title: Testing and modeling the mechanical properties of the granular materials of graphite anode
  publication-title: J Electrochem Soc
– ident: e_1_2_9_22_1
  doi: 10.1039/c5ra17865g
– ident: e_1_2_9_38_1
  doi: 10.1016/j.energy.2021.120855
– ident: e_1_2_9_30_1
  doi: 10.1149/1945-7111/ab8e83
– ident: e_1_2_9_51_1
  doi: 10.1016/j.jpowsour.2019.227148
– ident: e_1_2_9_52_1
  doi: 10.1016/j.jpowsour.2013.06.165
– ident: e_1_2_9_10_1
  doi: 10.1016/j.jpowsour.2016.11.094
– ident: e_1_2_9_27_1
  doi: 10.1016/j.ijplas.2019.06.011
– ident: e_1_2_9_31_1
  doi: 10.1149/1945-7111/ab9eee
– volume: 7264
  start-page: 1
  year: 2015
  ident: e_1_2_9_32_1
  article-title: Standard test method for flexural properties of polymer matrix composite materials
  publication-title: ASTM Int D
– ident: e_1_2_9_5_1
  doi: 10.1038/s41560‐018‐0122‐3
– ident: e_1_2_9_46_1
  doi: 10.1016/S0749‐6419(00)00029‐2
– volume-title: The Mathematical Theory of Plasticity
  year: 1998
  ident: e_1_2_9_43_1
  doi: 10.1093/oso/9780198503675.001.0001
– ident: e_1_2_9_53_1
  doi: 10.1016/j.apenergy.2018.05.007
– ident: e_1_2_9_17_1
  doi: 10.1007/s11431‐017‐9296‐0
– ident: e_1_2_9_16_1
  doi: 10.1016/j.est.2019.101016
– ident: e_1_2_9_14_1
  doi: 10.1149/1945‐7111/aba936
– ident: e_1_2_9_34_1
  doi: 10.1016/j.est.2020.101244
– ident: e_1_2_9_41_1
  doi: 10.1016/j.jmps.2019.05.003
– ident: e_1_2_9_6_1
  doi: 10.1016/j.engfailanal.2017.09.003
– ident: e_1_2_9_33_1
  doi: 10.1016/j.jpowsour.2012.04.055
– ident: e_1_2_9_55_1
  doi: 10.1016/j.est.2021.102894
– ident: e_1_2_9_19_1
  doi: 10.1016/j.jpowsour.2016.10.064
– ident: e_1_2_9_13_1
  doi: 10.1016/j.est.2022.103969
– ident: e_1_2_9_26_1
  doi: 10.1016/j.jpowsour.2017.08.068
– ident: e_1_2_9_2_1
  doi: 10.1016/j.jpowsour.2017.12.034
– ident: e_1_2_9_49_1
  doi: 10.1016/j.msea.2015.11.048
– ident: e_1_2_9_15_1
  doi: 10.1016/j.joule.2019.07.026
– ident: e_1_2_9_54_1
  doi: 10.1039/d0ta12082k
– ident: e_1_2_9_45_1
  doi: 10.1016/S0022‐5096(99)00082‐4
– ident: e_1_2_9_50_1
  doi: 10.1016/j.jpowsour.2016.07.078
– ident: e_1_2_9_7_1
  doi: 10.1016/j.jpowsour.2011.10.094
– ident: e_1_2_9_40_1
  doi: 10.33961/jecst.2019.00528
– volume-title: Mechanics of Materials
  year: 2020
  ident: e_1_2_9_39_1
– ident: e_1_2_9_48_1
  doi: 10.1016/j.mtener.2020.100479
– ident: e_1_2_9_18_1
  doi: 10.1016/j.jpowsour.2018.12.059
– ident: e_1_2_9_24_1
  doi: 10.1016/j.jpowsour.2015.12.026
– ident: e_1_2_9_29_1
  doi: 10.1016/j.jpowsour.2013.05.022
– ident: e_1_2_9_20_1
  doi: 10.1149/2.0051809jes
– ident: e_1_2_9_9_1
  doi: 10.1016/j.jpowsour.2011.04.024
– ident: e_1_2_9_42_1
  doi: 10.1149/1945‐7111/ab78fa
– ident: e_1_2_9_47_1
  doi: 10.1149/2.0141807jes
– ident: e_1_2_9_35_1
  doi: 10.1016/j.est.2019.101039
– ident: e_1_2_9_21_1
  doi: 10.1016/j.jpowsour.2012.07.057
– ident: e_1_2_9_8_1
  doi: 10.1016/j.jpowsour.2018.04.003
– ident: e_1_2_9_36_1
  doi: 10.1149/1945‐7111/abd452
– ident: e_1_2_9_4_1
  doi: 10.1016/j.ensm.2019.06.036
– ident: e_1_2_9_37_1
  doi: 10.1016/j.jpowsour.2020.228314
– ident: e_1_2_9_12_1
  doi: 10.1016/j.est.2021.103270
– ident: e_1_2_9_23_1
  doi: 10.1016/j.jpowsour.2013.10.058
– ident: e_1_2_9_25_1
  doi: 10.1016/j.jpowsour.2019.227323
– ident: e_1_2_9_3_1
  doi: 10.1016/j.ensm.2017.05.013
– ident: e_1_2_9_11_1
  doi: 10.1016/j.jpowsour.2014.04.040
– year: 2017
  ident: e_1_2_9_44_1
  article-title: Abaqus user manual (Version 2017)
  publication-title: Providence, RI
– ident: e_1_2_9_28_1
  doi: 10.1016/j.jpowsour.2013.06.134
SSID ssj0002504241
Score 2.323673
Snippet The mechanically induced internal short circuit (ISC) is one of the major safety concerns of lithium‐ion batteries. Mechanical abuse tests are often performed...
Abstract The mechanically induced internal short circuit (ISC) is one of the major safety concerns of lithium‐ion batteries. Mechanical abuse tests are often...
Abstract The mechanically induced internal short circuit (ISC) is one of the major safety concerns of lithium‐ion batteries. Mechanical abuse tests are often...
SourceID doaj
osti
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Bend tests
Charge transfer
Compression
Computed tomography
Cracking (fracturing)
Damage
Deformation
Electrochemical impedance spectroscopy
Electrochemistry
Electrodes
ENERGY STORAGE
Failure mechanisms
finite element model
Hardness tests
impedance behavior
Indentation
internal short circuit
Life span
Lithium
Lithium-ion batteries
lithium-ion battery
Load
Mechanical properties
Model testing
Research methodology
Safety
Safety engineering
Short circuits
Spectroscopy
Spectrum analysis
three-point bending
Unloading
X-ray computed tomography
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQJ3qoCrRqyocswYWKlMRxnIQbtKxWSNALVNys2B4LJDZBbPbOT-A38kuYccJqkSq4sIdsFFmKNTOe9-zYbxjbrZQ3yJQhBosXWSUmLkHIWFV1AmVBEmi0Dnl2rsaX8vQqv1oo9UV7wnp54N5wBzZRXtgCfwJwruNKV6eV8bmrHY4PYSj7IuYtTKYoB5MwF2LTXI9UHEA7Eb9SjN7iFQIFoX78a3FAvSKZi1Q1YM3oC_s8kER-1HdulS1Bs8Y-LUgHrrN_f-oJpgLeeh6UDEl4lSOlvr6ZTZ4eHtHanNbkp3w6M7TUwruWGwhHWA75Bb57n4ciOPu8bhx30IUtWc1Xdjk6ufg9jocaCbGVpO-Ye1dJNBDUpvAq8TlifmVSEEnpshQyB9Ih5AvvlFS-Kmk-ItADhc9NZnObfWPLTdvAd8alQ-eUuVFFYWQmTJ0UoMoyzSyiHCR1xPZe7KbtICBOdSxudS99LDTZWAcbR2xn3vaul834b6tjMv-8BUldhwcYAHoIAP1eAERsg5ynkTGQ7K2l_UG20ymm-TxREdt88akeRudUC_o6KSqMkIj9DH5-o5P65O-ZCHc_PqK7G2xF0AmKcJxxky139zPYQl7Tme0Qws_qavOU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB7B9gIHVP5EaEGW4AJqaOI4jsMFUdiqQmpBqEW9WfFfQWKT0s3e-wg8I0_CjNe7tBJqDkkUWXEyY898HtvfALxsZTCIlH3uLZ5EW5hceS5y2XaFVw1RoFEc8vBIHpyIT6f1aQq4zdOyypVNjIbaDZZi5LucZpR4K7h4d_4rp6xRNLuaUmjchg00wUpNYGNvevTl6zrKQgRd6KPWvKR81w8z_qbEVtxc80SRsB8vA3asa2DzKmSNPmd_E-4lsMjeL7V7H275_gHcvUIh-BC-fexmaBLYEFhkNCQCVobQ-vuPxezP5W-UOqPY_JzNF4ZCLmwcmPFxK8tbdox177CYDGeHdb1jzo9xaVb_CE72p8cfDvKUKyG3gnge6-BaEbj1nWmCLEKNvr81peeFclXpK-eFQ9fPg5NChlbRuISjJppQm8rWtnoMk37o_RNgwqGSVG1k0xhRcdMVjZdKlZVFb-eLLoNXK7lpm4jEKZ_FT72kQOaaZKyjjDN4sS57vqTP-G-pPRL_ugRRXscHw8WZTj1I20Li_zV4cI-DXqdcV7Ym1K5zaCi5yWCLlKcRORD9raV1QnbUJZr7upAZbK90qlMvnet_bSqD11HPN3yknn4-5PHu6c3v2oI7nPZIxA2L2zAZLxb-GSKX0TxPzfMvN8zr_g
  priority: 102
  providerName: ProQuest
Title Damage of prismatic lithium‐ion cells subject to bending: Test, model, and detection
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12257
https://www.proquest.com/docview/2739529424
https://www.osti.gov/biblio/1876506
https://doaj.org/article/c06f2c77772e402d8da19bf5dad8872b
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6V9gIHVP5EaFlZgguooYnjOA7iQmGXCqmlQi3qzYr_AIlNqm72ziPwjDwJM95s2koIiRySKHKUZMbj-TzxfAPwvJbBIFL2qbe4E3VmUuW5SGXdZF5VRIFGccijY3l4Jj6el-cb8GadC7PihxgDbmQZcbwmA2_MYv-KNNR3c_4qx-5Y3YItyq2lBX1cnIwRFiLn4rF0Jbp1CsZVxchPyvevbr_hkSJxPx46NLAboPM6dI2-Z7YNdwfQyN6utHwPNnx7H-5coxJ8AF_eN3McGlgXWGQ2JCJWhhD72_fl_PfPXyh9RjH6BVssDYVeWN8x42NKy2t2is_eY7Eozh5rWsec7-MSrfYhnM2mp-8O06FmQmoF8T2WwdUicOsbUwWZhRIxQG1yzzPlitwXzguHEIAHJ4UMtaL5CUeNVKE0hS1t8Qg22671j4EJh8pSpZFVZUTBTZNVXiqVFxa9ns-aBF6s5abtQChOdS1-6BUVMtckYx1lnMCzse3Fikbjr60OSPxjC6K-jhe6y696sCRtM4nfV-HGPU5-nXJNXptQusbhgMlNAjukPI0IgmhwLa0Xsr3OcdgvM5nA7lqnerDWheb0t5LX2FsSeBn1_I-X1NNPRzyePfmfxjtwm1PmRExj3IXN_nLpnyKe6c0kdlvcq9mHCWwdTI9PPk9ibOAP5MHwiA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOiF8RWsAScAA1NHEcJ0FCCGiXLe2Wyxb1ZuI_QGKT0s0KceMReBIeiidhxrtZWgn11hySKLISZ2Y8Mx57vgF4VEmv0VN2sTN4ElWi49JxEcuqTlxZEAQaxSFH-3J4IN4d5ocr8LvPhaFtlb1ODIratoZi5JucVpR4Jbh4efQtpqpRtLral9CYi8Wu-_Edp2zTFztbyN_HnA-2x2-G8aKqQGwEISLm3lbCc-NqXXiZ-BytZKVTx5PSZqnLrBMWjST3Vgrpq5I8eI59LnyuM5ObDN97AS6KDC05ZaYP3i5jOgQHhhZxiYLKN1074c9SHDPFKbsXygPgpcVhfMq1PekgBws3uAZXF64pezWXpeuw4pobcOUEYOFN-LBVT1ABsdazgJ9IcK8MHfnPX2aTPz9_IY8ZrQRM2XSmKcDDupZpFxJnnrMxfnuDhdI7G6xuLLOuCxvBmltwcC40vA2rTdu4O8CERZEocy2LQouM6zopnCzLNDNoW11SR_Ckp5syC9hyqp7xVc0Bl7kiGqtA4wgeLtsezcE6_tvqNZF_2YIAtsOD9viTWoxXZRKJ_1fgwR1OsW1p67TSPre1RbXMdQRrxDyFfgqB7RralWQ6laJxyRMZwXrPU7XQCVP1T4IjeBr4fEYn1fb7EQ93d89-1wO4NByP9tTezv7uGlzmlJ0RUiXXYbU7nrl76DN1-n4QVAYfz3tk_AXShSaJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7ULYg-iFeMrTqgPiiNm0wmN0HEuru01q5F2tK3MXNTwU1qN4v45k_w9_hz_CWeM5tdW5C-NQ9JCEMyOfc5M_MdgMdl5hRGyja0Gk-ijFRYWC7CrKwiW-QEgUZ5yN1xtnUg3h6lRyvwe7EXhpZVLmyiN9Sm0ZQj73OaUeKl4KLvumURe4PRq-NvIVWQopnWRTmNuYjs2B_fcfg2fbk9QF4_4Xw03H-zFXYVBkItCB0xdaYUjmtbqdxlkUvRY5YqtjwqTBLbxFhh0GFyZzKRubKgaJ5j_3OXqkSnOsH3XoLVnEZFPVjdHI73PiwzPAQOhv5xiYnK-7aZ8OcxalB-xgv6YgF4aVCpzwS6p8Nl7-9G1-FaF6iy13PJugErtr4JV0_BF96Cw0E1QXPEGsc8miKBvzIM6z9_mU3-_PyFHGc0LzBl05midA9rG6as30bzgu3jtzeYL8SzwaraMGNbvyysvg0HF0LFO9Crm9reBSYMCkiRqizPlUi4qqLcZkURJxo9rY2qAJ4u6CZ1B2JOtTS-yjn8MpdEY-lpHMCjZdvjOXTHf1ttEvmXLQhu2z9oTj7JTnuljjL8vxwPbnHAbQpTxaVyqakMGmmuAlgj5kmMWgh6V9MaJd3KGF1NGmUBrC94KjsLMZX_5DmAZ57P53RSDt_vcn937_x3PYTLqBXy3fZ4Zw2ucNqq4fdNrkOvPZnZ-xhAtepBJ6kMPl60cvwFgPMsGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Damage+of+prismatic+lithium%E2%80%90ion+cells+subject+to+bending%3A+Test%2C+model%2C+and+detection&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Li%2C+Wei&rft.au=Xing%2C+Bobin&rft.au=Watkins%2C+Thomas+R.&rft.au=Xia%2C+Yong&rft.date=2022-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2567-3173&rft.eissn=2567-3173&rft.volume=4&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Feom2.12257&rft.externalDBID=10.1002%252Feom2.12257&rft.externalDocID=EOM212257
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon