Quantification of low‐temperature oxidation of light oil and its SAR fractions with TG‐DSC and TG‐FTIR analysis

The oxidation reaction is the key to determining the success of air flooding. In this paper, experimental and theoretical techniques have been developed to identify the low‐temperature oxidation (LTO) mechanisms for light oil during air flooding by comprehensively analyzing thermal stability and oxi...

Full description

Saved in:
Bibliographic Details
Published inEnergy science & engineering Vol. 8; no. 2; pp. 376 - 391
Main Authors Wang, Tengfei, Wang, Jiexiang, Yang, Weipeng, Yang, Daoyong
Format Journal Article
LanguageEnglish
Published London John Wiley & Sons, Inc 01.02.2020
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The oxidation reaction is the key to determining the success of air flooding. In this paper, experimental and theoretical techniques have been developed to identify the low‐temperature oxidation (LTO) mechanisms for light oil during air flooding by comprehensively analyzing thermal stability and oxidation process of the crude oil and its SAR (ie, saturates, aromatics, and resins) fractions. Experimentally, both a thermogravimetric analyzer coupled with differential scanning calorimetry (TG‐DSC) and a thermogravimetric analyzer coupled with Fourier transform infrared spectrometer (TG‐FTIR) are employed to quantify the LTO process of crude oil and each SAR fraction as well as the corresponding oxidation properties. Theoretically, reaction models have been developed to reproduce the experimentally identified reactions. The results show that the oxygen addition reaction and the bond scission reaction occur simultaneously. The former can be initiated when temperature is higher than 50°C, and it is gradually shifted to the latter with the continuous increase in reservoir temperature. The LTO products of light oil include H2O, CO2, carboxylic acids, alcohols, phenols, and ethers. Saturates, aromatics, and resins are all the sources of H2O, CO2, alcohols, and carboxylic acids, whereas ethers are mainly derived from aromatics and resins. At the beginning of an air flooding process, heat is mainly generated from the oxidation of aromatics and resins. Subsequently, oxidizing saturates gradually dominates the air flooding process with an increase in the reservoir temperature. Experimental and theoretical techniques have been developed to identify the low‐temperature oxidation (LTO) mechanisms for light oil during air flooding by comprehensively analyzing thermal stability and oxidation process of the crude oil and its SAR (ie, saturates, aromatics, and resins) fractions. The LTO products of light oil include H2O, CO2, carboxylic acids, alcohols, phenols, and ethers. Saturates, aromatics, and resins are all the sources of H2O, CO2, alcohols, and carboxylic acids, whereas ethers are mainly derived from aromatics and resins. At the beginning of an air flooding process, heat is mainly generated from the oxidation of aromatics and resins. Subsequently, oxidizing saturates gradually dominates the air flooding process with an increase in the reservoir temperature.
AbstractList Abstract The oxidation reaction is the key to determining the success of air flooding. In this paper, experimental and theoretical techniques have been developed to identify the low‐temperature oxidation (LTO) mechanisms for light oil during air flooding by comprehensively analyzing thermal stability and oxidation process of the crude oil and its SAR (ie, saturates, aromatics, and resins) fractions. Experimentally, both a thermogravimetric analyzer coupled with differential scanning calorimetry (TG‐DSC) and a thermogravimetric analyzer coupled with Fourier transform infrared spectrometer (TG‐FTIR) are employed to quantify the LTO process of crude oil and each SAR fraction as well as the corresponding oxidation properties. Theoretically, reaction models have been developed to reproduce the experimentally identified reactions. The results show that the oxygen addition reaction and the bond scission reaction occur simultaneously. The former can be initiated when temperature is higher than 50°C, and it is gradually shifted to the latter with the continuous increase in reservoir temperature. The LTO products of light oil include H2O, CO2, carboxylic acids, alcohols, phenols, and ethers. Saturates, aromatics, and resins are all the sources of H2O, CO2, alcohols, and carboxylic acids, whereas ethers are mainly derived from aromatics and resins. At the beginning of an air flooding process, heat is mainly generated from the oxidation of aromatics and resins. Subsequently, oxidizing saturates gradually dominates the air flooding process with an increase in the reservoir temperature.
The oxidation reaction is the key to determining the success of air flooding. In this paper, experimental and theoretical techniques have been developed to identify the low‐temperature oxidation (LTO) mechanisms for light oil during air flooding by comprehensively analyzing thermal stability and oxidation process of the crude oil and its SAR (ie, saturates, aromatics, and resins) fractions. Experimentally, both a thermogravimetric analyzer coupled with differential scanning calorimetry (TG‐DSC) and a thermogravimetric analyzer coupled with Fourier transform infrared spectrometer (TG‐FTIR) are employed to quantify the LTO process of crude oil and each SAR fraction as well as the corresponding oxidation properties. Theoretically, reaction models have been developed to reproduce the experimentally identified reactions. The results show that the oxygen addition reaction and the bond scission reaction occur simultaneously. The former can be initiated when temperature is higher than 50°C, and it is gradually shifted to the latter with the continuous increase in reservoir temperature. The LTO products of light oil include H2O, CO2, carboxylic acids, alcohols, phenols, and ethers. Saturates, aromatics, and resins are all the sources of H2O, CO2, alcohols, and carboxylic acids, whereas ethers are mainly derived from aromatics and resins. At the beginning of an air flooding process, heat is mainly generated from the oxidation of aromatics and resins. Subsequently, oxidizing saturates gradually dominates the air flooding process with an increase in the reservoir temperature.
Abstract The oxidation reaction is the key to determining the success of air flooding. In this paper, experimental and theoretical techniques have been developed to identify the low‐temperature oxidation (LTO) mechanisms for light oil during air flooding by comprehensively analyzing thermal stability and oxidation process of the crude oil and its SAR (ie, saturates, aromatics, and resins) fractions. Experimentally, both a thermogravimetric analyzer coupled with differential scanning calorimetry (TG‐DSC) and a thermogravimetric analyzer coupled with Fourier transform infrared spectrometer (TG‐FTIR) are employed to quantify the LTO process of crude oil and each SAR fraction as well as the corresponding oxidation properties. Theoretically, reaction models have been developed to reproduce the experimentally identified reactions. The results show that the oxygen addition reaction and the bond scission reaction occur simultaneously. The former can be initiated when temperature is higher than 50°C, and it is gradually shifted to the latter with the continuous increase in reservoir temperature. The LTO products of light oil include H 2 O, CO 2 , carboxylic acids, alcohols, phenols, and ethers. Saturates, aromatics, and resins are all the sources of H 2 O, CO 2 , alcohols, and carboxylic acids, whereas ethers are mainly derived from aromatics and resins. At the beginning of an air flooding process, heat is mainly generated from the oxidation of aromatics and resins. Subsequently, oxidizing saturates gradually dominates the air flooding process with an increase in the reservoir temperature.
The oxidation reaction is the key to determining the success of air flooding. In this paper, experimental and theoretical techniques have been developed to identify the low‐temperature oxidation (LTO) mechanisms for light oil during air flooding by comprehensively analyzing thermal stability and oxidation process of the crude oil and its SAR (ie, saturates, aromatics, and resins) fractions. Experimentally, both a thermogravimetric analyzer coupled with differential scanning calorimetry (TG‐DSC) and a thermogravimetric analyzer coupled with Fourier transform infrared spectrometer (TG‐FTIR) are employed to quantify the LTO process of crude oil and each SAR fraction as well as the corresponding oxidation properties. Theoretically, reaction models have been developed to reproduce the experimentally identified reactions. The results show that the oxygen addition reaction and the bond scission reaction occur simultaneously. The former can be initiated when temperature is higher than 50°C, and it is gradually shifted to the latter with the continuous increase in reservoir temperature. The LTO products of light oil include H2O, CO2, carboxylic acids, alcohols, phenols, and ethers. Saturates, aromatics, and resins are all the sources of H2O, CO2, alcohols, and carboxylic acids, whereas ethers are mainly derived from aromatics and resins. At the beginning of an air flooding process, heat is mainly generated from the oxidation of aromatics and resins. Subsequently, oxidizing saturates gradually dominates the air flooding process with an increase in the reservoir temperature. Experimental and theoretical techniques have been developed to identify the low‐temperature oxidation (LTO) mechanisms for light oil during air flooding by comprehensively analyzing thermal stability and oxidation process of the crude oil and its SAR (ie, saturates, aromatics, and resins) fractions. The LTO products of light oil include H2O, CO2, carboxylic acids, alcohols, phenols, and ethers. Saturates, aromatics, and resins are all the sources of H2O, CO2, alcohols, and carboxylic acids, whereas ethers are mainly derived from aromatics and resins. At the beginning of an air flooding process, heat is mainly generated from the oxidation of aromatics and resins. Subsequently, oxidizing saturates gradually dominates the air flooding process with an increase in the reservoir temperature.
Author Wang, Jiexiang
Yang, Daoyong
Wang, Tengfei
Yang, Weipeng
Author_xml – sequence: 1
  givenname: Tengfei
  surname: Wang
  fullname: Wang, Tengfei
  organization: University of Regina
– sequence: 2
  givenname: Jiexiang
  surname: Wang
  fullname: Wang, Jiexiang
  organization: China University of Petroleum (East China)
– sequence: 3
  givenname: Weipeng
  surname: Yang
  fullname: Yang, Weipeng
  organization: University of Tulsa
– sequence: 4
  givenname: Daoyong
  orcidid: 0000-0001-8820-6625
  surname: Yang
  fullname: Yang, Daoyong
  email: tony.yang@uregina.ca
  organization: University of Regina
BookMark eNp1kctuEzEUhi1UJEqpxCNYYsNmij3HnrGXVUhLpEqIJqwtjy-to-k42B6l2fEIPCNPwkyCgA2Lo3P79B8d_a_R2RAHh9BbSq4oIfUHlx1ccdK8QOc14aSagp_9U79ClzlvCSGUUSYJPUfjl1EPJfhgdAlxwNHjPu5_fv9R3NPOJV3G5HB8DvbvOjw8FhxDj_VgcSgZr6_vsU_azETG-1Ae8eZ2kvi4XhyZY3OzWd1Pne4POeQ36KXXfXaXv_MF-nqz3Cw-VXefb1eL67vKMCBNJVtOa8ZM5yQHbcBS8DXIriMcGkGFaVorOxCtBepdI5jnLQdwXFMJXji4QKuTro16q3YpPOl0UFEHdRzE9KB0KsH0TmnGLLSCNN5b1nnfUe20rZngYKyws9a7k9YuxW-jy0Vt45imh7KqgRMhJZP1RL0_USbFnJPzf65SomaP1OyRmjya0OqE7kPvDv_l1HK9hJn_BSy8le8
CitedBy_id crossref_primary_10_1016_j_energy_2020_117546
crossref_primary_10_1016_j_dche_2022_100031
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123188
crossref_primary_10_1061__ASCE_MT_1943_5533_0004142
crossref_primary_10_1016_j_fuel_2023_129051
crossref_primary_10_1016_j_fuel_2024_131822
crossref_primary_10_1016_j_clay_2022_106507
crossref_primary_10_1016_j_fuel_2020_119121
crossref_primary_10_1021_acs_energyfuels_2c00965
crossref_primary_10_1016_j_fuel_2023_129941
crossref_primary_10_3390_en15145201
Cites_doi 10.2118/40062-MS
10.1007/s10973-013-3256-3
10.1016/j.combustflame.2019.05.009
10.1016/j.petrol.2013.10.020
10.2118/04-07-04
10.1021/acs.energyfuels.7b02377
10.1021/ef970173i
10.2118/132486-PA
10.2118/29324-MS
10.1080/10916466.2015.1076845
10.2118/3777-PA
10.1016/j.fuel.2009.03.029
10.1016/0165-2370(94)00812-F
10.2118/7149-PA
10.1016/j.conbuildmat.2014.11.056
10.2118/9772-PA
10.1016/j.conbuildmat.2017.01.064
10.1016/j.fuel.2012.07.018
10.1021/ef901056s
10.1016/j.jhazmat.2019.04.004
10.1021/ef000135q
10.1021/ef502135e
10.1016/j.fuel.2016.11.041
10.1021/jp992609w
10.1021/acs.energyfuels.6b02598
10.2118/97-167
10.1016/j.fuel.2010.01.012
10.1021/ef800894m
10.2118/06-03-02
10.2118/66021-PA
10.1016/j.fuel.2018.01.076
10.2118/15736-PA
10.1002/aic.10369
10.2118/06-09-01
10.2118/28733-PA
10.1016/j.fuel.2016.08.042
10.1016/j.fuel.2018.02.032
10.1021/ef5023913
10.1021/ef200891u
10.2118/06-01-04
10.2118/19485-PA
10.1021/ef201770t
10.2118/05-03-05
10.1021/acs.energyfuels.8b01314
10.1016/j.fuel.2016.11.110
10.2118/75207-MS
10.2118/02-03-04
10.2118/71203-PA
ContentType Journal Article
Copyright 2019 The Authors. published by the Society of Chemical Industry and John Wiley & Sons Ltd.
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors. published by the Society of Chemical Industry and John Wiley & Sons Ltd.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
FR3
H8D
HCIFZ
KR7
L6V
L7M
M7S
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1002/ese3.506
DatabaseName Wiley Online Library Open Access
Wiley Online Library Free Content
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Aerospace Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-0505
EndPage 391
ExternalDocumentID oai_doaj_org_article_a44d37806ffd4bffb1aead24853cd8de
10_1002_ese3_506
ESE3506
Genre article
GeographicLocations South Korea
China
GeographicLocations_xml – name: South Korea
– name: China
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 18CX02162A
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: CRD Grant; Discovery Grant
– fundername: China Scholarship Council
  funderid: 201806455023
– fundername: Natural Science Foundation of Shandong Province
  funderid: ZR2017BEE023
GroupedDBID 0R~
1OC
24P
31~
5VS
8-1
8FE
8FG
8FH
AAHHS
AAZKR
ABJCF
ACCFJ
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D-9
EBS
EJD
GODZA
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IGS
KQ8
L6V
L8X
LK5
M7R
M7S
M~E
O9-
OK1
PCBAR
PIMPY
PROAC
PTHSS
TUS
WIN
AAYXX
CITATION
ITC
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
H8D
KR7
L7M
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c4306-9751244cbe953ac3d13f239bb0536818c67d9b387d31fe684f57533e5a193f8e3
IEDL.DBID DOA
ISSN 2050-0505
IngestDate Thu Jul 04 20:55:20 EDT 2024
Thu Oct 10 16:55:04 EDT 2024
Thu Sep 26 18:40:59 EDT 2024
Sat Aug 24 01:07:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4306-9751244cbe953ac3d13f239bb0536818c67d9b387d31fe684f57533e5a193f8e3
ORCID 0000-0001-8820-6625
OpenAccessLink https://doaj.org/article/a44d37806ffd4bffb1aead24853cd8de
PQID 2350899492
PQPubID 2034362
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_a44d37806ffd4bffb1aead24853cd8de
proquest_journals_2350899492
crossref_primary_10_1002_ese3_506
wiley_primary_10_1002_ese3_506_ESE3506
PublicationCentury 2000
PublicationDate February 2020
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Energy science & engineering
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 1995; 31
2009; 88
2000; 3
2015; 33
2017; 192
2015; 80
2019; 206
2016; 186
2017; 31
2010; 24
2002; 41
2017; 32
1958; 44
1997; 12
1980; 32
2013; 112
2013; 114
2001; 15
2018; 219
2011; 25
2012; 26
1980
2018; 32
1972; 12
1998; 12
2009; 23
1982; 34
2004; 43
2018; 220
2013; 105
1998
1997
1995
1999; 103
2002
2017; 136
2005; 44
1991; 6
2010; 89
1974; 26
1988; 3
2010; 49
2015; 29
2006; 45
2001; 4
2017; 190
2005; 51
2014
2007; 46
2019; 373
Liang W (e_1_2_7_54_1) 1995
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Adaguin GD (e_1_2_7_42_1) 2007; 46
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
Wang Z (e_1_2_7_5_1) 2014
e_1_2_7_23_1
e_1_2_7_33_1
Speight JG (e_1_2_7_35_1) 1980
e_1_2_7_21_1
Moore RG (e_1_2_7_44_1) 1998
e_1_2_7_56_1
e_1_2_7_37_1
Morton F (e_1_2_7_53_1) 1958; 44
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_12_1
Burger JG (e_1_2_7_39_1) 1972; 12
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 3
  start-page: 1308
  issue: 4
  year: 1988
  end-page: 1316
  article-title: Reaction kinetics of fuel formation for in‐situ combustion
  publication-title: SPE Reservoir Eng
– volume: 32
  start-page: 6774
  issue: 6
  year: 2018
  end-page: 6781
  article-title: Experimental investigation of enhanced oil recovery mechanisms of air injection under a low‐temperature oxidation process: thermal effect and residual oil recovery efficiency
  publication-title: Energy Fuels
– volume: 88
  start-page: 1708
  issue: 9
  year: 2009
  end-page: 1713
  article-title: Pyrolysis and combustion kinetics of Fosterton oil using thermogravimetric analysis
  publication-title: Fuel
– volume: 43
  start-page: 45
  issue: 7
  year: 2004
  end-page: 51
  article-title: Oxidation and ignition behaviour of saturated hydrocarbon samples with crude oils using TG/DTG and DTA thermal analysis techniques
  publication-title: J Can Pet Technol
– volume: 112
  start-page: 139
  year: 2013
  end-page: 152
  article-title: Pressure maintenance and improving oil recovery with immiscible CO injection in thin heavy oil reservoirs
  publication-title: J Petrol Sci Eng
– volume: 136
  start-page: 515
  year: 2017
  end-page: 523
  article-title: Combustion properties of saturates, aromatics, resins, and asphaltenes in asphalt binder
  publication-title: Constr Build Mater
– volume: 46
  start-page: 54
  issue: 4
  year: 2007
  end-page: 61
  article-title: Influence of in situ fuel deposition on air injection and combustion processes
  publication-title: J Can Pet Technol
– volume: 192
  start-page: 18
  year: 2017
  end-page: 26
  article-title: Combustion mechanism of four components separated from asphalt binder
  publication-title: Fuel
– volume: 29
  start-page: 3545
  issue: 6
  year: 2015
  end-page: 3555
  article-title: Catalytic effect of transition metallic additives on the light oil low‐temperature oxidation reaction
  publication-title: Energy Fuels
– volume: 26
  start-page: 1575
  issue: 3
  year: 2012
  end-page: 1584
  article-title: Thermal study on light crude oil for application of high‐pressure air injection (HPAI) process by TG/DTG and DTA tests
  publication-title: Energy Fuels
– year: 1998
– volume: 32
  start-page: 801
  issue: 1
  year: 2017
  end-page: 808
  article-title: Oxidation behavior of light crude oil and its SARA fractions characterized by TG and DSC techniques: Differences and connections
  publication-title: Energy Fuels
– volume: 45
  start-page: 48
  issue: 1
  year: 2006
  end-page: 53
  article-title: Investigation of the oxidation behaviour of pure hydrocarbon components and crude oils utilizing PDSC thermal technique
  publication-title: J Can Pet Technol
– volume: 12
  start-page: 580
  issue: 3
  year: 1998
  end-page: 588
  article-title: Kinetic analysis of oxidation behavior of crude oil SARA constituents
  publication-title: Energy Fuels
– volume: 44
  start-page: 260
  issue: 417
  year: 1958
  end-page: 272
  article-title: The low temperature liquid phase oxidation of hydrocarbons: A literature survey
  publication-title: Journal of the Institute of Petroleum
– start-page: 167
  year: 1995
  end-page: 170
– volume: 24
  start-page: 1139
  issue: 2
  year: 2010
  end-page: 1145
  article-title: Study of the effects of low‐temperature oxidation on the chemical composition of a light crude oil
  publication-title: Energy Fuels
– volume: 373
  start-page: 741
  year: 2019
  end-page: 752
  article-title: Thermal behaviors and harmful volatile constituents released from asphalt components at high temperature
  publication-title: J Hazard Mater
– year: 1997
– volume: 45
  start-page: 21
  issue: 9
  year: 2006
  end-page: 28
  article-title: Kinetic modelling of thermal cracking and low temperature oxidation reactions
  publication-title: J Can Pet Technol
– volume: 31
  start-page: 63
  issue: 94
  year: 1995
  end-page: 73
  article-title: Kinetic‐analysis of in‐situ combustion processes with thermogravimetric and differential thermogravimetric analysis and reaction tube experiments
  publication-title: J Anal Appl Pyrol
– volume: 190
  start-page: 145
  year: 2017
  end-page: 162
  article-title: Experimental and numerical evaluation of CO huff‐n‐puff processes in Bakken formation
  publication-title: Fuel
– volume: 15
  start-page: 182
  year: 2001
  end-page: 188
  article-title: Oxidation reactions of a light crude oil and its SARA fractions in consolidated cores
  publication-title: Energy Fuels
– volume: 45
  start-page: 38
  year: 2006
  end-page: 44
  article-title: A SARA‐based model for simulating the pyrolysis reactions that occur in high‐temperature EOR processes
  publication-title: J Can Pet Technol
– volume: 186
  start-page: 122
  year: 2016
  end-page: 127
  article-title: Thermal decomposition of Tatarstan Ashal’cha heavy crude oil and its SARA fractions
  publication-title: Fuel
– volume: 41
  start-page: 50
  issue: 3
  year: 2002
  end-page: 61
  article-title: Screening of three light‐oil reservoirs for application of air injection process by accelerating rate calorimetric and TG/PDSC tests
  publication-title: J Can Pet Technol
– volume: 34
  start-page: 19
  issue: 1
  year: 1982
  end-page: 36
  article-title: State‐of‐the‐art review of fireflood field projects
  publication-title: J Petrol Technol
– volume: 12
  start-page: 173
  issue: 3
  year: 1997
  end-page: 178
  article-title: Estimation of recovery factor in light‐oil air‐injection projects
  publication-title: SPE Reservoir Eng
– volume: 44
  start-page: 54
  year: 2005
  end-page: 61
  article-title: Low‐temperature oxidation of oils in terms of SARA fractions: why simple reaction models don’t work
  publication-title: J Can Pet Technol
– volume: 49
  start-page: 55
  issue: 1
  year: 2010
  end-page: 64
  article-title: Numerical simulation of in‐situ combustion experiments operated under low temperature conditions
  publication-title: J Can Pet Technol
– volume: 32
  start-page: 285
  issue: 2
  year: 1980
  end-page: 294
  article-title: A method for engineering in‐situ combustion oil recovery projects
  publication-title: J Petrol Technol
– volume: 33
  start-page: 1357
  year: 2015
  end-page: 1365
  article-title: Comparative study of light and heavy oils oxidation using thermal analysis methods
  publication-title: Pet Sci Technol
– volume: 105
  start-page: 397
  year: 2013
  end-page: 407
  article-title: Enhancement of the efficiency of in situ combustion technique for heavy‐oil recovery by application of nickel ions
  publication-title: Fuel
– volume: 103
  start-page: 11237
  issue: 50
  year: 1999
  end-page: 11245
  article-title: Asphaltene molecular size and structure
  publication-title: J Phys Chem A
– volume: 12
  start-page: 410
  year: 1972
  end-page: 422
  article-title: Chemical aspects of in‐situ combustion‐Heat of combustion and kinetics
  publication-title: SPE J
– volume: 51
  start-page: 1279
  issue: 4
  year: 2005
  end-page: 1296
  article-title: Dynamics of forward filtration combustion at the pore‐network level
  publication-title: AIChE J
– volume: 114
  start-page: 269
  issue: 1
  year: 2013
  end-page: 275
  article-title: Combustion characteristics and kinetic analysis of Turkish crude oils and their SARA fractions by DSC
  publication-title: J Therm Anal Calorim
– volume: 89
  start-page: 2185
  issue: 9
  year: 2010
  end-page: 2190
  article-title: Study on combustion mechanism of asphalt binder by using TG–FTIR technique
  publication-title: Fuel
– volume: 31
  start-page: 1295
  issue: 2
  year: 2017
  end-page: 1309
  article-title: Thermal cracking characteristics and kinetics of oil sand bitumen and its SARA fractions by TG–FTIR
  publication-title: Energy Fuels
– volume: 4
  start-page: 97
  issue: 2
  year: 2001
  end-page: 106
  article-title: Review of WAG field experience
  publication-title: SPE Reservoir Eval Eng
– volume: 219
  start-page: 141
  year: 2018
  end-page: 150
  article-title: New insights into the oxidation behaviors of crude oils and their exothermic characteristics: Experimental study via simultaneous TGA/DSC
  publication-title: Fuel
– volume: 6
  start-page: 287
  issue: 3
  year: 1991
  end-page: 294
  article-title: Modifying in‐situ combustion performance by the use of water‐soluble additives
  publication-title: SPE Reservoir Eng
– volume: 26
  start-page: 676
  issue: 6
  year: 1974
  end-page: 685
  article-title: Evaluation of COFCAW as a tertiary recovery method, Sloss field, Nebraska
  publication-title: J Petrol Technol
– year: 1980
– start-page: 1010
  year: 2014
  end-page: 1012
  article-title: Analysis of nitrogen gas flooding development effect on water‐flooding reservoirs
  publication-title: Adv Mater Res
– volume: 25
  start-page: 4299
  issue: 10
  year: 2011
  end-page: 4304
  article-title: Low‐temperature oxidation of oil components in an air injection process for improved oil recovery
  publication-title: Energy Fuels
– year: 2002
– volume: 23
  start-page: 1118
  issue: 2
  year: 2009
  end-page: 1127
  article-title: Investigating the effect of CO flooding on asphaltenic oil recovery and reservoir wettability
  publication-title: Energy Fuels
– volume: 29
  start-page: 1151
  issue: 2
  year: 2015
  end-page: 1159
  article-title: Low‐temperature oxidation and characterization of heavy oil via thermal analysis
  publication-title: Energy Fuels
– year: 1995
– volume: 80
  start-page: 125
  year: 2015
  end-page: 131
  article-title: Combustion mechanism of asphalt binder with TG–MS technique based on components separation
  publication-title: Constr Build Mater
– volume: 3
  start-page: 380
  issue: 5
  year: 2000
  end-page: 385
  article-title: Behavior and effect of SARA fractions of oil during combustion
  publication-title: SPE Reservoir Eval Eng
– volume: 220
  start-page: 645
  year: 2018
  end-page: 653
  article-title: Millimeter to nanometer‐scale tight oil–CO solubility parameter and minimum miscibility pressure calculations
  publication-title: Fuel
– volume: 206
  start-page: 322
  year: 2019
  end-page: 333
  article-title: Combustion kinetics of asphalt binder components and the release processes of gaseous products
  publication-title: Combust Flame
– ident: e_1_2_7_12_1
  doi: 10.2118/40062-MS
– ident: e_1_2_7_21_1
  doi: 10.1007/s10973-013-3256-3
– ident: e_1_2_7_32_1
  doi: 10.1016/j.combustflame.2019.05.009
– ident: e_1_2_7_6_1
  doi: 10.1016/j.petrol.2013.10.020
– ident: e_1_2_7_22_1
  doi: 10.2118/04-07-04
– ident: e_1_2_7_18_1
  doi: 10.1021/acs.energyfuels.7b02377
– ident: e_1_2_7_46_1
  doi: 10.1021/ef970173i
– volume-title: Paper 235, presented at the 7th UNITAR International Conference on Heavy Crude and Tar Sands
  year: 1998
  ident: e_1_2_7_44_1
  contributor:
    fullname: Moore RG
– ident: e_1_2_7_50_1
  doi: 10.2118/132486-PA
– ident: e_1_2_7_49_1
  doi: 10.2118/29324-MS
– volume: 46
  start-page: 54
  issue: 4
  year: 2007
  ident: e_1_2_7_42_1
  article-title: Influence of in situ fuel deposition on air injection and combustion processes
  publication-title: J Can Pet Technol
  contributor:
    fullname: Adaguin GD
– ident: e_1_2_7_30_1
  doi: 10.1080/10916466.2015.1076845
– ident: e_1_2_7_9_1
  doi: 10.2118/3777-PA
– ident: e_1_2_7_38_1
  doi: 10.1016/j.fuel.2009.03.029
– ident: e_1_2_7_37_1
  doi: 10.1016/0165-2370(94)00812-F
– ident: e_1_2_7_48_1
  doi: 10.2118/7149-PA
– ident: e_1_2_7_15_1
  doi: 10.1016/j.conbuildmat.2014.11.056
– ident: e_1_2_7_8_1
  doi: 10.2118/9772-PA
– ident: e_1_2_7_16_1
  doi: 10.1016/j.conbuildmat.2017.01.064
– ident: e_1_2_7_52_1
  doi: 10.1016/j.fuel.2012.07.018
– ident: e_1_2_7_56_1
  doi: 10.1021/ef901056s
– ident: e_1_2_7_33_1
  doi: 10.1016/j.jhazmat.2019.04.004
– ident: e_1_2_7_20_1
  doi: 10.1021/ef000135q
– ident: e_1_2_7_31_1
  doi: 10.1021/ef502135e
– ident: e_1_2_7_3_1
  doi: 10.1016/j.fuel.2016.11.041
– start-page: 1010
  year: 2014
  ident: e_1_2_7_5_1
  article-title: Analysis of nitrogen gas flooding development effect on water‐flooding reservoirs
  publication-title: Adv Mater Res
  contributor:
    fullname: Wang Z
– ident: e_1_2_7_34_1
  doi: 10.1021/jp992609w
– start-page: 167
  volume-title: Petroleum Chemistry (in Chinese)
  year: 1995
  ident: e_1_2_7_54_1
  contributor:
    fullname: Liang W
– ident: e_1_2_7_17_1
  doi: 10.1021/acs.energyfuels.6b02598
– ident: e_1_2_7_25_1
  doi: 10.2118/97-167
– volume: 44
  start-page: 260
  issue: 417
  year: 1958
  ident: e_1_2_7_53_1
  article-title: The low temperature liquid phase oxidation of hydrocarbons: A literature survey
  publication-title: Journal of the Institute of Petroleum
  contributor:
    fullname: Morton F
– ident: e_1_2_7_13_1
  doi: 10.1016/j.fuel.2010.01.012
– volume-title: The Chemistry and Technology of Petroleum
  year: 1980
  ident: e_1_2_7_35_1
  contributor:
    fullname: Speight JG
– ident: e_1_2_7_4_1
  doi: 10.1021/ef800894m
– ident: e_1_2_7_36_1
  doi: 10.2118/06-03-02
– ident: e_1_2_7_26_1
  doi: 10.2118/66021-PA
– ident: e_1_2_7_28_1
  doi: 10.1016/j.fuel.2018.01.076
– ident: e_1_2_7_47_1
  doi: 10.2118/15736-PA
– ident: e_1_2_7_41_1
  doi: 10.1002/aic.10369
– ident: e_1_2_7_45_1
  doi: 10.2118/06-09-01
– ident: e_1_2_7_10_1
  doi: 10.2118/28733-PA
– ident: e_1_2_7_19_1
  doi: 10.1016/j.fuel.2016.08.042
– ident: e_1_2_7_7_1
  doi: 10.1016/j.fuel.2018.02.032
– ident: e_1_2_7_51_1
  doi: 10.1021/ef5023913
– ident: e_1_2_7_11_1
  doi: 10.1021/ef200891u
– ident: e_1_2_7_24_1
  doi: 10.2118/06-01-04
– volume: 12
  start-page: 410
  year: 1972
  ident: e_1_2_7_39_1
  article-title: Chemical aspects of in‐situ combustion‐Heat of combustion and kinetics
  publication-title: SPE J
  contributor:
    fullname: Burger JG
– ident: e_1_2_7_40_1
  doi: 10.2118/19485-PA
– ident: e_1_2_7_29_1
  doi: 10.1021/ef201770t
– ident: e_1_2_7_23_1
  doi: 10.2118/05-03-05
– ident: e_1_2_7_27_1
  doi: 10.1021/acs.energyfuels.8b01314
– ident: e_1_2_7_14_1
  doi: 10.1016/j.fuel.2016.11.110
– ident: e_1_2_7_43_1
  doi: 10.2118/75207-MS
– ident: e_1_2_7_55_1
  doi: 10.2118/02-03-04
– ident: e_1_2_7_2_1
  doi: 10.2118/71203-PA
SSID ssj0001414901
Score 2.219829
Snippet The oxidation reaction is the key to determining the success of air flooding. In this paper, experimental and theoretical techniques have been developed to...
Abstract The oxidation reaction is the key to determining the success of air flooding. In this paper, experimental and theoretical techniques have been...
Abstract The oxidation reaction is the key to determining the success of air flooding. In this paper, experimental and theoretical techniques have been...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
StartPage 376
SubjectTerms Alcohols
Asphalt
Atmospheric pressure
Calorimetry
Carbon dioxide
Carboxylic acids
Cleavage
Crude oil
Differential scanning calorimetry
Enhanced oil recovery
Ethers
Experiments
Flooding
Fourier transforms
FTIR spectrometers
Heat
Hydrocarbons
Infrared analysis
Infrared spectroscopy
Light
LTO mechanism
Oxidation
Oxidation process
Permeability
Phenols
Polymers
Reservoirs
Resins
SAR fraction
Stability analysis
Temperature
Thermal stability
Thermogravimetric analysis
Viscosity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1PTxQxFG8ULnowChpXwJTEeBuYaTud6ckA7oomEthdEm5N_5pNyA7u7AaOfAQ-I5-Evk7XXQ967LRpJu-1739_D6FPnLjg9niTmdzkGWNlnqlSEMC9rYM74nihIaD_84yfXrIfV-VVCri1qaxyKROjoLaNgRj5IaElZKiYIF9ufmfQNQqyq6mFxnO0SQoGadrN4_7Z-XAVZWHBA8iLJepsTg5d6-hBCQ2O1vRQhOv_y8Zct1Sjqhm8Rq-SjYiPOqa-Qc_cdAu9XEMO3EaLi4XqynwiZXHj8XVz-3j_AFBTCScZN3cTu5oGLxw3k2usphZP5i0eHQ2xn3UPG1oMAVk8_ha2-Do6iWviYDD-PgyjDrnkLboc9Mcnp1nqoJAZFnyBTFQl6G-jnSipMtQW1BMqtA5XjwdVbXhlhaZ1ZWnhHa-ZD9Ybpa5Uwa7ztaPv0Ma0mbr3CDNnuONOEO4DEyqubRAHygpXc1dXQvXQ_pKe8qYDypAdJDKRQHMZaN5Dx0DoP_MAbR0_NLNfMt0UqRiztKpz7r1l2ntdqHDaAXmNGltb10O7SzbJdN9auTodPfQ5su6fPyH7o35YzT_8f58d9IKAax0LtHfRxny2cHvB_pjrj-mQPQEeDN0T
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZQucAB8RSBgoyEuC3d-LX2sZSEggSCJpV6s_ysIlVZlE3UHvkJ_EZ-CTPeTdMekDh67V2t5uH5Zmx_JuStYgnSnhyqUIe6EkLWlZOGIe-thnQkqbHHgv7Xb-r4VHw5k2fDrko8C9PzQ1wX3NAzynyNDu58d7AjDU1d4u8lsm3fBVSj0aKZ-L6rrwjA_uX2Y1ZLXO-t5ZZ7tmYH25dvRaNC2n8Lad7EqyXgTB-SBwNSpIe9ah-RO2n5mNy_wR_4hGx-bFy_2afIl7aZXrSXf379RsKpgS2ZtleLuOvGXJy2iwvqlpEu1h2dHZ7QvOqPN3QUy7J0_gk-8XF2VMaUxnT--QRaPX_JU3I6ncyPjqvhHoUqCMgIKtNIjOLBJyO5CzyOeWbceA8OqCBgB9VE47luIh_npLTIgOE4T9IBuss68Wdkb9ku03NCRQoqqWSYykYAkvERJgUXTdIq6ca4EXmzlaf92dNl2J4YmVmUuQWZj8gHFPR1PxJclwft6twO_mKdEJE3ulY5R-Fz9mMHNo_8azxEHdOI7G_VZAev6yzjElcxhWEj8q6o7p8_YSezCYxWL_534Etyj2GqXTZs75O99WqTXgEeWfvXxfD-Au903Nw
  priority: 102
  providerName: Wiley-Blackwell
Title Quantification of low‐temperature oxidation of light oil and its SAR fractions with TG‐DSC and TG‐FTIR analysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fese3.506
https://www.proquest.com/docview/2350899492
https://doaj.org/article/a44d37806ffd4bffb1aead24853cd8de
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZpemkPpemDbpsuKpTenNh6WTrmsZs00JDsbiA3oScshHXJ7tIe8xPyG_tLOpK9iXsovfRikCWMNGNpvhmPv0HosyAB3J7oCle6smCMl4XhiiTeWwnuSBCVTQH9b-fi9IqdXfPrXqmvlBPW0gO3gts3jHlay1LE6JmN0VYGFp-IuKjz0od8-la850zl6AoD5F9WG7bZkuyHZaB7PBU26tmfTNP_B7bsI9RsYsYv0YsOG-KDdk47aCssXqHnPcbA12h9uTZtek-WKG4ivml-_Lq7TxRTHT8ybn7O_WN38r5xM7_BZuHxfLXE04MJjrftDw1LnAKxeHYCjzieHuUxuTGefZ1Aq2UseYOuxqPZ0WnRVU4oHAMfoFA1T3bb2aA4NY76ikZClbWw5QSYaCdqryyVtadVDEKyCKiN0sAN4LkoA32LthfNIrxDmAUnggiKiKgYYBfr4RgwXgUpgqyVGaBPG3nq7y1Bhm6pkIlOMtcg8wE6TIJ-6E-U1vkGKFp3itb_UvQA7W7UpLt9ttSE8vTdkikyQF-y6v46CT2ajmC0eP8_JvMBPSPJ8c7p27toe3W7Dh8BnazsED0h7AKucnwyRE8PR-cXk2F-OX8DBFDpcA
link.rule.ids 315,786,790,870,2115,11589,12792,21416,27955,27956,33406,33777,43633,43838,46085,46509,50847,50956,74390,74657
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbhMxELZKewAOqOVHDbTUSIjb0l3b67VPqJSkKbSVaFKpN8s_YxSpypZsIjjyCDwjT4Lt3ZBwaI9eW9ZqZuz5Zmx_g9BbTiCEPd5mNrd5xliZZ7qUJPLeihCOAC9MTOifX_DhFft8XV53Cbemu1a53BPTRu1qG3Pkh4SW8YSKSfLh9nsWq0bF09WuhMYDtMUop9HOxeBklWNhAf_nxZJzNieH0AB9X8byRmteKJH1_4cw13FqcjSDbfSkQ4j4qFXpDtqA6VP0eI038BlafF3o9pJPkiuuPb6pf_z59TsSTXUsybj-OXGr7hiD43pyg_XU4cm8waOjS-xn7bOGBsd0LB6fhCk-jY7TmNQYjE8vQ6vlLXmOrgb98fEw6-onZJaFSCCTVRm9tzUgS6otdQX1hEpjwsLjwVFbXjlpqKgcLTxwwXzAbpRCqQOq8wLoC7Q5raewizADy4GDJNwHFVTcuLAZaCdBcBCV1D30ZilPddvSZKiWEJmoKHMVZN5DH6Og__VHYuv0oZ59U906UZoxRyuRc-8dM96bQgdbj7xr1DrhoIf2lmpS3Wpr1Mo2euhdUt2dP6H6o34YzV_eP88Bejgcn5-ps9OLL6_QIxKD7HRVew9tzmcL2A9IZG5eJ3P7C-gs3po
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSAgOqLzUhRaMhLiFTWzHsU-otJu2PCrobqXeLD_RStWmbHYFR35Cf2N_CR4nyy4HOCa2rGhm7PlmPPkGodec-Bj2BJvZ3OYZY2We6VIS4L0VMRzxvDCQ0P98yo_P2YeL8qKvf2r7ssrVmZgOatdYyJEPCS3hhopJMgx9WcSXw_rd1fcMOkjBTWvfTuM2ugMgG9o4iPponW9hMRbIixX_bE6GvvX0bQmtjjY8UiLu_wttbmLW5HTqbfSgR4t4v1PvQ3TLzx6h-xscgo_R8utSdwU_Sca4Cfiy-XHz6xpIp3rGZNz8nLr1MMTjuJleYj1zeLpo8Xj_DId594tDiyE1iydHcYnD8UGakx7qyclZfOo4TJ6g83o0OTjO-l4KmWUxKshkVYInt8bLkmpLXUEDodKYuAl5dNqWV04aKipHi-C5YCHiOEp9qSPCC8LTp2hr1sz8DsLMW-65l4SHqI6KGxcPBu2kF9yLSuoBerWSp7rqKDNUR45MFMhcRZkP0HsQ9J9xILlOL5r5N9XvGaUZc7QSOQ_BMROCKXS0e-Bgo9YJ5wdod6Um1e-8Vq3tZIDeJNX98yPUaDyKs_mz_6_zEt2NlqY-nZx-fI7uEYi3U9X2LtpazJd-L4KShXmRrO03E7zizw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+low%E2%80%90temperature+oxidation+of+light+oil+and+its+SAR+fractions+with+TG%E2%80%90DSC+and+TG%E2%80%90FTIR+analysis&rft.jtitle=Energy+science+%26+engineering&rft.au=Tengfei+Wang&rft.au=Jiexiang+Wang&rft.au=Weipeng+Yang&rft.au=Daoyong+Yang&rft.date=2020-02-01&rft.pub=Wiley&rft.eissn=2050-0505&rft.volume=8&rft.issue=2&rft.spage=376&rft.epage=391&rft_id=info:doi/10.1002%2Fese3.506&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a44d37806ffd4bffb1aead24853cd8de
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-0505&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-0505&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-0505&client=summon