Knee- and Ankle-Joint Torques Contribute to Controlling the Whole-Body Linear and Angular Momenta in the Single-Support Phase after Tripping during Gait

This study aims to investigate the kinetic mechanisms of controlling the whole-body linear momentum (WBLM) and whole-body angular momentum around the whole-body center of mass (WBAM) in the single-support phase after tripping during gait. Twelve young participants were made to trip during gait, and...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Sport and Health Science Vol. 21; pp. 106 - 116
Main Authors Nakajima, Takahiro, Yoshioka, Shinsuke, Fukashiro, Senshi
Format Journal Article
LanguageEnglish
Published Japan Society of Physical Education, Health and Sport Sciences 2023
Japan Society of Physical Education, Health and Sport sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study aims to investigate the kinetic mechanisms of controlling the whole-body linear momentum (WBLM) and whole-body angular momentum around the whole-body center of mass (WBAM) in the single-support phase after tripping during gait. Twelve young participants were made to trip during gait, and the kinematics and kinetics of their recovery responses were recorded using a 17-camera motion capture system and force platform. We found that the knee-flexion torque of the support leg dominantly contributed to the decrease in the forward WBAM increased owing to tripping, whereas this torque caused a significant forward WBLM at foot landing. The ankle-plantarflexion torque of the support leg contributed to the prevention of the body descent in the first half of this phase, although this effect decreased in the later phase, resulting in the increase in the downward WBLM at foot landing. The ankle-plantarflexion torque also contributed to the increase in the forward WBLM at foot landing. These results indicate that the ankle- and knee-joint torque exertions of the support leg are the main contributors to the change in WBLM and WBAM in the single-support phase after tripping during gait. This study also suggests that there is a trade-off relationship between the control of WBLM and WBAM, and younger adults prioritize the WBAM adjustment during this phase.
AbstractList This study aims to investigate the kinetic mechanisms of controlling the whole-body linear momentum (WBLM) and whole-body angular momentum around the whole-body center of mass (WBAM) in the single-support phase after tripping during gait. Twelve young participants were made to trip during gait, and the kinematics and kinetics of their recovery responses were recorded using a 17-camera motion capture system and force platform. We found that the knee-flexion torque of the support leg dominantly contributed to the decrease in the forward WBAM increased owing to tripping, whereas this torque caused a significant forward WBLM at foot landing. The ankle-plantarflexion torque of the support leg contributed to the prevention of the body descent in the first half of this phase, although this effect decreased in the later phase, resulting in the increase in the downward WBLM at foot landing. The ankle-plantarflexion torque also contributed to the increase in the forward WBLM at foot landing. These results indicate that the ankle- and knee-joint torque exertions of the support leg are the main contributors to the change in WBLM and WBAM in the single-support phase after tripping during gait. This study also suggests that there is a trade-off relationship between the control of WBLM and WBAM, and younger adults prioritize the WBAM adjustment during this phase.
ArticleNumber 202305
Author Yoshioka, Shinsuke
Nakajima, Takahiro
Fukashiro, Senshi
Author_xml – sequence: 1
  fullname: Nakajima, Takahiro
  organization: Department of Human Sciences, Kanagawa University
– sequence: 2
  fullname: Yoshioka, Shinsuke
  organization: Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo
– sequence: 3
  fullname: Fukashiro, Senshi
  organization: Japan Women's College of Physical Education
BookMark eNp1UNtu1DAQjVCRaAtvfIA_gLRjO84mj-0KlssiKnUrHi3HmWy8ZO1gOxL9k34uTlOKhMTLXDTnnJk5Z9mJdRaz7C2FC1FwdmkOoQ8XDBgH8SI7pVUFeQGUnaSaF1VOBdSvsrMQDgCirkCcZg9fLGJOlG3Jlf0xYP7ZGRvJzvmfEwaydjZ600wRSXRL54bB2D2JPZLvvUuMa9fek62xqPyTzn4aUv3VHdFGRYx9BN8mVkLfTuPofCQ3vQpIVBfRk5034ziLtpOf00aZ-Dp72akh4JunfJ7dfXi_W3_Mt982n9ZX21wX6cu806ztFLCqYsgb1By54k2JXStqLDraVNDy1aoQmiLUtGxqXmnaFqJkK9rULT_P3i262rsQPHZy9Oao_L2kIGdX5aOrcnE1wdk_cG2iimZ2Rpnhf6TNQjpia7QanE0Wojy4ydv0m0Qj_uLlL2AUQAIwCRTKFGhZMMHriiWl60XpEKLa4_OtykejB_yzlkqYw7L-eah75SVa_hs-Rq8N
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_108492
Cites_doi 10.1016/j.gaitpost.2013.05.009
10.1002/9780470549148
10.1016/j.humov.2009.07.011
10.3389/fnhum.2016.00029
10.1016/j.jbiomech.2006.07.016
10.1016/j.humov.2007.08.003
10.1016/j.jbiomech.2011.12.011
10.1016/j.jbiomech.2006.02.013
10.1371/journal.pone.0185564
10.1080/02640414.2017.1340658
10.1007/BF00227520
10.1113/jphysiol.1992.sp019397
10.1016/j.jbiomech.2004.02.038
10.1016/j.gaitpost.2004.04.009
10.1038/s41598-019-50995-3
10.1016/j.jbiomech.2014.01.034
10.1152/jn.01226.2006
10.1016/j.jbiomech.2004.03.025
10.1016/j.jbiomech.2004.03.029
10.1242/jeb.008573
10.1186/s12984-019-0527-7
10.1016/0021-9290(89)90082-1
10.1109/TBME.2013.2241434
10.1016/j.jbiomech.2013.09.016
10.1007/s00221-004-2014-y
10.1299/jsmesports.2007.0_278
10.1093/gerona/56.7.M428
10.1016/j.jbiomech.2014.04.052
10.1016/j.jbiomech.2022.111169
ContentType Journal Article
Copyright 2023 Japan Society of Physical Education, Health and Sport Sciences
Copyright_xml – notice: 2023 Japan Society of Physical Education, Health and Sport Sciences
CorporateAuthor Department of Human Sciences
Department of Life Sciences
Kanagawa University
Graduate School of Arts and Sciences
The University of Tokyo
Japan Women's College of Physical Education
CorporateAuthor_xml – name: Japan Women's College of Physical Education
– name: Graduate School of Arts and Sciences
– name: The University of Tokyo
– name: Kanagawa University
– name: Department of Life Sciences
– name: Department of Human Sciences
DBID AAYXX
CITATION
DOI 10.5432/ijshs.202305
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
EISSN 1880-4012
EndPage 116
ExternalDocumentID 10_5432_ijshs_202305
ei5ijshs_2023_x02100_002_0106_01164253982
article_ijshs_21_0_21_202305_article_char_en
GroupedDBID 2WC
53G
5GY
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
DIK
DXH
E3Z
FRS
JMI
JSF
JSH
KQ8
MK0
MOJWN
OK1
P2P
RJT
RZJ
TKC
TR2
AAYXX
CITATION
ID FETCH-LOGICAL-c4305-fc2dfa02882e3bec3e3a3b6efd59e4f1b80d37745c1e0916b938c1d456271b9d3
ISSN 1348-1509
IngestDate Thu Apr 24 22:59:16 EDT 2025
Tue Jul 01 03:16:14 EDT 2025
Thu Jul 10 16:15:20 EDT 2025
Thu Oct 12 14:00:33 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4305-fc2dfa02882e3bec3e3a3b6efd59e4f1b80d37745c1e0916b938c1d456271b9d3
OpenAccessLink https://www.jstage.jst.go.jp/article/ijshs/21/0/21_202305/_article/-char/en
PageCount 11
ParticipantIDs crossref_primary_10_5432_ijshs_202305
crossref_citationtrail_10_5432_ijshs_202305
medicalonline_journals_ei5ijshs_2023_x02100_002_0106_01164253982
jstage_primary_article_ijshs_21_0_21_202305_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023
20230000
2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023
PublicationDecade 2020
PublicationTitle International Journal of Sport and Health Science
PublicationTitleAlternate Int. J. Sport Health Sci.
PublicationYear 2023
Publisher Japan Society of Physical Education, Health and Sport Sciences
Japan Society of Physical Education, Health and Sport sciences
Publisher_xml – name: Japan Society of Physical Education, Health and Sport Sciences
– name: Japan Society of Physical Education, Health and Sport sciences
References Pijnappels, M., Bobbert, M. F., and van Dieën, J. H. (2005a). Push-off reactions in recovery after tripping discriminate young subjects, older non-fallers and older fallers. Gait Posture, 21: 388-394.
Kristianslund, E., Krosshaug, T., Mok, K., McLean, S., and van den Bogert, A. J. (2014). Expressing the joint moments of drop jumps and sidestep cutting in different reference frames – does it matter? J. Biomech., 47: 193-199.
Hof, A. L. (2008). The ‘extrapolated center of mass’ concept suggests a simple control of balance in walking. Hum. Mov. Sci., 27: 112-125.
Gruben, K. G. and Boehm, W. L. (2014). Ankle torque control that shifts the center of pressure from heel to toe contributes non-zero sagittal plane angular momentum during human walking. J. Biomech., 47: 1389-1394.
Dumas, R., Cheze, L., and Verriest, J. (2007b). Corrigendum to “Adjustments to McConville et al. and Young et al. body segment inertial parameters” [J. Biomech. 40 (2007) 543-553]. J. Biomech., 40: 1651-1652.
Koike, S., Nakaya, S., Mori, H., Ishikawa, T., and Willmott, A. P. (2019). Modelling error distribution in the ground reaction force during an induced-acceleration analysis of running in rear-foot strikers. J. Sports Sci., 37: 968-979.
Shinya, M., Kawashima, N., and Nakazawa, K. (2016). Temporal, but not directional, prior knowledge shortens muscle reflex latency in response to sudden transition of support surface during walking. Front. Hum. Neurosci., 10: 29.
Pavol, M. J., Owings, T. M., Foley, K. T., and Grabiner, M. D. (2001). Mechanisms leading to a fall from an induced trip in healthy older adults. J. Gerontol. Ser. A-Biol. Sci. Med. Sci., 56: M428-M437.
Pijnappels, M., Bobbert, M. F., and van Dieën, J. H. (2004). Contribution of the support limb in control of angular momentum after tripping. J. Biomech., 37: 1811-1818.
Pijnappels, M., Bobbert, M. F., and van Dieën, J. H. (2005b). How early reactions in the support limb contribute to balance recovery after tripping. J. Biomech., 38: 627-634.
Klemetti, R., Steele, K. M., Moilanen, P., Avela, J., and Timonen, J. (2014). Contributions of individual muscles to the sagittal- and frontal-plane angular accelerations of the trunk in walking. J. Biomech., 47: 2263-2268.
Hof, A. L., Gazendam, M., and Sinke, W. E. (2005). The condition for dynamic stability. J. Biomech., 38: 1-8.
Schumacher, C., Berry, A., Lemus, D., Rode, C., Seyfarth, A., and Vallery, H. (2019). Biarticular muscles are most responsive to upper-body pitch perturbations in human standing. Sci. Rep., 9: 14492.
King, S. T., Eveld, M. E., Martínez, A., Zelik, K. E., and Goldfarb, M. (2019). A novel system for introducing precisely-controlled, unanticipated gait perturbations for the study of stumble recovery. J. NeuroEng. Rehabil. 16: 1-17.
van Mierlo, M., Ambrosius, J. I., Vlutters, M., van Asseldonk, E., and van der Kooij, H. (2022). Recovery from sagittal-plane whole body angular momentum perturbations during walking. J. Biomech., 141: 111169.
Herr, H. and Popovic, M. (2008). Angular momentum in human walking. J. Exp. Biol., 211: 467-481.
Pijnappels, M., Bobbert, M. F., and van Dieën, J. H. (2005c). Control of support limb muscles in recovery after tripping in young and older subjects. Exp. Brain Res., 160: 326-333.
Kristianslund, E., Krosshaug, T., and van den Bogert, A. J. (2012). Effect of low pass filtering on joint moments from inverse dynamics: Implications for injury prevention. J. Biomech., 45: 666-671.
Dumas, R., Cheze, L., and Verriest, J. (2007a). Adjustments to McConville et al. and Young et al. body segment inertial parameters. J. Biomech., 40: 543-553.
Martelli, D., Monaco, V., Luciani, L. B., and Micera, S. (2013). Angular momentum during unexpected multidirectional perturbations delivered while walking. IEEE. Trans. Biomed. Eng., 60: 1785-1795.
Graham, D. F., Carty, C. P., Lloyd, D. G., and Barrett, R. S. (2017). Muscle contributions to the acceleration of the whole body centre of mass during recovery from forward loss of balance by stepping in young and older adults. PLoS One., 12: e0185564.
Bennett, B. C., Russell, S. D., Sheth, P., and Abel, M. F. (2010). Angular momentum of walking at different speeds. Hum. Mov. Sci., 29: 114-124.
Winter, D. A. (2009). Biomechanics and motor control of human movement (4th ed.) (pp.64-75). Hoboken, New Jersey: John Wiley & Sons.
Jacobs, R. and van Ingen Schenau, G. J. (1992). Control of an external force in leg extensions in humans. J. Physiol.-London, 457: 611-626.
Smith, G. (1989). Padding point extrapolation techniques for the Butterworth digital filter. J. Biomech., 22: 967-971.
Nakajima, T., Yoshioka, S., and Fukashiro, S. (2020). Pre-landing control of angular and linear momenta after tripping during gait. Jpn. J. Biomech. Sports Exerc., 24: 44-56.
Mori, H. and Koike, S. (2007). Dynamic Analysis of Jump Motion Based on Multi-body Dynamics (Contribution of Joint Torques to Angular Momentum of Body). JSME proceedings., 2007: 278-283. (in Japanese).
Eng, J. J., Winter, D. A., and Patla, A. E. (1994). Strategies for recovery from a trip in early and late swing during human walking. Exp. Brain Res., 102: 339-349.
Francis, C. A., Lenz, A. L., Lenhart, R. L., and Thelen, D. G. (2013). The modulation of forward propulsion, vertical support, and center of pressure by the plantarflexors during human walking. Gait Posture, 38: 993-997.
Nieuwenhuijzen, P. and Duysens, J. (2007). Proactive and reactive mechanisms play a role in stepping on inverting surfaces during gait. J. Neurophysiol., 98: 2266-2273.
22
23
24
25
26
27
28
29
30
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: van Mierlo, M., Ambrosius, J. I., Vlutters, M., van Asseldonk, E., and van der Kooij, H. (2022). Recovery from sagittal-plane whole body angular momentum perturbations during walking. J. Biomech., 141: 111169.
– reference: Pijnappels, M., Bobbert, M. F., and van Dieën, J. H. (2005c). Control of support limb muscles in recovery after tripping in young and older subjects. Exp. Brain Res., 160: 326-333.
– reference: Herr, H. and Popovic, M. (2008). Angular momentum in human walking. J. Exp. Biol., 211: 467-481.
– reference: Pijnappels, M., Bobbert, M. F., and van Dieën, J. H. (2005a). Push-off reactions in recovery after tripping discriminate young subjects, older non-fallers and older fallers. Gait Posture, 21: 388-394.
– reference: Pavol, M. J., Owings, T. M., Foley, K. T., and Grabiner, M. D. (2001). Mechanisms leading to a fall from an induced trip in healthy older adults. J. Gerontol. Ser. A-Biol. Sci. Med. Sci., 56: M428-M437.
– reference: Kristianslund, E., Krosshaug, T., Mok, K., McLean, S., and van den Bogert, A. J. (2014). Expressing the joint moments of drop jumps and sidestep cutting in different reference frames – does it matter? J. Biomech., 47: 193-199.
– reference: Smith, G. (1989). Padding point extrapolation techniques for the Butterworth digital filter. J. Biomech., 22: 967-971.
– reference: Martelli, D., Monaco, V., Luciani, L. B., and Micera, S. (2013). Angular momentum during unexpected multidirectional perturbations delivered while walking. IEEE. Trans. Biomed. Eng., 60: 1785-1795.
– reference: Nieuwenhuijzen, P. and Duysens, J. (2007). Proactive and reactive mechanisms play a role in stepping on inverting surfaces during gait. J. Neurophysiol., 98: 2266-2273.
– reference: Pijnappels, M., Bobbert, M. F., and van Dieën, J. H. (2005b). How early reactions in the support limb contribute to balance recovery after tripping. J. Biomech., 38: 627-634.
– reference: Kristianslund, E., Krosshaug, T., and van den Bogert, A. J. (2012). Effect of low pass filtering on joint moments from inverse dynamics: Implications for injury prevention. J. Biomech., 45: 666-671.
– reference: Hof, A. L., Gazendam, M., and Sinke, W. E. (2005). The condition for dynamic stability. J. Biomech., 38: 1-8.
– reference: Eng, J. J., Winter, D. A., and Patla, A. E. (1994). Strategies for recovery from a trip in early and late swing during human walking. Exp. Brain Res., 102: 339-349.
– reference: Mori, H. and Koike, S. (2007). Dynamic Analysis of Jump Motion Based on Multi-body Dynamics (Contribution of Joint Torques to Angular Momentum of Body). JSME proceedings., 2007: 278-283. (in Japanese).
– reference: Hof, A. L. (2008). The ‘extrapolated center of mass’ concept suggests a simple control of balance in walking. Hum. Mov. Sci., 27: 112-125.
– reference: Jacobs, R. and van Ingen Schenau, G. J. (1992). Control of an external force in leg extensions in humans. J. Physiol.-London, 457: 611-626.
– reference: Dumas, R., Cheze, L., and Verriest, J. (2007b). Corrigendum to “Adjustments to McConville et al. and Young et al. body segment inertial parameters” [J. Biomech. 40 (2007) 543-553]. J. Biomech., 40: 1651-1652.
– reference: Pijnappels, M., Bobbert, M. F., and van Dieën, J. H. (2004). Contribution of the support limb in control of angular momentum after tripping. J. Biomech., 37: 1811-1818.
– reference: Gruben, K. G. and Boehm, W. L. (2014). Ankle torque control that shifts the center of pressure from heel to toe contributes non-zero sagittal plane angular momentum during human walking. J. Biomech., 47: 1389-1394.
– reference: Schumacher, C., Berry, A., Lemus, D., Rode, C., Seyfarth, A., and Vallery, H. (2019). Biarticular muscles are most responsive to upper-body pitch perturbations in human standing. Sci. Rep., 9: 14492.
– reference: Winter, D. A. (2009). Biomechanics and motor control of human movement (4th ed.) (pp.64-75). Hoboken, New Jersey: John Wiley & Sons.
– reference: Francis, C. A., Lenz, A. L., Lenhart, R. L., and Thelen, D. G. (2013). The modulation of forward propulsion, vertical support, and center of pressure by the plantarflexors during human walking. Gait Posture, 38: 993-997.
– reference: Bennett, B. C., Russell, S. D., Sheth, P., and Abel, M. F. (2010). Angular momentum of walking at different speeds. Hum. Mov. Sci., 29: 114-124.
– reference: Klemetti, R., Steele, K. M., Moilanen, P., Avela, J., and Timonen, J. (2014). Contributions of individual muscles to the sagittal- and frontal-plane angular accelerations of the trunk in walking. J. Biomech., 47: 2263-2268.
– reference: Shinya, M., Kawashima, N., and Nakazawa, K. (2016). Temporal, but not directional, prior knowledge shortens muscle reflex latency in response to sudden transition of support surface during walking. Front. Hum. Neurosci., 10: 29.
– reference: Graham, D. F., Carty, C. P., Lloyd, D. G., and Barrett, R. S. (2017). Muscle contributions to the acceleration of the whole body centre of mass during recovery from forward loss of balance by stepping in young and older adults. PLoS One., 12: e0185564.
– reference: Koike, S., Nakaya, S., Mori, H., Ishikawa, T., and Willmott, A. P. (2019). Modelling error distribution in the ground reaction force during an induced-acceleration analysis of running in rear-foot strikers. J. Sports Sci., 37: 968-979.
– reference: Nakajima, T., Yoshioka, S., and Fukashiro, S. (2020). Pre-landing control of angular and linear momenta after tripping during gait. Jpn. J. Biomech. Sports Exerc., 24: 44-56.
– reference: Dumas, R., Cheze, L., and Verriest, J. (2007a). Adjustments to McConville et al. and Young et al. body segment inertial parameters. J. Biomech., 40: 543-553.
– reference: King, S. T., Eveld, M. E., Martínez, A., Zelik, K. E., and Goldfarb, M. (2019). A novel system for introducing precisely-controlled, unanticipated gait perturbations for the study of stumble recovery. J. NeuroEng. Rehabil. 16: 1-17.
– ident: 5
  doi: 10.1016/j.gaitpost.2013.05.009
– ident: 30
  doi: 10.1002/9780470549148
– ident: 1
  doi: 10.1016/j.humov.2009.07.011
– ident: 27
  doi: 10.3389/fnhum.2016.00029
– ident: 3
  doi: 10.1016/j.jbiomech.2006.07.016
– ident: 10
  doi: 10.1016/j.humov.2007.08.003
– ident: 15
  doi: 10.1016/j.jbiomech.2011.12.011
– ident: 2
  doi: 10.1016/j.jbiomech.2006.02.013
– ident: 6
  doi: 10.1371/journal.pone.0185564
– ident: 14
  doi: 10.1080/02640414.2017.1340658
– ident: 4
  doi: 10.1007/BF00227520
– ident: 11
  doi: 10.1113/jphysiol.1992.sp019397
– ident: 22
  doi: 10.1016/j.jbiomech.2004.02.038
– ident: 23
  doi: 10.1016/j.gaitpost.2004.04.009
– ident: 26
  doi: 10.1038/s41598-019-50995-3
– ident: 7
  doi: 10.1016/j.jbiomech.2014.01.034
– ident: 20
  doi: 10.1152/jn.01226.2006
– ident: 9
  doi: 10.1016/j.jbiomech.2004.03.025
– ident: 24
  doi: 10.1016/j.jbiomech.2004.03.029
– ident: 8
  doi: 10.1242/jeb.008573
– ident: 12
  doi: 10.1186/s12984-019-0527-7
– ident: 28
  doi: 10.1016/0021-9290(89)90082-1
– ident: 17
  doi: 10.1109/TBME.2013.2241434
– ident: 16
  doi: 10.1016/j.jbiomech.2013.09.016
– ident: 25
  doi: 10.1007/s00221-004-2014-y
– ident: 18
  doi: 10.1299/jsmesports.2007.0_278
– ident: 19
– ident: 21
  doi: 10.1093/gerona/56.7.M428
– ident: 13
  doi: 10.1016/j.jbiomech.2014.04.052
– ident: 29
  doi: 10.1016/j.jbiomech.2022.111169
SSID ssj0059805
ssib014751302
Score 2.2066236
Snippet This study aims to investigate the kinetic mechanisms of controlling the whole-body linear momentum (WBLM) and whole-body angular momentum around the...
SourceID crossref
medicalonline
jstage
SourceType Enrichment Source
Index Database
Publisher
StartPage 106
SubjectTerms kinetics
lower limb
perturbation
postural control
stability
Title Knee- and Ankle-Joint Torques Contribute to Controlling the Whole-Body Linear and Angular Momenta in the Single-Support Phase after Tripping during Gait
URI https://www.jstage.jst.go.jp/article/ijshs/21/0/21_202305/_article/-char/en
http://mol.medicalonline.jp/en/journal/download?GoodsID=ei5ijshs/2023/x02100/002&name=0106-0116e
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX International Journal of Sport and Health Science, 2023, Vol.21, pp.106-116
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLa6cEBCCASIYZMPcKoCcRJPEnGhFEppVYQ0U9FbFCdOJzPTBM0iAb-En8t7z84yLBKFSxQlju3kfXpb3sLYU1-lUS4wMxd0YSdIQ-WkoogcUPc1SCupCupDdvpheHQWHJ_L863t3V7U0nqlnmfffptX8i9UhWtAV8ySvQJl20nhApwDfeEIFIbjX9H4pNLaIff_fjWba-e4LqvV3rheILPHZD7Tzoq6YxyYmPR5kx71CRvjOq_r_Cva5VjOx8xzQXGppzUFlTdRkCN4CkZjC1BQ1_c-TkD22fbi4wWVeLhoEh7fpeWGu_9Xl6PVf6m_Oi1qU6Esm2nd0-ksnZaXpNyO4XxSLuqORy0nZT2je6MJxtPP2ucO1zNsEGXyd0Yaw9H6rg2Td2wEDigKVRu3isGADWi7sBeSzLQ9inGlPduN9tycwg_ASpauYcvaXAOeBXaz2JACJk_bsnHhDnsagTDZoD8LGxn4WLy2nC6p7jvYcrITqm2oowVHQsMSTyQuHszwpLmJGXYA6G2264G1g_LlzfuTRqGQcUSRuO2rmPwNXP5Ff_ENzeraFIwLrBpx49L88DOFV3q60_gWu2mJzvfNPm6zLV3dYd8JvRw-K--hl1v08g69fFXzHno5AJJ36OUGvXYeQi-36OVlRYM30csJvZzQyxv0coNejui9y84O344PjhzbJ8TJsGCdU2ReXqSgKEee9oEn-dpPfTXURS5jHRRCRW7ug5kjM6FBPR6q2I8ykaPtHwoV5_49tlPVlb7PuMjDQIW6CF1ZBK5SaYCzDEGJl2EWuPGA7TXfOMlsEX3s5TJPwJhGijR0JooM2LN29GdTPOYP414acrWjroKaAXu1QePEcqhlokvZLZN8QfcOFgP2EnQEJfgLFiS2H0feg__awEN2HW8Yx-QjtrNarPVjUNVX6gkB-QdK1fbk
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knee-+and+Ankle-Joint+Torques+Contribute+to+Controlling+the+Whole-Body+Linear+and+Angular+Momenta+in+the+Single-Support+Phase+after+Tripping+during+Gait&rft.jtitle=International+Journal+of+Sport+and+Health+Science&rft.au=Nakajima%2C+Takahiro&rft.au=Yoshioka%2C+Shinsuke&rft.au=Fukashiro%2C+Senshi&rft.date=2023&rft.pub=Japan+Society+of+Physical+Education%2C+Health+and+Sport+Sciences&rft.issn=1348-1509&rft.eissn=1880-4012&rft.volume=21&rft.spage=106&rft.epage=116&rft_id=info:doi/10.5432%2Fijshs.202305&rft.externalDocID=article_ijshs_21_0_21_202305_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1348-1509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1348-1509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1348-1509&client=summon