Knee- and Ankle-Joint Torques Contribute to Controlling the Whole-Body Linear and Angular Momenta in the Single-Support Phase after Tripping during Gait
This study aims to investigate the kinetic mechanisms of controlling the whole-body linear momentum (WBLM) and whole-body angular momentum around the whole-body center of mass (WBAM) in the single-support phase after tripping during gait. Twelve young participants were made to trip during gait, and...
Saved in:
Published in | International Journal of Sport and Health Science Vol. 21; pp. 106 - 116 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Japan Society of Physical Education, Health and Sport Sciences
2023
Japan Society of Physical Education, Health and Sport sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study aims to investigate the kinetic mechanisms of controlling the whole-body linear momentum (WBLM) and whole-body angular momentum around the whole-body center of mass (WBAM) in the single-support phase after tripping during gait. Twelve young participants were made to trip during gait, and the kinematics and kinetics of their recovery responses were recorded using a 17-camera motion capture system and force platform. We found that the knee-flexion torque of the support leg dominantly contributed to the decrease in the forward WBAM increased owing to tripping, whereas this torque caused a significant forward WBLM at foot landing. The ankle-plantarflexion torque of the support leg contributed to the prevention of the body descent in the first half of this phase, although this effect decreased in the later phase, resulting in the increase in the downward WBLM at foot landing. The ankle-plantarflexion torque also contributed to the increase in the forward WBLM at foot landing. These results indicate that the ankle- and knee-joint torque exertions of the support leg are the main contributors to the change in WBLM and WBAM in the single-support phase after tripping during gait. This study also suggests that there is a trade-off relationship between the control of WBLM and WBAM, and younger adults prioritize the WBAM adjustment during this phase. |
---|---|
AbstractList | This study aims to investigate the kinetic mechanisms of controlling the whole-body linear momentum (WBLM) and whole-body angular momentum around the whole-body center of mass (WBAM) in the single-support phase after tripping during gait. Twelve young participants were made to trip during gait, and the kinematics and kinetics of their recovery responses were recorded using a 17-camera motion capture system and force platform. We found that the knee-flexion torque of the support leg dominantly contributed to the decrease in the forward WBAM increased owing to tripping, whereas this torque caused a significant forward WBLM at foot landing. The ankle-plantarflexion torque of the support leg contributed to the prevention of the body descent in the first half of this phase, although this effect decreased in the later phase, resulting in the increase in the downward WBLM at foot landing. The ankle-plantarflexion torque also contributed to the increase in the forward WBLM at foot landing. These results indicate that the ankle- and knee-joint torque exertions of the support leg are the main contributors to the change in WBLM and WBAM in the single-support phase after tripping during gait. This study also suggests that there is a trade-off relationship between the control of WBLM and WBAM, and younger adults prioritize the WBAM adjustment during this phase. |
ArticleNumber | 202305 |
Author | Yoshioka, Shinsuke Nakajima, Takahiro Fukashiro, Senshi |
Author_xml | – sequence: 1 fullname: Nakajima, Takahiro organization: Department of Human Sciences, Kanagawa University – sequence: 2 fullname: Yoshioka, Shinsuke organization: Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo – sequence: 3 fullname: Fukashiro, Senshi organization: Japan Women's College of Physical Education |
BookMark | eNp1UNtu1DAQjVCRaAtvfIA_gLRjO84mj-0KlssiKnUrHi3HmWy8ZO1gOxL9k34uTlOKhMTLXDTnnJk5Z9mJdRaz7C2FC1FwdmkOoQ8XDBgH8SI7pVUFeQGUnaSaF1VOBdSvsrMQDgCirkCcZg9fLGJOlG3Jlf0xYP7ZGRvJzvmfEwaydjZ600wRSXRL54bB2D2JPZLvvUuMa9fek62xqPyTzn4aUv3VHdFGRYx9BN8mVkLfTuPofCQ3vQpIVBfRk5034ziLtpOf00aZ-Dp72akh4JunfJ7dfXi_W3_Mt982n9ZX21wX6cu806ztFLCqYsgb1By54k2JXStqLDraVNDy1aoQmiLUtGxqXmnaFqJkK9rULT_P3i262rsQPHZy9Oao_L2kIGdX5aOrcnE1wdk_cG2iimZ2Rpnhf6TNQjpia7QanE0Wojy4ydv0m0Qj_uLlL2AUQAIwCRTKFGhZMMHriiWl60XpEKLa4_OtykejB_yzlkqYw7L-eah75SVa_hs-Rq8N |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2024_108492 |
Cites_doi | 10.1016/j.gaitpost.2013.05.009 10.1002/9780470549148 10.1016/j.humov.2009.07.011 10.3389/fnhum.2016.00029 10.1016/j.jbiomech.2006.07.016 10.1016/j.humov.2007.08.003 10.1016/j.jbiomech.2011.12.011 10.1016/j.jbiomech.2006.02.013 10.1371/journal.pone.0185564 10.1080/02640414.2017.1340658 10.1007/BF00227520 10.1113/jphysiol.1992.sp019397 10.1016/j.jbiomech.2004.02.038 10.1016/j.gaitpost.2004.04.009 10.1038/s41598-019-50995-3 10.1016/j.jbiomech.2014.01.034 10.1152/jn.01226.2006 10.1016/j.jbiomech.2004.03.025 10.1016/j.jbiomech.2004.03.029 10.1242/jeb.008573 10.1186/s12984-019-0527-7 10.1016/0021-9290(89)90082-1 10.1109/TBME.2013.2241434 10.1016/j.jbiomech.2013.09.016 10.1007/s00221-004-2014-y 10.1299/jsmesports.2007.0_278 10.1093/gerona/56.7.M428 10.1016/j.jbiomech.2014.04.052 10.1016/j.jbiomech.2022.111169 |
ContentType | Journal Article |
Copyright | 2023 Japan Society of Physical Education, Health and Sport Sciences |
Copyright_xml | – notice: 2023 Japan Society of Physical Education, Health and Sport Sciences |
CorporateAuthor | Department of Human Sciences Department of Life Sciences Kanagawa University Graduate School of Arts and Sciences The University of Tokyo Japan Women's College of Physical Education |
CorporateAuthor_xml | – name: Japan Women's College of Physical Education – name: Graduate School of Arts and Sciences – name: The University of Tokyo – name: Kanagawa University – name: Department of Life Sciences – name: Department of Human Sciences |
DBID | AAYXX CITATION |
DOI | 10.5432/ijshs.202305 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1880-4012 |
EndPage | 116 |
ExternalDocumentID | 10_5432_ijshs_202305 ei5ijshs_2023_x02100_002_0106_01164253982 article_ijshs_21_0_21_202305_article_char_en |
GroupedDBID | 2WC 53G 5GY ADBBV ALMA_UNASSIGNED_HOLDINGS BAWUL DIK DXH E3Z FRS JMI JSF JSH KQ8 MK0 MOJWN OK1 P2P RJT RZJ TKC TR2 AAYXX CITATION |
ID | FETCH-LOGICAL-c4305-fc2dfa02882e3bec3e3a3b6efd59e4f1b80d37745c1e0916b938c1d456271b9d3 |
ISSN | 1348-1509 |
IngestDate | Thu Apr 24 22:59:16 EDT 2025 Tue Jul 01 03:16:14 EDT 2025 Thu Jul 10 16:15:20 EDT 2025 Thu Oct 12 14:00:33 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4305-fc2dfa02882e3bec3e3a3b6efd59e4f1b80d37745c1e0916b938c1d456271b9d3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/ijshs/21/0/21_202305/_article/-char/en |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_5432_ijshs_202305 crossref_citationtrail_10_5432_ijshs_202305 medicalonline_journals_ei5ijshs_2023_x02100_002_0106_01164253982 jstage_primary_article_ijshs_21_0_21_202305_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023 20230000 2023-00-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023 |
PublicationDecade | 2020 |
PublicationTitle | International Journal of Sport and Health Science |
PublicationTitleAlternate | Int. J. Sport Health Sci. |
PublicationYear | 2023 |
Publisher | Japan Society of Physical Education, Health and Sport Sciences Japan Society of Physical Education, Health and Sport sciences |
Publisher_xml | – name: Japan Society of Physical Education, Health and Sport Sciences – name: Japan Society of Physical Education, Health and Sport sciences |
References | Pijnappels, M., Bobbert, M. F., and van Dieën, J. H. (2005a). Push-off reactions in recovery after tripping discriminate young subjects, older non-fallers and older fallers. Gait Posture, 21: 388-394. Kristianslund, E., Krosshaug, T., Mok, K., McLean, S., and van den Bogert, A. J. (2014). Expressing the joint moments of drop jumps and sidestep cutting in different reference frames – does it matter? J. Biomech., 47: 193-199. Hof, A. L. (2008). The ‘extrapolated center of mass’ concept suggests a simple control of balance in walking. Hum. Mov. Sci., 27: 112-125. Gruben, K. G. and Boehm, W. L. (2014). Ankle torque control that shifts the center of pressure from heel to toe contributes non-zero sagittal plane angular momentum during human walking. J. Biomech., 47: 1389-1394. Dumas, R., Cheze, L., and Verriest, J. (2007b). Corrigendum to “Adjustments to McConville et al. and Young et al. body segment inertial parameters” [J. Biomech. 40 (2007) 543-553]. J. Biomech., 40: 1651-1652. Koike, S., Nakaya, S., Mori, H., Ishikawa, T., and Willmott, A. P. (2019). Modelling error distribution in the ground reaction force during an induced-acceleration analysis of running in rear-foot strikers. J. Sports Sci., 37: 968-979. Shinya, M., Kawashima, N., and Nakazawa, K. (2016). Temporal, but not directional, prior knowledge shortens muscle reflex latency in response to sudden transition of support surface during walking. Front. Hum. Neurosci., 10: 29. Pavol, M. J., Owings, T. M., Foley, K. T., and Grabiner, M. D. (2001). Mechanisms leading to a fall from an induced trip in healthy older adults. J. Gerontol. Ser. A-Biol. Sci. Med. Sci., 56: M428-M437. Pijnappels, M., Bobbert, M. F., and van Dieën, J. H. (2004). Contribution of the support limb in control of angular momentum after tripping. J. Biomech., 37: 1811-1818. Pijnappels, M., Bobbert, M. F., and van Dieën, J. H. (2005b). How early reactions in the support limb contribute to balance recovery after tripping. J. Biomech., 38: 627-634. Klemetti, R., Steele, K. M., Moilanen, P., Avela, J., and Timonen, J. (2014). Contributions of individual muscles to the sagittal- and frontal-plane angular accelerations of the trunk in walking. J. Biomech., 47: 2263-2268. Hof, A. L., Gazendam, M., and Sinke, W. E. (2005). The condition for dynamic stability. J. Biomech., 38: 1-8. Schumacher, C., Berry, A., Lemus, D., Rode, C., Seyfarth, A., and Vallery, H. (2019). Biarticular muscles are most responsive to upper-body pitch perturbations in human standing. Sci. Rep., 9: 14492. King, S. T., Eveld, M. E., Martínez, A., Zelik, K. E., and Goldfarb, M. (2019). A novel system for introducing precisely-controlled, unanticipated gait perturbations for the study of stumble recovery. J. NeuroEng. Rehabil. 16: 1-17. van Mierlo, M., Ambrosius, J. I., Vlutters, M., van Asseldonk, E., and van der Kooij, H. (2022). Recovery from sagittal-plane whole body angular momentum perturbations during walking. J. Biomech., 141: 111169. Herr, H. and Popovic, M. (2008). Angular momentum in human walking. J. Exp. Biol., 211: 467-481. Pijnappels, M., Bobbert, M. F., and van Dieën, J. H. (2005c). Control of support limb muscles in recovery after tripping in young and older subjects. Exp. Brain Res., 160: 326-333. Kristianslund, E., Krosshaug, T., and van den Bogert, A. J. (2012). Effect of low pass filtering on joint moments from inverse dynamics: Implications for injury prevention. J. Biomech., 45: 666-671. Dumas, R., Cheze, L., and Verriest, J. (2007a). Adjustments to McConville et al. and Young et al. body segment inertial parameters. J. Biomech., 40: 543-553. Martelli, D., Monaco, V., Luciani, L. B., and Micera, S. (2013). Angular momentum during unexpected multidirectional perturbations delivered while walking. IEEE. Trans. Biomed. Eng., 60: 1785-1795. Graham, D. F., Carty, C. P., Lloyd, D. G., and Barrett, R. S. (2017). Muscle contributions to the acceleration of the whole body centre of mass during recovery from forward loss of balance by stepping in young and older adults. PLoS One., 12: e0185564. Bennett, B. C., Russell, S. D., Sheth, P., and Abel, M. F. (2010). Angular momentum of walking at different speeds. Hum. Mov. Sci., 29: 114-124. Winter, D. A. (2009). Biomechanics and motor control of human movement (4th ed.) (pp.64-75). Hoboken, New Jersey: John Wiley & Sons. Jacobs, R. and van Ingen Schenau, G. J. (1992). Control of an external force in leg extensions in humans. J. Physiol.-London, 457: 611-626. Smith, G. (1989). Padding point extrapolation techniques for the Butterworth digital filter. J. Biomech., 22: 967-971. Nakajima, T., Yoshioka, S., and Fukashiro, S. (2020). Pre-landing control of angular and linear momenta after tripping during gait. Jpn. J. Biomech. Sports Exerc., 24: 44-56. Mori, H. and Koike, S. (2007). Dynamic Analysis of Jump Motion Based on Multi-body Dynamics (Contribution of Joint Torques to Angular Momentum of Body). JSME proceedings., 2007: 278-283. (in Japanese). Eng, J. J., Winter, D. A., and Patla, A. E. (1994). Strategies for recovery from a trip in early and late swing during human walking. Exp. Brain Res., 102: 339-349. Francis, C. A., Lenz, A. L., Lenhart, R. L., and Thelen, D. G. (2013). The modulation of forward propulsion, vertical support, and center of pressure by the plantarflexors during human walking. Gait Posture, 38: 993-997. Nieuwenhuijzen, P. and Duysens, J. (2007). Proactive and reactive mechanisms play a role in stepping on inverting surfaces during gait. J. Neurophysiol., 98: 2266-2273. 22 23 24 25 26 27 28 29 30 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: van Mierlo, M., Ambrosius, J. I., Vlutters, M., van Asseldonk, E., and van der Kooij, H. (2022). Recovery from sagittal-plane whole body angular momentum perturbations during walking. J. Biomech., 141: 111169. – reference: Pijnappels, M., Bobbert, M. F., and van Dieën, J. H. (2005c). Control of support limb muscles in recovery after tripping in young and older subjects. Exp. Brain Res., 160: 326-333. – reference: Herr, H. and Popovic, M. (2008). Angular momentum in human walking. J. Exp. Biol., 211: 467-481. – reference: Pijnappels, M., Bobbert, M. F., and van Dieën, J. H. (2005a). Push-off reactions in recovery after tripping discriminate young subjects, older non-fallers and older fallers. Gait Posture, 21: 388-394. – reference: Pavol, M. J., Owings, T. M., Foley, K. T., and Grabiner, M. D. (2001). Mechanisms leading to a fall from an induced trip in healthy older adults. J. Gerontol. Ser. A-Biol. Sci. Med. Sci., 56: M428-M437. – reference: Kristianslund, E., Krosshaug, T., Mok, K., McLean, S., and van den Bogert, A. J. (2014). Expressing the joint moments of drop jumps and sidestep cutting in different reference frames – does it matter? J. Biomech., 47: 193-199. – reference: Smith, G. (1989). Padding point extrapolation techniques for the Butterworth digital filter. J. Biomech., 22: 967-971. – reference: Martelli, D., Monaco, V., Luciani, L. B., and Micera, S. (2013). Angular momentum during unexpected multidirectional perturbations delivered while walking. IEEE. Trans. Biomed. Eng., 60: 1785-1795. – reference: Nieuwenhuijzen, P. and Duysens, J. (2007). Proactive and reactive mechanisms play a role in stepping on inverting surfaces during gait. J. Neurophysiol., 98: 2266-2273. – reference: Pijnappels, M., Bobbert, M. F., and van Dieën, J. H. (2005b). How early reactions in the support limb contribute to balance recovery after tripping. J. Biomech., 38: 627-634. – reference: Kristianslund, E., Krosshaug, T., and van den Bogert, A. J. (2012). Effect of low pass filtering on joint moments from inverse dynamics: Implications for injury prevention. J. Biomech., 45: 666-671. – reference: Hof, A. L., Gazendam, M., and Sinke, W. E. (2005). The condition for dynamic stability. J. Biomech., 38: 1-8. – reference: Eng, J. J., Winter, D. A., and Patla, A. E. (1994). Strategies for recovery from a trip in early and late swing during human walking. Exp. Brain Res., 102: 339-349. – reference: Mori, H. and Koike, S. (2007). Dynamic Analysis of Jump Motion Based on Multi-body Dynamics (Contribution of Joint Torques to Angular Momentum of Body). JSME proceedings., 2007: 278-283. (in Japanese). – reference: Hof, A. L. (2008). The ‘extrapolated center of mass’ concept suggests a simple control of balance in walking. Hum. Mov. Sci., 27: 112-125. – reference: Jacobs, R. and van Ingen Schenau, G. J. (1992). Control of an external force in leg extensions in humans. J. Physiol.-London, 457: 611-626. – reference: Dumas, R., Cheze, L., and Verriest, J. (2007b). Corrigendum to “Adjustments to McConville et al. and Young et al. body segment inertial parameters” [J. Biomech. 40 (2007) 543-553]. J. Biomech., 40: 1651-1652. – reference: Pijnappels, M., Bobbert, M. F., and van Dieën, J. H. (2004). Contribution of the support limb in control of angular momentum after tripping. J. Biomech., 37: 1811-1818. – reference: Gruben, K. G. and Boehm, W. L. (2014). Ankle torque control that shifts the center of pressure from heel to toe contributes non-zero sagittal plane angular momentum during human walking. J. Biomech., 47: 1389-1394. – reference: Schumacher, C., Berry, A., Lemus, D., Rode, C., Seyfarth, A., and Vallery, H. (2019). Biarticular muscles are most responsive to upper-body pitch perturbations in human standing. Sci. Rep., 9: 14492. – reference: Winter, D. A. (2009). Biomechanics and motor control of human movement (4th ed.) (pp.64-75). Hoboken, New Jersey: John Wiley & Sons. – reference: Francis, C. A., Lenz, A. L., Lenhart, R. L., and Thelen, D. G. (2013). The modulation of forward propulsion, vertical support, and center of pressure by the plantarflexors during human walking. Gait Posture, 38: 993-997. – reference: Bennett, B. C., Russell, S. D., Sheth, P., and Abel, M. F. (2010). Angular momentum of walking at different speeds. Hum. Mov. Sci., 29: 114-124. – reference: Klemetti, R., Steele, K. M., Moilanen, P., Avela, J., and Timonen, J. (2014). Contributions of individual muscles to the sagittal- and frontal-plane angular accelerations of the trunk in walking. J. Biomech., 47: 2263-2268. – reference: Shinya, M., Kawashima, N., and Nakazawa, K. (2016). Temporal, but not directional, prior knowledge shortens muscle reflex latency in response to sudden transition of support surface during walking. Front. Hum. Neurosci., 10: 29. – reference: Graham, D. F., Carty, C. P., Lloyd, D. G., and Barrett, R. S. (2017). Muscle contributions to the acceleration of the whole body centre of mass during recovery from forward loss of balance by stepping in young and older adults. PLoS One., 12: e0185564. – reference: Koike, S., Nakaya, S., Mori, H., Ishikawa, T., and Willmott, A. P. (2019). Modelling error distribution in the ground reaction force during an induced-acceleration analysis of running in rear-foot strikers. J. Sports Sci., 37: 968-979. – reference: Nakajima, T., Yoshioka, S., and Fukashiro, S. (2020). Pre-landing control of angular and linear momenta after tripping during gait. Jpn. J. Biomech. Sports Exerc., 24: 44-56. – reference: Dumas, R., Cheze, L., and Verriest, J. (2007a). Adjustments to McConville et al. and Young et al. body segment inertial parameters. J. Biomech., 40: 543-553. – reference: King, S. T., Eveld, M. E., Martínez, A., Zelik, K. E., and Goldfarb, M. (2019). A novel system for introducing precisely-controlled, unanticipated gait perturbations for the study of stumble recovery. J. NeuroEng. Rehabil. 16: 1-17. – ident: 5 doi: 10.1016/j.gaitpost.2013.05.009 – ident: 30 doi: 10.1002/9780470549148 – ident: 1 doi: 10.1016/j.humov.2009.07.011 – ident: 27 doi: 10.3389/fnhum.2016.00029 – ident: 3 doi: 10.1016/j.jbiomech.2006.07.016 – ident: 10 doi: 10.1016/j.humov.2007.08.003 – ident: 15 doi: 10.1016/j.jbiomech.2011.12.011 – ident: 2 doi: 10.1016/j.jbiomech.2006.02.013 – ident: 6 doi: 10.1371/journal.pone.0185564 – ident: 14 doi: 10.1080/02640414.2017.1340658 – ident: 4 doi: 10.1007/BF00227520 – ident: 11 doi: 10.1113/jphysiol.1992.sp019397 – ident: 22 doi: 10.1016/j.jbiomech.2004.02.038 – ident: 23 doi: 10.1016/j.gaitpost.2004.04.009 – ident: 26 doi: 10.1038/s41598-019-50995-3 – ident: 7 doi: 10.1016/j.jbiomech.2014.01.034 – ident: 20 doi: 10.1152/jn.01226.2006 – ident: 9 doi: 10.1016/j.jbiomech.2004.03.025 – ident: 24 doi: 10.1016/j.jbiomech.2004.03.029 – ident: 8 doi: 10.1242/jeb.008573 – ident: 12 doi: 10.1186/s12984-019-0527-7 – ident: 28 doi: 10.1016/0021-9290(89)90082-1 – ident: 17 doi: 10.1109/TBME.2013.2241434 – ident: 16 doi: 10.1016/j.jbiomech.2013.09.016 – ident: 25 doi: 10.1007/s00221-004-2014-y – ident: 18 doi: 10.1299/jsmesports.2007.0_278 – ident: 19 – ident: 21 doi: 10.1093/gerona/56.7.M428 – ident: 13 doi: 10.1016/j.jbiomech.2014.04.052 – ident: 29 doi: 10.1016/j.jbiomech.2022.111169 |
SSID | ssj0059805 ssib014751302 |
Score | 2.2066236 |
Snippet | This study aims to investigate the kinetic mechanisms of controlling the whole-body linear momentum (WBLM) and whole-body angular momentum around the... |
SourceID | crossref medicalonline jstage |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106 |
SubjectTerms | kinetics lower limb perturbation postural control stability |
Title | Knee- and Ankle-Joint Torques Contribute to Controlling the Whole-Body Linear and Angular Momenta in the Single-Support Phase after Tripping during Gait |
URI | https://www.jstage.jst.go.jp/article/ijshs/21/0/21_202305/_article/-char/en http://mol.medicalonline.jp/en/journal/download?GoodsID=ei5ijshs/2023/x02100/002&name=0106-0116e |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | International Journal of Sport and Health Science, 2023, Vol.21, pp.106-116 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLa6cEBCCASIYZMPcKoCcRJPEnGhFEppVYQ0U9FbFCdOJzPTBM0iAb-En8t7z84yLBKFSxQlju3kfXpb3sLYU1-lUS4wMxd0YSdIQ-WkoogcUPc1SCupCupDdvpheHQWHJ_L863t3V7U0nqlnmfffptX8i9UhWtAV8ySvQJl20nhApwDfeEIFIbjX9H4pNLaIff_fjWba-e4LqvV3rheILPHZD7Tzoq6YxyYmPR5kx71CRvjOq_r_Cva5VjOx8xzQXGppzUFlTdRkCN4CkZjC1BQ1_c-TkD22fbi4wWVeLhoEh7fpeWGu_9Xl6PVf6m_Oi1qU6Esm2nd0-ksnZaXpNyO4XxSLuqORy0nZT2je6MJxtPP2ucO1zNsEGXyd0Yaw9H6rg2Td2wEDigKVRu3isGADWi7sBeSzLQ9inGlPduN9tycwg_ASpauYcvaXAOeBXaz2JACJk_bsnHhDnsagTDZoD8LGxn4WLy2nC6p7jvYcrITqm2oowVHQsMSTyQuHszwpLmJGXYA6G2264G1g_LlzfuTRqGQcUSRuO2rmPwNXP5Ff_ENzeraFIwLrBpx49L88DOFV3q60_gWu2mJzvfNPm6zLV3dYd8JvRw-K--hl1v08g69fFXzHno5AJJ36OUGvXYeQi-36OVlRYM30csJvZzQyxv0coNejui9y84O344PjhzbJ8TJsGCdU2ReXqSgKEee9oEn-dpPfTXURS5jHRRCRW7ug5kjM6FBPR6q2I8ykaPtHwoV5_49tlPVlb7PuMjDQIW6CF1ZBK5SaYCzDEGJl2EWuPGA7TXfOMlsEX3s5TJPwJhGijR0JooM2LN29GdTPOYP414acrWjroKaAXu1QePEcqhlokvZLZN8QfcOFgP2EnQEJfgLFiS2H0feg__awEN2HW8Yx-QjtrNarPVjUNVX6gkB-QdK1fbk |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knee-+and+Ankle-Joint+Torques+Contribute+to+Controlling+the+Whole-Body+Linear+and+Angular+Momenta+in+the+Single-Support+Phase+after+Tripping+during+Gait&rft.jtitle=International+Journal+of+Sport+and+Health+Science&rft.au=Nakajima%2C+Takahiro&rft.au=Yoshioka%2C+Shinsuke&rft.au=Fukashiro%2C+Senshi&rft.date=2023&rft.pub=Japan+Society+of+Physical+Education%2C+Health+and+Sport+Sciences&rft.issn=1348-1509&rft.eissn=1880-4012&rft.volume=21&rft.spage=106&rft.epage=116&rft_id=info:doi/10.5432%2Fijshs.202305&rft.externalDocID=article_ijshs_21_0_21_202305_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1348-1509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1348-1509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1348-1509&client=summon |