Iteratively reweighted least squares minimization for sparse recovery
Under certain conditions (known as the restricted isometry property, or RIP) on the m × N matrix Φ (where m < N), vectors x ∈ ℝN that are sparse (i.e., have most of their entries equal to 0) can be recovered exactly from y := Φx even though Φ−1(y) is typically an (N − m)—dimensional hyperplane; i...
Saved in:
Published in | Communications on pure and applied mathematics Vol. 63; no. 1; pp. 1 - 38 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.01.2010
Wiley John Wiley and Sons, Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Under certain conditions (known as the restricted isometry property, or RIP) on the m × N matrix Φ (where m < N), vectors x ∈ ℝN that are sparse (i.e., have most of their entries equal to 0) can be recovered exactly from y := Φx even though Φ−1(y) is typically an (N − m)—dimensional hyperplane; in addition, x is then equal to the element in Φ−1(y) of minimal 𝓁1‐norm. This minimal element can be identified via linear programming algorithms. We study an alternative method of determining x, as the limit of an iteratively reweighted least squares (IRLS) algorithm. The main step of this IRLS finds, for a given weight vector w, the element in Φ−1(y) with smallest 𝓁2(w)‐norm. If x(n) is the solution at iteration step n, then the new weight w(n) is defined by w i(n) := [|x i(n)|2 + ε n2]−1/2, i = 1, …, N, for a decreasing sequence of adaptively defined εn; this updated weight is then used to obtain x(n + 1) and the process is repeated. We prove that when Φ satisfies the RIP conditions, the sequence x(n) converges for all y, regardless of whether Φ−1(y) contains a sparse vector. If there is a sparse vector in Φ−1(y), then the limit is this sparse vector, and when x(n) is sufficiently close to the limit, the remaining steps of the algorithm converge exponentially fast (linear convergence in the terminology of numerical optimization). The same algorithm with the “heavier” weight w i(n) = [|x i(n)|2 + ε n2]−1+τ/2, i = 1, …, N, where 0 < τ < 1, can recover sparse solutions as well; more importantly, we show its local convergence is superlinear and approaches a quadratic rate for τ approaching 0. © 2009 Wiley Periodicals, Inc. |
---|---|
AbstractList | Under certain conditions (known as the restricted isometry property, or RIP) on the m x N matrix ... (where m < N), vectors x ... that are sparse (i.e., have most of their entries equal to 0) can be recovered exactly from y := ...x even though ...(y) is typically an (N - m) - dimensional hyperplane; in addition, x is then equal to the element in ...(y) of minimal ...-norm. This minimal element can be identified via linear programming algorithms. We study an alternative method of determining x, as the limit of an iteratively reweighted least squares (IRLS) algorithm. The main step of this IRLS finds, for a given weight vector w, the element in ...(y) with smallest ...-norm. If x... is the solution at iteration step n, then the new weight w... is defined by w...: ..., i = 1, ..., N, for a decreasing sequence of adaptively defined ...; this updated weight is then used to obtain x... and the process is repeated. We prove that when satisfies the RIP conditions, the sequence x... converges for all y, regardless of whether ...(y) contains a sparse vector. If there is a sparse vector in ...(y), then the limit is this sparse vector, and when x... is sufficiently close to the limit, the remaining steps of the algorithm converge exponentially fast (linear convergence in the terminology of numerical optimization). The same algorithm with the heavier weight w... = ..., i = 1, ..., N, where 0 < < 1, can recover sparse solutions as well; more importantly, we show its local convergence is superlinear and approaches a quadratic rate for ... approaching 0. (ProQuest: ... denotes formulae/symbols omitted.) Under certain conditions (known as the restricted isometry property , or RIP) on the m × N matrix Φ (where m < N ), vectors x ∈ ℝ N that are sparse (i.e., have most of their entries equal to 0) can be recovered exactly from y := Φ x even though Φ −1 ( y ) is typically an ( N − m )—dimensional hyperplane; in addition, x is then equal to the element in Φ −1 ( y ) of minimal 1 ‐norm. This minimal element can be identified via linear programming algorithms. We study an alternative method of determining x , as the limit of an iteratively reweighted least squares (IRLS) algorithm. The main step of this IRLS finds, for a given weight vector w , the element in Φ −1 ( y ) with smallest 2 ( w )‐norm. If x ( n ) is the solution at iteration step n , then the new weight w ( n ) is defined by w := [| x | 2 + ε ] −1/2 , i = 1, …, N , for a decreasing sequence of adaptively defined ε n ; this updated weight is then used to obtain x ( n + 1) and the process is repeated. We prove that when Φ satisfies the RIP conditions, the sequence x ( n ) converges for all y , regardless of whether Φ −1 ( y ) contains a sparse vector. If there is a sparse vector in Φ −1 ( y ), then the limit is this sparse vector, and when x ( n ) is sufficiently close to the limit, the remaining steps of the algorithm converge exponentially fast ( linear convergence in the terminology of numerical optimization). The same algorithm with the “heavier” weight w = [| x | 2 + ε ] −1+τ/2 , i = 1, …, N , where 0 < τ < 1, can recover sparse solutions as well; more importantly, we show its local convergence is superlinear and approaches a quadratic rate for τ approaching 0. © 2009 Wiley Periodicals, Inc. Under certain conditions (known as the restricted isometry property, or RIP) on the m × N matrix Φ (where m < N), vectors x ∈ ℝN that are sparse (i.e., have most of their entries equal to 0) can be recovered exactly from y := Φx even though Φ−1(y) is typically an (N − m)—dimensional hyperplane; in addition, x is then equal to the element in Φ−1(y) of minimal 𝓁1‐norm. This minimal element can be identified via linear programming algorithms. We study an alternative method of determining x, as the limit of an iteratively reweighted least squares (IRLS) algorithm. The main step of this IRLS finds, for a given weight vector w, the element in Φ−1(y) with smallest 𝓁2(w)‐norm. If x(n) is the solution at iteration step n, then the new weight w(n) is defined by w i(n) := [|x i(n)|2 + ε n2]−1/2, i = 1, …, N, for a decreasing sequence of adaptively defined εn; this updated weight is then used to obtain x(n + 1) and the process is repeated. We prove that when Φ satisfies the RIP conditions, the sequence x(n) converges for all y, regardless of whether Φ−1(y) contains a sparse vector. If there is a sparse vector in Φ−1(y), then the limit is this sparse vector, and when x(n) is sufficiently close to the limit, the remaining steps of the algorithm converge exponentially fast (linear convergence in the terminology of numerical optimization). The same algorithm with the “heavier” weight w i(n) = [|x i(n)|2 + ε n2]−1+τ/2, i = 1, …, N, where 0 < τ < 1, can recover sparse solutions as well; more importantly, we show its local convergence is superlinear and approaches a quadratic rate for τ approaching 0. © 2009 Wiley Periodicals, Inc. |
Author | Güntürk, C. Si̇nan Daubechies, Ingrid Fornasier, Massimo DeVore, Ronald |
Author_xml | – sequence: 1 givenname: Ingrid surname: Daubechies fullname: Daubechies, Ingrid email: ingrid@math.princeton.edu organization: Princeton University, Department of Mathematics and Program in Applied and Computational Mathematics, Fine Hall, Washington Road, Princeton, NJ 08544 – sequence: 2 givenname: Ronald surname: DeVore fullname: DeVore, Ronald email: devore@math.sc.edu organization: University of South Carolina, Department of Mathematics, Columbia, SC 29208 – sequence: 3 givenname: Massimo surname: Fornasier fullname: Fornasier, Massimo email: massimo.fornasier@oeaw.ac.at organization: Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenbergerstrasse 69, A-4040 Linz, Austria – sequence: 4 givenname: C. Si̇nan surname: Güntürk fullname: Güntürk, C. Si̇nan email: gunturk@courant.nyu.edu organization: Courant Institute, 251 Mercer Street, New York, NY 10012 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22200554$$DView record in Pascal Francis |
BookMark | eNp1kMtOwzAQRS0EEm1hwR9ESCxYpIwfeXiJylsVIARiaTnJGAxpUuy0UL4eQwsLBCtrpHPueG6frDdtg4TsUBhSAHZQTvWQAQe-RnoUZBYDp2yd9AAoxDwVsEn63j-FkYqc98jxeYdOd3aO9SJy-Ir24bHDKqpR-y7yLzPt0EcT29iJfQ9c20SmdZGfaucxCGU7R7fYIhtG1x63V--A3J0c347O4vHV6fnocByXInwppkWFKRZAEzAMc1rICiqT0iITBTCa56KQMuFZkmldIQgqdZJKbQqTyZyZjA_I7jJ36tqXGfpOPbUz14SVilHBMioFC9DeCtK-1LVxuimtV1NnJ9otFGMMIElE4A6WXOla7x0aVdru68TOaVsrCuqzUhUqVV-VBmP_l_Ed-he7Sn-1NS7-B9Xo-vDbiJeG9R2-_RjaPas0C6Wo-8tTdXE0Prq4kdeK8w_XSpY7 |
CODEN | CPAMAT |
CitedBy_id | crossref_primary_10_1109_TPAMI_2023_3247603 crossref_primary_10_1007_s10957_024_02415_4 crossref_primary_10_1109_TGRS_2020_2985768 crossref_primary_10_1140_epjs_s11734_024_01270_8 crossref_primary_10_1109_ACCESS_2018_2833121 crossref_primary_10_1016_j_neucom_2018_03_009 crossref_primary_10_1109_TSP_2015_2404314 crossref_primary_10_1190_geo2023_0102_1 crossref_primary_10_1088_1742_2132_9_3_247 crossref_primary_10_3390_rs15184610 crossref_primary_10_1109_TIP_2010_2062194 crossref_primary_10_1080_10618600_2020_1841650 crossref_primary_10_1016_j_neucom_2014_11_009 crossref_primary_10_3389_fams_2023_1155484 crossref_primary_10_1016_j_sigpro_2018_06_027 crossref_primary_10_1016_j_media_2021_102149 crossref_primary_10_4153_S0008439519000730 crossref_primary_10_1016_j_sigpro_2021_108199 crossref_primary_10_3934_ipi_2014_8_761 crossref_primary_10_1142_S0217595915500232 crossref_primary_10_1016_j_automatica_2020_109330 crossref_primary_10_1109_TAES_2023_3241886 crossref_primary_10_3788_PI_2024_R06 crossref_primary_10_1007_s10915_018_0754_2 crossref_primary_10_1016_j_ymssp_2022_109602 crossref_primary_10_1007_s11280_019_00766_x crossref_primary_10_1109_TNNLS_2016_2532358 crossref_primary_10_1137_130916436 crossref_primary_10_1007_s10107_022_01923_3 crossref_primary_10_1142_S021953051650010X crossref_primary_10_1093_gji_ggz476 crossref_primary_10_3934_ipi_2017030 crossref_primary_10_1002_nme_5998 crossref_primary_10_1016_j_compmedimag_2025_102530 crossref_primary_10_1007_s10589_017_9977_7 crossref_primary_10_1080_14498596_2020_1760952 crossref_primary_10_1109_TGRS_2022_3146258 crossref_primary_10_3390_math9232999 crossref_primary_10_7498_aps_63_200701 crossref_primary_10_1190_1_3554627 crossref_primary_10_1002_mp_17389 crossref_primary_10_1007_s10107_013_0722_4 crossref_primary_10_1016_j_cam_2023_115553 crossref_primary_10_1137_17M1147378 crossref_primary_10_1109_TKDE_2018_2858782 crossref_primary_10_1007_s00211_020_01107_1 crossref_primary_10_1016_j_ifacol_2020_12_2684 crossref_primary_10_1080_03610926_2022_2028841 crossref_primary_10_1109_TKDE_2020_3037131 crossref_primary_10_1109_LSP_2012_2217329 crossref_primary_10_1016_j_jappgeo_2017_02_020 crossref_primary_10_1137_15M1014474 crossref_primary_10_1016_j_neucom_2019_06_047 crossref_primary_10_1049_iet_com_2016_1435 crossref_primary_10_1109_JIOT_2018_2886841 crossref_primary_10_1016_j_ipm_2020_102388 crossref_primary_10_1063_1_4817580 crossref_primary_10_1088_1361_6420_ab6619 crossref_primary_10_1007_s00530_023_01198_4 crossref_primary_10_1109_TIT_2013_2262495 crossref_primary_10_1190_geo2022_0734_1 crossref_primary_10_1016_j_sysconle_2013_04_004 crossref_primary_10_1109_TIP_2015_2498400 crossref_primary_10_1109_TNNLS_2020_3009632 crossref_primary_10_2478_geochr_2020_0009 crossref_primary_10_1049_iet_spr_2019_0020 crossref_primary_10_1088_1402_4896_ab8d00 crossref_primary_10_1111_sjos_12591 crossref_primary_10_1016_j_patcog_2016_09_006 crossref_primary_10_1109_TVT_2021_3069580 crossref_primary_10_1002_stc_2343 crossref_primary_10_1137_21M146209X crossref_primary_10_1016_j_sigpro_2019_107346 crossref_primary_10_1109_JIOT_2024_3443173 crossref_primary_10_1109_TSP_2014_2330349 crossref_primary_10_1007_s10444_014_9352_5 crossref_primary_10_1137_13094829X crossref_primary_10_1109_TIT_2016_2573312 crossref_primary_10_1016_j_petrol_2020_107845 crossref_primary_10_1109_LCOMM_2020_3027904 crossref_primary_10_1016_j_ymssp_2019_02_039 crossref_primary_10_1016_j_jsv_2021_116633 crossref_primary_10_1109_LWC_2021_3112791 crossref_primary_10_1007_s00211_016_0842_x crossref_primary_10_1016_j_cviu_2020_103016 crossref_primary_10_1109_TBME_2013_2267742 crossref_primary_10_1093_gji_ggv179 crossref_primary_10_1109_TIP_2018_2867943 crossref_primary_10_1142_S0219530519500131 crossref_primary_10_1371_journal_pone_0179623 crossref_primary_10_1016_j_knosys_2018_05_017 crossref_primary_10_1088_1402_4896_ad88af crossref_primary_10_1080_00207160_2013_790533 crossref_primary_10_1109_TIP_2014_2362056 crossref_primary_10_1109_TVT_2019_2924951 crossref_primary_10_1002_anie_201100370 crossref_primary_10_1093_mnras_stw1859 crossref_primary_10_1109_TMM_2016_2573142 crossref_primary_10_1016_j_cad_2014_08_003 crossref_primary_10_1109_TIP_2011_2176743 crossref_primary_10_1137_100807004 crossref_primary_10_1007_s11220_015_0127_y crossref_primary_10_1016_j_jappgeo_2023_105072 crossref_primary_10_1109_TIP_2017_2685342 crossref_primary_10_1137_18M1218212 crossref_primary_10_1007_s00211_010_0314_7 crossref_primary_10_1007_s10851_020_01001_3 crossref_primary_10_3934_jimo_2016006 crossref_primary_10_1016_j_dsp_2015_02_002 crossref_primary_10_1049_iet_com_2014_0911 crossref_primary_10_1007_s40430_024_05335_6 crossref_primary_10_1016_j_patrec_2018_08_029 crossref_primary_10_1109_TSP_2016_2546231 crossref_primary_10_1109_LWC_2018_2810231 crossref_primary_10_3724_SP_J_1004_2012_00444 crossref_primary_10_1155_2020_8849395 crossref_primary_10_1109_TMI_2021_3099641 crossref_primary_10_1080_17415977_2018_1456536 crossref_primary_10_1109_JSTSP_2010_2042413 crossref_primary_10_1137_110854746 crossref_primary_10_1109_TIP_2015_2461445 crossref_primary_10_1109_TSP_2021_3072228 crossref_primary_10_1109_TSP_2022_3146790 crossref_primary_10_1109_TGRS_2023_3300739 crossref_primary_10_1109_TGRS_2024_3361654 crossref_primary_10_1364_BOE_3_000927 crossref_primary_10_1016_j_laa_2024_05_007 crossref_primary_10_1016_j_acha_2012_03_006 crossref_primary_10_1016_j_sigpro_2022_108493 crossref_primary_10_1109_TVCG_2023_3287303 crossref_primary_10_1109_TSP_2013_2263502 crossref_primary_10_1088_1361_6420_ac38b8 crossref_primary_10_1007_BF03549565 crossref_primary_10_1109_TIE_2018_2889616 crossref_primary_10_1007_s10589_017_9933_6 crossref_primary_10_1111_sjos_12568 crossref_primary_10_3390_rs15194870 crossref_primary_10_1121_1_4926381 crossref_primary_10_1155_2017_2736306 crossref_primary_10_1190_geo2021_0767_1 crossref_primary_10_1007_s10589_022_00366_y crossref_primary_10_1109_JSTARS_2017_2775567 crossref_primary_10_1002_ange_201100370 crossref_primary_10_1016_j_ins_2021_05_078 crossref_primary_10_3934_NAR_2022010 crossref_primary_10_3390_rs8030187 crossref_primary_10_1109_TFUZZ_2020_3001740 crossref_primary_10_1007_s10107_015_0939_5 crossref_primary_10_1016_j_laa_2019_07_029 crossref_primary_10_1088_1742_6596_904_1_012016 crossref_primary_10_1137_15M1024482 crossref_primary_10_1142_S0218127412501519 crossref_primary_10_1177_1748301816673074 crossref_primary_10_1093_comjnl_bxab024 crossref_primary_10_1109_TIP_2013_2270109 crossref_primary_10_1007_s11801_018_7202_2 crossref_primary_10_1016_j_dsp_2014_01_007 crossref_primary_10_1016_j_acha_2011_01_006 crossref_primary_10_1137_22M147236X crossref_primary_10_1109_TSP_2016_2543208 crossref_primary_10_1007_s10107_019_01435_7 crossref_primary_10_1007_s11770_016_0584_7 crossref_primary_10_1109_ACCESS_2018_2880454 crossref_primary_10_1109_TGRS_2018_2810845 crossref_primary_10_1109_TSP_2014_2319775 crossref_primary_10_1016_j_mri_2015_10_033 crossref_primary_10_1109_TIP_2014_2320368 crossref_primary_10_1109_TCI_2015_2463257 crossref_primary_10_1137_110840364 crossref_primary_10_1109_TMI_2019_2906600 crossref_primary_10_1016_j_acha_2014_06_003 crossref_primary_10_1080_00207160_2017_1284314 crossref_primary_10_1109_MSP_2015_2481563 crossref_primary_10_1137_100811404 crossref_primary_10_1250_ast_41_308 crossref_primary_10_1007_s00041_011_9192_3 crossref_primary_10_1016_j_sigpro_2011_01_012 crossref_primary_10_1109_MCI_2016_2601700 crossref_primary_10_1109_ACCESS_2019_2911857 crossref_primary_10_1587_transfun_E94_A_1793 crossref_primary_10_1190_geo2016_0652_1 crossref_primary_10_1016_j_inffus_2020_08_023 crossref_primary_10_1016_j_sigpro_2013_02_018 crossref_primary_10_3390_min9070407 crossref_primary_10_1016_j_acha_2016_12_004 crossref_primary_10_1190_geo2021_0807_1 crossref_primary_10_1007_s10915_017_0403_1 crossref_primary_10_1109_LSP_2013_2268248 crossref_primary_10_1155_2022_8711843 crossref_primary_10_1109_TCYB_2017_2669259 crossref_primary_10_1109_TCSVT_2021_3103941 crossref_primary_10_1080_10556788_2014_967235 crossref_primary_10_1587_transfun_E95_A_1627 crossref_primary_10_1109_TCI_2019_2893598 crossref_primary_10_1109_TCSVT_2016_2610078 crossref_primary_10_1109_TMM_2013_2244205 crossref_primary_10_1109_TSP_2016_2639467 crossref_primary_10_1016_j_patcog_2012_12_002 crossref_primary_10_1137_20M1333948 crossref_primary_10_1088_0266_5611_28_9_095011 crossref_primary_10_1016_j_sigpro_2017_09_003 crossref_primary_10_1186_1687_6180_2013_76 crossref_primary_10_1007_s10851_022_01081_3 crossref_primary_10_1088_1361_6420_abc793 crossref_primary_10_1109_TIT_2015_2429611 crossref_primary_10_3934_ipi_2016001 crossref_primary_10_1109_TIP_2017_2681841 crossref_primary_10_1214_09_SS052 crossref_primary_10_1109_TGRS_2022_3206918 crossref_primary_10_1109_TGRS_2023_3273118 crossref_primary_10_1109_TSP_2018_2867995 crossref_primary_10_1016_j_neucom_2018_05_025 crossref_primary_10_1109_LSP_2019_2954001 crossref_primary_10_1109_TCYB_2014_2307854 crossref_primary_10_1109_TNNLS_2021_3051650 crossref_primary_10_1109_TSP_2017_2709262 crossref_primary_10_1007_s10851_018_0830_0 crossref_primary_10_1007_s11042_017_5381_7 crossref_primary_10_1145_3397188 crossref_primary_10_1016_j_dsp_2013_03_013 crossref_primary_10_1109_JETCAS_2016_2597701 crossref_primary_10_1007_s11042_018_6909_1 crossref_primary_10_1109_TIT_2024_3454694 crossref_primary_10_1109_TSP_2020_3022822 crossref_primary_10_1016_j_trb_2019_01_013 crossref_primary_10_1137_21M142770X crossref_primary_10_1109_TCI_2015_2485078 crossref_primary_10_3934_naco_2015_5_127 crossref_primary_10_1016_j_dsp_2014_02_011 crossref_primary_10_1016_j_media_2016_02_010 crossref_primary_10_1016_j_sigpro_2013_10_031 crossref_primary_10_1088_1361_6501_ac209d crossref_primary_10_1088_0266_5611_29_2_025008 crossref_primary_10_1109_TIT_2015_2438302 crossref_primary_10_1007_s11425_017_9315_9 crossref_primary_10_1109_TWC_2015_2487989 crossref_primary_10_3390_jmse11091713 crossref_primary_10_1080_10618600_2024_2374580 crossref_primary_10_1038_s41467_024_45856_1 crossref_primary_10_1016_j_patcog_2019_03_028 crossref_primary_10_1155_2022_1758996 crossref_primary_10_1007_s10115_017_1069_6 crossref_primary_10_1137_140968240 crossref_primary_10_1109_TSP_2014_2334557 crossref_primary_10_1093_gji_ggx340 crossref_primary_10_1137_140971518 crossref_primary_10_1016_j_sigpro_2024_109728 crossref_primary_10_1142_S0219530524500283 crossref_primary_10_1109_MSP_2017_2783740 crossref_primary_10_1109_TSP_2016_2601299 crossref_primary_10_1007_s10957_019_01532_9 crossref_primary_10_1016_j_specom_2012_12_003 crossref_primary_10_1109_JSEN_2020_3003349 crossref_primary_10_1145_2990508 crossref_primary_10_1109_MSP_2010_938752 crossref_primary_10_1109_TBME_2015_2464674 crossref_primary_10_1109_TAES_2024_3395233 crossref_primary_10_3390_axioms11050201 crossref_primary_10_1016_j_patcog_2011_05_002 crossref_primary_10_1088_1361_6420_acbe5f crossref_primary_10_1016_j_cam_2017_12_048 crossref_primary_10_1007_s10483_017_2208_8 crossref_primary_10_1007_s00170_018_2902_0 crossref_primary_10_1109_TCI_2017_2744626 crossref_primary_10_1190_geo2018_0255_1 crossref_primary_10_1016_j_neucom_2018_05_123 crossref_primary_10_1016_j_neunet_2024_106123 crossref_primary_10_1007_s11280_017_0497_2 crossref_primary_10_1016_j_measurement_2024_116100 crossref_primary_10_1073_pnas_1320637111 crossref_primary_10_1109_TNNLS_2014_2341654 crossref_primary_10_1016_j_sigpro_2020_107853 crossref_primary_10_1137_20M1330634 crossref_primary_10_1016_j_cam_2023_115251 crossref_primary_10_1016_j_sigpro_2020_107858 crossref_primary_10_1016_j_asr_2023_04_040 crossref_primary_10_12720_jait_14_6_1365_1371 crossref_primary_10_1109_LSP_2013_2245322 crossref_primary_10_3390_math9243224 crossref_primary_10_3390_s21206842 crossref_primary_10_1007_s10107_021_01644_z crossref_primary_10_1093_mnras_sty1501 crossref_primary_10_1109_TSP_2015_2428216 crossref_primary_10_1007_s13137_017_0099_2 crossref_primary_10_1007_s10915_021_01440_z crossref_primary_10_1109_TCBB_2016_2609420 crossref_primary_10_7840_kics_2015_40_4_628 crossref_primary_10_1109_LSP_2017_2698721 crossref_primary_10_1007_s10483_020_2561_6 crossref_primary_10_1007_s40305_014_0069_4 crossref_primary_10_1186_s13636_021_00210_x crossref_primary_10_1108_SSMT_09_2014_0017 crossref_primary_10_1016_j_chaos_2022_112794 crossref_primary_10_1109_TNNLS_2021_3121246 crossref_primary_10_1587_transinf_E97_D_319 crossref_primary_10_1109_TCSI_2014_2354771 crossref_primary_10_1016_j_patcog_2019_107015 crossref_primary_10_1080_00207217_2012_743229 crossref_primary_10_1186_1471_2105_16_S6_S1 crossref_primary_10_1364_BOE_434679 crossref_primary_10_1007_s12021_017_9354_9 crossref_primary_10_1007_s00034_019_01077_2 crossref_primary_10_1088_1361_6420_ab4d92 crossref_primary_10_1016_j_acha_2011_07_001 crossref_primary_10_1109_ACCESS_2020_2975531 crossref_primary_10_1007_s10915_018_0757_z crossref_primary_10_1016_j_acha_2015_11_006 crossref_primary_10_1016_j_patrec_2018_06_029 crossref_primary_10_1016_j_parco_2017_05_005 crossref_primary_10_1109_TVT_2017_2749254 crossref_primary_10_1145_3072959_3073618 crossref_primary_10_1007_s11042_017_5207_7 crossref_primary_10_1016_j_ymssp_2020_106965 crossref_primary_10_1016_j_acha_2020_04_002 crossref_primary_10_1016_j_ins_2019_09_071 crossref_primary_10_1016_j_sigpro_2025_109937 crossref_primary_10_1007_s10489_024_05979_w crossref_primary_10_1016_j_sigpro_2015_12_008 crossref_primary_10_1109_ACCESS_2017_2705646 crossref_primary_10_1007_s11280_021_00958_4 crossref_primary_10_1088_1361_6420_aaf5ab crossref_primary_10_1016_j_ins_2019_09_079 crossref_primary_10_1109_JSTARS_2013_2291578 crossref_primary_10_1109_TSP_2011_2161470 crossref_primary_10_1137_19M1281897 crossref_primary_10_1016_j_sigpro_2020_107756 crossref_primary_10_1109_TIP_2018_2806089 crossref_primary_10_1109_TIT_2020_3040959 crossref_primary_10_1007_s11425_016_9107_y crossref_primary_10_1016_j_media_2023_103043 crossref_primary_10_3390_s17122762 crossref_primary_10_1109_TWC_2022_3175740 crossref_primary_10_1007_s10910_015_0527_1 crossref_primary_10_1007_s10915_014_9860_y crossref_primary_10_1016_j_cam_2017_10_006 crossref_primary_10_1137_15M1051786 crossref_primary_10_1007_s11042_017_5272_y crossref_primary_10_1049_ipr2_12029 crossref_primary_10_1016_j_pepi_2019_106338 crossref_primary_10_1016_j_neucom_2012_12_034 crossref_primary_10_1016_j_neucom_2016_10_032 crossref_primary_10_1016_j_cviu_2016_09_012 crossref_primary_10_1016_j_csda_2023_107908 crossref_primary_10_1016_j_isatra_2019_06_007 crossref_primary_10_1088_1361_6420_ab750c crossref_primary_10_1016_j_jtrangeo_2021_103073 crossref_primary_10_1016_j_probengmech_2020_103082 crossref_primary_10_1109_TMI_2017_2717502 crossref_primary_10_1016_j_dsp_2015_11_010 crossref_primary_10_1137_20M1318882 crossref_primary_10_1007_s10589_021_00270_x crossref_primary_10_1109_TSP_2020_3016571 crossref_primary_10_1016_j_amc_2013_07_090 crossref_primary_10_1002_rnc_5995 crossref_primary_10_1016_j_cam_2013_12_005 crossref_primary_10_1016_j_sigpro_2017_09_010 crossref_primary_10_1016_j_sigpro_2018_02_027 crossref_primary_10_1016_j_petsci_2021_12_005 crossref_primary_10_1016_j_acha_2021_09_003 crossref_primary_10_1016_j_sigpro_2015_12_020 crossref_primary_10_1016_j_sigpro_2011_04_025 crossref_primary_10_1007_s00180_023_01446_1 crossref_primary_10_1111_1365_2478_12038 crossref_primary_10_1007_s13042_021_01319_3 crossref_primary_10_1016_j_knosys_2015_12_011 crossref_primary_10_3724_SP_J_1004_2012_00076 crossref_primary_10_1109_TIP_2022_3186749 crossref_primary_10_1016_j_phycom_2011_09_007 crossref_primary_10_1080_08123985_2019_1606199 crossref_primary_10_1007_s11042_019_7625_1 crossref_primary_10_1109_TSP_2016_2518989 crossref_primary_10_1109_TVT_2018_2822776 crossref_primary_10_1007_s11075_021_01227_1 crossref_primary_10_1016_j_clinph_2023_12_001 crossref_primary_10_1109_LSP_2021_3099715 crossref_primary_10_1109_TCI_2016_2579606 crossref_primary_10_1002_mrm_25119 crossref_primary_10_1109_TIP_2019_2949383 crossref_primary_10_1137_21M140794X crossref_primary_10_1155_2016_3456153 crossref_primary_10_1364_BOE_10_002684 crossref_primary_10_1016_j_sigpro_2016_06_027 crossref_primary_10_1109_TIT_2020_2966436 crossref_primary_10_1109_TSP_2014_2362880 crossref_primary_10_1080_02331934_2017_1359590 crossref_primary_10_1287_moor_2016_0791 crossref_primary_10_1007_s00521_023_08938_7 crossref_primary_10_1186_s13660_017_1590_x crossref_primary_10_1109_LGRS_2012_2232901 crossref_primary_10_1137_16M1098929 crossref_primary_10_1515_jiip_2020_0049 crossref_primary_10_1109_TIT_2009_2032712 crossref_primary_10_1109_TWC_2018_2797203 crossref_primary_10_1016_j_acha_2018_02_003 crossref_primary_10_1145_2602142 crossref_primary_10_1016_j_ymssp_2023_110459 crossref_primary_10_1016_S1874_1029_13_60063_4 crossref_primary_10_1137_21M1401188 crossref_primary_10_1109_TAES_2020_3021809 crossref_primary_10_1145_3130800_3130845 crossref_primary_10_1080_01630563_2010_513782 crossref_primary_10_1109_TSP_2016_2595499 crossref_primary_10_1007_s10589_017_9916_7 crossref_primary_10_1002_mma_5091 crossref_primary_10_1109_TFUZZ_2017_2760287 crossref_primary_10_1088_1361_6420_ab89c2 crossref_primary_10_1093_imaiai_iaaa021 crossref_primary_10_1142_S0219530521500068 crossref_primary_10_1109_TAC_2020_3024163 crossref_primary_10_1117_1_JBO_21_1_016004 crossref_primary_10_1109_TSP_2018_2883921 crossref_primary_10_1137_23M156255X crossref_primary_10_1016_j_neucom_2020_04_014 crossref_primary_10_1007_s10851_014_0532_1 crossref_primary_10_1007_s11280_023_01158_y crossref_primary_10_1137_18M1181419 crossref_primary_10_1007_s10032_013_0213_4 crossref_primary_10_1109_TIT_2024_3413534 crossref_primary_10_1109_MCAS_2019_2961727 crossref_primary_10_1007_s11760_013_0495_5 crossref_primary_10_1093_imaiai_iaw011 crossref_primary_10_1109_TSP_2019_2954504 crossref_primary_10_1080_17415977_2015_1054822 crossref_primary_10_1109_TSP_2016_2572041 crossref_primary_10_1137_20M1356634 crossref_primary_10_1109_ACCESS_2024_3372424 crossref_primary_10_1016_j_aca_2019_04_055 crossref_primary_10_1109_TNNLS_2015_2512563 crossref_primary_10_1016_j_sigpro_2014_03_026 crossref_primary_10_1109_TIP_2016_2518862 crossref_primary_10_1190_geo2016_0306_1 crossref_primary_10_1016_j_patrec_2017_08_018 crossref_primary_10_1109_TMI_2017_2777870 crossref_primary_10_1093_mnras_stw2261 crossref_primary_10_1049_ipr2_12411 crossref_primary_10_1088_1361_6420_ab844a crossref_primary_10_1587_transinf_E95_D_2150 crossref_primary_10_1109_JIOT_2023_3267100 crossref_primary_10_1016_j_petsci_2023_02_012 crossref_primary_10_1007_s11042_016_4091_x crossref_primary_10_1109_TVT_2022_3203487 crossref_primary_10_1155_2014_206926 crossref_primary_10_1109_JSTARS_2019_2940730 crossref_primary_10_1109_TSP_2023_3234460 crossref_primary_10_1111_1365_2478_12593 crossref_primary_10_1002_fld_4507 crossref_primary_10_1093_gji_ggt308 crossref_primary_10_1016_j_acha_2019_05_004 crossref_primary_10_1137_22M153330X crossref_primary_10_1117_1_3463019 crossref_primary_10_1007_s10596_015_9544_1 crossref_primary_10_5802_ojmo_14 crossref_primary_10_1016_j_sigpro_2023_109193 crossref_primary_10_1007_s11600_020_00399_z crossref_primary_10_1155_2015_627417 crossref_primary_10_1016_j_jfranklin_2020_03_023 crossref_primary_10_1016_j_rse_2021_112453 crossref_primary_10_1109_TIP_2016_2551365 crossref_primary_10_1109_TSIPN_2018_2819018 crossref_primary_10_3390_s18103373 crossref_primary_10_1109_TSP_2014_2309076 crossref_primary_10_3390_rs13071253 crossref_primary_10_1109_LSP_2018_2875251 crossref_primary_10_1007_s10851_016_0700_6 crossref_primary_10_1016_j_acha_2014_01_005 crossref_primary_10_1088_1361_6560_ad2155 crossref_primary_10_1111_1365_2478_13576 crossref_primary_10_1121_1_5042223 crossref_primary_10_1007_s10589_016_9839_8 crossref_primary_10_1109_TIP_2014_2380155 crossref_primary_10_1007_s11336_023_09911_y crossref_primary_10_1016_j_neuroimage_2018_08_071 crossref_primary_10_3724_SP_J_1224_2014_00259 crossref_primary_10_1016_j_neucom_2019_09_108 crossref_primary_10_1016_j_neucom_2015_07_115 crossref_primary_10_1109_JSTARS_2019_2950541 crossref_primary_10_1016_j_cam_2017_01_010 crossref_primary_10_1109_JTEHM_2014_2300862 crossref_primary_10_1109_TIP_2021_3073283 crossref_primary_10_1049_el_2019_3859 crossref_primary_10_7582_GGE_2014_17_4_187 crossref_primary_10_1016_j_neunet_2022_05_005 crossref_primary_10_1007_s10044_025_01432_x crossref_primary_10_1007_s11042_019_08179_8 crossref_primary_10_1007_s11600_022_00806_7 crossref_primary_10_1109_TIM_2023_3308255 crossref_primary_10_1109_TIP_2014_2317985 crossref_primary_10_1186_s13640_017_0199_9 crossref_primary_10_1109_MSP_2010_938029 crossref_primary_10_1007_s41060_022_00357_6 crossref_primary_10_1016_j_automatica_2022_110437 crossref_primary_10_1093_imaiai_iax012 crossref_primary_10_1016_j_automatica_2016_01_023 crossref_primary_10_1007_s10589_016_9829_x crossref_primary_10_1016_j_neucom_2015_08_123 crossref_primary_10_1109_TPAMI_2013_102 crossref_primary_10_1190_geo2013_0372_1 crossref_primary_10_2299_jsp_19_155 crossref_primary_10_3390_geosciences13120376 crossref_primary_10_1007_s11434_016_1041_y crossref_primary_10_1007_s11063_021_10479_w crossref_primary_10_1109_TSP_2015_2412915 crossref_primary_10_1109_TMM_2019_2934833 crossref_primary_10_1109_TIP_2020_3029415 crossref_primary_10_1016_j_ymssp_2017_10_027 crossref_primary_10_1137_110847445 crossref_primary_10_1007_s10107_016_1057_8 crossref_primary_10_1007_s10898_024_01451_8 crossref_primary_10_1016_j_robot_2024_104870 crossref_primary_10_3934_fods_2021028 crossref_primary_10_1109_ACCESS_2019_2948426 crossref_primary_10_1007_s00034_017_0626_2 crossref_primary_10_1109_TPAMI_2018_2839733 crossref_primary_10_1007_s10712_022_09704_5 crossref_primary_10_1007_s40305_014_0043_1 crossref_primary_10_1364_BOE_10_004727 crossref_primary_10_1016_j_patrec_2020_03_035 crossref_primary_10_1016_j_jfranklin_2023_11_031 crossref_primary_10_1002_mp_12200 crossref_primary_10_1109_TGRS_2023_3264917 crossref_primary_10_1007_s11432_012_4633_4 crossref_primary_10_1109_TIT_2021_3111490 crossref_primary_10_1016_j_cpc_2017_02_015 crossref_primary_10_1109_TAP_2016_2546385 crossref_primary_10_1137_23M159439X crossref_primary_10_1016_j_petrol_2019_03_023 crossref_primary_10_1137_120882706 crossref_primary_10_1137_18M117769X crossref_primary_10_1109_TSIPN_2024_3375593 crossref_primary_10_1093_jge_gxy005 crossref_primary_10_1016_j_ins_2022_08_109 crossref_primary_10_1016_j_measurement_2022_111356 crossref_primary_10_1007_s10957_014_0586_7 crossref_primary_10_1016_j_cageo_2012_08_013 crossref_primary_10_1016_j_ijleo_2017_08_040 crossref_primary_10_1016_j_jvcir_2017_08_010 crossref_primary_10_1007_s40328_020_00308_2 crossref_primary_10_1007_s10044_018_0714_3 crossref_primary_10_1063_5_0022860 crossref_primary_10_1002_mrm_25513 crossref_primary_10_1039_C5AN02304A crossref_primary_10_1016_j_dsp_2017_11_008 crossref_primary_10_1109_LSP_2024_3413306 crossref_primary_10_4236_apm_2016_67036 crossref_primary_10_1007_s11704_019_8395_7 crossref_primary_10_1109_TIT_2017_2705741 crossref_primary_10_1109_TNET_2016_2612695 crossref_primary_10_1016_j_apacoust_2020_107599 crossref_primary_10_1049_rsn2_12348 crossref_primary_10_1007_s11771_017_3423_y crossref_primary_10_1016_j_laa_2021_08_024 crossref_primary_10_1071_EG12014 crossref_primary_10_1016_j_infrared_2015_12_030 crossref_primary_10_3390_s18041164 crossref_primary_10_1007_s10898_021_01093_0 crossref_primary_10_1007_s10915_022_01897_6 crossref_primary_10_1109_TPAMI_2018_2883553 crossref_primary_10_1137_23M1545379 crossref_primary_10_1016_j_dsp_2023_104172 crossref_primary_10_1007_s11222_024_10440_6 crossref_primary_10_1109_TKDE_2022_3201955 crossref_primary_10_1111_1365_2478_12567 crossref_primary_10_1007_s10898_022_01220_5 crossref_primary_10_1016_j_sigpro_2022_108853 crossref_primary_10_1016_j_acha_2017_10_004 crossref_primary_10_1109_LSP_2014_2323238 crossref_primary_10_1109_JSTSP_2009_2039173 crossref_primary_10_1007_s00521_020_04994_5 crossref_primary_10_1088_1361_6420_ad3b34 crossref_primary_10_3390_s22083065 crossref_primary_10_1109_TIP_2012_2188807 crossref_primary_10_1587_transinf_2014EDL8086 crossref_primary_10_1007_s11222_020_09939_5 crossref_primary_10_1016_j_jvcir_2014_02_003 crossref_primary_10_1016_j_inffus_2021_03_006 crossref_primary_10_1137_20M1379721 crossref_primary_10_1137_22M1486303 crossref_primary_10_1007_s11768_024_00213_x crossref_primary_10_1016_j_automatica_2017_01_020 crossref_primary_10_1007_s10589_013_9583_2 crossref_primary_10_1016_j_neucom_2011_07_003 crossref_primary_10_1016_j_sigpro_2012_12_008 crossref_primary_10_1109_TCYB_2021_3090204 crossref_primary_10_1364_BOE_9_001423 crossref_primary_10_1080_10556788_2022_2120983 crossref_primary_10_1007_s11042_017_5235_3 crossref_primary_10_1364_OE_546585 crossref_primary_10_1016_j_apacoust_2021_108501 crossref_primary_10_1016_j_neucom_2015_11_029 crossref_primary_10_5194_gmd_17_8853_2024 crossref_primary_10_1109_TNNLS_2019_2921404 crossref_primary_10_1109_TPAMI_2017_2669034 crossref_primary_10_1109_TSP_2018_2868269 crossref_primary_10_1109_TKDE_2020_3017250 crossref_primary_10_1016_j_media_2018_08_002 crossref_primary_10_3182_20110828_6_IT_1002_01141 crossref_primary_10_1111_1365_2478_12783 crossref_primary_10_1016_j_ymssp_2018_09_019 crossref_primary_10_1109_TASLP_2015_2497798 crossref_primary_10_1111_cgf_13599 crossref_primary_10_1016_j_jvcir_2016_06_007 crossref_primary_10_1109_TCYB_2015_2429312 crossref_primary_10_1016_j_cag_2023_05_003 crossref_primary_10_1364_AO_56_002418 crossref_primary_10_1103_PhysRevE_96_022411 crossref_primary_10_1016_j_ultramic_2021_113451 crossref_primary_10_1109_TCST_2023_3310203 crossref_primary_10_1109_TNN_2011_2157521 crossref_primary_10_1109_JSEN_2022_3153629 crossref_primary_10_1016_j_neunet_2023_03_005 crossref_primary_10_1109_TRS_2023_3284297 crossref_primary_10_1177_1475472X17718883 crossref_primary_10_1016_j_engappai_2020_103694 crossref_primary_10_1016_j_patcog_2015_09_034 crossref_primary_10_1190_INT_2021_0241_1 crossref_primary_10_1109_TCBB_2022_3173969 crossref_primary_10_1155_2013_217021 crossref_primary_10_1109_TIP_2022_3220949 crossref_primary_10_1109_TSP_2013_2287685 crossref_primary_10_1016_j_patcog_2018_11_007 crossref_primary_10_1109_TGRS_2021_3138750 crossref_primary_10_1109_TPAMI_2016_2578323 crossref_primary_10_1007_s11042_022_13903_y crossref_primary_10_1515_jiip_2016_0087 crossref_primary_10_1109_LSP_2020_3011896 crossref_primary_10_1109_TCI_2021_3103606 crossref_primary_10_1016_j_media_2021_102057 crossref_primary_10_1109_TSIPN_2018_2869117 crossref_primary_10_1016_j_jappgeo_2015_04_003 crossref_primary_10_1587_transfun_E98_A_1540 crossref_primary_10_1007_s11430_017_9124_6 crossref_primary_10_1016_j_jappgeo_2016_06_011 crossref_primary_10_1016_j_jappgeo_2018_09_001 crossref_primary_10_1038_srep19993 crossref_primary_10_1016_j_sigpro_2021_108313 crossref_primary_10_1007_s11042_019_7647_8 crossref_primary_10_1109_TCI_2016_2516909 crossref_primary_10_1109_ACCESS_2019_2899622 crossref_primary_10_1016_j_neunet_2020_09_021 crossref_primary_10_1137_090775397 crossref_primary_10_1007_s10898_022_01257_6 crossref_primary_10_1142_S0219720019500094 crossref_primary_10_1371_journal_pone_0225284 crossref_primary_10_1162_NECO_a_00641 crossref_primary_10_1109_TEVC_2016_2603526 crossref_primary_10_1145_2010324_1964941 crossref_primary_10_1190_geo2020_0307_1 crossref_primary_10_1093_gji_ggz156 crossref_primary_10_3390_math9121373 crossref_primary_10_4236_jcc_2017_510004 crossref_primary_10_1007_s00574_019_00171_y crossref_primary_10_1016_j_sigpro_2014_09_028 crossref_primary_10_1016_j_laa_2013_03_004 crossref_primary_10_1016_j_ijms_2018_12_001 crossref_primary_10_1109_JSTSP_2021_3051488 crossref_primary_10_1137_16M1080240 crossref_primary_10_1155_2019_2656747 crossref_primary_10_1109_JSAC_2016_2544578 crossref_primary_10_1109_TASE_2022_3141248 crossref_primary_10_1109_TIP_2012_2235849 crossref_primary_10_1109_TNNLS_2018_2844242 crossref_primary_10_1109_TSP_2014_2305639 crossref_primary_10_1016_j_patcog_2012_10_010 crossref_primary_10_1137_140952363 crossref_primary_10_1109_TIP_2012_2222896 crossref_primary_10_1587_comex_3_206 crossref_primary_10_1049_iet_spr_2015_0425 crossref_primary_10_1111_rssb_12106 crossref_primary_10_1007_s00024_017_1529_7 crossref_primary_10_1155_2014_104709 crossref_primary_10_1007_s10915_022_01850_7 crossref_primary_10_1016_j_neucom_2014_05_047 crossref_primary_10_1021_acs_jctc_2c00321 crossref_primary_10_1137_21M1441420 crossref_primary_10_1109_TKDE_2017_2763618 crossref_primary_10_1088_1361_6501_ab62c6 crossref_primary_10_1016_j_image_2017_02_010 crossref_primary_10_1016_j_sigpro_2022_108755 crossref_primary_10_1016_j_asr_2019_02_022 crossref_primary_10_1145_3396238 crossref_primary_10_1007_s11750_017_0462_3 crossref_primary_10_1007_s10614_018_9876_8 crossref_primary_10_1007_s10851_024_01216_8 crossref_primary_10_1016_j_sigpro_2021_108451 crossref_primary_10_1190_geo2015_0044_1 crossref_primary_10_1016_j_jcp_2020_109681 crossref_primary_10_1016_j_jmva_2018_08_007 crossref_primary_10_1002_hbm_25117 crossref_primary_10_1007_s10915_015_0162_9 |
Cites_doi | 10.1109/LSP.2007.898300 10.1090/S0894-0347-08-00600-0 10.1109/ICASSP.2008.4518498 10.1137/0907087 10.1109/78.558475 10.1190/1.1440921 10.1002/cpa.20124 10.1137/0803030 10.1109/TIT.2006.871582 10.1007/s00041-008-9045-x 10.1016/j.acha.2006.09.003 10.1137/S1064827596304010 10.1190/1.1440378 10.1007/s002110050258 10.1137/0152031 10.1002/cpa.20227 10.1109/78.340772 10.1073/pnas.0502269102 10.1090/S0894-0347-08-00610-3 10.1017/S0962492900002816 10.1109/TIP.2007.909318 10.1109/TIT.2006.885507 10.1007/s00365-007-9003-x 10.1109/TIT.2008.929958 10.1109/TIT.2005.862083 10.1137/0149053 10.1109/TIT.2005.858979 10.1137/060671875 10.1109/MSP.2007.4286571 10.1007/s00454-005-1220-0 |
ContentType | Journal Article |
Copyright | Copyright © 2009 Wiley Periodicals, Inc. 2015 INIST-CNRS Copyright John Wiley and Sons, Limited Jan 2010 |
Copyright_xml | – notice: Copyright © 2009 Wiley Periodicals, Inc. – notice: 2015 INIST-CNRS – notice: Copyright John Wiley and Sons, Limited Jan 2010 |
DBID | BSCLL AAYXX CITATION IQODW JQ2 |
DOI | 10.1002/cpa.20303 |
DatabaseName | Istex CrossRef Pascal-Francis ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1097-0312 |
EndPage | 38 |
ExternalDocumentID | 1923938921 22200554 10_1002_cpa_20303 CPA20303 ark_67375_WNG_JDLDJR9P_3 |
Genre | article Feature |
GrantInformation_xml | – fundername: Office of Naval Research funderid: ONR‐N00014‐03‐1‐0051; ONR/DEPSCoR N00014‐03‐1‐0675; ONRsol;‐DEPSCoR N00014‐00‐1‐0470 – fundername: Army Research Office Contract DAAD funderid: 19‐02‐1‐0028 – fundername: National Science Foundation funderid: DMS‐0504924; DMS‐0530865; DMS‐0221642; DMS‐0200187; CCF‐0515187 – fundername: Alfred P. Sloan Research Fellowship – fundername: Courant Institute – fundername: European Union via the Marie Curie Individual Fellowship funderid: MOIF‐CT‐2006‐039438 – fundername: Program in Applied and Computational Mathematics at Princeton University – fundername: New York University Goddard Fellowship |
GroupedDBID | --Z .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 6OB 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEFU ABEML ABIJN ABLJU ABTAH ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL S10 SAMSI SUPJJ TN5 TWZ UB1 UHB V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XPP XV2 YZZ ZY4 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADXHL AETEA AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW JQ2 |
ID | FETCH-LOGICAL-c4303-1bde6eb0150f2e81b9d0df61b74b021884b9953757aade0419a569afbf7982f73 |
IEDL.DBID | DR2 |
ISSN | 0010-3640 |
IngestDate | Fri Jul 25 19:23:50 EDT 2025 Mon Jul 21 09:15:10 EDT 2025 Tue Jul 01 02:50:28 EDT 2025 Thu Apr 24 23:01:22 EDT 2025 Wed Jan 22 16:20:51 EST 2025 Wed Oct 30 10:04:26 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Least squares method Optimization method Linear programming Iteration Fast algorithm Hyperplane Method study |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4303-1bde6eb0150f2e81b9d0df61b74b021884b9953757aade0419a569afbf7982f73 |
Notes | European Union via the Marie Curie Individual Fellowship - No. MOIF-CT-2006-039438 New York University Goddard Fellowship Army Research Office Contract DAAD - No. 19-02-1-0028 Program in Applied and Computational Mathematics at Princeton University istex:CD6CECC9EF52884DD8F2F98B07B9D18CCB8FD56B ark:/67375/WNG-JDLDJR9P-3 National Science Foundation - No. DMS-0504924; No. DMS-0530865; No. DMS-0221642; No. DMS-0200187; No. CCF-0515187 Courant Institute ArticleID:CPA20303 Alfred P. Sloan Research Fellowship Office of Naval Research - No. ONR-N00014-03-1-0051; No. ONR/DEPSCoR N00014-03-1-0675; No. ONRsol;-DEPSCoR N00014-00-1-0470 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 214271942 |
PQPubID | 48818 |
PageCount | 38 |
ParticipantIDs | proquest_journals_214271942 pascalfrancis_primary_22200554 crossref_citationtrail_10_1002_cpa_20303 crossref_primary_10_1002_cpa_20303 wiley_primary_10_1002_cpa_20303_CPA20303 istex_primary_ark_67375_WNG_JDLDJR9P_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2010 |
PublicationDateYYYYMMDD | 2010-01-01 |
PublicationDate_xml | – month: 01 year: 2010 text: January 2010 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Hoboken, NJ – name: New York |
PublicationTitle | Communications on pure and applied mathematics |
PublicationTitleAlternate | Comm. Pure Appl. Math |
PublicationYear | 2010 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley John Wiley and Sons, Limited |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley – name: John Wiley and Sons, Limited |
References | Donoho, D. L. Compressed sensing. IEEE Trans Inform Theory 52 (2006), no. 4, 1289-1306. Cline, A. K. Rate of convergence of Lawson's algorithm. Math Comp 26 (1972), 167-176. DeVore, R. A. Nonlinear approximation. Acta Numer 7 (1998), 51-150. Figueiredo, M. A. T.; Bioucas-Dias, J. M.; Nowak, R. D. Majorization-minimization algorithms for wavelet-based image restoration. IEEE Trans Image Process 16 (2007), no. 12, 2980-2991. Candès, E. J.; Wakin, M. B.; Boyd, S. P. Enhancing sparsity by reweighted l1 minimization. J Fourier Anal Appl 14 (2008), no. 5-6, 877-905. Donoho, D. L.; Tanner, J. Sparse nonnegative solution of underdetermined linear equations by linear programming. Proc Natl Acad Sci USA 102 (2005), no. 27, 9446-9451 (electronic). Donoho, D. L.; Logan, B. F. Signal recovery and the large sieve. SIAM J Appl Math 52 (1992), no. 2, 577-591. Baraniuk, R.; Davenport, M.; DeVore, R.; Wakin, M. B. A simple proof of the restricted isometry property for random matrices (aka "The Johnson-Lindenstrauss lemma meets compressed sensing"). Constr Approx 28 (2008), no. 3, 253-263. Chartrand, R.; Staneva, V. Restricted isometry properties and nonconvex compressive sensing. Inverse Problems 24 (2008), no. 035020, 1-14. Gribonval, R.; Nielsen, M. Highly sparse representations from dictionaries are unique and independent of the sparseness measure. Appl Comput Harmon Anal 22 (2007), no. 3, 335-355. O'Brien, M. S.; Sinclair, A. N.; Kramer, S. M. Recovery of a sparse spike time series by 1 norm deconvolution. IEEE Trans Signal Process 42 (1994), no. 12, 3353-3365. Cohen, A.; Dahmen, W.; DeVore, R. Compressed sensing and best k-term approximation. J Amer Math Soc 22 (2009), no. 1, 211-231. Donoho, D. L.; Stark, P. B. Uncertainty principles and signal recovery. SIAM J Appl Math 49 (1989), no. 3, 906-931. Candès, E. J.; Tao, T. Decoding by linear programming. IEEE Trans Inform Theory 51 (2005), no. 12, 4203-4215. Gorodnitsky, I. F.; Rao, B. D. Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans Signal Process 45 (1997), no. 3, 600-616. Pinkus, A. M. On L1-approximation. Cambridge Tracts in Mathematics, 93. Cambridge University Press, Cambridge, 1989. Candès, E. J.; Tao, T. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans Inform Theory 52 (2006), no. 12, 5406-5425. Chen, S. S.; Donoho, D. L.; Saunders, M. A. Atomic decomposition by basis pursuit. SIAM J Sci Comput 20 (1998), no. 1, 33-61 (electronic). Li, Y. A globally convergent method for lp problems. SIAM J Optim 3 (1993), no. 3, 609-629. Rudelson, M.; Vershynin, R. On sparse reconstruction from Fourier and Gaussian measurements. Comm Pure Appl Math 61 (2008), no. 8, 1025-1045. Donoho, D. L.; Tanner, J. Counting faces of randomly projected polytopes when the projection radically lowers dimension. J Amer Math Soc 22 (2009), no. 1, 1-53. Santosa, F.; Symes, W. W. Linear inversion of band-limited reflection seismograms. SIAM J Sci Statist Comput 7 (1986), no. 4, 1307-1330. Claerbout, J. F.; Muir, F. Robust modeling with erratic data. Geophysics 38 (1973), no. 5, 826-844. Chambolle, A.; Lions, P.-L. Image recovery via total variation minimization and related problems. Numer Math 76 (1997), no. 2, 167-188. Donoho, D. L. High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension. Discrete Comput Geom 35 (2006), no. 4, 617-652. Tibshirani, R. Regression shrinkage and selection via the lasso. J Roy Statist Soc Ser B 58 (1996), no. 1, 267-288. Candès, E. J.; Romberg, J. K.; Tao, T. Stable signal recovery from incomplete and inaccurate measurements. Comm Pure Appl Math 59 (2006), no. 8, 1207-1223. Chartrand, R. Exact reconstructions of sparse signals via nonconvex minimization. IEEE Signal Process Lett 14 (2007), no. 10, 707-701. Candès, E. J.; Romberg, J.; Tao, T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inform Theory 52 (2006), no. 2, 489-509. Donoho, D. L.; Tsaig, Y. Fast solution of 1-norm minimization problems when the solution may be sparse. IEEE Trans Inform Theory 54 (2008), no. 11, 4789-4812. Baraniuk, R. G. Compressive sensing [Lecture notes]. IEEE Signal Processing Magazine 24 (2007), no. 4, 118-121. Fornasier, M.; March, R. Restoration of color images by vector valued BV functions and variational calculus. SIAM J Appl Math 68 (2007), no. 2, 437-460. Taylor, H. L.; Banks, S. C.; McCoy, J. F. Deconvolution with the 1 norm. Geophysics 44 (1979), no. 1, 39-52. 2009; 22 2006; 52 2006; 35 2006; 59 1973; 38 1997; 45 2008; 14 2008 2007 2006 2008; 54 1996; 58 1989; 49 1998; 20 1993; 3 1979 2007; 14 1972; 26 1992; 52 2007; 16 1994; 42 1989; 93 1986; 7 1997; 76 2005; 102 2008; 28 2005; 51 1985 2008; 24 1961 1998; 7 2008; 61 2007; 22 1979; 44 2007; 24 2007; 68 Cline A. K. (e_1_2_1_19_2) 1972; 26 Chartrand R. (e_1_2_1_15_2) 2008; 24 e_1_2_1_41_2 e_1_2_1_40_2 e_1_2_1_22_2 e_1_2_1_23_2 e_1_2_1_20_2 e_1_2_1_21_2 Candès E. J. (e_1_2_1_5_2) 2006 e_1_2_1_26_2 e_1_2_1_27_2 e_1_2_1_24_2 e_1_2_1_25_2 e_1_2_1_28_2 e_1_2_1_29_2 Li Y. (e_1_2_1_34_2) 1993; 3 Tibshirani R. (e_1_2_1_42_2) 1996; 58 Osborne M. R. (e_1_2_1_36_2) 1985 e_1_2_1_6_2 e_1_2_1_30_2 e_1_2_1_6_3 e_1_2_1_7_2 Pinkus A. M. (e_1_2_1_37_2) 1989 e_1_2_1_4_2 Chartrand R. (e_1_2_1_14_2) 2008 e_1_2_1_2_2 e_1_2_1_11_2 Chartrand R. (e_1_2_1_16_2) 2008 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_33_2 Saab R. (e_1_2_1_39_2) 2008 e_1_2_1_32_2 e_1_2_1_10_2 e_1_2_1_31_2 e_1_2_1_14_3 e_1_2_1_38_2 e_1_2_1_13_2 e_1_2_1_35_2 e_1_2_1_8_2 e_1_2_1_16_3 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 |
References_xml | – reference: Chen, S. S.; Donoho, D. L.; Saunders, M. A. Atomic decomposition by basis pursuit. SIAM J Sci Comput 20 (1998), no. 1, 33-61 (electronic). – reference: Fornasier, M.; March, R. Restoration of color images by vector valued BV functions and variational calculus. SIAM J Appl Math 68 (2007), no. 2, 437-460. – reference: Tibshirani, R. Regression shrinkage and selection via the lasso. J Roy Statist Soc Ser B 58 (1996), no. 1, 267-288. – reference: Chartrand, R. Exact reconstructions of sparse signals via nonconvex minimization. IEEE Signal Process Lett 14 (2007), no. 10, 707-701. – reference: Taylor, H. L.; Banks, S. C.; McCoy, J. F. Deconvolution with the 1 norm. Geophysics 44 (1979), no. 1, 39-52. – reference: Candès, E. J.; Tao, T. Decoding by linear programming. IEEE Trans Inform Theory 51 (2005), no. 12, 4203-4215. – reference: Li, Y. A globally convergent method for lp problems. SIAM J Optim 3 (1993), no. 3, 609-629. – reference: Candès, E. J.; Romberg, J. K.; Tao, T. Stable signal recovery from incomplete and inaccurate measurements. Comm Pure Appl Math 59 (2006), no. 8, 1207-1223. – reference: Rudelson, M.; Vershynin, R. On sparse reconstruction from Fourier and Gaussian measurements. Comm Pure Appl Math 61 (2008), no. 8, 1025-1045. – reference: Claerbout, J. F.; Muir, F. Robust modeling with erratic data. Geophysics 38 (1973), no. 5, 826-844. – reference: Pinkus, A. M. On L1-approximation. Cambridge Tracts in Mathematics, 93. Cambridge University Press, Cambridge, 1989. – reference: Candès, E. J.; Wakin, M. B.; Boyd, S. P. Enhancing sparsity by reweighted l1 minimization. J Fourier Anal Appl 14 (2008), no. 5-6, 877-905. – reference: Baraniuk, R. G. Compressive sensing [Lecture notes]. IEEE Signal Processing Magazine 24 (2007), no. 4, 118-121. – reference: O'Brien, M. S.; Sinclair, A. N.; Kramer, S. M. Recovery of a sparse spike time series by 1 norm deconvolution. IEEE Trans Signal Process 42 (1994), no. 12, 3353-3365. – reference: Donoho, D. L. Compressed sensing. IEEE Trans Inform Theory 52 (2006), no. 4, 1289-1306. – reference: Donoho, D. L.; Tsaig, Y. Fast solution of 1-norm minimization problems when the solution may be sparse. IEEE Trans Inform Theory 54 (2008), no. 11, 4789-4812. – reference: Gorodnitsky, I. F.; Rao, B. D. Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans Signal Process 45 (1997), no. 3, 600-616. – reference: Gribonval, R.; Nielsen, M. Highly sparse representations from dictionaries are unique and independent of the sparseness measure. Appl Comput Harmon Anal 22 (2007), no. 3, 335-355. – reference: DeVore, R. A. Nonlinear approximation. Acta Numer 7 (1998), 51-150. – reference: Donoho, D. L.; Tanner, J. Sparse nonnegative solution of underdetermined linear equations by linear programming. Proc Natl Acad Sci USA 102 (2005), no. 27, 9446-9451 (electronic). – reference: Figueiredo, M. A. T.; Bioucas-Dias, J. M.; Nowak, R. D. Majorization-minimization algorithms for wavelet-based image restoration. IEEE Trans Image Process 16 (2007), no. 12, 2980-2991. – reference: Cline, A. K. Rate of convergence of Lawson's algorithm. Math Comp 26 (1972), 167-176. – reference: Donoho, D. L. High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension. Discrete Comput Geom 35 (2006), no. 4, 617-652. – reference: Donoho, D. L.; Logan, B. F. Signal recovery and the large sieve. SIAM J Appl Math 52 (1992), no. 2, 577-591. – reference: Baraniuk, R.; Davenport, M.; DeVore, R.; Wakin, M. B. A simple proof of the restricted isometry property for random matrices (aka "The Johnson-Lindenstrauss lemma meets compressed sensing"). Constr Approx 28 (2008), no. 3, 253-263. – reference: Candès, E. J.; Romberg, J.; Tao, T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inform Theory 52 (2006), no. 2, 489-509. – reference: Candès, E. J.; Tao, T. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans Inform Theory 52 (2006), no. 12, 5406-5425. – reference: Donoho, D. L.; Tanner, J. Counting faces of randomly projected polytopes when the projection radically lowers dimension. J Amer Math Soc 22 (2009), no. 1, 1-53. – reference: Donoho, D. L.; Stark, P. B. Uncertainty principles and signal recovery. SIAM J Appl Math 49 (1989), no. 3, 906-931. – reference: Chartrand, R.; Staneva, V. Restricted isometry properties and nonconvex compressive sensing. Inverse Problems 24 (2008), no. 035020, 1-14. – reference: Cohen, A.; Dahmen, W.; DeVore, R. Compressed sensing and best k-term approximation. J Amer Math Soc 22 (2009), no. 1, 211-231. – reference: Santosa, F.; Symes, W. W. Linear inversion of band-limited reflection seismograms. SIAM J Sci Statist Comput 7 (1986), no. 4, 1307-1330. – reference: Chambolle, A.; Lions, P.-L. Image recovery via total variation minimization and related problems. Numer Math 76 (1997), no. 2, 167-188. – year: 1985 – volume: 52 start-page: 577 issue: 2 year: 1992 end-page: 591 article-title: Signal recovery and the large sieve publication-title: SIAM J Appl Math – volume: 52 start-page: 489 issue: 2 year: 2006 end-page: 509 article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information publication-title: IEEE Trans Inform Theory – volume: 93 year: 1989 – start-page: 1433 year: 2006 end-page: 1452 – volume: 26 start-page: 167 year: 1972 end-page: 176 article-title: Rate of convergence of Lawson's algorithm publication-title: Math Comp – volume: 16 start-page: 2980 issue: 12 year: 2007 end-page: 2991 article-title: Majorization‐minimization algorithms for wavelet‐based image restoration publication-title: IEEE Trans Image Process – year: 2007 – volume: 7 start-page: 1307 issue: 4 year: 1986 end-page: 1330 article-title: Linear inversion of band‐limited reflection seismograms publication-title: SIAM J Sci Statist Comput – volume: 24 start-page: 1 issue: 035020 year: 2008 end-page: 14 article-title: Restricted isometry properties and nonconvex compressive sensing publication-title: Inverse Problems – start-page: 3885 year: 2008 end-page: 3888 – year: 1979 – volume: 59 start-page: 1207 issue: 8 year: 2006 end-page: 1223 article-title: Stable signal recovery from incomplete and inaccurate measurements publication-title: Comm Pure Appl Math – volume: 14 start-page: 707 issue: 10 year: 2007 end-page: 701 article-title: Exact reconstructions of sparse signals via nonconvex minimization publication-title: IEEE Signal Process Lett – volume: 20 start-page: 33 issue: 1 year: 1998 end-page: 61 article-title: Atomic decomposition by basis pursuit publication-title: SIAM J Sci Comput – volume: 51 start-page: 4203 issue: 12 year: 2005 end-page: 4215 article-title: Decoding by linear programming publication-title: IEEE Trans Inform Theory – volume: 52 start-page: 5406 issue: 12 year: 2006 end-page: 5425 article-title: Near‐optimal signal recovery from random projections: universal encoding strategies publication-title: IEEE Trans Inform Theory – volume: 52 start-page: 1289 issue: 4 year: 2006 end-page: 1306 article-title: Compressed sensing publication-title: IEEE Trans Inform Theory – year: 1961 – volume: 102 start-page: 9446 issue: 27 year: 2005 end-page: 9451 article-title: Sparse nonnegative solution of underdetermined linear equations by linear programming publication-title: Proc Natl Acad Sci USA – volume: 22 start-page: 211 issue: 1 year: 2009 end-page: 231 article-title: Compressed sensing and best ‐term approximation publication-title: J Amer Math Soc – volume: 22 start-page: 335 issue: 3 year: 2007 end-page: 355 article-title: Highly sparse representations from dictionaries are unique and independent of the sparseness measure publication-title: Appl Comput Harmon Anal – volume: 38 start-page: 826 issue: 5 year: 1973 end-page: 844 article-title: Robust modeling with erratic data publication-title: Geophysics – volume: 54 start-page: 4789 issue: 11 year: 2008 end-page: 4812 article-title: Fast solution of 𝓁 ‐norm minimization problems when the solution may be sparse publication-title: IEEE Trans Inform Theory – volume: 7 start-page: 51 year: 1998 end-page: 150 article-title: Nonlinear approximation publication-title: Acta Numer – volume: 44 start-page: 39 issue: 1 year: 1979 end-page: 52 article-title: Deconvolution with the 𝓁 norm publication-title: Geophysics – volume: 28 start-page: 253 issue: 3 year: 2008 end-page: 263 article-title: A simple proof of the restricted isometry property for random matrices (aka “The Johnson‐Lindenstrauss lemma meets compressed sensing”) publication-title: Constr Approx – volume: 42 start-page: 3353 issue: 12 year: 1994 end-page: 3365 article-title: Recovery of a sparse spike time series by 𝓁 norm deconvolution publication-title: IEEE Trans Signal Process – volume: 49 start-page: 906 issue: 3 year: 1989 end-page: 931 article-title: Uncertainty principles and signal recovery publication-title: SIAM J Appl Math – year: 2008 – volume: 68 start-page: 437 issue: 2 year: 2007 end-page: 460 article-title: Restoration of color images by vector valued BV functions and variational calculus publication-title: SIAM J Appl Math – volume: 3 start-page: 609 issue: 3 year: 1993 end-page: 629 article-title: A globally convergent method for problems publication-title: SIAM J Optim – volume: 22 start-page: 1 issue: 1 year: 2009 end-page: 53 article-title: Counting faces of randomly projected polytopes when the projection radically lowers dimension publication-title: J Amer Math Soc – volume: 14 start-page: 877 issue: 5 year: 2008 end-page: 905 article-title: Enhancing sparsity by reweighted minimization publication-title: J Fourier Anal Appl – volume: 45 start-page: 600 issue: 3 year: 1997 end-page: 616 article-title: Sparse signal reconstruction from limited data using FOCUSS: a re‐weighted minimum norm algorithm publication-title: IEEE Trans Signal Process – volume: 58 start-page: 267 issue: 1 year: 1996 end-page: 288 article-title: Regression shrinkage and selection via the lasso publication-title: J Roy Statist Soc Ser B – volume: 24 start-page: 118 issue: 4 year: 2007 end-page: 121 article-title: Compressive sensing [Lecture notes] publication-title: IEEE Signal Processing Magazine – volume: 76 start-page: 167 issue: 2 year: 1997 end-page: 188 article-title: Image recovery via total variation minimization and related problems publication-title: Numer Math – volume: 61 start-page: 1025 issue: 8 year: 2008 end-page: 1045 article-title: On sparse reconstruction from Fourier and Gaussian measurements publication-title: Comm Pure Appl Math – volume: 35 start-page: 617 issue: 4 year: 2006 end-page: 652 article-title: High‐dimensional centrally symmetric polytopes with neighborliness proportional to dimension publication-title: Discrete Comput Geom – ident: e_1_2_1_13_2 doi: 10.1109/LSP.2007.898300 – ident: e_1_2_1_27_2 doi: 10.1090/S0894-0347-08-00600-0 – volume-title: Iteratively reweighted algorithms for compressive sensing year: 2008 ident: e_1_2_1_16_2 doi: 10.1109/ICASSP.2008.4518498 – ident: e_1_2_1_40_2 doi: 10.1137/0907087 – ident: e_1_2_1_31_2 doi: 10.1109/78.558475 – ident: e_1_2_1_41_2 doi: 10.1190/1.1440921 – ident: e_1_2_1_8_2 doi: 10.1002/cpa.20124 – volume: 3 start-page: 609 issue: 3 year: 1993 ident: e_1_2_1_34_2 article-title: A globally convergent method for lp problems publication-title: SIAM J Optim doi: 10.1137/0803030 – ident: e_1_2_1_22_2 doi: 10.1109/TIT.2006.871582 – ident: e_1_2_1_11_2 doi: 10.1007/s00041-008-9045-x – ident: e_1_2_1_32_2 doi: 10.1016/j.acha.2006.09.003 – ident: e_1_2_1_17_2 doi: 10.1137/S1064827596304010 – ident: e_1_2_1_18_2 doi: 10.1190/1.1440378 – ident: e_1_2_1_12_2 doi: 10.1007/s002110050258 – ident: e_1_2_1_6_2 – volume-title: Nonconvex compressive sensing and reconstruction of gradient‐sparse images: random vs. tomographic Fourier sampling year: 2008 ident: e_1_2_1_14_2 – ident: e_1_2_1_24_2 doi: 10.1137/0152031 – ident: e_1_2_1_33_2 – ident: e_1_2_1_38_2 doi: 10.1002/cpa.20227 – ident: e_1_2_1_35_2 doi: 10.1109/78.340772 – ident: e_1_2_1_26_2 doi: 10.1073/pnas.0502269102 – volume-title: Finite algorithms in optimization and data analysis year: 1985 ident: e_1_2_1_36_2 – ident: e_1_2_1_20_2 doi: 10.1090/S0894-0347-08-00610-3 – volume-title: On L1‐approximation year: 1989 ident: e_1_2_1_37_2 – ident: e_1_2_1_14_3 – ident: e_1_2_1_21_2 doi: 10.1017/S0962492900002816 – volume: 26 start-page: 167 year: 1972 ident: e_1_2_1_19_2 article-title: Rate of convergence of Lawson's algorithm publication-title: Math Comp – ident: e_1_2_1_29_2 doi: 10.1109/TIP.2007.909318 – ident: e_1_2_1_10_2 doi: 10.1109/TIT.2006.885507 – ident: e_1_2_1_3_2 doi: 10.1007/s00365-007-9003-x – ident: e_1_2_1_28_2 doi: 10.1109/TIT.2008.929958 – start-page: 1433 volume-title: International Congress of Mathematicians. Vol. III year: 2006 ident: e_1_2_1_5_2 – ident: e_1_2_1_16_3 – start-page: 3885 volume-title: Proceedings of the 33rd IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) year: 2008 ident: e_1_2_1_39_2 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: e_1_2_1_42_2 article-title: Regression shrinkage and selection via the lasso publication-title: J Roy Statist Soc Ser B – ident: e_1_2_1_7_2 doi: 10.1109/TIT.2005.862083 – ident: e_1_2_1_6_3 – ident: e_1_2_1_25_2 doi: 10.1137/0149053 – ident: e_1_2_1_9_2 doi: 10.1109/TIT.2005.858979 – ident: e_1_2_1_30_2 doi: 10.1137/060671875 – ident: e_1_2_1_2_2 doi: 10.1109/MSP.2007.4286571 – ident: e_1_2_1_4_2 – volume: 24 start-page: 1 issue: 035020 year: 2008 ident: e_1_2_1_15_2 article-title: Restricted isometry properties and nonconvex compressive sensing publication-title: Inverse Problems – ident: e_1_2_1_23_2 doi: 10.1007/s00454-005-1220-0 |
SSID | ssj0011483 |
Score | 2.5167732 |
Snippet | Under certain conditions (known as the restricted isometry property, or RIP) on the m × N matrix Φ (where m < N), vectors x ∈ ℝN that are sparse (i.e., have... Under certain conditions (known as the restricted isometry property , or RIP) on the m × N matrix Φ (where m < N ), vectors x ∈ ℝ N that are sparse (i.e., have... Under certain conditions (known as the restricted isometry property, or RIP) on the m x N matrix ... (where m < N), vectors x ... that are sparse (i.e., have... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Calculus of variations and optimal control Convergence Exact sciences and technology Linear programming Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Numerical methods in mathematical programming, optimization and calculus of variations Numerical methods in optimization and calculus of variations Optimization algorithms Sciences and techniques of general use Vector space |
Title | Iteratively reweighted least squares minimization for sparse recovery |
URI | https://api.istex.fr/ark:/67375/WNG-JDLDJR9P-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpa.20303 https://www.proquest.com/docview/214271942 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jvuiD3-KcjiAivlS7Nm0WfBr7cA4nMhR9EELSpi-bc64bOv96c-mHThTEt1IucL3LXX5NLr9D6IgpQlXNk5bNBLEI1FEJn0jLV4EIpKJECDjR7V37nTvSffAeCug8uwuT8EPkG24QGSZfQ4ALGZ99koYGY6ANcg3TJ9RqASDq59RRAPOT02XIMz6xM1Yh2znLRy6sRUtg1jeojRSxNk-U9LVYAJ5f4atZf9pr6DHTPCk7GZzOpvI0eP9G6vjPT1tHqykuxfVkIm2gghptopVeTuoab6HWpWFg1ulxOMcT9Wo2VVWIh9D-B8cvM7jKhIGr5Cm93Ik1IsY6ZU1iheHPW4fNfBvdtVu3jY6VdmGwAuJC4ZoMla8k7IxEjtIol4V2GPlVSYkEgFAjkjHPpR4VIlQ2qTLh-UxEMqKs5kTU3UHF0fNI7SIc2tJjnoxqyhFERlrIdonSrpJEvxGkhE4yf_AgpSiHThlDnpArO1xbhhvLlNBhLjpOeDl-Ejo2Ts0lxGQAhWzU4_fXF7zbvGp2--yGa8HKgtfzARo9AUuZ1qycTQOeBnnMga2OVhlxtN7Gnb9rwhs3dfOw93fRMlpOShVgv2cfFaeTmTrQCGgqK2aqfwARbAF_ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA_iHtQHv8U5P4KI-FLt2rRZwJehm3NuQ0TRFwlJm75szrlu6PzrzaUfOlEQ30q5wDWXu_x6ufwOoQOmCFUVT1o2E8QiUEclfCItXwUikIoSIeBEt93xG3ek-eA9zKDT7C5Mwg-RJ9zAM0y8BgeHhPTJJ2toMADeIBeoPgvQ0dv8UN3k5FEA9JPzZYg0PrEzXiHbOcmHTu1GBZjYN6iOFLGeoCjpbDEFPb8CWLMD1ZfQY6Z7UnjSPR6P5HHw_o3W8b8ft4wWU2iKq8laWkEzqr-KFto5r2u8hmqXhoRZR8jeBA_Vq8mrqhD3oAMQjl_GcJsJA13JU3q_E2tQjHXUGsYKw8-39pzJOrqr127PGlbaiMEKiAu1azJUvpKQHIkcpYEuC-0w8suSEgkYoUIkY55LPSpEqGxSZsLzmYhkRFnFiai7gWb7z321iXBoS495MqooRxAZaSHbJUrbShL9RpAiOsoMwoOUpRyaZfR4wq_scD0z3MxMEe3nooOEmuMnoUNj1VxCDLtQy0Y9ft-54M3z1nnzhl1zLbg7ZfZ8gAZQQFSmNStl64Cnfh5zIKyjZUYcrbex5--a8LPrqnnY-rvoHppr3LZbvHXZuSqh-aRyAdI_22h2NByrHQ2IRnLXrPsPHHQFmg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLYQSNN4GIyLxmXMQgjxEkiTkzjWnipKBwWqCoHGwyTLTuwXSilNKyi_Hh_nwjoxadpbFB1LJz4Xf7GPv0PIHtfAdBIpz-cSPMA6KhmD8mKdylRpBlLiie5lNz69gc5tdDtHvld3YQp-iHrDDSPD5WsM8GFmjt5IQ9Mh0gaFyPS5ALGfoEu3rmruKMT5xfEyJpoY_IpWyA-O6qEzi9ECzuszFkfK3M6PKRpbzCDP3_GrW4DaS-RXpXpRd3J3OBmrw_TlD1bH__y2ZfKpBKa0WXjSZzKnBytk8bJmdc1XycmZo2C2-bE_pSP95HZVdUb72P-H5o8TvMtEkazkvrzdSS0kpjZnjXJN8dfbxs10jdy0T66PT72yDYOXQoiVayrTsVa4NWICbWEuz_zMxA3FQCFCSEBxHoUsYlJm2ocGl1HMpVGG8SQwLFwn84OHgf5CaOariEfKJDqQoIwV8kPQ1lQK7BsJG-SgsodIS45ybJXRFwW7ciDszAg3MxtktxYdFsQc7wntO6PWEnJ0h5VsLBI_uz9Ep3XR6lzxnrCCOzNWrwdY-IQ0ZVazrcoNRBnluUC6OtbgEFi9nTn_rok47jXdw-a_i34jH3qttrg4655vkY9F2QLu_WyT-fFoor9aNDRWO87rXwEo5gRS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iteratively+reweighted+least+squares+minimization+for+sparse+recovery&rft.jtitle=Communications+on+pure+and+applied+mathematics&rft.au=Daubechies%2C+Ingrid&rft.au=DeVore%2C+Ronald&rft.au=nasier%2C+Massimo&rft.au=G%C3%BCnt%C3%BCrk%2C+C+Sinan&rft.date=2010-01-01&rft.pub=John+Wiley+and+Sons%2C+Limited&rft.issn=0010-3640&rft.eissn=1097-0312&rft.volume=63&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1002%2Fcpa.20303&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1923938921 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3640&client=summon |