Iteratively reweighted least squares minimization for sparse recovery

Under certain conditions (known as the restricted isometry property, or RIP) on the m × N matrix Φ (where m < N), vectors x ∈ ℝN that are sparse (i.e., have most of their entries equal to 0) can be recovered exactly from y := Φx even though Φ−1(y) is typically an (N − m)—dimensional hyperplane; i...

Full description

Saved in:
Bibliographic Details
Published inCommunications on pure and applied mathematics Vol. 63; no. 1; pp. 1 - 38
Main Authors Daubechies, Ingrid, DeVore, Ronald, Fornasier, Massimo, Güntürk, C. Si̇nan
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.01.2010
Wiley
John Wiley and Sons, Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Under certain conditions (known as the restricted isometry property, or RIP) on the m × N matrix Φ (where m < N), vectors x ∈ ℝN that are sparse (i.e., have most of their entries equal to 0) can be recovered exactly from y := Φx even though Φ−1(y) is typically an (N − m)—dimensional hyperplane; in addition, x is then equal to the element in Φ−1(y) of minimal 𝓁1‐norm. This minimal element can be identified via linear programming algorithms. We study an alternative method of determining x, as the limit of an iteratively reweighted least squares (IRLS) algorithm. The main step of this IRLS finds, for a given weight vector w, the element in Φ−1(y) with smallest 𝓁2(w)‐norm. If x(n) is the solution at iteration step n, then the new weight w(n) is defined by w i(n) := [|x i(n)|2 + ε n2]−1/2, i = 1, …, N, for a decreasing sequence of adaptively defined εn; this updated weight is then used to obtain x(n + 1) and the process is repeated. We prove that when Φ satisfies the RIP conditions, the sequence x(n) converges for all y, regardless of whether Φ−1(y) contains a sparse vector. If there is a sparse vector in Φ−1(y), then the limit is this sparse vector, and when x(n) is sufficiently close to the limit, the remaining steps of the algorithm converge exponentially fast (linear convergence in the terminology of numerical optimization). The same algorithm with the “heavier” weight w i(n) = [|x i(n)|2 + ε n2]−1+τ/2, i = 1, …, N, where 0 < τ < 1, can recover sparse solutions as well; more importantly, we show its local convergence is superlinear and approaches a quadratic rate for τ approaching 0. © 2009 Wiley Periodicals, Inc.
AbstractList Under certain conditions (known as the restricted isometry property, or RIP) on the m x N matrix ... (where m < N), vectors x ... that are sparse (i.e., have most of their entries equal to 0) can be recovered exactly from y := ...x even though ...(y) is typically an (N - m) - dimensional hyperplane; in addition, x is then equal to the element in ...(y) of minimal ...-norm. This minimal element can be identified via linear programming algorithms. We study an alternative method of determining x, as the limit of an iteratively reweighted least squares (IRLS) algorithm. The main step of this IRLS finds, for a given weight vector w, the element in ...(y) with smallest ...-norm. If x... is the solution at iteration step n, then the new weight w... is defined by w...: ..., i = 1, ..., N, for a decreasing sequence of adaptively defined ...; this updated weight is then used to obtain x... and the process is repeated. We prove that when satisfies the RIP conditions, the sequence x... converges for all y, regardless of whether ...(y) contains a sparse vector. If there is a sparse vector in ...(y), then the limit is this sparse vector, and when x... is sufficiently close to the limit, the remaining steps of the algorithm converge exponentially fast (linear convergence in the terminology of numerical optimization). The same algorithm with the heavier weight w... = ..., i = 1, ..., N, where 0 < < 1, can recover sparse solutions as well; more importantly, we show its local convergence is superlinear and approaches a quadratic rate for ... approaching 0. (ProQuest: ... denotes formulae/symbols omitted.)
Under certain conditions (known as the restricted isometry property , or RIP) on the m × N matrix Φ (where m < N ), vectors x ∈ ℝ N that are sparse (i.e., have most of their entries equal to 0) can be recovered exactly from y := Φ x even though Φ −1 ( y ) is typically an ( N − m )—dimensional hyperplane; in addition, x is then equal to the element in Φ −1 ( y ) of minimal 1 ‐norm. This minimal element can be identified via linear programming algorithms. We study an alternative method of determining x , as the limit of an iteratively reweighted least squares (IRLS) algorithm. The main step of this IRLS finds, for a given weight vector w , the element in Φ −1 ( y ) with smallest 2 ( w )‐norm. If x ( n ) is the solution at iteration step n , then the new weight w ( n ) is defined by w := [| x | 2 + ε ] −1/2 , i = 1, …, N , for a decreasing sequence of adaptively defined ε n ; this updated weight is then used to obtain x ( n + 1) and the process is repeated. We prove that when Φ satisfies the RIP conditions, the sequence x ( n ) converges for all y , regardless of whether Φ −1 ( y ) contains a sparse vector. If there is a sparse vector in Φ −1 ( y ), then the limit is this sparse vector, and when x ( n ) is sufficiently close to the limit, the remaining steps of the algorithm converge exponentially fast ( linear convergence in the terminology of numerical optimization). The same algorithm with the “heavier” weight w = [| x | 2 + ε ] −1+τ/2 , i = 1, …, N , where 0 < τ < 1, can recover sparse solutions as well; more importantly, we show its local convergence is superlinear and approaches a quadratic rate for τ approaching 0. © 2009 Wiley Periodicals, Inc.
Under certain conditions (known as the restricted isometry property, or RIP) on the m × N matrix Φ (where m < N), vectors x ∈ ℝN that are sparse (i.e., have most of their entries equal to 0) can be recovered exactly from y := Φx even though Φ−1(y) is typically an (N − m)—dimensional hyperplane; in addition, x is then equal to the element in Φ−1(y) of minimal 𝓁1‐norm. This minimal element can be identified via linear programming algorithms. We study an alternative method of determining x, as the limit of an iteratively reweighted least squares (IRLS) algorithm. The main step of this IRLS finds, for a given weight vector w, the element in Φ−1(y) with smallest 𝓁2(w)‐norm. If x(n) is the solution at iteration step n, then the new weight w(n) is defined by w i(n) := [|x i(n)|2 + ε n2]−1/2, i = 1, …, N, for a decreasing sequence of adaptively defined εn; this updated weight is then used to obtain x(n + 1) and the process is repeated. We prove that when Φ satisfies the RIP conditions, the sequence x(n) converges for all y, regardless of whether Φ−1(y) contains a sparse vector. If there is a sparse vector in Φ−1(y), then the limit is this sparse vector, and when x(n) is sufficiently close to the limit, the remaining steps of the algorithm converge exponentially fast (linear convergence in the terminology of numerical optimization). The same algorithm with the “heavier” weight w i(n) = [|x i(n)|2 + ε n2]−1+τ/2, i = 1, …, N, where 0 < τ < 1, can recover sparse solutions as well; more importantly, we show its local convergence is superlinear and approaches a quadratic rate for τ approaching 0. © 2009 Wiley Periodicals, Inc.
Author Güntürk, C. Si̇nan
Daubechies, Ingrid
Fornasier, Massimo
DeVore, Ronald
Author_xml – sequence: 1
  givenname: Ingrid
  surname: Daubechies
  fullname: Daubechies, Ingrid
  email: ingrid@math.princeton.edu
  organization: Princeton University, Department of Mathematics and Program in Applied and Computational Mathematics, Fine Hall, Washington Road, Princeton, NJ 08544
– sequence: 2
  givenname: Ronald
  surname: DeVore
  fullname: DeVore, Ronald
  email: devore@math.sc.edu
  organization: University of South Carolina, Department of Mathematics, Columbia, SC 29208
– sequence: 3
  givenname: Massimo
  surname: Fornasier
  fullname: Fornasier, Massimo
  email: massimo.fornasier@oeaw.ac.at
  organization: Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenbergerstrasse 69, A-4040 Linz, Austria
– sequence: 4
  givenname: C. Si̇nan
  surname: Güntürk
  fullname: Güntürk, C. Si̇nan
  email: gunturk@courant.nyu.edu
  organization: Courant Institute, 251 Mercer Street, New York, NY 10012
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22200554$$DView record in Pascal Francis
BookMark eNp1kMtOwzAQRS0EEm1hwR9ESCxYpIwfeXiJylsVIARiaTnJGAxpUuy0UL4eQwsLBCtrpHPueG6frDdtg4TsUBhSAHZQTvWQAQe-RnoUZBYDp2yd9AAoxDwVsEn63j-FkYqc98jxeYdOd3aO9SJy-Ir24bHDKqpR-y7yLzPt0EcT29iJfQ9c20SmdZGfaucxCGU7R7fYIhtG1x63V--A3J0c347O4vHV6fnocByXInwppkWFKRZAEzAMc1rICiqT0iITBTCa56KQMuFZkmldIQgqdZJKbQqTyZyZjA_I7jJ36tqXGfpOPbUz14SVilHBMioFC9DeCtK-1LVxuimtV1NnJ9otFGMMIElE4A6WXOla7x0aVdru68TOaVsrCuqzUhUqVV-VBmP_l_Ed-he7Sn-1NS7-B9Xo-vDbiJeG9R2-_RjaPas0C6Wo-8tTdXE0Prq4kdeK8w_XSpY7
CODEN CPAMAT
CitedBy_id crossref_primary_10_1109_TPAMI_2023_3247603
crossref_primary_10_1007_s10957_024_02415_4
crossref_primary_10_1109_TGRS_2020_2985768
crossref_primary_10_1140_epjs_s11734_024_01270_8
crossref_primary_10_1109_ACCESS_2018_2833121
crossref_primary_10_1016_j_neucom_2018_03_009
crossref_primary_10_1109_TSP_2015_2404314
crossref_primary_10_1190_geo2023_0102_1
crossref_primary_10_1088_1742_2132_9_3_247
crossref_primary_10_3390_rs15184610
crossref_primary_10_1109_TIP_2010_2062194
crossref_primary_10_1080_10618600_2020_1841650
crossref_primary_10_1016_j_neucom_2014_11_009
crossref_primary_10_3389_fams_2023_1155484
crossref_primary_10_1016_j_sigpro_2018_06_027
crossref_primary_10_1016_j_media_2021_102149
crossref_primary_10_4153_S0008439519000730
crossref_primary_10_1016_j_sigpro_2021_108199
crossref_primary_10_3934_ipi_2014_8_761
crossref_primary_10_1142_S0217595915500232
crossref_primary_10_1016_j_automatica_2020_109330
crossref_primary_10_1109_TAES_2023_3241886
crossref_primary_10_3788_PI_2024_R06
crossref_primary_10_1007_s10915_018_0754_2
crossref_primary_10_1016_j_ymssp_2022_109602
crossref_primary_10_1007_s11280_019_00766_x
crossref_primary_10_1109_TNNLS_2016_2532358
crossref_primary_10_1137_130916436
crossref_primary_10_1007_s10107_022_01923_3
crossref_primary_10_1142_S021953051650010X
crossref_primary_10_1093_gji_ggz476
crossref_primary_10_3934_ipi_2017030
crossref_primary_10_1002_nme_5998
crossref_primary_10_1016_j_compmedimag_2025_102530
crossref_primary_10_1007_s10589_017_9977_7
crossref_primary_10_1080_14498596_2020_1760952
crossref_primary_10_1109_TGRS_2022_3146258
crossref_primary_10_3390_math9232999
crossref_primary_10_7498_aps_63_200701
crossref_primary_10_1190_1_3554627
crossref_primary_10_1002_mp_17389
crossref_primary_10_1007_s10107_013_0722_4
crossref_primary_10_1016_j_cam_2023_115553
crossref_primary_10_1137_17M1147378
crossref_primary_10_1109_TKDE_2018_2858782
crossref_primary_10_1007_s00211_020_01107_1
crossref_primary_10_1016_j_ifacol_2020_12_2684
crossref_primary_10_1080_03610926_2022_2028841
crossref_primary_10_1109_TKDE_2020_3037131
crossref_primary_10_1109_LSP_2012_2217329
crossref_primary_10_1016_j_jappgeo_2017_02_020
crossref_primary_10_1137_15M1014474
crossref_primary_10_1016_j_neucom_2019_06_047
crossref_primary_10_1049_iet_com_2016_1435
crossref_primary_10_1109_JIOT_2018_2886841
crossref_primary_10_1016_j_ipm_2020_102388
crossref_primary_10_1063_1_4817580
crossref_primary_10_1088_1361_6420_ab6619
crossref_primary_10_1007_s00530_023_01198_4
crossref_primary_10_1109_TIT_2013_2262495
crossref_primary_10_1190_geo2022_0734_1
crossref_primary_10_1016_j_sysconle_2013_04_004
crossref_primary_10_1109_TIP_2015_2498400
crossref_primary_10_1109_TNNLS_2020_3009632
crossref_primary_10_2478_geochr_2020_0009
crossref_primary_10_1049_iet_spr_2019_0020
crossref_primary_10_1088_1402_4896_ab8d00
crossref_primary_10_1111_sjos_12591
crossref_primary_10_1016_j_patcog_2016_09_006
crossref_primary_10_1109_TVT_2021_3069580
crossref_primary_10_1002_stc_2343
crossref_primary_10_1137_21M146209X
crossref_primary_10_1016_j_sigpro_2019_107346
crossref_primary_10_1109_JIOT_2024_3443173
crossref_primary_10_1109_TSP_2014_2330349
crossref_primary_10_1007_s10444_014_9352_5
crossref_primary_10_1137_13094829X
crossref_primary_10_1109_TIT_2016_2573312
crossref_primary_10_1016_j_petrol_2020_107845
crossref_primary_10_1109_LCOMM_2020_3027904
crossref_primary_10_1016_j_ymssp_2019_02_039
crossref_primary_10_1016_j_jsv_2021_116633
crossref_primary_10_1109_LWC_2021_3112791
crossref_primary_10_1007_s00211_016_0842_x
crossref_primary_10_1016_j_cviu_2020_103016
crossref_primary_10_1109_TBME_2013_2267742
crossref_primary_10_1093_gji_ggv179
crossref_primary_10_1109_TIP_2018_2867943
crossref_primary_10_1142_S0219530519500131
crossref_primary_10_1371_journal_pone_0179623
crossref_primary_10_1016_j_knosys_2018_05_017
crossref_primary_10_1088_1402_4896_ad88af
crossref_primary_10_1080_00207160_2013_790533
crossref_primary_10_1109_TIP_2014_2362056
crossref_primary_10_1109_TVT_2019_2924951
crossref_primary_10_1002_anie_201100370
crossref_primary_10_1093_mnras_stw1859
crossref_primary_10_1109_TMM_2016_2573142
crossref_primary_10_1016_j_cad_2014_08_003
crossref_primary_10_1109_TIP_2011_2176743
crossref_primary_10_1137_100807004
crossref_primary_10_1007_s11220_015_0127_y
crossref_primary_10_1016_j_jappgeo_2023_105072
crossref_primary_10_1109_TIP_2017_2685342
crossref_primary_10_1137_18M1218212
crossref_primary_10_1007_s00211_010_0314_7
crossref_primary_10_1007_s10851_020_01001_3
crossref_primary_10_3934_jimo_2016006
crossref_primary_10_1016_j_dsp_2015_02_002
crossref_primary_10_1049_iet_com_2014_0911
crossref_primary_10_1007_s40430_024_05335_6
crossref_primary_10_1016_j_patrec_2018_08_029
crossref_primary_10_1109_TSP_2016_2546231
crossref_primary_10_1109_LWC_2018_2810231
crossref_primary_10_3724_SP_J_1004_2012_00444
crossref_primary_10_1155_2020_8849395
crossref_primary_10_1109_TMI_2021_3099641
crossref_primary_10_1080_17415977_2018_1456536
crossref_primary_10_1109_JSTSP_2010_2042413
crossref_primary_10_1137_110854746
crossref_primary_10_1109_TIP_2015_2461445
crossref_primary_10_1109_TSP_2021_3072228
crossref_primary_10_1109_TSP_2022_3146790
crossref_primary_10_1109_TGRS_2023_3300739
crossref_primary_10_1109_TGRS_2024_3361654
crossref_primary_10_1364_BOE_3_000927
crossref_primary_10_1016_j_laa_2024_05_007
crossref_primary_10_1016_j_acha_2012_03_006
crossref_primary_10_1016_j_sigpro_2022_108493
crossref_primary_10_1109_TVCG_2023_3287303
crossref_primary_10_1109_TSP_2013_2263502
crossref_primary_10_1088_1361_6420_ac38b8
crossref_primary_10_1007_BF03549565
crossref_primary_10_1109_TIE_2018_2889616
crossref_primary_10_1007_s10589_017_9933_6
crossref_primary_10_1111_sjos_12568
crossref_primary_10_3390_rs15194870
crossref_primary_10_1121_1_4926381
crossref_primary_10_1155_2017_2736306
crossref_primary_10_1190_geo2021_0767_1
crossref_primary_10_1007_s10589_022_00366_y
crossref_primary_10_1109_JSTARS_2017_2775567
crossref_primary_10_1002_ange_201100370
crossref_primary_10_1016_j_ins_2021_05_078
crossref_primary_10_3934_NAR_2022010
crossref_primary_10_3390_rs8030187
crossref_primary_10_1109_TFUZZ_2020_3001740
crossref_primary_10_1007_s10107_015_0939_5
crossref_primary_10_1016_j_laa_2019_07_029
crossref_primary_10_1088_1742_6596_904_1_012016
crossref_primary_10_1137_15M1024482
crossref_primary_10_1142_S0218127412501519
crossref_primary_10_1177_1748301816673074
crossref_primary_10_1093_comjnl_bxab024
crossref_primary_10_1109_TIP_2013_2270109
crossref_primary_10_1007_s11801_018_7202_2
crossref_primary_10_1016_j_dsp_2014_01_007
crossref_primary_10_1016_j_acha_2011_01_006
crossref_primary_10_1137_22M147236X
crossref_primary_10_1109_TSP_2016_2543208
crossref_primary_10_1007_s10107_019_01435_7
crossref_primary_10_1007_s11770_016_0584_7
crossref_primary_10_1109_ACCESS_2018_2880454
crossref_primary_10_1109_TGRS_2018_2810845
crossref_primary_10_1109_TSP_2014_2319775
crossref_primary_10_1016_j_mri_2015_10_033
crossref_primary_10_1109_TIP_2014_2320368
crossref_primary_10_1109_TCI_2015_2463257
crossref_primary_10_1137_110840364
crossref_primary_10_1109_TMI_2019_2906600
crossref_primary_10_1016_j_acha_2014_06_003
crossref_primary_10_1080_00207160_2017_1284314
crossref_primary_10_1109_MSP_2015_2481563
crossref_primary_10_1137_100811404
crossref_primary_10_1250_ast_41_308
crossref_primary_10_1007_s00041_011_9192_3
crossref_primary_10_1016_j_sigpro_2011_01_012
crossref_primary_10_1109_MCI_2016_2601700
crossref_primary_10_1109_ACCESS_2019_2911857
crossref_primary_10_1587_transfun_E94_A_1793
crossref_primary_10_1190_geo2016_0652_1
crossref_primary_10_1016_j_inffus_2020_08_023
crossref_primary_10_1016_j_sigpro_2013_02_018
crossref_primary_10_3390_min9070407
crossref_primary_10_1016_j_acha_2016_12_004
crossref_primary_10_1190_geo2021_0807_1
crossref_primary_10_1007_s10915_017_0403_1
crossref_primary_10_1109_LSP_2013_2268248
crossref_primary_10_1155_2022_8711843
crossref_primary_10_1109_TCYB_2017_2669259
crossref_primary_10_1109_TCSVT_2021_3103941
crossref_primary_10_1080_10556788_2014_967235
crossref_primary_10_1587_transfun_E95_A_1627
crossref_primary_10_1109_TCI_2019_2893598
crossref_primary_10_1109_TCSVT_2016_2610078
crossref_primary_10_1109_TMM_2013_2244205
crossref_primary_10_1109_TSP_2016_2639467
crossref_primary_10_1016_j_patcog_2012_12_002
crossref_primary_10_1137_20M1333948
crossref_primary_10_1088_0266_5611_28_9_095011
crossref_primary_10_1016_j_sigpro_2017_09_003
crossref_primary_10_1186_1687_6180_2013_76
crossref_primary_10_1007_s10851_022_01081_3
crossref_primary_10_1088_1361_6420_abc793
crossref_primary_10_1109_TIT_2015_2429611
crossref_primary_10_3934_ipi_2016001
crossref_primary_10_1109_TIP_2017_2681841
crossref_primary_10_1214_09_SS052
crossref_primary_10_1109_TGRS_2022_3206918
crossref_primary_10_1109_TGRS_2023_3273118
crossref_primary_10_1109_TSP_2018_2867995
crossref_primary_10_1016_j_neucom_2018_05_025
crossref_primary_10_1109_LSP_2019_2954001
crossref_primary_10_1109_TCYB_2014_2307854
crossref_primary_10_1109_TNNLS_2021_3051650
crossref_primary_10_1109_TSP_2017_2709262
crossref_primary_10_1007_s10851_018_0830_0
crossref_primary_10_1007_s11042_017_5381_7
crossref_primary_10_1145_3397188
crossref_primary_10_1016_j_dsp_2013_03_013
crossref_primary_10_1109_JETCAS_2016_2597701
crossref_primary_10_1007_s11042_018_6909_1
crossref_primary_10_1109_TIT_2024_3454694
crossref_primary_10_1109_TSP_2020_3022822
crossref_primary_10_1016_j_trb_2019_01_013
crossref_primary_10_1137_21M142770X
crossref_primary_10_1109_TCI_2015_2485078
crossref_primary_10_3934_naco_2015_5_127
crossref_primary_10_1016_j_dsp_2014_02_011
crossref_primary_10_1016_j_media_2016_02_010
crossref_primary_10_1016_j_sigpro_2013_10_031
crossref_primary_10_1088_1361_6501_ac209d
crossref_primary_10_1088_0266_5611_29_2_025008
crossref_primary_10_1109_TIT_2015_2438302
crossref_primary_10_1007_s11425_017_9315_9
crossref_primary_10_1109_TWC_2015_2487989
crossref_primary_10_3390_jmse11091713
crossref_primary_10_1080_10618600_2024_2374580
crossref_primary_10_1038_s41467_024_45856_1
crossref_primary_10_1016_j_patcog_2019_03_028
crossref_primary_10_1155_2022_1758996
crossref_primary_10_1007_s10115_017_1069_6
crossref_primary_10_1137_140968240
crossref_primary_10_1109_TSP_2014_2334557
crossref_primary_10_1093_gji_ggx340
crossref_primary_10_1137_140971518
crossref_primary_10_1016_j_sigpro_2024_109728
crossref_primary_10_1142_S0219530524500283
crossref_primary_10_1109_MSP_2017_2783740
crossref_primary_10_1109_TSP_2016_2601299
crossref_primary_10_1007_s10957_019_01532_9
crossref_primary_10_1016_j_specom_2012_12_003
crossref_primary_10_1109_JSEN_2020_3003349
crossref_primary_10_1145_2990508
crossref_primary_10_1109_MSP_2010_938752
crossref_primary_10_1109_TBME_2015_2464674
crossref_primary_10_1109_TAES_2024_3395233
crossref_primary_10_3390_axioms11050201
crossref_primary_10_1016_j_patcog_2011_05_002
crossref_primary_10_1088_1361_6420_acbe5f
crossref_primary_10_1016_j_cam_2017_12_048
crossref_primary_10_1007_s10483_017_2208_8
crossref_primary_10_1007_s00170_018_2902_0
crossref_primary_10_1109_TCI_2017_2744626
crossref_primary_10_1190_geo2018_0255_1
crossref_primary_10_1016_j_neucom_2018_05_123
crossref_primary_10_1016_j_neunet_2024_106123
crossref_primary_10_1007_s11280_017_0497_2
crossref_primary_10_1016_j_measurement_2024_116100
crossref_primary_10_1073_pnas_1320637111
crossref_primary_10_1109_TNNLS_2014_2341654
crossref_primary_10_1016_j_sigpro_2020_107853
crossref_primary_10_1137_20M1330634
crossref_primary_10_1016_j_cam_2023_115251
crossref_primary_10_1016_j_sigpro_2020_107858
crossref_primary_10_1016_j_asr_2023_04_040
crossref_primary_10_12720_jait_14_6_1365_1371
crossref_primary_10_1109_LSP_2013_2245322
crossref_primary_10_3390_math9243224
crossref_primary_10_3390_s21206842
crossref_primary_10_1007_s10107_021_01644_z
crossref_primary_10_1093_mnras_sty1501
crossref_primary_10_1109_TSP_2015_2428216
crossref_primary_10_1007_s13137_017_0099_2
crossref_primary_10_1007_s10915_021_01440_z
crossref_primary_10_1109_TCBB_2016_2609420
crossref_primary_10_7840_kics_2015_40_4_628
crossref_primary_10_1109_LSP_2017_2698721
crossref_primary_10_1007_s10483_020_2561_6
crossref_primary_10_1007_s40305_014_0069_4
crossref_primary_10_1186_s13636_021_00210_x
crossref_primary_10_1108_SSMT_09_2014_0017
crossref_primary_10_1016_j_chaos_2022_112794
crossref_primary_10_1109_TNNLS_2021_3121246
crossref_primary_10_1587_transinf_E97_D_319
crossref_primary_10_1109_TCSI_2014_2354771
crossref_primary_10_1016_j_patcog_2019_107015
crossref_primary_10_1080_00207217_2012_743229
crossref_primary_10_1186_1471_2105_16_S6_S1
crossref_primary_10_1364_BOE_434679
crossref_primary_10_1007_s12021_017_9354_9
crossref_primary_10_1007_s00034_019_01077_2
crossref_primary_10_1088_1361_6420_ab4d92
crossref_primary_10_1016_j_acha_2011_07_001
crossref_primary_10_1109_ACCESS_2020_2975531
crossref_primary_10_1007_s10915_018_0757_z
crossref_primary_10_1016_j_acha_2015_11_006
crossref_primary_10_1016_j_patrec_2018_06_029
crossref_primary_10_1016_j_parco_2017_05_005
crossref_primary_10_1109_TVT_2017_2749254
crossref_primary_10_1145_3072959_3073618
crossref_primary_10_1007_s11042_017_5207_7
crossref_primary_10_1016_j_ymssp_2020_106965
crossref_primary_10_1016_j_acha_2020_04_002
crossref_primary_10_1016_j_ins_2019_09_071
crossref_primary_10_1016_j_sigpro_2025_109937
crossref_primary_10_1007_s10489_024_05979_w
crossref_primary_10_1016_j_sigpro_2015_12_008
crossref_primary_10_1109_ACCESS_2017_2705646
crossref_primary_10_1007_s11280_021_00958_4
crossref_primary_10_1088_1361_6420_aaf5ab
crossref_primary_10_1016_j_ins_2019_09_079
crossref_primary_10_1109_JSTARS_2013_2291578
crossref_primary_10_1109_TSP_2011_2161470
crossref_primary_10_1137_19M1281897
crossref_primary_10_1016_j_sigpro_2020_107756
crossref_primary_10_1109_TIP_2018_2806089
crossref_primary_10_1109_TIT_2020_3040959
crossref_primary_10_1007_s11425_016_9107_y
crossref_primary_10_1016_j_media_2023_103043
crossref_primary_10_3390_s17122762
crossref_primary_10_1109_TWC_2022_3175740
crossref_primary_10_1007_s10910_015_0527_1
crossref_primary_10_1007_s10915_014_9860_y
crossref_primary_10_1016_j_cam_2017_10_006
crossref_primary_10_1137_15M1051786
crossref_primary_10_1007_s11042_017_5272_y
crossref_primary_10_1049_ipr2_12029
crossref_primary_10_1016_j_pepi_2019_106338
crossref_primary_10_1016_j_neucom_2012_12_034
crossref_primary_10_1016_j_neucom_2016_10_032
crossref_primary_10_1016_j_cviu_2016_09_012
crossref_primary_10_1016_j_csda_2023_107908
crossref_primary_10_1016_j_isatra_2019_06_007
crossref_primary_10_1088_1361_6420_ab750c
crossref_primary_10_1016_j_jtrangeo_2021_103073
crossref_primary_10_1016_j_probengmech_2020_103082
crossref_primary_10_1109_TMI_2017_2717502
crossref_primary_10_1016_j_dsp_2015_11_010
crossref_primary_10_1137_20M1318882
crossref_primary_10_1007_s10589_021_00270_x
crossref_primary_10_1109_TSP_2020_3016571
crossref_primary_10_1016_j_amc_2013_07_090
crossref_primary_10_1002_rnc_5995
crossref_primary_10_1016_j_cam_2013_12_005
crossref_primary_10_1016_j_sigpro_2017_09_010
crossref_primary_10_1016_j_sigpro_2018_02_027
crossref_primary_10_1016_j_petsci_2021_12_005
crossref_primary_10_1016_j_acha_2021_09_003
crossref_primary_10_1016_j_sigpro_2015_12_020
crossref_primary_10_1016_j_sigpro_2011_04_025
crossref_primary_10_1007_s00180_023_01446_1
crossref_primary_10_1111_1365_2478_12038
crossref_primary_10_1007_s13042_021_01319_3
crossref_primary_10_1016_j_knosys_2015_12_011
crossref_primary_10_3724_SP_J_1004_2012_00076
crossref_primary_10_1109_TIP_2022_3186749
crossref_primary_10_1016_j_phycom_2011_09_007
crossref_primary_10_1080_08123985_2019_1606199
crossref_primary_10_1007_s11042_019_7625_1
crossref_primary_10_1109_TSP_2016_2518989
crossref_primary_10_1109_TVT_2018_2822776
crossref_primary_10_1007_s11075_021_01227_1
crossref_primary_10_1016_j_clinph_2023_12_001
crossref_primary_10_1109_LSP_2021_3099715
crossref_primary_10_1109_TCI_2016_2579606
crossref_primary_10_1002_mrm_25119
crossref_primary_10_1109_TIP_2019_2949383
crossref_primary_10_1137_21M140794X
crossref_primary_10_1155_2016_3456153
crossref_primary_10_1364_BOE_10_002684
crossref_primary_10_1016_j_sigpro_2016_06_027
crossref_primary_10_1109_TIT_2020_2966436
crossref_primary_10_1109_TSP_2014_2362880
crossref_primary_10_1080_02331934_2017_1359590
crossref_primary_10_1287_moor_2016_0791
crossref_primary_10_1007_s00521_023_08938_7
crossref_primary_10_1186_s13660_017_1590_x
crossref_primary_10_1109_LGRS_2012_2232901
crossref_primary_10_1137_16M1098929
crossref_primary_10_1515_jiip_2020_0049
crossref_primary_10_1109_TIT_2009_2032712
crossref_primary_10_1109_TWC_2018_2797203
crossref_primary_10_1016_j_acha_2018_02_003
crossref_primary_10_1145_2602142
crossref_primary_10_1016_j_ymssp_2023_110459
crossref_primary_10_1016_S1874_1029_13_60063_4
crossref_primary_10_1137_21M1401188
crossref_primary_10_1109_TAES_2020_3021809
crossref_primary_10_1145_3130800_3130845
crossref_primary_10_1080_01630563_2010_513782
crossref_primary_10_1109_TSP_2016_2595499
crossref_primary_10_1007_s10589_017_9916_7
crossref_primary_10_1002_mma_5091
crossref_primary_10_1109_TFUZZ_2017_2760287
crossref_primary_10_1088_1361_6420_ab89c2
crossref_primary_10_1093_imaiai_iaaa021
crossref_primary_10_1142_S0219530521500068
crossref_primary_10_1109_TAC_2020_3024163
crossref_primary_10_1117_1_JBO_21_1_016004
crossref_primary_10_1109_TSP_2018_2883921
crossref_primary_10_1137_23M156255X
crossref_primary_10_1016_j_neucom_2020_04_014
crossref_primary_10_1007_s10851_014_0532_1
crossref_primary_10_1007_s11280_023_01158_y
crossref_primary_10_1137_18M1181419
crossref_primary_10_1007_s10032_013_0213_4
crossref_primary_10_1109_TIT_2024_3413534
crossref_primary_10_1109_MCAS_2019_2961727
crossref_primary_10_1007_s11760_013_0495_5
crossref_primary_10_1093_imaiai_iaw011
crossref_primary_10_1109_TSP_2019_2954504
crossref_primary_10_1080_17415977_2015_1054822
crossref_primary_10_1109_TSP_2016_2572041
crossref_primary_10_1137_20M1356634
crossref_primary_10_1109_ACCESS_2024_3372424
crossref_primary_10_1016_j_aca_2019_04_055
crossref_primary_10_1109_TNNLS_2015_2512563
crossref_primary_10_1016_j_sigpro_2014_03_026
crossref_primary_10_1109_TIP_2016_2518862
crossref_primary_10_1190_geo2016_0306_1
crossref_primary_10_1016_j_patrec_2017_08_018
crossref_primary_10_1109_TMI_2017_2777870
crossref_primary_10_1093_mnras_stw2261
crossref_primary_10_1049_ipr2_12411
crossref_primary_10_1088_1361_6420_ab844a
crossref_primary_10_1587_transinf_E95_D_2150
crossref_primary_10_1109_JIOT_2023_3267100
crossref_primary_10_1016_j_petsci_2023_02_012
crossref_primary_10_1007_s11042_016_4091_x
crossref_primary_10_1109_TVT_2022_3203487
crossref_primary_10_1155_2014_206926
crossref_primary_10_1109_JSTARS_2019_2940730
crossref_primary_10_1109_TSP_2023_3234460
crossref_primary_10_1111_1365_2478_12593
crossref_primary_10_1002_fld_4507
crossref_primary_10_1093_gji_ggt308
crossref_primary_10_1016_j_acha_2019_05_004
crossref_primary_10_1137_22M153330X
crossref_primary_10_1117_1_3463019
crossref_primary_10_1007_s10596_015_9544_1
crossref_primary_10_5802_ojmo_14
crossref_primary_10_1016_j_sigpro_2023_109193
crossref_primary_10_1007_s11600_020_00399_z
crossref_primary_10_1155_2015_627417
crossref_primary_10_1016_j_jfranklin_2020_03_023
crossref_primary_10_1016_j_rse_2021_112453
crossref_primary_10_1109_TIP_2016_2551365
crossref_primary_10_1109_TSIPN_2018_2819018
crossref_primary_10_3390_s18103373
crossref_primary_10_1109_TSP_2014_2309076
crossref_primary_10_3390_rs13071253
crossref_primary_10_1109_LSP_2018_2875251
crossref_primary_10_1007_s10851_016_0700_6
crossref_primary_10_1016_j_acha_2014_01_005
crossref_primary_10_1088_1361_6560_ad2155
crossref_primary_10_1111_1365_2478_13576
crossref_primary_10_1121_1_5042223
crossref_primary_10_1007_s10589_016_9839_8
crossref_primary_10_1109_TIP_2014_2380155
crossref_primary_10_1007_s11336_023_09911_y
crossref_primary_10_1016_j_neuroimage_2018_08_071
crossref_primary_10_3724_SP_J_1224_2014_00259
crossref_primary_10_1016_j_neucom_2019_09_108
crossref_primary_10_1016_j_neucom_2015_07_115
crossref_primary_10_1109_JSTARS_2019_2950541
crossref_primary_10_1016_j_cam_2017_01_010
crossref_primary_10_1109_JTEHM_2014_2300862
crossref_primary_10_1109_TIP_2021_3073283
crossref_primary_10_1049_el_2019_3859
crossref_primary_10_7582_GGE_2014_17_4_187
crossref_primary_10_1016_j_neunet_2022_05_005
crossref_primary_10_1007_s10044_025_01432_x
crossref_primary_10_1007_s11042_019_08179_8
crossref_primary_10_1007_s11600_022_00806_7
crossref_primary_10_1109_TIM_2023_3308255
crossref_primary_10_1109_TIP_2014_2317985
crossref_primary_10_1186_s13640_017_0199_9
crossref_primary_10_1109_MSP_2010_938029
crossref_primary_10_1007_s41060_022_00357_6
crossref_primary_10_1016_j_automatica_2022_110437
crossref_primary_10_1093_imaiai_iax012
crossref_primary_10_1016_j_automatica_2016_01_023
crossref_primary_10_1007_s10589_016_9829_x
crossref_primary_10_1016_j_neucom_2015_08_123
crossref_primary_10_1109_TPAMI_2013_102
crossref_primary_10_1190_geo2013_0372_1
crossref_primary_10_2299_jsp_19_155
crossref_primary_10_3390_geosciences13120376
crossref_primary_10_1007_s11434_016_1041_y
crossref_primary_10_1007_s11063_021_10479_w
crossref_primary_10_1109_TSP_2015_2412915
crossref_primary_10_1109_TMM_2019_2934833
crossref_primary_10_1109_TIP_2020_3029415
crossref_primary_10_1016_j_ymssp_2017_10_027
crossref_primary_10_1137_110847445
crossref_primary_10_1007_s10107_016_1057_8
crossref_primary_10_1007_s10898_024_01451_8
crossref_primary_10_1016_j_robot_2024_104870
crossref_primary_10_3934_fods_2021028
crossref_primary_10_1109_ACCESS_2019_2948426
crossref_primary_10_1007_s00034_017_0626_2
crossref_primary_10_1109_TPAMI_2018_2839733
crossref_primary_10_1007_s10712_022_09704_5
crossref_primary_10_1007_s40305_014_0043_1
crossref_primary_10_1364_BOE_10_004727
crossref_primary_10_1016_j_patrec_2020_03_035
crossref_primary_10_1016_j_jfranklin_2023_11_031
crossref_primary_10_1002_mp_12200
crossref_primary_10_1109_TGRS_2023_3264917
crossref_primary_10_1007_s11432_012_4633_4
crossref_primary_10_1109_TIT_2021_3111490
crossref_primary_10_1016_j_cpc_2017_02_015
crossref_primary_10_1109_TAP_2016_2546385
crossref_primary_10_1137_23M159439X
crossref_primary_10_1016_j_petrol_2019_03_023
crossref_primary_10_1137_120882706
crossref_primary_10_1137_18M117769X
crossref_primary_10_1109_TSIPN_2024_3375593
crossref_primary_10_1093_jge_gxy005
crossref_primary_10_1016_j_ins_2022_08_109
crossref_primary_10_1016_j_measurement_2022_111356
crossref_primary_10_1007_s10957_014_0586_7
crossref_primary_10_1016_j_cageo_2012_08_013
crossref_primary_10_1016_j_ijleo_2017_08_040
crossref_primary_10_1016_j_jvcir_2017_08_010
crossref_primary_10_1007_s40328_020_00308_2
crossref_primary_10_1007_s10044_018_0714_3
crossref_primary_10_1063_5_0022860
crossref_primary_10_1002_mrm_25513
crossref_primary_10_1039_C5AN02304A
crossref_primary_10_1016_j_dsp_2017_11_008
crossref_primary_10_1109_LSP_2024_3413306
crossref_primary_10_4236_apm_2016_67036
crossref_primary_10_1007_s11704_019_8395_7
crossref_primary_10_1109_TIT_2017_2705741
crossref_primary_10_1109_TNET_2016_2612695
crossref_primary_10_1016_j_apacoust_2020_107599
crossref_primary_10_1049_rsn2_12348
crossref_primary_10_1007_s11771_017_3423_y
crossref_primary_10_1016_j_laa_2021_08_024
crossref_primary_10_1071_EG12014
crossref_primary_10_1016_j_infrared_2015_12_030
crossref_primary_10_3390_s18041164
crossref_primary_10_1007_s10898_021_01093_0
crossref_primary_10_1007_s10915_022_01897_6
crossref_primary_10_1109_TPAMI_2018_2883553
crossref_primary_10_1137_23M1545379
crossref_primary_10_1016_j_dsp_2023_104172
crossref_primary_10_1007_s11222_024_10440_6
crossref_primary_10_1109_TKDE_2022_3201955
crossref_primary_10_1111_1365_2478_12567
crossref_primary_10_1007_s10898_022_01220_5
crossref_primary_10_1016_j_sigpro_2022_108853
crossref_primary_10_1016_j_acha_2017_10_004
crossref_primary_10_1109_LSP_2014_2323238
crossref_primary_10_1109_JSTSP_2009_2039173
crossref_primary_10_1007_s00521_020_04994_5
crossref_primary_10_1088_1361_6420_ad3b34
crossref_primary_10_3390_s22083065
crossref_primary_10_1109_TIP_2012_2188807
crossref_primary_10_1587_transinf_2014EDL8086
crossref_primary_10_1007_s11222_020_09939_5
crossref_primary_10_1016_j_jvcir_2014_02_003
crossref_primary_10_1016_j_inffus_2021_03_006
crossref_primary_10_1137_20M1379721
crossref_primary_10_1137_22M1486303
crossref_primary_10_1007_s11768_024_00213_x
crossref_primary_10_1016_j_automatica_2017_01_020
crossref_primary_10_1007_s10589_013_9583_2
crossref_primary_10_1016_j_neucom_2011_07_003
crossref_primary_10_1016_j_sigpro_2012_12_008
crossref_primary_10_1109_TCYB_2021_3090204
crossref_primary_10_1364_BOE_9_001423
crossref_primary_10_1080_10556788_2022_2120983
crossref_primary_10_1007_s11042_017_5235_3
crossref_primary_10_1364_OE_546585
crossref_primary_10_1016_j_apacoust_2021_108501
crossref_primary_10_1016_j_neucom_2015_11_029
crossref_primary_10_5194_gmd_17_8853_2024
crossref_primary_10_1109_TNNLS_2019_2921404
crossref_primary_10_1109_TPAMI_2017_2669034
crossref_primary_10_1109_TSP_2018_2868269
crossref_primary_10_1109_TKDE_2020_3017250
crossref_primary_10_1016_j_media_2018_08_002
crossref_primary_10_3182_20110828_6_IT_1002_01141
crossref_primary_10_1111_1365_2478_12783
crossref_primary_10_1016_j_ymssp_2018_09_019
crossref_primary_10_1109_TASLP_2015_2497798
crossref_primary_10_1111_cgf_13599
crossref_primary_10_1016_j_jvcir_2016_06_007
crossref_primary_10_1109_TCYB_2015_2429312
crossref_primary_10_1016_j_cag_2023_05_003
crossref_primary_10_1364_AO_56_002418
crossref_primary_10_1103_PhysRevE_96_022411
crossref_primary_10_1016_j_ultramic_2021_113451
crossref_primary_10_1109_TCST_2023_3310203
crossref_primary_10_1109_TNN_2011_2157521
crossref_primary_10_1109_JSEN_2022_3153629
crossref_primary_10_1016_j_neunet_2023_03_005
crossref_primary_10_1109_TRS_2023_3284297
crossref_primary_10_1177_1475472X17718883
crossref_primary_10_1016_j_engappai_2020_103694
crossref_primary_10_1016_j_patcog_2015_09_034
crossref_primary_10_1190_INT_2021_0241_1
crossref_primary_10_1109_TCBB_2022_3173969
crossref_primary_10_1155_2013_217021
crossref_primary_10_1109_TIP_2022_3220949
crossref_primary_10_1109_TSP_2013_2287685
crossref_primary_10_1016_j_patcog_2018_11_007
crossref_primary_10_1109_TGRS_2021_3138750
crossref_primary_10_1109_TPAMI_2016_2578323
crossref_primary_10_1007_s11042_022_13903_y
crossref_primary_10_1515_jiip_2016_0087
crossref_primary_10_1109_LSP_2020_3011896
crossref_primary_10_1109_TCI_2021_3103606
crossref_primary_10_1016_j_media_2021_102057
crossref_primary_10_1109_TSIPN_2018_2869117
crossref_primary_10_1016_j_jappgeo_2015_04_003
crossref_primary_10_1587_transfun_E98_A_1540
crossref_primary_10_1007_s11430_017_9124_6
crossref_primary_10_1016_j_jappgeo_2016_06_011
crossref_primary_10_1016_j_jappgeo_2018_09_001
crossref_primary_10_1038_srep19993
crossref_primary_10_1016_j_sigpro_2021_108313
crossref_primary_10_1007_s11042_019_7647_8
crossref_primary_10_1109_TCI_2016_2516909
crossref_primary_10_1109_ACCESS_2019_2899622
crossref_primary_10_1016_j_neunet_2020_09_021
crossref_primary_10_1137_090775397
crossref_primary_10_1007_s10898_022_01257_6
crossref_primary_10_1142_S0219720019500094
crossref_primary_10_1371_journal_pone_0225284
crossref_primary_10_1162_NECO_a_00641
crossref_primary_10_1109_TEVC_2016_2603526
crossref_primary_10_1145_2010324_1964941
crossref_primary_10_1190_geo2020_0307_1
crossref_primary_10_1093_gji_ggz156
crossref_primary_10_3390_math9121373
crossref_primary_10_4236_jcc_2017_510004
crossref_primary_10_1007_s00574_019_00171_y
crossref_primary_10_1016_j_sigpro_2014_09_028
crossref_primary_10_1016_j_laa_2013_03_004
crossref_primary_10_1016_j_ijms_2018_12_001
crossref_primary_10_1109_JSTSP_2021_3051488
crossref_primary_10_1137_16M1080240
crossref_primary_10_1155_2019_2656747
crossref_primary_10_1109_JSAC_2016_2544578
crossref_primary_10_1109_TASE_2022_3141248
crossref_primary_10_1109_TIP_2012_2235849
crossref_primary_10_1109_TNNLS_2018_2844242
crossref_primary_10_1109_TSP_2014_2305639
crossref_primary_10_1016_j_patcog_2012_10_010
crossref_primary_10_1137_140952363
crossref_primary_10_1109_TIP_2012_2222896
crossref_primary_10_1587_comex_3_206
crossref_primary_10_1049_iet_spr_2015_0425
crossref_primary_10_1111_rssb_12106
crossref_primary_10_1007_s00024_017_1529_7
crossref_primary_10_1155_2014_104709
crossref_primary_10_1007_s10915_022_01850_7
crossref_primary_10_1016_j_neucom_2014_05_047
crossref_primary_10_1021_acs_jctc_2c00321
crossref_primary_10_1137_21M1441420
crossref_primary_10_1109_TKDE_2017_2763618
crossref_primary_10_1088_1361_6501_ab62c6
crossref_primary_10_1016_j_image_2017_02_010
crossref_primary_10_1016_j_sigpro_2022_108755
crossref_primary_10_1016_j_asr_2019_02_022
crossref_primary_10_1145_3396238
crossref_primary_10_1007_s11750_017_0462_3
crossref_primary_10_1007_s10614_018_9876_8
crossref_primary_10_1007_s10851_024_01216_8
crossref_primary_10_1016_j_sigpro_2021_108451
crossref_primary_10_1190_geo2015_0044_1
crossref_primary_10_1016_j_jcp_2020_109681
crossref_primary_10_1016_j_jmva_2018_08_007
crossref_primary_10_1002_hbm_25117
crossref_primary_10_1007_s10915_015_0162_9
Cites_doi 10.1109/LSP.2007.898300
10.1090/S0894-0347-08-00600-0
10.1109/ICASSP.2008.4518498
10.1137/0907087
10.1109/78.558475
10.1190/1.1440921
10.1002/cpa.20124
10.1137/0803030
10.1109/TIT.2006.871582
10.1007/s00041-008-9045-x
10.1016/j.acha.2006.09.003
10.1137/S1064827596304010
10.1190/1.1440378
10.1007/s002110050258
10.1137/0152031
10.1002/cpa.20227
10.1109/78.340772
10.1073/pnas.0502269102
10.1090/S0894-0347-08-00610-3
10.1017/S0962492900002816
10.1109/TIP.2007.909318
10.1109/TIT.2006.885507
10.1007/s00365-007-9003-x
10.1109/TIT.2008.929958
10.1109/TIT.2005.862083
10.1137/0149053
10.1109/TIT.2005.858979
10.1137/060671875
10.1109/MSP.2007.4286571
10.1007/s00454-005-1220-0
ContentType Journal Article
Copyright Copyright © 2009 Wiley Periodicals, Inc.
2015 INIST-CNRS
Copyright John Wiley and Sons, Limited Jan 2010
Copyright_xml – notice: Copyright © 2009 Wiley Periodicals, Inc.
– notice: 2015 INIST-CNRS
– notice: Copyright John Wiley and Sons, Limited Jan 2010
DBID BSCLL
AAYXX
CITATION
IQODW
JQ2
DOI 10.1002/cpa.20303
DatabaseName Istex
CrossRef
Pascal-Francis
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0312
EndPage 38
ExternalDocumentID 1923938921
22200554
10_1002_cpa_20303
CPA20303
ark_67375_WNG_JDLDJR9P_3
Genre article
Feature
GrantInformation_xml – fundername: Office of Naval Research
  funderid: ONR‐N00014‐03‐1‐0051; ONR/DEPSCoR N00014‐03‐1‐0675; ONRsol;‐DEPSCoR N00014‐00‐1‐0470
– fundername: Army Research Office Contract DAAD
  funderid: 19‐02‐1‐0028
– fundername: National Science Foundation
  funderid: DMS‐0504924; DMS‐0530865; DMS‐0221642; DMS‐0200187; CCF‐0515187
– fundername: Alfred P. Sloan Research Fellowship
– fundername: Courant Institute
– fundername: European Union via the Marie Curie Individual Fellowship
  funderid: MOIF‐CT‐2006‐039438
– fundername: Program in Applied and Computational Mathematics at Princeton University
– fundername: New York University Goddard Fellowship
GroupedDBID --Z
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
6OB
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABIJN
ABLJU
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
S10
SAMSI
SUPJJ
TN5
TWZ
UB1
UHB
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
YZZ
ZY4
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
JQ2
ID FETCH-LOGICAL-c4303-1bde6eb0150f2e81b9d0df61b74b021884b9953757aade0419a569afbf7982f73
IEDL.DBID DR2
ISSN 0010-3640
IngestDate Fri Jul 25 19:23:50 EDT 2025
Mon Jul 21 09:15:10 EDT 2025
Tue Jul 01 02:50:28 EDT 2025
Thu Apr 24 23:01:22 EDT 2025
Wed Jan 22 16:20:51 EST 2025
Wed Oct 30 10:04:26 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Least squares method
Optimization method
Linear programming
Iteration
Fast algorithm
Hyperplane
Method study
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4303-1bde6eb0150f2e81b9d0df61b74b021884b9953757aade0419a569afbf7982f73
Notes European Union via the Marie Curie Individual Fellowship - No. MOIF-CT-2006-039438
New York University Goddard Fellowship
Army Research Office Contract DAAD - No. 19-02-1-0028
Program in Applied and Computational Mathematics at Princeton University
istex:CD6CECC9EF52884DD8F2F98B07B9D18CCB8FD56B
ark:/67375/WNG-JDLDJR9P-3
National Science Foundation - No. DMS-0504924; No. DMS-0530865; No. DMS-0221642; No. DMS-0200187; No. CCF-0515187
Courant Institute
ArticleID:CPA20303
Alfred P. Sloan Research Fellowship
Office of Naval Research - No. ONR-N00014-03-1-0051; No. ONR/DEPSCoR N00014-03-1-0675; No. ONRsol;-DEPSCoR N00014-00-1-0470
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 214271942
PQPubID 48818
PageCount 38
ParticipantIDs proquest_journals_214271942
pascalfrancis_primary_22200554
crossref_citationtrail_10_1002_cpa_20303
crossref_primary_10_1002_cpa_20303
wiley_primary_10_1002_cpa_20303_CPA20303
istex_primary_ark_67375_WNG_JDLDJR9P_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2010
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: January 2010
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: New York
PublicationTitle Communications on pure and applied mathematics
PublicationTitleAlternate Comm. Pure Appl. Math
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
John Wiley and Sons, Limited
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
– name: John Wiley and Sons, Limited
References Donoho, D. L. Compressed sensing. IEEE Trans Inform Theory 52 (2006), no. 4, 1289-1306.
Cline, A. K. Rate of convergence of Lawson's algorithm. Math Comp 26 (1972), 167-176.
DeVore, R. A. Nonlinear approximation. Acta Numer 7 (1998), 51-150.
Figueiredo, M. A. T.; Bioucas-Dias, J. M.; Nowak, R. D. Majorization-minimization algorithms for wavelet-based image restoration. IEEE Trans Image Process 16 (2007), no. 12, 2980-2991.
Candès, E. J.; Wakin, M. B.; Boyd, S. P. Enhancing sparsity by reweighted l1 minimization. J Fourier Anal Appl 14 (2008), no. 5-6, 877-905.
Donoho, D. L.; Tanner, J. Sparse nonnegative solution of underdetermined linear equations by linear programming. Proc Natl Acad Sci USA 102 (2005), no. 27, 9446-9451 (electronic).
Donoho, D. L.; Logan, B. F. Signal recovery and the large sieve. SIAM J Appl Math 52 (1992), no. 2, 577-591.
Baraniuk, R.; Davenport, M.; DeVore, R.; Wakin, M. B. A simple proof of the restricted isometry property for random matrices (aka "The Johnson-Lindenstrauss lemma meets compressed sensing"). Constr Approx 28 (2008), no. 3, 253-263.
Chartrand, R.; Staneva, V. Restricted isometry properties and nonconvex compressive sensing. Inverse Problems 24 (2008), no. 035020, 1-14.
Gribonval, R.; Nielsen, M. Highly sparse representations from dictionaries are unique and independent of the sparseness measure. Appl Comput Harmon Anal 22 (2007), no. 3, 335-355.
O'Brien, M. S.; Sinclair, A. N.; Kramer, S. M. Recovery of a sparse spike time series by 1 norm deconvolution. IEEE Trans Signal Process 42 (1994), no. 12, 3353-3365.
Cohen, A.; Dahmen, W.; DeVore, R. Compressed sensing and best k-term approximation. J Amer Math Soc 22 (2009), no. 1, 211-231.
Donoho, D. L.; Stark, P. B. Uncertainty principles and signal recovery. SIAM J Appl Math 49 (1989), no. 3, 906-931.
Candès, E. J.; Tao, T. Decoding by linear programming. IEEE Trans Inform Theory 51 (2005), no. 12, 4203-4215.
Gorodnitsky, I. F.; Rao, B. D. Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans Signal Process 45 (1997), no. 3, 600-616.
Pinkus, A. M. On L1-approximation. Cambridge Tracts in Mathematics, 93. Cambridge University Press, Cambridge, 1989.
Candès, E. J.; Tao, T. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans Inform Theory 52 (2006), no. 12, 5406-5425.
Chen, S. S.; Donoho, D. L.; Saunders, M. A. Atomic decomposition by basis pursuit. SIAM J Sci Comput 20 (1998), no. 1, 33-61 (electronic).
Li, Y. A globally convergent method for lp problems. SIAM J Optim 3 (1993), no. 3, 609-629.
Rudelson, M.; Vershynin, R. On sparse reconstruction from Fourier and Gaussian measurements. Comm Pure Appl Math 61 (2008), no. 8, 1025-1045.
Donoho, D. L.; Tanner, J. Counting faces of randomly projected polytopes when the projection radically lowers dimension. J Amer Math Soc 22 (2009), no. 1, 1-53.
Santosa, F.; Symes, W. W. Linear inversion of band-limited reflection seismograms. SIAM J Sci Statist Comput 7 (1986), no. 4, 1307-1330.
Claerbout, J. F.; Muir, F. Robust modeling with erratic data. Geophysics 38 (1973), no. 5, 826-844.
Chambolle, A.; Lions, P.-L. Image recovery via total variation minimization and related problems. Numer Math 76 (1997), no. 2, 167-188.
Donoho, D. L. High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension. Discrete Comput Geom 35 (2006), no. 4, 617-652.
Tibshirani, R. Regression shrinkage and selection via the lasso. J Roy Statist Soc Ser B 58 (1996), no. 1, 267-288.
Candès, E. J.; Romberg, J. K.; Tao, T. Stable signal recovery from incomplete and inaccurate measurements. Comm Pure Appl Math 59 (2006), no. 8, 1207-1223.
Chartrand, R. Exact reconstructions of sparse signals via nonconvex minimization. IEEE Signal Process Lett 14 (2007), no. 10, 707-701.
Candès, E. J.; Romberg, J.; Tao, T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inform Theory 52 (2006), no. 2, 489-509.
Donoho, D. L.; Tsaig, Y. Fast solution of 1-norm minimization problems when the solution may be sparse. IEEE Trans Inform Theory 54 (2008), no. 11, 4789-4812.
Baraniuk, R. G. Compressive sensing [Lecture notes]. IEEE Signal Processing Magazine 24 (2007), no. 4, 118-121.
Fornasier, M.; March, R. Restoration of color images by vector valued BV functions and variational calculus. SIAM J Appl Math 68 (2007), no. 2, 437-460.
Taylor, H. L.; Banks, S. C.; McCoy, J. F. Deconvolution with the 1 norm. Geophysics 44 (1979), no. 1, 39-52.
2009; 22
2006; 52
2006; 35
2006; 59
1973; 38
1997; 45
2008; 14
2008
2007
2006
2008; 54
1996; 58
1989; 49
1998; 20
1993; 3
1979
2007; 14
1972; 26
1992; 52
2007; 16
1994; 42
1989; 93
1986; 7
1997; 76
2005; 102
2008; 28
2005; 51
1985
2008; 24
1961
1998; 7
2008; 61
2007; 22
1979; 44
2007; 24
2007; 68
Cline A. K. (e_1_2_1_19_2) 1972; 26
Chartrand R. (e_1_2_1_15_2) 2008; 24
e_1_2_1_41_2
e_1_2_1_40_2
e_1_2_1_22_2
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_21_2
Candès E. J. (e_1_2_1_5_2) 2006
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
e_1_2_1_25_2
e_1_2_1_28_2
e_1_2_1_29_2
Li Y. (e_1_2_1_34_2) 1993; 3
Tibshirani R. (e_1_2_1_42_2) 1996; 58
Osborne M. R. (e_1_2_1_36_2) 1985
e_1_2_1_6_2
e_1_2_1_30_2
e_1_2_1_6_3
e_1_2_1_7_2
Pinkus A. M. (e_1_2_1_37_2) 1989
e_1_2_1_4_2
Chartrand R. (e_1_2_1_14_2) 2008
e_1_2_1_2_2
e_1_2_1_11_2
Chartrand R. (e_1_2_1_16_2) 2008
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_33_2
Saab R. (e_1_2_1_39_2) 2008
e_1_2_1_32_2
e_1_2_1_10_2
e_1_2_1_31_2
e_1_2_1_14_3
e_1_2_1_38_2
e_1_2_1_13_2
e_1_2_1_35_2
e_1_2_1_8_2
e_1_2_1_16_3
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – reference: Chen, S. S.; Donoho, D. L.; Saunders, M. A. Atomic decomposition by basis pursuit. SIAM J Sci Comput 20 (1998), no. 1, 33-61 (electronic).
– reference: Fornasier, M.; March, R. Restoration of color images by vector valued BV functions and variational calculus. SIAM J Appl Math 68 (2007), no. 2, 437-460.
– reference: Tibshirani, R. Regression shrinkage and selection via the lasso. J Roy Statist Soc Ser B 58 (1996), no. 1, 267-288.
– reference: Chartrand, R. Exact reconstructions of sparse signals via nonconvex minimization. IEEE Signal Process Lett 14 (2007), no. 10, 707-701.
– reference: Taylor, H. L.; Banks, S. C.; McCoy, J. F. Deconvolution with the 1 norm. Geophysics 44 (1979), no. 1, 39-52.
– reference: Candès, E. J.; Tao, T. Decoding by linear programming. IEEE Trans Inform Theory 51 (2005), no. 12, 4203-4215.
– reference: Li, Y. A globally convergent method for lp problems. SIAM J Optim 3 (1993), no. 3, 609-629.
– reference: Candès, E. J.; Romberg, J. K.; Tao, T. Stable signal recovery from incomplete and inaccurate measurements. Comm Pure Appl Math 59 (2006), no. 8, 1207-1223.
– reference: Rudelson, M.; Vershynin, R. On sparse reconstruction from Fourier and Gaussian measurements. Comm Pure Appl Math 61 (2008), no. 8, 1025-1045.
– reference: Claerbout, J. F.; Muir, F. Robust modeling with erratic data. Geophysics 38 (1973), no. 5, 826-844.
– reference: Pinkus, A. M. On L1-approximation. Cambridge Tracts in Mathematics, 93. Cambridge University Press, Cambridge, 1989.
– reference: Candès, E. J.; Wakin, M. B.; Boyd, S. P. Enhancing sparsity by reweighted l1 minimization. J Fourier Anal Appl 14 (2008), no. 5-6, 877-905.
– reference: Baraniuk, R. G. Compressive sensing [Lecture notes]. IEEE Signal Processing Magazine 24 (2007), no. 4, 118-121.
– reference: O'Brien, M. S.; Sinclair, A. N.; Kramer, S. M. Recovery of a sparse spike time series by 1 norm deconvolution. IEEE Trans Signal Process 42 (1994), no. 12, 3353-3365.
– reference: Donoho, D. L. Compressed sensing. IEEE Trans Inform Theory 52 (2006), no. 4, 1289-1306.
– reference: Donoho, D. L.; Tsaig, Y. Fast solution of 1-norm minimization problems when the solution may be sparse. IEEE Trans Inform Theory 54 (2008), no. 11, 4789-4812.
– reference: Gorodnitsky, I. F.; Rao, B. D. Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans Signal Process 45 (1997), no. 3, 600-616.
– reference: Gribonval, R.; Nielsen, M. Highly sparse representations from dictionaries are unique and independent of the sparseness measure. Appl Comput Harmon Anal 22 (2007), no. 3, 335-355.
– reference: DeVore, R. A. Nonlinear approximation. Acta Numer 7 (1998), 51-150.
– reference: Donoho, D. L.; Tanner, J. Sparse nonnegative solution of underdetermined linear equations by linear programming. Proc Natl Acad Sci USA 102 (2005), no. 27, 9446-9451 (electronic).
– reference: Figueiredo, M. A. T.; Bioucas-Dias, J. M.; Nowak, R. D. Majorization-minimization algorithms for wavelet-based image restoration. IEEE Trans Image Process 16 (2007), no. 12, 2980-2991.
– reference: Cline, A. K. Rate of convergence of Lawson's algorithm. Math Comp 26 (1972), 167-176.
– reference: Donoho, D. L. High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension. Discrete Comput Geom 35 (2006), no. 4, 617-652.
– reference: Donoho, D. L.; Logan, B. F. Signal recovery and the large sieve. SIAM J Appl Math 52 (1992), no. 2, 577-591.
– reference: Baraniuk, R.; Davenport, M.; DeVore, R.; Wakin, M. B. A simple proof of the restricted isometry property for random matrices (aka "The Johnson-Lindenstrauss lemma meets compressed sensing"). Constr Approx 28 (2008), no. 3, 253-263.
– reference: Candès, E. J.; Romberg, J.; Tao, T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inform Theory 52 (2006), no. 2, 489-509.
– reference: Candès, E. J.; Tao, T. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans Inform Theory 52 (2006), no. 12, 5406-5425.
– reference: Donoho, D. L.; Tanner, J. Counting faces of randomly projected polytopes when the projection radically lowers dimension. J Amer Math Soc 22 (2009), no. 1, 1-53.
– reference: Donoho, D. L.; Stark, P. B. Uncertainty principles and signal recovery. SIAM J Appl Math 49 (1989), no. 3, 906-931.
– reference: Chartrand, R.; Staneva, V. Restricted isometry properties and nonconvex compressive sensing. Inverse Problems 24 (2008), no. 035020, 1-14.
– reference: Cohen, A.; Dahmen, W.; DeVore, R. Compressed sensing and best k-term approximation. J Amer Math Soc 22 (2009), no. 1, 211-231.
– reference: Santosa, F.; Symes, W. W. Linear inversion of band-limited reflection seismograms. SIAM J Sci Statist Comput 7 (1986), no. 4, 1307-1330.
– reference: Chambolle, A.; Lions, P.-L. Image recovery via total variation minimization and related problems. Numer Math 76 (1997), no. 2, 167-188.
– year: 1985
– volume: 52
  start-page: 577
  issue: 2
  year: 1992
  end-page: 591
  article-title: Signal recovery and the large sieve
  publication-title: SIAM J Appl Math
– volume: 52
  start-page: 489
  issue: 2
  year: 2006
  end-page: 509
  article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Trans Inform Theory
– volume: 93
  year: 1989
– start-page: 1433
  year: 2006
  end-page: 1452
– volume: 26
  start-page: 167
  year: 1972
  end-page: 176
  article-title: Rate of convergence of Lawson's algorithm
  publication-title: Math Comp
– volume: 16
  start-page: 2980
  issue: 12
  year: 2007
  end-page: 2991
  article-title: Majorization‐minimization algorithms for wavelet‐based image restoration
  publication-title: IEEE Trans Image Process
– year: 2007
– volume: 7
  start-page: 1307
  issue: 4
  year: 1986
  end-page: 1330
  article-title: Linear inversion of band‐limited reflection seismograms
  publication-title: SIAM J Sci Statist Comput
– volume: 24
  start-page: 1
  issue: 035020
  year: 2008
  end-page: 14
  article-title: Restricted isometry properties and nonconvex compressive sensing
  publication-title: Inverse Problems
– start-page: 3885
  year: 2008
  end-page: 3888
– year: 1979
– volume: 59
  start-page: 1207
  issue: 8
  year: 2006
  end-page: 1223
  article-title: Stable signal recovery from incomplete and inaccurate measurements
  publication-title: Comm Pure Appl Math
– volume: 14
  start-page: 707
  issue: 10
  year: 2007
  end-page: 701
  article-title: Exact reconstructions of sparse signals via nonconvex minimization
  publication-title: IEEE Signal Process Lett
– volume: 20
  start-page: 33
  issue: 1
  year: 1998
  end-page: 61
  article-title: Atomic decomposition by basis pursuit
  publication-title: SIAM J Sci Comput
– volume: 51
  start-page: 4203
  issue: 12
  year: 2005
  end-page: 4215
  article-title: Decoding by linear programming
  publication-title: IEEE Trans Inform Theory
– volume: 52
  start-page: 5406
  issue: 12
  year: 2006
  end-page: 5425
  article-title: Near‐optimal signal recovery from random projections: universal encoding strategies
  publication-title: IEEE Trans Inform Theory
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  end-page: 1306
  article-title: Compressed sensing
  publication-title: IEEE Trans Inform Theory
– year: 1961
– volume: 102
  start-page: 9446
  issue: 27
  year: 2005
  end-page: 9451
  article-title: Sparse nonnegative solution of underdetermined linear equations by linear programming
  publication-title: Proc Natl Acad Sci USA
– volume: 22
  start-page: 211
  issue: 1
  year: 2009
  end-page: 231
  article-title: Compressed sensing and best ‐term approximation
  publication-title: J Amer Math Soc
– volume: 22
  start-page: 335
  issue: 3
  year: 2007
  end-page: 355
  article-title: Highly sparse representations from dictionaries are unique and independent of the sparseness measure
  publication-title: Appl Comput Harmon Anal
– volume: 38
  start-page: 826
  issue: 5
  year: 1973
  end-page: 844
  article-title: Robust modeling with erratic data
  publication-title: Geophysics
– volume: 54
  start-page: 4789
  issue: 11
  year: 2008
  end-page: 4812
  article-title: Fast solution of 𝓁 ‐norm minimization problems when the solution may be sparse
  publication-title: IEEE Trans Inform Theory
– volume: 7
  start-page: 51
  year: 1998
  end-page: 150
  article-title: Nonlinear approximation
  publication-title: Acta Numer
– volume: 44
  start-page: 39
  issue: 1
  year: 1979
  end-page: 52
  article-title: Deconvolution with the 𝓁 norm
  publication-title: Geophysics
– volume: 28
  start-page: 253
  issue: 3
  year: 2008
  end-page: 263
  article-title: A simple proof of the restricted isometry property for random matrices (aka “The Johnson‐Lindenstrauss lemma meets compressed sensing”)
  publication-title: Constr Approx
– volume: 42
  start-page: 3353
  issue: 12
  year: 1994
  end-page: 3365
  article-title: Recovery of a sparse spike time series by 𝓁 norm deconvolution
  publication-title: IEEE Trans Signal Process
– volume: 49
  start-page: 906
  issue: 3
  year: 1989
  end-page: 931
  article-title: Uncertainty principles and signal recovery
  publication-title: SIAM J Appl Math
– year: 2008
– volume: 68
  start-page: 437
  issue: 2
  year: 2007
  end-page: 460
  article-title: Restoration of color images by vector valued BV functions and variational calculus
  publication-title: SIAM J Appl Math
– volume: 3
  start-page: 609
  issue: 3
  year: 1993
  end-page: 629
  article-title: A globally convergent method for problems
  publication-title: SIAM J Optim
– volume: 22
  start-page: 1
  issue: 1
  year: 2009
  end-page: 53
  article-title: Counting faces of randomly projected polytopes when the projection radically lowers dimension
  publication-title: J Amer Math Soc
– volume: 14
  start-page: 877
  issue: 5
  year: 2008
  end-page: 905
  article-title: Enhancing sparsity by reweighted minimization
  publication-title: J Fourier Anal Appl
– volume: 45
  start-page: 600
  issue: 3
  year: 1997
  end-page: 616
  article-title: Sparse signal reconstruction from limited data using FOCUSS: a re‐weighted minimum norm algorithm
  publication-title: IEEE Trans Signal Process
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J Roy Statist Soc Ser B
– volume: 24
  start-page: 118
  issue: 4
  year: 2007
  end-page: 121
  article-title: Compressive sensing [Lecture notes]
  publication-title: IEEE Signal Processing Magazine
– volume: 76
  start-page: 167
  issue: 2
  year: 1997
  end-page: 188
  article-title: Image recovery via total variation minimization and related problems
  publication-title: Numer Math
– volume: 61
  start-page: 1025
  issue: 8
  year: 2008
  end-page: 1045
  article-title: On sparse reconstruction from Fourier and Gaussian measurements
  publication-title: Comm Pure Appl Math
– volume: 35
  start-page: 617
  issue: 4
  year: 2006
  end-page: 652
  article-title: High‐dimensional centrally symmetric polytopes with neighborliness proportional to dimension
  publication-title: Discrete Comput Geom
– ident: e_1_2_1_13_2
  doi: 10.1109/LSP.2007.898300
– ident: e_1_2_1_27_2
  doi: 10.1090/S0894-0347-08-00600-0
– volume-title: Iteratively reweighted algorithms for compressive sensing
  year: 2008
  ident: e_1_2_1_16_2
  doi: 10.1109/ICASSP.2008.4518498
– ident: e_1_2_1_40_2
  doi: 10.1137/0907087
– ident: e_1_2_1_31_2
  doi: 10.1109/78.558475
– ident: e_1_2_1_41_2
  doi: 10.1190/1.1440921
– ident: e_1_2_1_8_2
  doi: 10.1002/cpa.20124
– volume: 3
  start-page: 609
  issue: 3
  year: 1993
  ident: e_1_2_1_34_2
  article-title: A globally convergent method for lp problems
  publication-title: SIAM J Optim
  doi: 10.1137/0803030
– ident: e_1_2_1_22_2
  doi: 10.1109/TIT.2006.871582
– ident: e_1_2_1_11_2
  doi: 10.1007/s00041-008-9045-x
– ident: e_1_2_1_32_2
  doi: 10.1016/j.acha.2006.09.003
– ident: e_1_2_1_17_2
  doi: 10.1137/S1064827596304010
– ident: e_1_2_1_18_2
  doi: 10.1190/1.1440378
– ident: e_1_2_1_12_2
  doi: 10.1007/s002110050258
– ident: e_1_2_1_6_2
– volume-title: Nonconvex compressive sensing and reconstruction of gradient‐sparse images: random vs. tomographic Fourier sampling
  year: 2008
  ident: e_1_2_1_14_2
– ident: e_1_2_1_24_2
  doi: 10.1137/0152031
– ident: e_1_2_1_33_2
– ident: e_1_2_1_38_2
  doi: 10.1002/cpa.20227
– ident: e_1_2_1_35_2
  doi: 10.1109/78.340772
– ident: e_1_2_1_26_2
  doi: 10.1073/pnas.0502269102
– volume-title: Finite algorithms in optimization and data analysis
  year: 1985
  ident: e_1_2_1_36_2
– ident: e_1_2_1_20_2
  doi: 10.1090/S0894-0347-08-00610-3
– volume-title: On L1‐approximation
  year: 1989
  ident: e_1_2_1_37_2
– ident: e_1_2_1_14_3
– ident: e_1_2_1_21_2
  doi: 10.1017/S0962492900002816
– volume: 26
  start-page: 167
  year: 1972
  ident: e_1_2_1_19_2
  article-title: Rate of convergence of Lawson's algorithm
  publication-title: Math Comp
– ident: e_1_2_1_29_2
  doi: 10.1109/TIP.2007.909318
– ident: e_1_2_1_10_2
  doi: 10.1109/TIT.2006.885507
– ident: e_1_2_1_3_2
  doi: 10.1007/s00365-007-9003-x
– ident: e_1_2_1_28_2
  doi: 10.1109/TIT.2008.929958
– start-page: 1433
  volume-title: International Congress of Mathematicians. Vol. III
  year: 2006
  ident: e_1_2_1_5_2
– ident: e_1_2_1_16_3
– start-page: 3885
  volume-title: Proceedings of the 33rd IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
  year: 2008
  ident: e_1_2_1_39_2
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: e_1_2_1_42_2
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J Roy Statist Soc Ser B
– ident: e_1_2_1_7_2
  doi: 10.1109/TIT.2005.862083
– ident: e_1_2_1_6_3
– ident: e_1_2_1_25_2
  doi: 10.1137/0149053
– ident: e_1_2_1_9_2
  doi: 10.1109/TIT.2005.858979
– ident: e_1_2_1_30_2
  doi: 10.1137/060671875
– ident: e_1_2_1_2_2
  doi: 10.1109/MSP.2007.4286571
– ident: e_1_2_1_4_2
– volume: 24
  start-page: 1
  issue: 035020
  year: 2008
  ident: e_1_2_1_15_2
  article-title: Restricted isometry properties and nonconvex compressive sensing
  publication-title: Inverse Problems
– ident: e_1_2_1_23_2
  doi: 10.1007/s00454-005-1220-0
SSID ssj0011483
Score 2.5167732
Snippet Under certain conditions (known as the restricted isometry property, or RIP) on the m × N matrix Φ (where m < N), vectors x ∈ ℝN that are sparse (i.e., have...
Under certain conditions (known as the restricted isometry property , or RIP) on the m × N matrix Φ (where m < N ), vectors x ∈ ℝ N that are sparse (i.e., have...
Under certain conditions (known as the restricted isometry property, or RIP) on the m x N matrix ... (where m < N), vectors x ... that are sparse (i.e., have...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Calculus of variations and optimal control
Convergence
Exact sciences and technology
Linear programming
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in mathematical programming, optimization and calculus of variations
Numerical methods in optimization and calculus of variations
Optimization algorithms
Sciences and techniques of general use
Vector space
Title Iteratively reweighted least squares minimization for sparse recovery
URI https://api.istex.fr/ark:/67375/WNG-JDLDJR9P-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpa.20303
https://www.proquest.com/docview/214271942
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jvuiD3-KcjiAivlS7Nm0WfBr7cA4nMhR9EELSpi-bc64bOv96c-mHThTEt1IucL3LXX5NLr9D6IgpQlXNk5bNBLEI1FEJn0jLV4EIpKJECDjR7V37nTvSffAeCug8uwuT8EPkG24QGSZfQ4ALGZ99koYGY6ANcg3TJ9RqASDq59RRAPOT02XIMz6xM1Yh2znLRy6sRUtg1jeojRSxNk-U9LVYAJ5f4atZf9pr6DHTPCk7GZzOpvI0eP9G6vjPT1tHqykuxfVkIm2gghptopVeTuoab6HWpWFg1ulxOMcT9Wo2VVWIh9D-B8cvM7jKhIGr5Cm93Ik1IsY6ZU1iheHPW4fNfBvdtVu3jY6VdmGwAuJC4ZoMla8k7IxEjtIol4V2GPlVSYkEgFAjkjHPpR4VIlQ2qTLh-UxEMqKs5kTU3UHF0fNI7SIc2tJjnoxqyhFERlrIdonSrpJEvxGkhE4yf_AgpSiHThlDnpArO1xbhhvLlNBhLjpOeDl-Ejo2Ts0lxGQAhWzU4_fXF7zbvGp2--yGa8HKgtfzARo9AUuZ1qycTQOeBnnMga2OVhlxtN7Gnb9rwhs3dfOw93fRMlpOShVgv2cfFaeTmTrQCGgqK2aqfwARbAF_
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA_iHtQHv8U5P4KI-FLt2rRZwJehm3NuQ0TRFwlJm75szrlu6PzrzaUfOlEQ30q5wDWXu_x6ufwOoQOmCFUVT1o2E8QiUEclfCItXwUikIoSIeBEt93xG3ek-eA9zKDT7C5Mwg-RJ9zAM0y8BgeHhPTJJ2toMADeIBeoPgvQ0dv8UN3k5FEA9JPzZYg0PrEzXiHbOcmHTu1GBZjYN6iOFLGeoCjpbDEFPb8CWLMD1ZfQY6Z7UnjSPR6P5HHw_o3W8b8ft4wWU2iKq8laWkEzqr-KFto5r2u8hmqXhoRZR8jeBA_Vq8mrqhD3oAMQjl_GcJsJA13JU3q_E2tQjHXUGsYKw8-39pzJOrqr127PGlbaiMEKiAu1azJUvpKQHIkcpYEuC-0w8suSEgkYoUIkY55LPSpEqGxSZsLzmYhkRFnFiai7gWb7z321iXBoS495MqooRxAZaSHbJUrbShL9RpAiOsoMwoOUpRyaZfR4wq_scD0z3MxMEe3nooOEmuMnoUNj1VxCDLtQy0Y9ft-54M3z1nnzhl1zLbg7ZfZ8gAZQQFSmNStl64Cnfh5zIKyjZUYcrbex5--a8LPrqnnY-rvoHppr3LZbvHXZuSqh-aRyAdI_22h2NByrHQ2IRnLXrPsPHHQFmg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLYQSNN4GIyLxmXMQgjxEkiTkzjWnipKBwWqCoHGwyTLTuwXSilNKyi_Hh_nwjoxadpbFB1LJz4Xf7GPv0PIHtfAdBIpz-cSPMA6KhmD8mKdylRpBlLiie5lNz69gc5tdDtHvld3YQp-iHrDDSPD5WsM8GFmjt5IQ9Mh0gaFyPS5ALGfoEu3rmruKMT5xfEyJpoY_IpWyA-O6qEzi9ECzuszFkfK3M6PKRpbzCDP3_GrW4DaS-RXpXpRd3J3OBmrw_TlD1bH__y2ZfKpBKa0WXjSZzKnBytk8bJmdc1XycmZo2C2-bE_pSP95HZVdUb72P-H5o8TvMtEkazkvrzdSS0kpjZnjXJN8dfbxs10jdy0T66PT72yDYOXQoiVayrTsVa4NWICbWEuz_zMxA3FQCFCSEBxHoUsYlJm2ocGl1HMpVGG8SQwLFwn84OHgf5CaOariEfKJDqQoIwV8kPQ1lQK7BsJG-SgsodIS45ybJXRFwW7ciDszAg3MxtktxYdFsQc7wntO6PWEnJ0h5VsLBI_uz9Ep3XR6lzxnrCCOzNWrwdY-IQ0ZVazrcoNRBnluUC6OtbgEFi9nTn_rok47jXdw-a_i34jH3qttrg4655vkY9F2QLu_WyT-fFoor9aNDRWO87rXwEo5gRS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iteratively+reweighted+least+squares+minimization+for+sparse+recovery&rft.jtitle=Communications+on+pure+and+applied+mathematics&rft.au=Daubechies%2C+Ingrid&rft.au=DeVore%2C+Ronald&rft.au=nasier%2C+Massimo&rft.au=G%C3%BCnt%C3%BCrk%2C+C+Sinan&rft.date=2010-01-01&rft.pub=John+Wiley+and+Sons%2C+Limited&rft.issn=0010-3640&rft.eissn=1097-0312&rft.volume=63&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1002%2Fcpa.20303&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1923938921
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3640&client=summon