Electrocaloric Materials for Solid-State Refrigeration
The electrocaloric effect (ECE) in dielectric materials has great potential in realizing solid‐state cooling devices with compact size and high efficiency, which are highly desirable for a broad range of applications. This paper presents the general considerations for dielectric materials to achieve...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 21; no. 19; pp. 1983 - 1987 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
18.05.2009
WILEY‐VCH Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The electrocaloric effect (ECE) in dielectric materials has great potential in realizing solid‐state cooling devices with compact size and high efficiency, which are highly desirable for a broad range of applications. This paper presents the general considerations for dielectric materials to achieve large ECE and reviews the experimental efforts investigating ECE in various polar dielectrics. For practical cooling devices, an ECE material must possess a large isothermal entropy change besides a large adiabatic temperature change. We show that polar dielectrics operated at temperatures near order–disorder transition have potential to achieve large ECE due to the possibility of large change in polarization induced by electric field and large entropy change associated with the polarization change. We further show that indeed the ferroelectric poly(vinylidene fluoride–trifluoroethylene)‐based polymers display a large ECE, i.e., an isothermal entropy change of more than 55 J (kgK)−1 and an adiabatic temperature change of more than 12 °C, at temperatures above the order–disorder transition.
Applying an electrical field to a dielectric may induce a large entropy and temperature change which is attractive for solid‐state cooling. We present the general considerations and review the experimental efforts to achieve large electrocaloric effect (ECE) in dielectrics. We show that by operating above the order‐disorder transitions, a large ECE can be achieved in a ferroelectric polymer. |
---|---|
AbstractList | The electrocaloric effect (ECE) in dielectric materials has great potential in realizing solid‐state cooling devices with compact size and high efficiency, which are highly desirable for a broad range of applications. This paper presents the general considerations for dielectric materials to achieve large ECE and reviews the experimental efforts investigating ECE in various polar dielectrics. For practical cooling devices, an ECE material must possess a large isothermal entropy change besides a large adiabatic temperature change. We show that polar dielectrics operated at temperatures near order–disorder transition have potential to achieve large ECE due to the possibility of large change in polarization induced by electric field and large entropy change associated with the polarization change. We further show that indeed the ferroelectric poly(vinylidene fluoride–trifluoroethylene)‐based polymers display a large ECE, i.e., an isothermal entropy change of more than 55 J (kgK)
−1
and an adiabatic temperature change of more than 12 °C, at temperatures above the order–disorder transition. The electrocaloric effect (ECE) in dielectric materials has great potential in realizing solid‐state cooling devices with compact size and high efficiency, which are highly desirable for a broad range of applications. This paper presents the general considerations for dielectric materials to achieve large ECE and reviews the experimental efforts investigating ECE in various polar dielectrics. For practical cooling devices, an ECE material must possess a large isothermal entropy change besides a large adiabatic temperature change. We show that polar dielectrics operated at temperatures near order–disorder transition have potential to achieve large ECE due to the possibility of large change in polarization induced by electric field and large entropy change associated with the polarization change. We further show that indeed the ferroelectric poly(vinylidene fluoride–trifluoroethylene)‐based polymers display a large ECE, i.e., an isothermal entropy change of more than 55 J (kgK)−1 and an adiabatic temperature change of more than 12 °C, at temperatures above the order–disorder transition. Applying an electrical field to a dielectric may induce a large entropy and temperature change which is attractive for solid‐state cooling. We present the general considerations and review the experimental efforts to achieve large electrocaloric effect (ECE) in dielectrics. We show that by operating above the order‐disorder transitions, a large ECE can be achieved in a ferroelectric polymer. |
Author | Zhang, Qiming Lu, Sheng-Guo |
Author_xml | – sequence: 1 givenname: Sheng-Guo surname: Lu fullname: Lu, Sheng-Guo organization: Department of Electrical Engineering and Materials Research Institute The Pennsylvania State University, University Park, PA 16802 (USA) – sequence: 2 givenname: Qiming surname: Zhang fullname: Zhang, Qiming email: qxz1@psu.edu organization: Department of Electrical Engineering and Materials Research Institute The Pennsylvania State University, University Park, PA 16802 (USA) |
BookMark | eNqFz1FLwzAQB_AgE9ymrz73C2Re0qZtHsc2p7IpOMWxl5CmF4l2i6QF3be3czJEEJ8Ojvvd3b9HOhu_QULOGQwYAL_Q5VoPOEAOXAI_Il0mOKMJSNEhXZCxoDJN8hPSq-sXAJAppF2STio0TfBGVz44E811g8Hpqo6sD9HCV66ki6ZtRvdog3vGoBvnN6fk2LZDePZd--TxcvIwuqKzu-n1aDijJomBU2Tt2VyYUmNhk7zINLMaJJPIMDNMJ0znWWJzNCAEiwubZsjKQkouOJSFiftksN9rgq_rgFa9BbfWYasYqF1qtUutDqlbkPwCxjVfLzdBu-pvJvfs3VW4_eeIGo7nw5-W7q2rG_w4WB1eVZrFmVBPt1O1WqyWN7Acq3H8CeWpflM |
CitedBy_id | crossref_primary_10_1038_s41467_017_01898_2 crossref_primary_10_1002_pssr_201800515 crossref_primary_10_1080_00150193_2012_671101 crossref_primary_10_1016_j_jeurceramsoc_2017_04_058 crossref_primary_10_1080_10584587_2016_1159885 crossref_primary_10_1002_adfm_201501840 crossref_primary_10_1016_j_physleta_2017_02_014 crossref_primary_10_1080_01411594_2016_1219910 crossref_primary_10_1016_j_ceramint_2016_09_176 crossref_primary_10_1016_j_mechmat_2013_05_013 crossref_primary_10_1557_opl_2013_885 crossref_primary_10_1063_1_5054114 crossref_primary_10_1002_ente_201500205 crossref_primary_10_1063_1_5093968 crossref_primary_10_1063_1_4896044 crossref_primary_10_1080_00150193_2013_820971 crossref_primary_10_1038_s41467_024_44926_8 crossref_primary_10_1007_s11708_023_0884_6 crossref_primary_10_1002_adfm_201202525 crossref_primary_10_1007_s40145_020_0450_1 crossref_primary_10_1021_acsenergylett_6b00232 crossref_primary_10_1063_1_4919453 crossref_primary_10_1007_s10853_020_04640_4 crossref_primary_10_1063_1_4944776 crossref_primary_10_1063_1_5144056 crossref_primary_10_1002_adfm_201302386 crossref_primary_10_1016_j_jallcom_2017_05_284 crossref_primary_10_1021_acsami_9b06279 crossref_primary_10_1088_1361_648X_ab3d6e crossref_primary_10_1063_1_4928165 crossref_primary_10_1021_jz501831q crossref_primary_10_1002_pssb_201700469 crossref_primary_10_1063_1_4908596 crossref_primary_10_1088_1361_6633_ab49d6 crossref_primary_10_1103_PhysRevB_97_184104 crossref_primary_10_3938_jkps_66_1101 crossref_primary_10_1134_S0020168524701553 crossref_primary_10_1088_1361_6463_ad2b20 crossref_primary_10_1016_j_ceramint_2015_08_080 crossref_primary_10_1063_1_4898599 crossref_primary_10_1016_j_ceramint_2017_11_022 crossref_primary_10_1021_acsami_5b09368 crossref_primary_10_1063_1_4944409 crossref_primary_10_1016_j_jallcom_2015_01_040 crossref_primary_10_1103_PhysRevLett_120_055901 crossref_primary_10_3390_molecules26020481 crossref_primary_10_1039_C8TC03965H crossref_primary_10_1063_1_3514255 crossref_primary_10_1016_j_ceramint_2017_08_217 crossref_primary_10_1016_j_actamat_2019_03_017 crossref_primary_10_1016_j_ceramint_2016_08_054 crossref_primary_10_1016_j_physleta_2013_10_054 crossref_primary_10_1016_j_jallcom_2017_11_015 crossref_primary_10_1021_acsami_7b15933 crossref_primary_10_1016_j_jeurceramsoc_2018_06_020 crossref_primary_10_1021_acs_macromol_6b02669 crossref_primary_10_1016_j_ijrefrig_2019_02_029 crossref_primary_10_1557_s43578_021_00180_y crossref_primary_10_1021_acsmacrolett_2c00022 crossref_primary_10_7498_aps_62_247701 crossref_primary_10_1007_s11431_018_9395_6 crossref_primary_10_1021_acs_jpcb_4c00826 crossref_primary_10_1016_j_ceramint_2024_01_139 crossref_primary_10_1038_srep19590 crossref_primary_10_1039_C6TC00218H crossref_primary_10_1016_j_compositesb_2022_109824 crossref_primary_10_1038_srep26629 crossref_primary_10_1063_1_5092556 crossref_primary_10_1063_1_4997155 crossref_primary_10_1002_adfm_201202686 crossref_primary_10_1039_C9TC00239A crossref_primary_10_1016_j_nanoen_2014_09_025 crossref_primary_10_1002_adfm_202007376 crossref_primary_10_1021_acs_macromol_2c01952 crossref_primary_10_1126_science_aan5980 crossref_primary_10_1007_s11664_015_4051_7 crossref_primary_10_1063_1_4816441 crossref_primary_10_1016_j_jeurceramsoc_2017_09_018 crossref_primary_10_1557_opl_2013_605 crossref_primary_10_1080_00150193_2023_2271330 crossref_primary_10_1021_acsami_9b21105 crossref_primary_10_1063_1_5018431 crossref_primary_10_1039_C9TC01525F crossref_primary_10_3390_ma10091093 crossref_primary_10_1063_1_3430045 crossref_primary_10_1016_j_ceramint_2017_09_158 crossref_primary_10_1021_jacs_3c13422 crossref_primary_10_3390_chemengineering8040071 crossref_primary_10_1021_acsami_1c03079 crossref_primary_10_1002_adma_201803312 crossref_primary_10_7498_aps_64_117701 crossref_primary_10_1088_0953_8984_28_26_263001 crossref_primary_10_1063_1_4991994 crossref_primary_10_1002_ente_201402185 crossref_primary_10_1039_D0EE03897K crossref_primary_10_1063_1_5020515 crossref_primary_10_1016_j_ceramint_2024_09_204 crossref_primary_10_1016_j_apmt_2015_08_002 crossref_primary_10_1063_1_5093554 crossref_primary_10_1007_s00339_012_6830_9 crossref_primary_10_1063_1_4958327 crossref_primary_10_1021_acsnano_5b03371 crossref_primary_10_1109_TED_2020_2976163 crossref_primary_10_3390_cryst13010086 crossref_primary_10_1007_s11082_022_03902_6 crossref_primary_10_1103_PhysRevB_92_064101 crossref_primary_10_1016_j_jmat_2022_10_005 crossref_primary_10_1002_adma_201404591 crossref_primary_10_1016_j_ceramint_2015_03_206 crossref_primary_10_1063_1_3655327 crossref_primary_10_1063_1_4795863 crossref_primary_10_1016_j_jmat_2022_10_009 crossref_primary_10_1126_sciadv_aaw0536 crossref_primary_10_1002_er_5284 crossref_primary_10_1002_ente_201500285 crossref_primary_10_2139_ssrn_4091479 crossref_primary_10_1063_1_5028459 crossref_primary_10_1016_j_ceramint_2014_03_175 crossref_primary_10_1088_1402_4896_aca2fd crossref_primary_10_1039_D2TC03390A crossref_primary_10_1103_PhysRevLett_108_167604 crossref_primary_10_1007_s10854_022_09207_4 crossref_primary_10_1016_j_matlet_2016_11_006 crossref_primary_10_1063_1_4935424 crossref_primary_10_1088_0253_6102_59_1_21 crossref_primary_10_1038_npjcompumats_2016_20 crossref_primary_10_1088_2053_1591_2_3_035501 crossref_primary_10_1109_TDEI_2015_7116344 crossref_primary_10_1002_adma_201907927 crossref_primary_10_1557_mrs_2018_68 crossref_primary_10_1063_1_3353989 crossref_primary_10_4028_www_scientific_net_KEM_492_164 crossref_primary_10_1038_s41467_019_09730_9 crossref_primary_10_1016_j_nxmate_2024_100270 crossref_primary_10_1038_srep02895 crossref_primary_10_1007_s00339_021_04604_8 crossref_primary_10_1016_j_jallcom_2021_163165 crossref_primary_10_1002_adfm_202108182 crossref_primary_10_1063_1_3543628 crossref_primary_10_1002_pssr_201900177 crossref_primary_10_1016_j_scriptamat_2019_08_026 crossref_primary_10_1109_TUFFC_2014_006660 crossref_primary_10_1007_s10854_016_5114_0 crossref_primary_10_1080_10584587_2011_574491 crossref_primary_10_1088_1361_665X_aae86c crossref_primary_10_1063_1_5083670 crossref_primary_10_1002_pol_20230153 crossref_primary_10_1063_1_5035079 crossref_primary_10_1557_opl_2011_662 crossref_primary_10_1021_acsami_9b04036 crossref_primary_10_1016_j_polymer_2013_01_035 crossref_primary_10_1021_acs_chemrev_1c00793 crossref_primary_10_1016_j_scriptamat_2019_09_007 crossref_primary_10_1016_j_jallcom_2024_174724 crossref_primary_10_1063_1_4954056 crossref_primary_10_1063_1_5124901 crossref_primary_10_1021_acsami_9b08640 crossref_primary_10_1007_s11431_016_6079_1 crossref_primary_10_1016_j_cap_2020_06_020 crossref_primary_10_1016_j_actamat_2022_117784 crossref_primary_10_1016_j_ceramint_2024_09_267 crossref_primary_10_1016_j_nanoen_2021_106222 crossref_primary_10_1088_1361_648X_ad4762 crossref_primary_10_1063_5_0132533 crossref_primary_10_1063_1_4919096 crossref_primary_10_1016_j_actamat_2011_05_030 crossref_primary_10_1016_j_matchemphys_2017_07_075 crossref_primary_10_1016_j_commatsci_2021_110748 crossref_primary_10_1039_C2TC00283C crossref_primary_10_1016_j_jallcom_2012_10_144 crossref_primary_10_1016_j_tsep_2018_01_006 crossref_primary_10_1021_acsami_6b04091 crossref_primary_10_1103_PhysRevB_86_104103 crossref_primary_10_1557_mre_2015_17 crossref_primary_10_1016_j_physleta_2019_126093 crossref_primary_10_1002_adfm_202112622 crossref_primary_10_1063_1_4971400 crossref_primary_10_1063_1_4950844 crossref_primary_10_1016_j_jallcom_2018_06_083 crossref_primary_10_1063_1_5048599 crossref_primary_10_1016_j_jallcom_2015_09_034 crossref_primary_10_1002_app_44413 crossref_primary_10_1080_00150193_2013_820996 crossref_primary_10_1111_jace_12219 crossref_primary_10_1002_adma_201404531 crossref_primary_10_1016_j_ceramint_2023_08_187 crossref_primary_10_1063_1_5123717 crossref_primary_10_1088_1361_6633_aa82d2 crossref_primary_10_1039_C5CP04307G crossref_primary_10_1002_adma_201602787 crossref_primary_10_1007_s40820_023_01126_1 crossref_primary_10_1039_D0RA06116F crossref_primary_10_1142_S2010135X12300113 crossref_primary_10_1016_j_jallcom_2020_156132 crossref_primary_10_1016_j_ceramint_2014_01_149 crossref_primary_10_1063_1_4895615 crossref_primary_10_1016_j_ijrefrig_2021_02_003 crossref_primary_10_1016_j_ceramint_2023_12_017 crossref_primary_10_1007_s11664_017_5336_9 crossref_primary_10_1063_1_4980098 crossref_primary_10_1016_j_polymer_2013_02_041 crossref_primary_10_1063_5_0131458 crossref_primary_10_1016_j_jallcom_2017_07_103 crossref_primary_10_1002_adma_201801949 crossref_primary_10_1016_j_ijheatmasstransfer_2014_01_043 crossref_primary_10_1063_1_4950788 crossref_primary_10_1007_s42341_019_00150_6 crossref_primary_10_1209_0295_5075_95_67004 crossref_primary_10_1016_j_polymer_2025_128305 crossref_primary_10_1016_j_jallcom_2018_10_397 crossref_primary_10_1039_C5CP02765A crossref_primary_10_1016_j_scriptamat_2021_113920 crossref_primary_10_1063_1_3569953 crossref_primary_10_1063_1_4965707 crossref_primary_10_1002_pssa_201127695 crossref_primary_10_1063_1_4941816 crossref_primary_10_1088_1742_6596_796_1_012019 crossref_primary_10_1016_j_cej_2024_154248 crossref_primary_10_1063_1_4866272 crossref_primary_10_1007_s11431_022_2282_4 crossref_primary_10_1063_1_4983029 crossref_primary_10_2139_ssrn_4001346 crossref_primary_10_3390_app9081672 crossref_primary_10_1038_s41598_017_18810_z crossref_primary_10_1140_epjb_e2015_60445_2 crossref_primary_10_1007_s10854_017_8008_x crossref_primary_10_1016_j_physleta_2012_12_033 crossref_primary_10_1021_acsami_8b00744 crossref_primary_10_3390_cryst10060451 crossref_primary_10_1007_s10854_019_01654_w crossref_primary_10_1140_epjb_e2011_20674_y crossref_primary_10_4313_TEEM_2015_16_1_1 crossref_primary_10_1002_inf2_12488 crossref_primary_10_1063_1_5088924 crossref_primary_10_1016_j_jmat_2019_04_001 crossref_primary_10_1016_j_mechrescom_2013_10_016 crossref_primary_10_1016_j_physa_2021_126633 crossref_primary_10_1063_5_0097446 crossref_primary_10_2139_ssrn_4140562 crossref_primary_10_1002_adfm_202418534 crossref_primary_10_1021_acsami_4c14132 crossref_primary_10_1016_j_jallcom_2022_164826 crossref_primary_10_1111_jace_19162 crossref_primary_10_1016_j_jallcom_2018_10_293 crossref_primary_10_1016_j_jmst_2024_08_019 crossref_primary_10_1080_07315171_2018_1537335 crossref_primary_10_1007_s11771_022_5151_1 crossref_primary_10_1103_PhysRevB_83_174109 crossref_primary_10_1002_adma_201405495 crossref_primary_10_1007_s10854_018_9587_x crossref_primary_10_1007_s10853_015_9663_z crossref_primary_10_1016_j_nanoen_2016_02_026 crossref_primary_10_1039_D4TC01259C crossref_primary_10_1002_adts_201800096 crossref_primary_10_1016_j_ijrefrig_2022_03_016 crossref_primary_10_1016_j_ceramint_2019_10_151 crossref_primary_10_1016_j_energy_2018_09_114 crossref_primary_10_1002_admi_201900291 crossref_primary_10_1063_1_3501975 crossref_primary_10_1016_j_mechmat_2013_09_006 crossref_primary_10_1039_c3ta01289a crossref_primary_10_1063_1_4906864 crossref_primary_10_3390_magnetochemistry6040067 crossref_primary_10_1063_1_4756697 crossref_primary_10_1016_j_jallcom_2020_157605 crossref_primary_10_3390_challe8010005 crossref_primary_10_1038_s41467_021_25644_x crossref_primary_10_1039_D0RA09707A crossref_primary_10_1016_j_mseb_2023_116513 crossref_primary_10_1039_C9TC06515F crossref_primary_10_1063_1_5129659 crossref_primary_10_1063_1_4927558 crossref_primary_10_1016_j_jallcom_2019_03_356 crossref_primary_10_1016_j_mseb_2015_02_004 crossref_primary_10_1063_1_4722932 crossref_primary_10_1016_j_ceramint_2024_05_115 crossref_primary_10_1016_j_jallcom_2020_154581 crossref_primary_10_1016_j_jmmm_2024_172494 crossref_primary_10_1016_j_mseb_2023_116989 crossref_primary_10_1039_C9TC05208A crossref_primary_10_1016_j_matlet_2012_08_102 crossref_primary_10_1063_1_4799283 crossref_primary_10_1016_j_actamat_2024_120576 crossref_primary_10_1038_nmat3951 crossref_primary_10_1039_C6CP05462E crossref_primary_10_1021_ma501852x crossref_primary_10_1103_PhysRevApplied_15_054019 crossref_primary_10_1063_1_3702781 crossref_primary_10_1021_acsami_1c13614 crossref_primary_10_1002_pssb_201800218 crossref_primary_10_1016_j_materresbull_2017_07_049 crossref_primary_10_1063_1_4711213 crossref_primary_10_1016_j_scriptamat_2020_04_007 crossref_primary_10_1016_j_ceramint_2018_02_108 crossref_primary_10_1016_j_jallcom_2021_160355 crossref_primary_10_1063_1_4861456 crossref_primary_10_1016_j_jeurceramsoc_2023_11_043 crossref_primary_10_1063_1_3665949 crossref_primary_10_1016_j_ceramint_2018_04_194 crossref_primary_10_1016_j_jpcs_2020_109529 crossref_primary_10_1016_j_jallcom_2011_05_111 crossref_primary_10_1098_rsta_2015_0305 crossref_primary_10_1016_j_commatsci_2016_12_002 crossref_primary_10_1016_j_physa_2015_03_079 crossref_primary_10_3389_fchem_2024_1476273 crossref_primary_10_1016_j_ceramint_2022_02_098 crossref_primary_10_1039_C4RA02878C crossref_primary_10_1111_jace_18370 crossref_primary_10_1016_j_nanoen_2017_04_052 crossref_primary_10_1002_polb_24068 crossref_primary_10_1007_s00707_021_03051_z crossref_primary_10_1039_C6TC01107A crossref_primary_10_1088_1361_665X_ad5d33 crossref_primary_10_1021_jacs_0c09601 crossref_primary_10_1021_acsami_8b14636 crossref_primary_10_1039_C4TC02381A crossref_primary_10_1557_mrc_2015_20 crossref_primary_10_1063_1_5009121 crossref_primary_10_1016_j_ceramint_2018_02_008 crossref_primary_10_1021_acs_nanolett_2c01776 crossref_primary_10_1039_D0EE02548H crossref_primary_10_1016_j_materresbull_2015_10_010 crossref_primary_10_1080_21663831_2022_2054668 crossref_primary_10_1142_S2010135X18300049 crossref_primary_10_1016_j_actamat_2015_01_070 crossref_primary_10_1063_1_4936186 crossref_primary_10_1142_S2010135X1350015X crossref_primary_10_1063_1_3658251 crossref_primary_10_1016_j_physb_2022_414273 crossref_primary_10_1080_01411594_2021_1928126 crossref_primary_10_1021_acsami_2c14831 crossref_primary_10_1016_j_ceramint_2024_05_387 crossref_primary_10_1016_j_actamat_2018_02_011 crossref_primary_10_1098_rsta_2016_0055 crossref_primary_10_1016_j_applthermaleng_2021_116806 crossref_primary_10_1209_0295_5075_111_57008 crossref_primary_10_1016_j_ceramint_2019_05_248 crossref_primary_10_1002_smll_202200133 crossref_primary_10_1063_1_5145040 crossref_primary_10_1039_C5RA10508K crossref_primary_10_1016_j_jallcom_2023_171856 crossref_primary_10_1080_01411594_2016_1144752 crossref_primary_10_1002_pssb_202100266 crossref_primary_10_1039_C8TC06110F crossref_primary_10_1007_s41779_017_0170_3 crossref_primary_10_1007_s42341_019_00137_3 crossref_primary_10_1002_aelm_202200352 crossref_primary_10_1016_j_ceramint_2022_09_275 crossref_primary_10_1016_j_scib_2018_02_016 crossref_primary_10_1021_acs_jpcc_5b04178 crossref_primary_10_1063_1_4939152 crossref_primary_10_1021_acsnano_4c03127 crossref_primary_10_1063_5_0206125 crossref_primary_10_1016_j_jallcom_2016_08_084 crossref_primary_10_1016_j_polymer_2013_07_052 crossref_primary_10_1115_1_4002896 crossref_primary_10_1002_adma_201501100 crossref_primary_10_1016_j_jmat_2024_05_011 crossref_primary_10_1038_s41598_017_18275_0 crossref_primary_10_1016_j_jallcom_2017_07_019 crossref_primary_10_1021_acsami_9b12353 crossref_primary_10_1016_j_matlet_2017_03_086 crossref_primary_10_1088_1757_899X_678_1_012138 crossref_primary_10_1016_j_jallcom_2017_07_012 crossref_primary_10_1063_5_0042333 crossref_primary_10_1021_acs_nanolett_6b03155 crossref_primary_10_1016_j_cej_2020_128060 crossref_primary_10_1039_D2RA04914G crossref_primary_10_1016_j_nanoen_2024_109948 crossref_primary_10_1103_PhysRevMaterials_2_114004 crossref_primary_10_1111_ijac_13411 crossref_primary_10_1016_j_jmat_2018_10_003 crossref_primary_10_1016_j_jmat_2018_10_002 crossref_primary_10_1039_D0TA04465B crossref_primary_10_1063_1_4892455 crossref_primary_10_1146_annurev_matsci_062910_100341 crossref_primary_10_1103_PhysRevB_87_224101 crossref_primary_10_3740_MRSK_2020_30_9_480 crossref_primary_10_1126_science_adg0902 crossref_primary_10_1016_j_ijrefrig_2015_03_023 crossref_primary_10_1016_j_cej_2024_153061 crossref_primary_10_23919_IEN_2023_0012 crossref_primary_10_1088_1402_4896_ad2cd7 crossref_primary_10_1142_S2010135X18500388 crossref_primary_10_1126_science_aba2648 crossref_primary_10_1088_2053_1591_3_10_106301 crossref_primary_10_1063_1_3511342 crossref_primary_10_1016_j_molstruc_2017_06_113 crossref_primary_10_1016_j_actamat_2022_118054 crossref_primary_10_1016_j_nanoen_2019_104203 crossref_primary_10_1021_ma2024057 crossref_primary_10_1063_1_4927280 crossref_primary_10_7498_aps_69_20200296 |
Cites_doi | 10.1007/BF01392900 10.1126/science.1159655 10.1080/00150197708237810 10.1080/00150199208223433 10.1103/PhysRevB.3.3032 10.1063/1.2750546 10.1038/nature02657 10.1080/00150190211761 10.1080/00150198408012752 10.1016/0022-4596(81)90091-8 10.1002/1521-4095(20021104)14:21<1574::AID-ADMA1574>3.0.CO;2-# 10.1080/00150198108223496 10.1080/00150198008238664 10.1126/science.280.5372.2101 10.1103/PhysRev.131.2023 10.1080/00150198108223507 10.1109/TDEI.2006.247840 10.1080/00150197608237787 10.1126/science.1123811 10.1103/PhysRevB.16.433 10.1016/0011-2275(79)90019-5 10.1016/0011-2275(85)90187-0 10.1063/1.1656478 10.1016/S0011-2275(61)80015-5 |
ContentType | Journal Article |
Copyright | Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION |
DOI | 10.1002/adma.200802902 |
DatabaseName | Istex CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | 1987 |
ExternalDocumentID | 10_1002_adma_200802902 ADMA200802902 ark_67375_WNG_ZSZXJ0XD_D |
Genre | article |
GrantInformation_xml | – fundername: US Department of Energy funderid: DE‐FG02‐07ER46410 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAMNL AANLZ AAONW AASGY AAXRX AAYOK AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT AAHQN AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION |
ID | FETCH-LOGICAL-c4302-e193585cdaebf48b7a1fa0919e1e7c1a41a874f8ec05513bf67e1db992520dbc3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 |
IngestDate | Thu Apr 24 22:59:49 EDT 2025 Tue Jul 01 02:26:04 EDT 2025 Wed Jan 22 17:05:35 EST 2025 Mon Nov 18 03:20:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4302-e193585cdaebf48b7a1fa0919e1e7c1a41a874f8ec05513bf67e1db992520dbc3 |
Notes | ark:/67375/WNG-ZSZXJ0XD-D ArticleID:ADMA200802902 US Department of Energy - No. DE-FG02-07ER46410 istex:2A833B090805F405A4440A3AC48EDF7EA3DCF592 |
PageCount | 5 |
ParticipantIDs | crossref_primary_10_1002_adma_200802902 crossref_citationtrail_10_1002_adma_200802902 wiley_primary_10_1002_adma_200802902_ADMA200802902 istex_primary_ark_67375_WNG_ZSZXJ0XD_D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 18, 2009 |
PublicationDateYYYYMMDD | 2009-05-18 |
PublicationDate_xml | – month: 05 year: 2009 text: May 18, 2009 day: 18 |
PublicationDecade | 2000 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv. Mater |
PublicationYear | 2009 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
References | W. N. Lawless, A. J. Morrow, Ferroelectrics. 1977, 15, 159. B. Neese, B. J. Chu, S. G. Lu, Y. Wang, E. Furman, Q. M. Zhang, Science. 2008, 321, 821. Y. Sinyavsky, V. Brodyansky, Ferroelectrics. 1992, 131, 321. P. D. Thacher, J. Appl. Phys. 1968, 39, 1996. W. N. Lawless, Phys. Rev. B 1977, 16, 433. W. N. Lawless, Ferroelectrics. 1980, 24, 327. F. Jona, G. Shirane, Ferroelectric Crystals, Dover Publications, Inc. New York: 1993. M. Lines, A. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford 1977. B. A. Tuttle, D. A. Payne, Ferroelectrics. 1981, 37, 603. L. Shebanovs, K. Borman, W. N. Lawless, A. Kalvane, Ferroelectrics. 2002, 273, 137. A. Min, L. E. Cross, R. E. Newnham, Ferroelectrics. 1981, 37, 647. G. Akcay, S. P. Alpay, J. V. Mantese, G. A. Rossetti, Jr, Appl. Phys. Lett. 2007, 90, 252909. A. Amin, R. E. Newnham, L. E. Cross, J. Solid State Chem. 1981, 37, 248. G. G. Wiseman, J. Kuebler, Phys. Rev. 1963, 131, 2023. T. Furukawa, T. Nakajima, Y. Takahashi, IEEE Trans. Diel. Electr. Ins. 2006, 13, 1120. H. Baumgartner, Helv. Phys. Acta 1950, 23, 651. V. Provenzano, A. J. Shapiro, R. D. Shull, Nature. 2004, 429, 853. J. W. Benepe, W. Reese, Phys. Rev. B 1971, 3, 3032. F. Xia Z.-Y. Cheng, H. Xu, Q. M. Zhang, G. Kavarnos, R. Ting, G. Abdul-Sedat, K. D. Belfield, Adv. Mater. 2002, 14, 1574. Q. M. Zhang, Vivek Bharti, X. Zhao, Science. 1998, 280, 2101. A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, N. D. Mathur, Science. 2006, 311, 1270. M. E. Wood, W. H. Potter, Cryogenics. 1985, 25, 667. B. A. Strukov, Sov. Phys. Crystallogr. 1967, 11, 757. P. Kobeko, J. Kurtschatov, Z. Phys. 1930, 66, 192. E. Hegenbarth, Cryogenics. 1961, 1, 242. T. Furukawa, Ferroelectrics. 1984, 57, 63. R. Radebaugh, W. N. Lawless, J. D. Siegwarth, A. J. Morrow, Cryogenics. 1979, 19, 187. 1979; 19 2002; 14 1998; 280 1950; 23 1963; 131 2006; 13 2002; 273 1980; 24 2009 2007; 90 1997 2006 1993 2008; 321 1977 2006; 311 1985; 25 2004; 429 1976; 11 1968; 39 1977; 15 1930; 66 1992; 131 1967; 11 1977; 16 1961; 1 1984; 57 1981; 37 1971; 3 e_1_2_1_22_2 e_1_2_1_23_2 e_1_2_1_20_2 e_1_2_1_21_2 e_1_2_1_26_2 e_1_2_1_27_2 e_1_2_1_24_2 e_1_2_1_28_2 e_1_2_1_29_2 Jona F. (e_1_2_1_2_2) 1993 Baumgartner H. (e_1_2_1_25_2) 1950; 23 e_1_2_1_6_2 e_1_2_1_30_2 e_1_2_1_7_2 e_1_2_1_4_2 Strukov B. A. (e_1_2_1_15_2) 1967; 11 e_1_2_1_5_2 e_1_2_1_11_2 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_10_2 e_1_2_1_31_2 Lines M. (e_1_2_1_1_2) 1977 e_1_2_1_16_2 e_1_2_1_13_2 e_1_2_1_14_2 e_1_2_1_19_2 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 |
References_xml | – reference: M. Lines, A. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford 1977. – reference: W. N. Lawless, Phys. Rev. B 1977, 16, 433. – reference: J. W. Benepe, W. Reese, Phys. Rev. B 1971, 3, 3032. – reference: W. N. Lawless, A. J. Morrow, Ferroelectrics. 1977, 15, 159. – reference: P. Kobeko, J. Kurtschatov, Z. Phys. 1930, 66, 192. – reference: T. Furukawa, Ferroelectrics. 1984, 57, 63. – reference: A. Min, L. E. Cross, R. E. Newnham, Ferroelectrics. 1981, 37, 647. – reference: B. A. Tuttle, D. A. Payne, Ferroelectrics. 1981, 37, 603. – reference: G. Akcay, S. P. Alpay, J. V. Mantese, G. A. Rossetti, Jr, Appl. Phys. Lett. 2007, 90, 252909. – reference: W. N. Lawless, Ferroelectrics. 1980, 24, 327. – reference: Y. Sinyavsky, V. Brodyansky, Ferroelectrics. 1992, 131, 321. – reference: V. Provenzano, A. J. Shapiro, R. D. Shull, Nature. 2004, 429, 853. – reference: R. Radebaugh, W. N. Lawless, J. D. Siegwarth, A. J. Morrow, Cryogenics. 1979, 19, 187. – reference: B. Neese, B. J. Chu, S. G. Lu, Y. Wang, E. Furman, Q. M. Zhang, Science. 2008, 321, 821. – reference: L. Shebanovs, K. Borman, W. N. Lawless, A. Kalvane, Ferroelectrics. 2002, 273, 137. – reference: M. E. Wood, W. H. Potter, Cryogenics. 1985, 25, 667. – reference: P. D. Thacher, J. Appl. Phys. 1968, 39, 1996. – reference: G. G. Wiseman, J. Kuebler, Phys. Rev. 1963, 131, 2023. – reference: B. A. Strukov, Sov. Phys. Crystallogr. 1967, 11, 757. – reference: A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, N. D. Mathur, Science. 2006, 311, 1270. – reference: H. Baumgartner, Helv. Phys. Acta 1950, 23, 651. – reference: Q. M. Zhang, Vivek Bharti, X. Zhao, Science. 1998, 280, 2101. – reference: T. Furukawa, T. Nakajima, Y. Takahashi, IEEE Trans. Diel. Electr. Ins. 2006, 13, 1120. – reference: F. Xia Z.-Y. Cheng, H. Xu, Q. M. Zhang, G. Kavarnos, R. Ting, G. Abdul-Sedat, K. D. Belfield, Adv. Mater. 2002, 14, 1574. – reference: E. Hegenbarth, Cryogenics. 1961, 1, 242. – reference: A. Amin, R. E. Newnham, L. E. Cross, J. Solid State Chem. 1981, 37, 248. – reference: F. Jona, G. Shirane, Ferroelectric Crystals, Dover Publications, Inc. New York: 1993. – volume: 11 start-page: 519 year: 1976 article-title: Ferroelectrics – year: 2009 – volume: 13 start-page: 1120 year: 2006 publication-title: IEEE Trans. Diel. Electr. Ins. – volume: 321 start-page: 821 year: 2008 publication-title: Science. – volume: 273 start-page: 137 year: 2002 publication-title: Ferroelectrics. – volume: 66 start-page: 192 year: 1930 publication-title: Z. Phys. – volume: 131 start-page: 321 year: 1992 publication-title: Ferroelectrics. – volume: 57 start-page: 63 year: 1984 publication-title: Ferroelectrics. – volume: 429 start-page: 853 year: 2004 publication-title: Nature. – year: 1977 – volume: 19 start-page: 187 year: 1979 publication-title: Cryogenics. – volume: 23 start-page: 651 year: 1950 publication-title: Helv. Phys. Acta – volume: 39 start-page: 1996 year: 1968 publication-title: J. Appl. Phys. – volume: 1 start-page: 242 year: 1961 publication-title: Cryogenics. – volume: 37 start-page: 248 year: 1981 publication-title: J. Solid State Chem. – volume: 90 start-page: 252909 year: 2007 publication-title: Appl. Phys. Lett. – volume: 280 start-page: 2101 year: 1998 publication-title: Science. – volume: 311 start-page: 1270 year: 2006 publication-title: Science. – volume: 15 start-page: 159 year: 1977 publication-title: Ferroelectrics. – year: 2006 – volume: 14 start-page: 1574 year: 2002 publication-title: Adv. Mater. – volume: 11 start-page: 757 year: 1967 publication-title: Sov. Phys. Crystallogr. – volume: 37 start-page: 647 year: 1981 publication-title: Ferroelectrics. – year: 1997 – volume: 16 start-page: 433 year: 1977 publication-title: Phys. Rev. B – year: 1993 – volume: 131 start-page: 2023 year: 1963 publication-title: Phys. Rev. – volume: 25 start-page: 667 year: 1985 publication-title: Cryogenics. – volume: 24 start-page: 327 year: 1980 publication-title: Ferroelectrics. – volume: 37 start-page: 603 year: 1981 publication-title: Ferroelectrics. – volume: 3 start-page: 3032 year: 1971 publication-title: Phys. Rev. B – ident: e_1_2_1_4_2 doi: 10.1007/BF01392900 – volume-title: A. Glass, Principles and Applications of Ferroelectrics and Related Materials year: 1977 ident: e_1_2_1_1_2 – volume-title: Ferroelectric Crystals year: 1993 ident: e_1_2_1_2_2 – ident: e_1_2_1_17_2 doi: 10.1126/science.1159655 – ident: e_1_2_1_26_2 doi: 10.1080/00150197708237810 – ident: e_1_2_1_10_2 doi: 10.1080/00150199208223433 – volume: 11 start-page: 757 year: 1967 ident: e_1_2_1_15_2 publication-title: Sov. Phys. Crystallogr. – ident: e_1_2_1_13_2 doi: 10.1103/PhysRevB.3.3032 – ident: e_1_2_1_20_2 doi: 10.1063/1.2750546 – ident: e_1_2_1_27_2 doi: 10.1038/nature02657 – ident: e_1_2_1_11_2 doi: 10.1080/00150190211761 – volume: 23 start-page: 651 year: 1950 ident: e_1_2_1_25_2 publication-title: Helv. Phys. Acta – ident: e_1_2_1_19_2 doi: 10.1080/00150198408012752 – ident: e_1_2_1_30_2 – ident: e_1_2_1_22_2 doi: 10.1016/0022-4596(81)90091-8 – ident: e_1_2_1_29_2 doi: 10.1002/1521-4095(20021104)14:21<1574::AID-ADMA1574>3.0.CO;2-# – ident: e_1_2_1_9_2 doi: 10.1080/00150198108223496 – ident: e_1_2_1_14_2 doi: 10.1080/00150198008238664 – ident: e_1_2_1_28_2 doi: 10.1126/science.280.5372.2101 – ident: e_1_2_1_12_2 doi: 10.1103/PhysRev.131.2023 – ident: e_1_2_1_21_2 doi: 10.1080/00150198108223507 – ident: e_1_2_1_24_2 doi: 10.1109/TDEI.2006.247840 – ident: e_1_2_1_3_2 doi: 10.1080/00150197608237787 – ident: e_1_2_1_23_2 – ident: e_1_2_1_16_2 doi: 10.1126/science.1123811 – ident: e_1_2_1_7_2 doi: 10.1103/PhysRevB.16.433 – ident: e_1_2_1_8_2 doi: 10.1016/0011-2275(79)90019-5 – ident: e_1_2_1_18_2 doi: 10.1016/0011-2275(85)90187-0 – ident: e_1_2_1_6_2 doi: 10.1063/1.1656478 – ident: e_1_2_1_5_2 doi: 10.1016/S0011-2275(61)80015-5 – ident: e_1_2_1_31_2 |
SSID | ssj0009606 |
Score | 2.4884725 |
Snippet | The electrocaloric effect (ECE) in dielectric materials has great potential in realizing solid‐state cooling devices with compact size and high efficiency,... |
SourceID | crossref wiley istex |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1983 |
SubjectTerms | ceramics ferroelectric polymers solid-state refrigeration thin films |
Title | Electrocaloric Materials for Solid-State Refrigeration |
URI | https://api.istex.fr/ark:/67375/WNG-ZSZXJ0XD-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.200802902 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NS8MwGMeD6EUPvovzjR5ET9maNm2T43CbY7AdNodll5KkKcjGJrMD8eRH8DP6SczL1m2CCHosJKV98iTPv8nT3wPANQ4lw4IgiPyIQhwKAonPKIwCquSHijkR1xv67U7Y7ONWHMQrf_FbPkSx4aZnhlmv9QRn_KWyhIay1HKDiOtRQ5PUCVtaFXWX_Cgtzw1szw8gDTFZUBtdr7LefS0qbWkDv66rVRNuGnuALR7UZpkMy7Ocl8XbN4bjf95kH-zOtahTtc5zADbk-BDsrBAKjwCp2zI5aiQ1TMRps9y6rKPErtObjJ7Sz_cPo1idrszUp760LnUM-o36w10TzostQIF9tSpKpE9EA5EyyTNMeMRQxpSYoBLJSCCGESMRzogUrq4Jw7MwkijllHqB56Zc-CdgczwZy1Pg6KNAZXgVBXy9DnuUZ0olKZ0WZpnOAy0BuDB2IuYkcl0QY5RYhrKXaIskhUVK4LZo_2wZHD-2vDFjVzRj06HOXIuC5LFznwx6g7jlxrWkVgKeGZFf7pdUa-1qcXX2l07nYNseQAUQkQuwmU9n8lLpmJxfGV_9ArcI52c |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeDzIN68Lc4f_Ygeopr2rRNjsM5p247bIrDS0jSFETZZEwQT_4J_o3-JeY1W3WCCHosJKV9ecn7Nnn9PIQOaGwk1YxgEiYc01gzzELJcRJxKz9szEkUbOi32nHjml70okk2IfwL4_gQxYYbzIx8vYYJDhvSlU9qqEwdOIj5AQec5CyU9c6_qjqfBCkQ6DluL4wwjymbcBv9oDLdfyouzYKJn6f1ah5w6ktITR7V5ZncHz-N1LF--UZx_Ne7LKPFsRz1qs5_VtCM6a-ihS-QwjXETl2lHDuYwBPxWnLkvNazetfrDh7u0vfXt1y0eh2T2a9947xqHV3XT69OGnhcbwFrGtqF0RA4FI10Ko3KKFOJJJm0eoIbYhJNJCWSJTRjRvtQFkZlcWJIqjgPosBPlQ43UKk_6JtN5MFpoLW8DQQhLMUBV5kVSlaqxVkGqaBlhCfWFnoMI4eaGA_CYZQDARYRhUXK6Kho_-gwHD-2PMwHr2gmh_eQvJZE4qZ9Jm67t70Lv1cTtTIK8iH55X6iWmtVi6utv3TaR3ONq1ZTNM_bl9to3p1HRZiwHVQaDZ_MrpU1I7WXO-4HQS_rgg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMeDKIg-eBfntQ-iT5lNm7bJ47Cb1w3xgmMvIUkTkMkco4L45EfwM_pJTJqtc4II-lhISntykvNvTvo7AOzjWHEsCYIoTCjEsSSQhJzCJKJGfpiYkwi7od9sxad3-Lwdtb_8xe_4EOWGm50ZxXptJ3g_00djaCjPHDeI-AG1NMkZHPvE-nV6PQZIWX1e0PbCCNIYkxG20Q-OJvtPhKUZa-GXSblaxJvGIuCjJ3XHTLrV51xU5es3iON_XmUJLAzFqFdz3rMMplRvBcx_QRSuAlJ3dXLMUFqaiNfkufNZz6hd7-bp8SH7eHsvJKt3rbT51lfOp9bAXaN-e3wKh9UWoMShWRYVsinRSGZcCY2JSDjS3KgJqpBKJOIYcZJgTZT0bVEYoeNEoUxQGkSBnwkZroPp3lNPbQDP5gKN4U0YCO1CHFChjUwyQi3W2h4ErQA4MjaTQxS5rYjxyBxEOWDWIqy0SAUclu37DsLxY8uDYuzKZnzQtUfXkojdt05Y56bTPvfbKUsrIChG5Jf7sVrarJVXm3_ptAdmr9IGuzxrXWyBOZeMiiAi22A6HzyrHaNpcrFbuO0nnl7qOg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocaloric+Materials+for+Solid-State+Refrigeration&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Lu%2C+Sheng-Guo&rft.au=Zhang%2C+Qiming&rft.date=2009-05-18&rft.pub=WILEY-VCH+Verlag&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=21&rft.issue=19&rft.spage=1983&rft.epage=1987&rft_id=info:doi/10.1002%2Fadma.200802902&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_ZSZXJ0XD_D |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |