Electrocaloric Materials for Solid-State Refrigeration

The electrocaloric effect (ECE) in dielectric materials has great potential in realizing solid‐state cooling devices with compact size and high efficiency, which are highly desirable for a broad range of applications. This paper presents the general considerations for dielectric materials to achieve...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 21; no. 19; pp. 1983 - 1987
Main Authors Lu, Sheng-Guo, Zhang, Qiming
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 18.05.2009
WILEY‐VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The electrocaloric effect (ECE) in dielectric materials has great potential in realizing solid‐state cooling devices with compact size and high efficiency, which are highly desirable for a broad range of applications. This paper presents the general considerations for dielectric materials to achieve large ECE and reviews the experimental efforts investigating ECE in various polar dielectrics. For practical cooling devices, an ECE material must possess a large isothermal entropy change besides a large adiabatic temperature change. We show that polar dielectrics operated at temperatures near order–disorder transition have potential to achieve large ECE due to the possibility of large change in polarization induced by electric field and large entropy change associated with the polarization change. We further show that indeed the ferroelectric poly(vinylidene fluoride–trifluoroethylene)‐based polymers display a large ECE, i.e., an isothermal entropy change of more than 55 J (kgK)−1 and an adiabatic temperature change of more than 12 °C, at temperatures above the order–disorder transition. Applying an electrical field to a dielectric may induce a large entropy and temperature change which is attractive for solid‐state cooling. We present the general considerations and review the experimental efforts to achieve large electrocaloric effect (ECE) in dielectrics. We show that by operating above the order‐disorder transitions, a large ECE can be achieved in a ferroelectric polymer.
AbstractList The electrocaloric effect (ECE) in dielectric materials has great potential in realizing solid‐state cooling devices with compact size and high efficiency, which are highly desirable for a broad range of applications. This paper presents the general considerations for dielectric materials to achieve large ECE and reviews the experimental efforts investigating ECE in various polar dielectrics. For practical cooling devices, an ECE material must possess a large isothermal entropy change besides a large adiabatic temperature change. We show that polar dielectrics operated at temperatures near order–disorder transition have potential to achieve large ECE due to the possibility of large change in polarization induced by electric field and large entropy change associated with the polarization change. We further show that indeed the ferroelectric poly(vinylidene fluoride–trifluoroethylene)‐based polymers display a large ECE, i.e., an isothermal entropy change of more than 55 J (kgK) −1 and an adiabatic temperature change of more than 12 °C, at temperatures above the order–disorder transition.
The electrocaloric effect (ECE) in dielectric materials has great potential in realizing solid‐state cooling devices with compact size and high efficiency, which are highly desirable for a broad range of applications. This paper presents the general considerations for dielectric materials to achieve large ECE and reviews the experimental efforts investigating ECE in various polar dielectrics. For practical cooling devices, an ECE material must possess a large isothermal entropy change besides a large adiabatic temperature change. We show that polar dielectrics operated at temperatures near order–disorder transition have potential to achieve large ECE due to the possibility of large change in polarization induced by electric field and large entropy change associated with the polarization change. We further show that indeed the ferroelectric poly(vinylidene fluoride–trifluoroethylene)‐based polymers display a large ECE, i.e., an isothermal entropy change of more than 55 J (kgK)−1 and an adiabatic temperature change of more than 12 °C, at temperatures above the order–disorder transition. Applying an electrical field to a dielectric may induce a large entropy and temperature change which is attractive for solid‐state cooling. We present the general considerations and review the experimental efforts to achieve large electrocaloric effect (ECE) in dielectrics. We show that by operating above the order‐disorder transitions, a large ECE can be achieved in a ferroelectric polymer.
Author Zhang, Qiming
Lu, Sheng-Guo
Author_xml – sequence: 1
  givenname: Sheng-Guo
  surname: Lu
  fullname: Lu, Sheng-Guo
  organization: Department of Electrical Engineering and Materials Research Institute The Pennsylvania State University, University Park, PA 16802 (USA)
– sequence: 2
  givenname: Qiming
  surname: Zhang
  fullname: Zhang, Qiming
  email: qxz1@psu.edu
  organization: Department of Electrical Engineering and Materials Research Institute The Pennsylvania State University, University Park, PA 16802 (USA)
BookMark eNqFz1FLwzAQB_AgE9ymrz73C2Re0qZtHsc2p7IpOMWxl5CmF4l2i6QF3be3czJEEJ8Ojvvd3b9HOhu_QULOGQwYAL_Q5VoPOEAOXAI_Il0mOKMJSNEhXZCxoDJN8hPSq-sXAJAppF2STio0TfBGVz44E811g8Hpqo6sD9HCV66ki6ZtRvdog3vGoBvnN6fk2LZDePZd--TxcvIwuqKzu-n1aDijJomBU2Tt2VyYUmNhk7zINLMaJJPIMDNMJ0znWWJzNCAEiwubZsjKQkouOJSFiftksN9rgq_rgFa9BbfWYasYqF1qtUutDqlbkPwCxjVfLzdBu-pvJvfs3VW4_eeIGo7nw5-W7q2rG_w4WB1eVZrFmVBPt1O1WqyWN7Acq3H8CeWpflM
CitedBy_id crossref_primary_10_1038_s41467_017_01898_2
crossref_primary_10_1002_pssr_201800515
crossref_primary_10_1080_00150193_2012_671101
crossref_primary_10_1016_j_jeurceramsoc_2017_04_058
crossref_primary_10_1080_10584587_2016_1159885
crossref_primary_10_1002_adfm_201501840
crossref_primary_10_1016_j_physleta_2017_02_014
crossref_primary_10_1080_01411594_2016_1219910
crossref_primary_10_1016_j_ceramint_2016_09_176
crossref_primary_10_1016_j_mechmat_2013_05_013
crossref_primary_10_1557_opl_2013_885
crossref_primary_10_1063_1_5054114
crossref_primary_10_1002_ente_201500205
crossref_primary_10_1063_1_5093968
crossref_primary_10_1063_1_4896044
crossref_primary_10_1080_00150193_2013_820971
crossref_primary_10_1038_s41467_024_44926_8
crossref_primary_10_1007_s11708_023_0884_6
crossref_primary_10_1002_adfm_201202525
crossref_primary_10_1007_s40145_020_0450_1
crossref_primary_10_1021_acsenergylett_6b00232
crossref_primary_10_1063_1_4919453
crossref_primary_10_1007_s10853_020_04640_4
crossref_primary_10_1063_1_4944776
crossref_primary_10_1063_1_5144056
crossref_primary_10_1002_adfm_201302386
crossref_primary_10_1016_j_jallcom_2017_05_284
crossref_primary_10_1021_acsami_9b06279
crossref_primary_10_1088_1361_648X_ab3d6e
crossref_primary_10_1063_1_4928165
crossref_primary_10_1021_jz501831q
crossref_primary_10_1002_pssb_201700469
crossref_primary_10_1063_1_4908596
crossref_primary_10_1088_1361_6633_ab49d6
crossref_primary_10_1103_PhysRevB_97_184104
crossref_primary_10_3938_jkps_66_1101
crossref_primary_10_1134_S0020168524701553
crossref_primary_10_1088_1361_6463_ad2b20
crossref_primary_10_1016_j_ceramint_2015_08_080
crossref_primary_10_1063_1_4898599
crossref_primary_10_1016_j_ceramint_2017_11_022
crossref_primary_10_1021_acsami_5b09368
crossref_primary_10_1063_1_4944409
crossref_primary_10_1016_j_jallcom_2015_01_040
crossref_primary_10_1103_PhysRevLett_120_055901
crossref_primary_10_3390_molecules26020481
crossref_primary_10_1039_C8TC03965H
crossref_primary_10_1063_1_3514255
crossref_primary_10_1016_j_ceramint_2017_08_217
crossref_primary_10_1016_j_actamat_2019_03_017
crossref_primary_10_1016_j_ceramint_2016_08_054
crossref_primary_10_1016_j_physleta_2013_10_054
crossref_primary_10_1016_j_jallcom_2017_11_015
crossref_primary_10_1021_acsami_7b15933
crossref_primary_10_1016_j_jeurceramsoc_2018_06_020
crossref_primary_10_1021_acs_macromol_6b02669
crossref_primary_10_1016_j_ijrefrig_2019_02_029
crossref_primary_10_1557_s43578_021_00180_y
crossref_primary_10_1021_acsmacrolett_2c00022
crossref_primary_10_7498_aps_62_247701
crossref_primary_10_1007_s11431_018_9395_6
crossref_primary_10_1021_acs_jpcb_4c00826
crossref_primary_10_1016_j_ceramint_2024_01_139
crossref_primary_10_1038_srep19590
crossref_primary_10_1039_C6TC00218H
crossref_primary_10_1016_j_compositesb_2022_109824
crossref_primary_10_1038_srep26629
crossref_primary_10_1063_1_5092556
crossref_primary_10_1063_1_4997155
crossref_primary_10_1002_adfm_201202686
crossref_primary_10_1039_C9TC00239A
crossref_primary_10_1016_j_nanoen_2014_09_025
crossref_primary_10_1002_adfm_202007376
crossref_primary_10_1021_acs_macromol_2c01952
crossref_primary_10_1126_science_aan5980
crossref_primary_10_1007_s11664_015_4051_7
crossref_primary_10_1063_1_4816441
crossref_primary_10_1016_j_jeurceramsoc_2017_09_018
crossref_primary_10_1557_opl_2013_605
crossref_primary_10_1080_00150193_2023_2271330
crossref_primary_10_1021_acsami_9b21105
crossref_primary_10_1063_1_5018431
crossref_primary_10_1039_C9TC01525F
crossref_primary_10_3390_ma10091093
crossref_primary_10_1063_1_3430045
crossref_primary_10_1016_j_ceramint_2017_09_158
crossref_primary_10_1021_jacs_3c13422
crossref_primary_10_3390_chemengineering8040071
crossref_primary_10_1021_acsami_1c03079
crossref_primary_10_1002_adma_201803312
crossref_primary_10_7498_aps_64_117701
crossref_primary_10_1088_0953_8984_28_26_263001
crossref_primary_10_1063_1_4991994
crossref_primary_10_1002_ente_201402185
crossref_primary_10_1039_D0EE03897K
crossref_primary_10_1063_1_5020515
crossref_primary_10_1016_j_ceramint_2024_09_204
crossref_primary_10_1016_j_apmt_2015_08_002
crossref_primary_10_1063_1_5093554
crossref_primary_10_1007_s00339_012_6830_9
crossref_primary_10_1063_1_4958327
crossref_primary_10_1021_acsnano_5b03371
crossref_primary_10_1109_TED_2020_2976163
crossref_primary_10_3390_cryst13010086
crossref_primary_10_1007_s11082_022_03902_6
crossref_primary_10_1103_PhysRevB_92_064101
crossref_primary_10_1016_j_jmat_2022_10_005
crossref_primary_10_1002_adma_201404591
crossref_primary_10_1016_j_ceramint_2015_03_206
crossref_primary_10_1063_1_3655327
crossref_primary_10_1063_1_4795863
crossref_primary_10_1016_j_jmat_2022_10_009
crossref_primary_10_1126_sciadv_aaw0536
crossref_primary_10_1002_er_5284
crossref_primary_10_1002_ente_201500285
crossref_primary_10_2139_ssrn_4091479
crossref_primary_10_1063_1_5028459
crossref_primary_10_1016_j_ceramint_2014_03_175
crossref_primary_10_1088_1402_4896_aca2fd
crossref_primary_10_1039_D2TC03390A
crossref_primary_10_1103_PhysRevLett_108_167604
crossref_primary_10_1007_s10854_022_09207_4
crossref_primary_10_1016_j_matlet_2016_11_006
crossref_primary_10_1063_1_4935424
crossref_primary_10_1088_0253_6102_59_1_21
crossref_primary_10_1038_npjcompumats_2016_20
crossref_primary_10_1088_2053_1591_2_3_035501
crossref_primary_10_1109_TDEI_2015_7116344
crossref_primary_10_1002_adma_201907927
crossref_primary_10_1557_mrs_2018_68
crossref_primary_10_1063_1_3353989
crossref_primary_10_4028_www_scientific_net_KEM_492_164
crossref_primary_10_1038_s41467_019_09730_9
crossref_primary_10_1016_j_nxmate_2024_100270
crossref_primary_10_1038_srep02895
crossref_primary_10_1007_s00339_021_04604_8
crossref_primary_10_1016_j_jallcom_2021_163165
crossref_primary_10_1002_adfm_202108182
crossref_primary_10_1063_1_3543628
crossref_primary_10_1002_pssr_201900177
crossref_primary_10_1016_j_scriptamat_2019_08_026
crossref_primary_10_1109_TUFFC_2014_006660
crossref_primary_10_1007_s10854_016_5114_0
crossref_primary_10_1080_10584587_2011_574491
crossref_primary_10_1088_1361_665X_aae86c
crossref_primary_10_1063_1_5083670
crossref_primary_10_1002_pol_20230153
crossref_primary_10_1063_1_5035079
crossref_primary_10_1557_opl_2011_662
crossref_primary_10_1021_acsami_9b04036
crossref_primary_10_1016_j_polymer_2013_01_035
crossref_primary_10_1021_acs_chemrev_1c00793
crossref_primary_10_1016_j_scriptamat_2019_09_007
crossref_primary_10_1016_j_jallcom_2024_174724
crossref_primary_10_1063_1_4954056
crossref_primary_10_1063_1_5124901
crossref_primary_10_1021_acsami_9b08640
crossref_primary_10_1007_s11431_016_6079_1
crossref_primary_10_1016_j_cap_2020_06_020
crossref_primary_10_1016_j_actamat_2022_117784
crossref_primary_10_1016_j_ceramint_2024_09_267
crossref_primary_10_1016_j_nanoen_2021_106222
crossref_primary_10_1088_1361_648X_ad4762
crossref_primary_10_1063_5_0132533
crossref_primary_10_1063_1_4919096
crossref_primary_10_1016_j_actamat_2011_05_030
crossref_primary_10_1016_j_matchemphys_2017_07_075
crossref_primary_10_1016_j_commatsci_2021_110748
crossref_primary_10_1039_C2TC00283C
crossref_primary_10_1016_j_jallcom_2012_10_144
crossref_primary_10_1016_j_tsep_2018_01_006
crossref_primary_10_1021_acsami_6b04091
crossref_primary_10_1103_PhysRevB_86_104103
crossref_primary_10_1557_mre_2015_17
crossref_primary_10_1016_j_physleta_2019_126093
crossref_primary_10_1002_adfm_202112622
crossref_primary_10_1063_1_4971400
crossref_primary_10_1063_1_4950844
crossref_primary_10_1016_j_jallcom_2018_06_083
crossref_primary_10_1063_1_5048599
crossref_primary_10_1016_j_jallcom_2015_09_034
crossref_primary_10_1002_app_44413
crossref_primary_10_1080_00150193_2013_820996
crossref_primary_10_1111_jace_12219
crossref_primary_10_1002_adma_201404531
crossref_primary_10_1016_j_ceramint_2023_08_187
crossref_primary_10_1063_1_5123717
crossref_primary_10_1088_1361_6633_aa82d2
crossref_primary_10_1039_C5CP04307G
crossref_primary_10_1002_adma_201602787
crossref_primary_10_1007_s40820_023_01126_1
crossref_primary_10_1039_D0RA06116F
crossref_primary_10_1142_S2010135X12300113
crossref_primary_10_1016_j_jallcom_2020_156132
crossref_primary_10_1016_j_ceramint_2014_01_149
crossref_primary_10_1063_1_4895615
crossref_primary_10_1016_j_ijrefrig_2021_02_003
crossref_primary_10_1016_j_ceramint_2023_12_017
crossref_primary_10_1007_s11664_017_5336_9
crossref_primary_10_1063_1_4980098
crossref_primary_10_1016_j_polymer_2013_02_041
crossref_primary_10_1063_5_0131458
crossref_primary_10_1016_j_jallcom_2017_07_103
crossref_primary_10_1002_adma_201801949
crossref_primary_10_1016_j_ijheatmasstransfer_2014_01_043
crossref_primary_10_1063_1_4950788
crossref_primary_10_1007_s42341_019_00150_6
crossref_primary_10_1209_0295_5075_95_67004
crossref_primary_10_1016_j_polymer_2025_128305
crossref_primary_10_1016_j_jallcom_2018_10_397
crossref_primary_10_1039_C5CP02765A
crossref_primary_10_1016_j_scriptamat_2021_113920
crossref_primary_10_1063_1_3569953
crossref_primary_10_1063_1_4965707
crossref_primary_10_1002_pssa_201127695
crossref_primary_10_1063_1_4941816
crossref_primary_10_1088_1742_6596_796_1_012019
crossref_primary_10_1016_j_cej_2024_154248
crossref_primary_10_1063_1_4866272
crossref_primary_10_1007_s11431_022_2282_4
crossref_primary_10_1063_1_4983029
crossref_primary_10_2139_ssrn_4001346
crossref_primary_10_3390_app9081672
crossref_primary_10_1038_s41598_017_18810_z
crossref_primary_10_1140_epjb_e2015_60445_2
crossref_primary_10_1007_s10854_017_8008_x
crossref_primary_10_1016_j_physleta_2012_12_033
crossref_primary_10_1021_acsami_8b00744
crossref_primary_10_3390_cryst10060451
crossref_primary_10_1007_s10854_019_01654_w
crossref_primary_10_1140_epjb_e2011_20674_y
crossref_primary_10_4313_TEEM_2015_16_1_1
crossref_primary_10_1002_inf2_12488
crossref_primary_10_1063_1_5088924
crossref_primary_10_1016_j_jmat_2019_04_001
crossref_primary_10_1016_j_mechrescom_2013_10_016
crossref_primary_10_1016_j_physa_2021_126633
crossref_primary_10_1063_5_0097446
crossref_primary_10_2139_ssrn_4140562
crossref_primary_10_1002_adfm_202418534
crossref_primary_10_1021_acsami_4c14132
crossref_primary_10_1016_j_jallcom_2022_164826
crossref_primary_10_1111_jace_19162
crossref_primary_10_1016_j_jallcom_2018_10_293
crossref_primary_10_1016_j_jmst_2024_08_019
crossref_primary_10_1080_07315171_2018_1537335
crossref_primary_10_1007_s11771_022_5151_1
crossref_primary_10_1103_PhysRevB_83_174109
crossref_primary_10_1002_adma_201405495
crossref_primary_10_1007_s10854_018_9587_x
crossref_primary_10_1007_s10853_015_9663_z
crossref_primary_10_1016_j_nanoen_2016_02_026
crossref_primary_10_1039_D4TC01259C
crossref_primary_10_1002_adts_201800096
crossref_primary_10_1016_j_ijrefrig_2022_03_016
crossref_primary_10_1016_j_ceramint_2019_10_151
crossref_primary_10_1016_j_energy_2018_09_114
crossref_primary_10_1002_admi_201900291
crossref_primary_10_1063_1_3501975
crossref_primary_10_1016_j_mechmat_2013_09_006
crossref_primary_10_1039_c3ta01289a
crossref_primary_10_1063_1_4906864
crossref_primary_10_3390_magnetochemistry6040067
crossref_primary_10_1063_1_4756697
crossref_primary_10_1016_j_jallcom_2020_157605
crossref_primary_10_3390_challe8010005
crossref_primary_10_1038_s41467_021_25644_x
crossref_primary_10_1039_D0RA09707A
crossref_primary_10_1016_j_mseb_2023_116513
crossref_primary_10_1039_C9TC06515F
crossref_primary_10_1063_1_5129659
crossref_primary_10_1063_1_4927558
crossref_primary_10_1016_j_jallcom_2019_03_356
crossref_primary_10_1016_j_mseb_2015_02_004
crossref_primary_10_1063_1_4722932
crossref_primary_10_1016_j_ceramint_2024_05_115
crossref_primary_10_1016_j_jallcom_2020_154581
crossref_primary_10_1016_j_jmmm_2024_172494
crossref_primary_10_1016_j_mseb_2023_116989
crossref_primary_10_1039_C9TC05208A
crossref_primary_10_1016_j_matlet_2012_08_102
crossref_primary_10_1063_1_4799283
crossref_primary_10_1016_j_actamat_2024_120576
crossref_primary_10_1038_nmat3951
crossref_primary_10_1039_C6CP05462E
crossref_primary_10_1021_ma501852x
crossref_primary_10_1103_PhysRevApplied_15_054019
crossref_primary_10_1063_1_3702781
crossref_primary_10_1021_acsami_1c13614
crossref_primary_10_1002_pssb_201800218
crossref_primary_10_1016_j_materresbull_2017_07_049
crossref_primary_10_1063_1_4711213
crossref_primary_10_1016_j_scriptamat_2020_04_007
crossref_primary_10_1016_j_ceramint_2018_02_108
crossref_primary_10_1016_j_jallcom_2021_160355
crossref_primary_10_1063_1_4861456
crossref_primary_10_1016_j_jeurceramsoc_2023_11_043
crossref_primary_10_1063_1_3665949
crossref_primary_10_1016_j_ceramint_2018_04_194
crossref_primary_10_1016_j_jpcs_2020_109529
crossref_primary_10_1016_j_jallcom_2011_05_111
crossref_primary_10_1098_rsta_2015_0305
crossref_primary_10_1016_j_commatsci_2016_12_002
crossref_primary_10_1016_j_physa_2015_03_079
crossref_primary_10_3389_fchem_2024_1476273
crossref_primary_10_1016_j_ceramint_2022_02_098
crossref_primary_10_1039_C4RA02878C
crossref_primary_10_1111_jace_18370
crossref_primary_10_1016_j_nanoen_2017_04_052
crossref_primary_10_1002_polb_24068
crossref_primary_10_1007_s00707_021_03051_z
crossref_primary_10_1039_C6TC01107A
crossref_primary_10_1088_1361_665X_ad5d33
crossref_primary_10_1021_jacs_0c09601
crossref_primary_10_1021_acsami_8b14636
crossref_primary_10_1039_C4TC02381A
crossref_primary_10_1557_mrc_2015_20
crossref_primary_10_1063_1_5009121
crossref_primary_10_1016_j_ceramint_2018_02_008
crossref_primary_10_1021_acs_nanolett_2c01776
crossref_primary_10_1039_D0EE02548H
crossref_primary_10_1016_j_materresbull_2015_10_010
crossref_primary_10_1080_21663831_2022_2054668
crossref_primary_10_1142_S2010135X18300049
crossref_primary_10_1016_j_actamat_2015_01_070
crossref_primary_10_1063_1_4936186
crossref_primary_10_1142_S2010135X1350015X
crossref_primary_10_1063_1_3658251
crossref_primary_10_1016_j_physb_2022_414273
crossref_primary_10_1080_01411594_2021_1928126
crossref_primary_10_1021_acsami_2c14831
crossref_primary_10_1016_j_ceramint_2024_05_387
crossref_primary_10_1016_j_actamat_2018_02_011
crossref_primary_10_1098_rsta_2016_0055
crossref_primary_10_1016_j_applthermaleng_2021_116806
crossref_primary_10_1209_0295_5075_111_57008
crossref_primary_10_1016_j_ceramint_2019_05_248
crossref_primary_10_1002_smll_202200133
crossref_primary_10_1063_1_5145040
crossref_primary_10_1039_C5RA10508K
crossref_primary_10_1016_j_jallcom_2023_171856
crossref_primary_10_1080_01411594_2016_1144752
crossref_primary_10_1002_pssb_202100266
crossref_primary_10_1039_C8TC06110F
crossref_primary_10_1007_s41779_017_0170_3
crossref_primary_10_1007_s42341_019_00137_3
crossref_primary_10_1002_aelm_202200352
crossref_primary_10_1016_j_ceramint_2022_09_275
crossref_primary_10_1016_j_scib_2018_02_016
crossref_primary_10_1021_acs_jpcc_5b04178
crossref_primary_10_1063_1_4939152
crossref_primary_10_1021_acsnano_4c03127
crossref_primary_10_1063_5_0206125
crossref_primary_10_1016_j_jallcom_2016_08_084
crossref_primary_10_1016_j_polymer_2013_07_052
crossref_primary_10_1115_1_4002896
crossref_primary_10_1002_adma_201501100
crossref_primary_10_1016_j_jmat_2024_05_011
crossref_primary_10_1038_s41598_017_18275_0
crossref_primary_10_1016_j_jallcom_2017_07_019
crossref_primary_10_1021_acsami_9b12353
crossref_primary_10_1016_j_matlet_2017_03_086
crossref_primary_10_1088_1757_899X_678_1_012138
crossref_primary_10_1016_j_jallcom_2017_07_012
crossref_primary_10_1063_5_0042333
crossref_primary_10_1021_acs_nanolett_6b03155
crossref_primary_10_1016_j_cej_2020_128060
crossref_primary_10_1039_D2RA04914G
crossref_primary_10_1016_j_nanoen_2024_109948
crossref_primary_10_1103_PhysRevMaterials_2_114004
crossref_primary_10_1111_ijac_13411
crossref_primary_10_1016_j_jmat_2018_10_003
crossref_primary_10_1016_j_jmat_2018_10_002
crossref_primary_10_1039_D0TA04465B
crossref_primary_10_1063_1_4892455
crossref_primary_10_1146_annurev_matsci_062910_100341
crossref_primary_10_1103_PhysRevB_87_224101
crossref_primary_10_3740_MRSK_2020_30_9_480
crossref_primary_10_1126_science_adg0902
crossref_primary_10_1016_j_ijrefrig_2015_03_023
crossref_primary_10_1016_j_cej_2024_153061
crossref_primary_10_23919_IEN_2023_0012
crossref_primary_10_1088_1402_4896_ad2cd7
crossref_primary_10_1142_S2010135X18500388
crossref_primary_10_1126_science_aba2648
crossref_primary_10_1088_2053_1591_3_10_106301
crossref_primary_10_1063_1_3511342
crossref_primary_10_1016_j_molstruc_2017_06_113
crossref_primary_10_1016_j_actamat_2022_118054
crossref_primary_10_1016_j_nanoen_2019_104203
crossref_primary_10_1021_ma2024057
crossref_primary_10_1063_1_4927280
crossref_primary_10_7498_aps_69_20200296
Cites_doi 10.1007/BF01392900
10.1126/science.1159655
10.1080/00150197708237810
10.1080/00150199208223433
10.1103/PhysRevB.3.3032
10.1063/1.2750546
10.1038/nature02657
10.1080/00150190211761
10.1080/00150198408012752
10.1016/0022-4596(81)90091-8
10.1002/1521-4095(20021104)14:21<1574::AID-ADMA1574>3.0.CO;2-#
10.1080/00150198108223496
10.1080/00150198008238664
10.1126/science.280.5372.2101
10.1103/PhysRev.131.2023
10.1080/00150198108223507
10.1109/TDEI.2006.247840
10.1080/00150197608237787
10.1126/science.1123811
10.1103/PhysRevB.16.433
10.1016/0011-2275(79)90019-5
10.1016/0011-2275(85)90187-0
10.1063/1.1656478
10.1016/S0011-2275(61)80015-5
ContentType Journal Article
Copyright Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/adma.200802902
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage 1987
ExternalDocumentID 10_1002_adma_200802902
ADMA200802902
ark_67375_WNG_ZSZXJ0XD_D
Genre article
GrantInformation_xml – fundername: US Department of Energy
  funderid: DE‐FG02‐07ER46410
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
AAHQN
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
ID FETCH-LOGICAL-c4302-e193585cdaebf48b7a1fa0919e1e7c1a41a874f8ec05513bf67e1db992520dbc3
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Thu Apr 24 22:59:49 EDT 2025
Tue Jul 01 02:26:04 EDT 2025
Wed Jan 22 17:05:35 EST 2025
Mon Nov 18 03:20:31 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4302-e193585cdaebf48b7a1fa0919e1e7c1a41a874f8ec05513bf67e1db992520dbc3
Notes ark:/67375/WNG-ZSZXJ0XD-D
ArticleID:ADMA200802902
US Department of Energy - No. DE-FG02-07ER46410
istex:2A833B090805F405A4440A3AC48EDF7EA3DCF592
PageCount 5
ParticipantIDs crossref_primary_10_1002_adma_200802902
crossref_citationtrail_10_1002_adma_200802902
wiley_primary_10_1002_adma_200802902_ADMA200802902
istex_primary_ark_67375_WNG_ZSZXJ0XD_D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 18, 2009
PublicationDateYYYYMMDD 2009-05-18
PublicationDate_xml – month: 05
  year: 2009
  text: May 18, 2009
  day: 18
PublicationDecade 2000
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv. Mater
PublicationYear 2009
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References W. N. Lawless, A. J. Morrow, Ferroelectrics. 1977, 15, 159.
B. Neese, B. J. Chu, S. G. Lu, Y. Wang, E. Furman, Q. M. Zhang, Science. 2008, 321, 821.
Y. Sinyavsky, V. Brodyansky, Ferroelectrics. 1992, 131, 321.
P. D. Thacher, J. Appl. Phys. 1968, 39, 1996.
W. N. Lawless, Phys. Rev. B 1977, 16, 433.
W. N. Lawless, Ferroelectrics. 1980, 24, 327.
F. Jona, G. Shirane, Ferroelectric Crystals, Dover Publications, Inc. New York: 1993.
M. Lines, A. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford 1977.
B. A. Tuttle, D. A. Payne, Ferroelectrics. 1981, 37, 603.
L. Shebanovs, K. Borman, W. N. Lawless, A. Kalvane, Ferroelectrics. 2002, 273, 137.
A. Min, L. E. Cross, R. E. Newnham, Ferroelectrics. 1981, 37, 647.
G. Akcay, S. P. Alpay, J. V. Mantese, G. A. Rossetti, Jr, Appl. Phys. Lett. 2007, 90, 252909.
A. Amin, R. E. Newnham, L. E. Cross, J. Solid State Chem. 1981, 37, 248.
G. G. Wiseman, J. Kuebler, Phys. Rev. 1963, 131, 2023.
T. Furukawa, T. Nakajima, Y. Takahashi, IEEE Trans. Diel. Electr. Ins. 2006, 13, 1120.
H. Baumgartner, Helv. Phys. Acta 1950, 23, 651.
V. Provenzano, A. J. Shapiro, R. D. Shull, Nature. 2004, 429, 853.
J. W. Benepe, W. Reese, Phys. Rev. B 1971, 3, 3032.
F. Xia Z.-Y. Cheng, H. Xu, Q. M. Zhang, G. Kavarnos, R. Ting, G. Abdul-Sedat, K. D. Belfield, Adv. Mater. 2002, 14, 1574.
Q. M. Zhang, Vivek Bharti, X. Zhao, Science. 1998, 280, 2101.
A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, N. D. Mathur, Science. 2006, 311, 1270.
M. E. Wood, W. H. Potter, Cryogenics. 1985, 25, 667.
B. A. Strukov, Sov. Phys. Crystallogr. 1967, 11, 757.
P. Kobeko, J. Kurtschatov, Z. Phys. 1930, 66, 192.
E. Hegenbarth, Cryogenics. 1961, 1, 242.
T. Furukawa, Ferroelectrics. 1984, 57, 63.
R. Radebaugh, W. N. Lawless, J. D. Siegwarth, A. J. Morrow, Cryogenics. 1979, 19, 187.
1979; 19
2002; 14
1998; 280
1950; 23
1963; 131
2006; 13
2002; 273
1980; 24
2009
2007; 90
1997
2006
1993
2008; 321
1977
2006; 311
1985; 25
2004; 429
1976; 11
1968; 39
1977; 15
1930; 66
1992; 131
1967; 11
1977; 16
1961; 1
1984; 57
1981; 37
1971; 3
e_1_2_1_22_2
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_21_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
e_1_2_1_28_2
e_1_2_1_29_2
Jona F. (e_1_2_1_2_2) 1993
Baumgartner H. (e_1_2_1_25_2) 1950; 23
e_1_2_1_6_2
e_1_2_1_30_2
e_1_2_1_7_2
e_1_2_1_4_2
Strukov B. A. (e_1_2_1_15_2) 1967; 11
e_1_2_1_5_2
e_1_2_1_11_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_10_2
e_1_2_1_31_2
Lines M. (e_1_2_1_1_2) 1977
e_1_2_1_16_2
e_1_2_1_13_2
e_1_2_1_14_2
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – reference: M. Lines, A. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford 1977.
– reference: W. N. Lawless, Phys. Rev. B 1977, 16, 433.
– reference: J. W. Benepe, W. Reese, Phys. Rev. B 1971, 3, 3032.
– reference: W. N. Lawless, A. J. Morrow, Ferroelectrics. 1977, 15, 159.
– reference: P. Kobeko, J. Kurtschatov, Z. Phys. 1930, 66, 192.
– reference: T. Furukawa, Ferroelectrics. 1984, 57, 63.
– reference: A. Min, L. E. Cross, R. E. Newnham, Ferroelectrics. 1981, 37, 647.
– reference: B. A. Tuttle, D. A. Payne, Ferroelectrics. 1981, 37, 603.
– reference: G. Akcay, S. P. Alpay, J. V. Mantese, G. A. Rossetti, Jr, Appl. Phys. Lett. 2007, 90, 252909.
– reference: W. N. Lawless, Ferroelectrics. 1980, 24, 327.
– reference: Y. Sinyavsky, V. Brodyansky, Ferroelectrics. 1992, 131, 321.
– reference: V. Provenzano, A. J. Shapiro, R. D. Shull, Nature. 2004, 429, 853.
– reference: R. Radebaugh, W. N. Lawless, J. D. Siegwarth, A. J. Morrow, Cryogenics. 1979, 19, 187.
– reference: B. Neese, B. J. Chu, S. G. Lu, Y. Wang, E. Furman, Q. M. Zhang, Science. 2008, 321, 821.
– reference: L. Shebanovs, K. Borman, W. N. Lawless, A. Kalvane, Ferroelectrics. 2002, 273, 137.
– reference: M. E. Wood, W. H. Potter, Cryogenics. 1985, 25, 667.
– reference: P. D. Thacher, J. Appl. Phys. 1968, 39, 1996.
– reference: G. G. Wiseman, J. Kuebler, Phys. Rev. 1963, 131, 2023.
– reference: B. A. Strukov, Sov. Phys. Crystallogr. 1967, 11, 757.
– reference: A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, N. D. Mathur, Science. 2006, 311, 1270.
– reference: H. Baumgartner, Helv. Phys. Acta 1950, 23, 651.
– reference: Q. M. Zhang, Vivek Bharti, X. Zhao, Science. 1998, 280, 2101.
– reference: T. Furukawa, T. Nakajima, Y. Takahashi, IEEE Trans. Diel. Electr. Ins. 2006, 13, 1120.
– reference: F. Xia Z.-Y. Cheng, H. Xu, Q. M. Zhang, G. Kavarnos, R. Ting, G. Abdul-Sedat, K. D. Belfield, Adv. Mater. 2002, 14, 1574.
– reference: E. Hegenbarth, Cryogenics. 1961, 1, 242.
– reference: A. Amin, R. E. Newnham, L. E. Cross, J. Solid State Chem. 1981, 37, 248.
– reference: F. Jona, G. Shirane, Ferroelectric Crystals, Dover Publications, Inc. New York: 1993.
– volume: 11
  start-page: 519
  year: 1976
  article-title: Ferroelectrics
– year: 2009
– volume: 13
  start-page: 1120
  year: 2006
  publication-title: IEEE Trans. Diel. Electr. Ins.
– volume: 321
  start-page: 821
  year: 2008
  publication-title: Science.
– volume: 273
  start-page: 137
  year: 2002
  publication-title: Ferroelectrics.
– volume: 66
  start-page: 192
  year: 1930
  publication-title: Z. Phys.
– volume: 131
  start-page: 321
  year: 1992
  publication-title: Ferroelectrics.
– volume: 57
  start-page: 63
  year: 1984
  publication-title: Ferroelectrics.
– volume: 429
  start-page: 853
  year: 2004
  publication-title: Nature.
– year: 1977
– volume: 19
  start-page: 187
  year: 1979
  publication-title: Cryogenics.
– volume: 23
  start-page: 651
  year: 1950
  publication-title: Helv. Phys. Acta
– volume: 39
  start-page: 1996
  year: 1968
  publication-title: J. Appl. Phys.
– volume: 1
  start-page: 242
  year: 1961
  publication-title: Cryogenics.
– volume: 37
  start-page: 248
  year: 1981
  publication-title: J. Solid State Chem.
– volume: 90
  start-page: 252909
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 280
  start-page: 2101
  year: 1998
  publication-title: Science.
– volume: 311
  start-page: 1270
  year: 2006
  publication-title: Science.
– volume: 15
  start-page: 159
  year: 1977
  publication-title: Ferroelectrics.
– year: 2006
– volume: 14
  start-page: 1574
  year: 2002
  publication-title: Adv. Mater.
– volume: 11
  start-page: 757
  year: 1967
  publication-title: Sov. Phys. Crystallogr.
– volume: 37
  start-page: 647
  year: 1981
  publication-title: Ferroelectrics.
– year: 1997
– volume: 16
  start-page: 433
  year: 1977
  publication-title: Phys. Rev. B
– year: 1993
– volume: 131
  start-page: 2023
  year: 1963
  publication-title: Phys. Rev.
– volume: 25
  start-page: 667
  year: 1985
  publication-title: Cryogenics.
– volume: 24
  start-page: 327
  year: 1980
  publication-title: Ferroelectrics.
– volume: 37
  start-page: 603
  year: 1981
  publication-title: Ferroelectrics.
– volume: 3
  start-page: 3032
  year: 1971
  publication-title: Phys. Rev. B
– ident: e_1_2_1_4_2
  doi: 10.1007/BF01392900
– volume-title: A. Glass, Principles and Applications of Ferroelectrics and Related Materials
  year: 1977
  ident: e_1_2_1_1_2
– volume-title: Ferroelectric Crystals
  year: 1993
  ident: e_1_2_1_2_2
– ident: e_1_2_1_17_2
  doi: 10.1126/science.1159655
– ident: e_1_2_1_26_2
  doi: 10.1080/00150197708237810
– ident: e_1_2_1_10_2
  doi: 10.1080/00150199208223433
– volume: 11
  start-page: 757
  year: 1967
  ident: e_1_2_1_15_2
  publication-title: Sov. Phys. Crystallogr.
– ident: e_1_2_1_13_2
  doi: 10.1103/PhysRevB.3.3032
– ident: e_1_2_1_20_2
  doi: 10.1063/1.2750546
– ident: e_1_2_1_27_2
  doi: 10.1038/nature02657
– ident: e_1_2_1_11_2
  doi: 10.1080/00150190211761
– volume: 23
  start-page: 651
  year: 1950
  ident: e_1_2_1_25_2
  publication-title: Helv. Phys. Acta
– ident: e_1_2_1_19_2
  doi: 10.1080/00150198408012752
– ident: e_1_2_1_30_2
– ident: e_1_2_1_22_2
  doi: 10.1016/0022-4596(81)90091-8
– ident: e_1_2_1_29_2
  doi: 10.1002/1521-4095(20021104)14:21<1574::AID-ADMA1574>3.0.CO;2-#
– ident: e_1_2_1_9_2
  doi: 10.1080/00150198108223496
– ident: e_1_2_1_14_2
  doi: 10.1080/00150198008238664
– ident: e_1_2_1_28_2
  doi: 10.1126/science.280.5372.2101
– ident: e_1_2_1_12_2
  doi: 10.1103/PhysRev.131.2023
– ident: e_1_2_1_21_2
  doi: 10.1080/00150198108223507
– ident: e_1_2_1_24_2
  doi: 10.1109/TDEI.2006.247840
– ident: e_1_2_1_3_2
  doi: 10.1080/00150197608237787
– ident: e_1_2_1_23_2
– ident: e_1_2_1_16_2
  doi: 10.1126/science.1123811
– ident: e_1_2_1_7_2
  doi: 10.1103/PhysRevB.16.433
– ident: e_1_2_1_8_2
  doi: 10.1016/0011-2275(79)90019-5
– ident: e_1_2_1_18_2
  doi: 10.1016/0011-2275(85)90187-0
– ident: e_1_2_1_6_2
  doi: 10.1063/1.1656478
– ident: e_1_2_1_5_2
  doi: 10.1016/S0011-2275(61)80015-5
– ident: e_1_2_1_31_2
SSID ssj0009606
Score 2.4884725
Snippet The electrocaloric effect (ECE) in dielectric materials has great potential in realizing solid‐state cooling devices with compact size and high efficiency,...
SourceID crossref
wiley
istex
SourceType Enrichment Source
Index Database
Publisher
StartPage 1983
SubjectTerms ceramics
ferroelectric
polymers
solid-state refrigeration
thin films
Title Electrocaloric Materials for Solid-State Refrigeration
URI https://api.istex.fr/ark:/67375/WNG-ZSZXJ0XD-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.200802902
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NS8MwGMeD6EUPvovzjR5ET9maNm2T43CbY7AdNodll5KkKcjGJrMD8eRH8DP6SczL1m2CCHosJKV98iTPv8nT3wPANQ4lw4IgiPyIQhwKAonPKIwCquSHijkR1xv67U7Y7ONWHMQrf_FbPkSx4aZnhlmv9QRn_KWyhIay1HKDiOtRQ5PUCVtaFXWX_Cgtzw1szw8gDTFZUBtdr7LefS0qbWkDv66rVRNuGnuALR7UZpkMy7Ocl8XbN4bjf95kH-zOtahTtc5zADbk-BDsrBAKjwCp2zI5aiQ1TMRps9y6rKPErtObjJ7Sz_cPo1idrszUp760LnUM-o36w10TzostQIF9tSpKpE9EA5EyyTNMeMRQxpSYoBLJSCCGESMRzogUrq4Jw7MwkijllHqB56Zc-CdgczwZy1Pg6KNAZXgVBXy9DnuUZ0olKZ0WZpnOAy0BuDB2IuYkcl0QY5RYhrKXaIskhUVK4LZo_2wZHD-2vDFjVzRj06HOXIuC5LFznwx6g7jlxrWkVgKeGZFf7pdUa-1qcXX2l07nYNseQAUQkQuwmU9n8lLpmJxfGV_9ArcI52c
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeDzIN68Lc4f_Ygeopr2rRNjsM5p247bIrDS0jSFETZZEwQT_4J_o3-JeY1W3WCCHosJKV9ecn7Nnn9PIQOaGwk1YxgEiYc01gzzELJcRJxKz9szEkUbOi32nHjml70okk2IfwL4_gQxYYbzIx8vYYJDhvSlU9qqEwdOIj5AQec5CyU9c6_qjqfBCkQ6DluL4wwjymbcBv9oDLdfyouzYKJn6f1ah5w6ktITR7V5ZncHz-N1LF--UZx_Ne7LKPFsRz1qs5_VtCM6a-ihS-QwjXETl2lHDuYwBPxWnLkvNazetfrDh7u0vfXt1y0eh2T2a9947xqHV3XT69OGnhcbwFrGtqF0RA4FI10Ko3KKFOJJJm0eoIbYhJNJCWSJTRjRvtQFkZlcWJIqjgPosBPlQ43UKk_6JtN5MFpoLW8DQQhLMUBV5kVSlaqxVkGqaBlhCfWFnoMI4eaGA_CYZQDARYRhUXK6Kho_-gwHD-2PMwHr2gmh_eQvJZE4qZ9Jm67t70Lv1cTtTIK8iH55X6iWmtVi6utv3TaR3ONq1ZTNM_bl9to3p1HRZiwHVQaDZ_MrpU1I7WXO-4HQS_rgg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMeDKIg-eBfntQ-iT5lNm7bJ47Cb1w3xgmMvIUkTkMkco4L45EfwM_pJTJqtc4II-lhISntykvNvTvo7AOzjWHEsCYIoTCjEsSSQhJzCJKJGfpiYkwi7od9sxad3-Lwdtb_8xe_4EOWGm50ZxXptJ3g_00djaCjPHDeI-AG1NMkZHPvE-nV6PQZIWX1e0PbCCNIYkxG20Q-OJvtPhKUZa-GXSblaxJvGIuCjJ3XHTLrV51xU5es3iON_XmUJLAzFqFdz3rMMplRvBcx_QRSuAlJ3dXLMUFqaiNfkufNZz6hd7-bp8SH7eHsvJKt3rbT51lfOp9bAXaN-e3wKh9UWoMShWRYVsinRSGZcCY2JSDjS3KgJqpBKJOIYcZJgTZT0bVEYoeNEoUxQGkSBnwkZroPp3lNPbQDP5gKN4U0YCO1CHFChjUwyQi3W2h4ErQA4MjaTQxS5rYjxyBxEOWDWIqy0SAUclu37DsLxY8uDYuzKZnzQtUfXkojdt05Y56bTPvfbKUsrIChG5Jf7sVrarJVXm3_ptAdmr9IGuzxrXWyBOZeMiiAi22A6HzyrHaNpcrFbuO0nnl7qOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocaloric+Materials+for+Solid-State+Refrigeration&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Lu%2C+Sheng-Guo&rft.au=Zhang%2C+Qiming&rft.date=2009-05-18&rft.pub=WILEY-VCH+Verlag&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=21&rft.issue=19&rft.spage=1983&rft.epage=1987&rft_id=info:doi/10.1002%2Fadma.200802902&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_ZSZXJ0XD_D
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon