Remote-Controllable Molecular Knob in the Mesomorphic Helical Superstructures

A programed light‐responsive chiral liquid crystal (LC) containing four photochromic azobenzene moieties covalently connected to a central bicyclic chiral core (abbreviated as AZ4ICD) is newly designed, precisely synthesized, and efficiently applied as a remote‐controllable molecular knob for the op...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 26; no. 24; pp. 4242 - 4251
Main Authors Kim, Dae-Yoon, Lee, Sang-A, Park, Minwook, Choi, Yu-Jin, Yoon, Won-Jin, Kim, Jin Soo, Yu, Yeon-Tae, Jeong, Kwang-Un
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 27.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A programed light‐responsive chiral liquid crystal (LC) containing four photochromic azobenzene moieties covalently connected to a central bicyclic chiral core (abbreviated as AZ4ICD) is newly designed, precisely synthesized, and efficiently applied as a remote‐controllable molecular knob for the optically tunable thin film. First of all, phase evolutions and ordered structures of AZ4ICD are systematically investigated by a combination of thermal, microscopic, scattering, and simulation techniques. Wide‐angle X‐ray diffractions of oriented AZ4ICD samples indicate that the AZ4ICD molecule itself basically forms layer structures: one is a low‐ordered chiral smectic A LC phase (SmA*) with 5.61 nm layer periodicity at high temperatures, and two highly ordered smectic crystal (SmCr1 and SmCr2) phases are subsequently formed at lower temperatures with the anticlinically tilted molecular packing structures. The helical superstructures of chiral nematic LC phase (N*) can be spontaneously constructed by doping AZ4ICD chiral agents into the achiral nematic molecules. Due to the bent conformational geometry of AZ4ICD, the thermal window of blue LC phase (BP) is expanded by stabilizing the double twisted cylindrical building blocks. Remote‐controllable phase transformations in the mesomorphic helical superstructures are demonstrated by tuning the wavelength of light. By taking intramolecular conformations and intermolecular interactions into account, a photochromic chiral liquid crystal is synthesized that functions as a remote‐controllable molecular knob for tuning the mesomorphic helical superstructures.
AbstractList A programed light‐responsive chiral liquid crystal (LC) containing four photochromic azobenzene moieties covalently connected to a central bicyclic chiral core (abbreviated as AZ4ICD) is newly designed, precisely synthesized, and efficiently applied as a remote‐controllable molecular knob for the optically tunable thin film. First of all, phase evolutions and ordered structures of AZ4ICD are systematically investigated by a combination of thermal, microscopic, scattering, and simulation techniques. Wide‐angle X‐ray diffractions of oriented AZ4ICD samples indicate that the AZ4ICD molecule itself basically forms layer structures: one is a low‐ordered chiral smectic A LC phase (SmA*) with 5.61 nm layer periodicity at high temperatures, and two highly ordered smectic crystal (SmCr1 and SmCr2) phases are subsequently formed at lower temperatures with the anticlinically tilted molecular packing structures. The helical superstructures of chiral nematic LC phase (N*) can be spontaneously constructed by doping AZ4ICD chiral agents into the achiral nematic molecules. Due to the bent conformational geometry of AZ4ICD, the thermal window of blue LC phase (BP) is expanded by stabilizing the double twisted cylindrical building blocks. Remote‐controllable phase transformations in the mesomorphic helical superstructures are demonstrated by tuning the wavelength of light. By taking intramolecular conformations and intermolecular interactions into account, a photochromic chiral liquid crystal is synthesized that functions as a remote‐controllable molecular knob for tuning the mesomorphic helical superstructures.
A programed light‐responsive chiral liquid crystal (LC) containing four photochromic azobenzene moieties covalently connected to a central bicyclic chiral core (abbreviated as AZ 4 ICD) is newly designed, precisely synthesized, and efficiently applied as a remote‐controllable molecular knob for the optically tunable thin film. First of all, phase evolutions and ordered structures of AZ 4 ICD are systematically investigated by a combination of thermal, microscopic, scattering, and simulation techniques. Wide‐angle X‐ray diffractions of oriented AZ 4 ICD samples indicate that the AZ 4 ICD molecule itself basically forms layer structures: one is a low‐ordered chiral smectic A LC phase (SmA*) with 5.61 nm layer periodicity at high temperatures, and two highly ordered smectic crystal (SmCr 1 and SmCr 2 ) phases are subsequently formed at lower temperatures with the anticlinically tilted molecular packing structures. The helical superstructures of chiral nematic LC phase (N*) can be spontaneously constructed by doping AZ 4 ICD chiral agents into the achiral nematic molecules. Due to the bent conformational geometry of AZ 4 ICD, the thermal window of blue LC phase (BP) is expanded by stabilizing the double twisted cylindrical building blocks. Remote‐controllable phase transformations in the mesomorphic helical superstructures are demonstrated by tuning the wavelength of light.
A programed light-responsive chiral liquid crystal (LC) containing four photochromic azobenzene moieties covalently connected to a central bicyclic chiral core (abbreviated as AZ sub(4)ICD) is newly designed, precisely synthesized, and efficiently applied as a remote-controllable molecular knob for the optically tunable thin film. First of all, phase evolutions and ordered structures of AZ sub(4)ICD are systematically investigated by a combination of thermal, microscopic, scattering, and simulation techniques. Wide-angle X-ray diffractions of oriented AZ sub(4)ICD samples indicate that the AZ sub(4)ICD molecule itself basically forms layer structures: one is a low-ordered chiral smectic A LC phase (SmA*) with 5.61 nm layer periodicity at high temperatures, and two highly ordered smectic crystal (SmCr sub(1) and SmCr sub(2)) phases are subsequently formed at lower temperatures with the anticlinically tilted molecular packing structures. The helical superstructures of chiral nematic LC phase (N*) can be spontaneously constructed by doping AZ sub(4)ICD chiral agents into the achiral nematic molecules. Due to the bent conformational geometry of AZ sub(4)ICD, the thermal window of blue LC phase (BP) is expanded by stabilizing the double twisted cylindrical building blocks. Remote-controllable phase transformations in the mesomorphic helical superstructures are demonstrated by tuning the wavelength of light. By taking intramolecular conformations and intermolecular interactions into account, a photochromic chiral liquid crystal is synthesized that functions as a remote-controllable molecular knob for tuning the mesomorphic helical superstructures.
Author Choi, Yu-Jin
Kim, Jin Soo
Yu, Yeon-Tae
Kim, Dae-Yoon
Lee, Sang-A
Jeong, Kwang-Un
Park, Minwook
Yoon, Won-Jin
Author_xml – sequence: 1
  givenname: Dae-Yoon
  surname: Kim
  fullname: Kim, Dae-Yoon
  organization: Polymer Materials Fusion Research Center & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonbuk, 561-756, Jeonju, Korea
– sequence: 2
  givenname: Sang-A
  surname: Lee
  fullname: Lee, Sang-A
  organization: Polymer Materials Fusion Research Center & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonbuk, 561-756, Jeonju, Korea
– sequence: 3
  givenname: Minwook
  surname: Park
  fullname: Park, Minwook
  organization: Polymer Materials Fusion Research Center & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonbuk, 561-756, Jeonju, Korea
– sequence: 4
  givenname: Yu-Jin
  surname: Choi
  fullname: Choi, Yu-Jin
  organization: Polymer Materials Fusion Research Center & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonbuk, 561-756, Jeonju, Korea
– sequence: 5
  givenname: Won-Jin
  surname: Yoon
  fullname: Yoon, Won-Jin
  organization: Polymer Materials Fusion Research Center & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonbuk, 561-756, Jeonju, Korea
– sequence: 6
  givenname: Jin Soo
  surname: Kim
  fullname: Kim, Jin Soo
  organization: Division of Advanced Materials Engineering, Chonbuk National University, Jeonbuk, 561-756, Jeonju, Korea
– sequence: 7
  givenname: Yeon-Tae
  surname: Yu
  fullname: Yu, Yeon-Tae
  organization: Division of Advanced Materials Engineering, Chonbuk National University, Jeonbuk, 561-756, Jeonju, Korea
– sequence: 8
  givenname: Kwang-Un
  surname: Jeong
  fullname: Jeong, Kwang-Un
  email: kujeong@jbnu.ac.kr
  organization: Polymer Materials Fusion Research Center & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonbuk, 561-756, Jeonju, Korea
BookMark eNqFkMtOwzAQRS0EEs8t6yzZpPgR2-kSFWgRLYiXWrGxHGeiBpw42Imgf09QUMWO1YxG54yu7iHarV0NCJ0SPCIY03OdF9WIYsIxZwndQQdEEBEzTNPd7U5W--gwhDeMiZQsOUCLR6hcC_HE1a131urMQrRwFkxntY9ua5dFZR216_4KwVXON-vSRDOwpdE2euoa8KH1nWk7D-EY7RXaBjj5nUfo5frqeTKL5_fTm8nFPDZJnydmJGcZ1YYnWV7kVOs0lVITWsiMJxikFFyQghGtZSEkLsAIk48TnsocKGSSHaGz4W_j3UcHoVVVGQz08WtwXVAkpZxTIQXt0dGAGu9C8FCoxpeV9htFsPrpTf30pra99cJ4ED5LC5t_aHVxeb3468aDW4YWvrau9u9KSCa5Wt5N1ep1_jBbTpdqxr4BQnOD5g
CitedBy_id crossref_primary_10_1002_smll_201702439
crossref_primary_10_1039_D2NR01382G
crossref_primary_10_1080_02678292_2017_1306635
crossref_primary_10_1021_acs_cgd_6b01688
crossref_primary_10_1038_srep28659
crossref_primary_10_1039_C7SM01166K
crossref_primary_10_1021_acsnano_6b04949
crossref_primary_10_1002_smll_201803291
crossref_primary_10_3390_ma16010194
crossref_primary_10_1039_C6CC06901K
crossref_primary_10_1002_cptc_201800250
crossref_primary_10_1039_C9PY00536F
crossref_primary_10_1002_adfm_201606294
crossref_primary_10_1038_s41427_018_0096_4
crossref_primary_10_1080_21680396_2017_1327827
crossref_primary_10_1002_adom_201700014
crossref_primary_10_1021_acs_cgd_0c00583
crossref_primary_10_1002_adfm_202403465
crossref_primary_10_1002_adfm_201707075
crossref_primary_10_1039_C8TC04210A
crossref_primary_10_1039_C6PY01286H
crossref_primary_10_1021_acsmacrolett_8b00167
crossref_primary_10_1039_C8TC06363J
crossref_primary_10_1002_adfm_201905214
crossref_primary_10_1038_s41467_021_23631_w
crossref_primary_10_1021_acs_jchemed_1c00168
crossref_primary_10_1080_02678292_2017_1330430
crossref_primary_10_1002_chem_201801284
crossref_primary_10_1021_acsami_6b10256
crossref_primary_10_1021_acs_chemmater_9b03071
crossref_primary_10_1021_acs_macromol_8b02513
crossref_primary_10_1080_1358314X_2019_1653588
crossref_primary_10_1039_C9TC04380B
Cites_doi 10.1002/adfm.200900396
10.1021/acs.langmuir.5b03201
10.1039/b803561j
10.1039/c2sm07155j
10.1039/C2JM15461G
10.1038/nchem.2039
10.1002/chem.201303924
10.1021/ma051389j
10.1021/am506786t
10.1002/adfm.200701181
10.1039/c2tc00506a
10.1002/adfm.201002546
10.1002/chem.201302674
10.1021/am400868e
10.1002/adfm.200600776
10.1021/jp211976x
10.1002/adma.200401912
10.1002/adma.200306542
10.1039/c2jm32070c
10.1021/cm201809r
10.1021/cm0518832
10.1002/adma.200902213
10.1039/C5CC01592H
10.1021/jp5099574
10.1007/b97374
10.1021/ja073714j
10.1021/acsami.5b00259
10.1021/la000446t
10.1021/ph500259h
10.1002/aenm.201100527
10.1002/3527602054
10.1021/cm9901616
10.1002/adfm.201202497
10.1039/b910583b
10.1166/jnn.2013.6687
10.1021/cm970624c
10.1039/C4TC01167H
10.1039/C0CC04052E
10.1021/cm0492179
10.1038/nmat712
10.1002/chem.200600954
10.1080/02678292.2012.660202
10.1002/chem.201405461
10.1021/ja065334o
10.1002/anie.201407497
10.1021/acs.jpclett.5b00062
10.1002/adom.201500159
10.1039/C5SM00005J
10.1039/C4SM01255K
10.1021/am401438z
10.1021/cm5019822
10.1039/c0jm00690d
10.1039/c1jm10711a
10.1002/adma.201103362
10.1021/jp4126396
10.1021/ma0703655
10.1021/am405471e
10.1039/c2jm16359d
10.1039/C0CC02215B
10.1021/cm050338y
10.1021/ja00144a027
10.1038/ncomms5013
10.1039/c1sm05764b
10.1002/adma.201104880
10.1039/C4RA02680B
10.1002/adfm.201101770
10.1021/cg501697q
10.1002/adfm.200500127
10.1039/c3cc46117c
10.1021/cm034127
10.1021/cm300762j
10.1039/c2sm26458g
10.1002/adom.201300111
10.1039/C5SM00073D
10.1039/c0jm00843e
10.1039/C5CC02834E
10.1039/B504400F
10.1039/C4SM02239D
10.1039/c2jm31092a
10.1039/c2sm07332c
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201505342
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 4251
ExternalDocumentID 10_1002_adfm_201505342
ADFM201505342
ark_67375_WNG_XZLQHWGW_H
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AITYG
HGLYW
OIG
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c4302-31d3b2ac54bdfd2aa8877a12f7b540e776561f31aa7f670fec6cd94587de2eb73
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Aug 16 08:55:49 EDT 2024
Fri Aug 23 00:33:33 EDT 2024
Sat Aug 24 01:14:24 EDT 2024
Wed Jan 17 05:05:56 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4302-31d3b2ac54bdfd2aa8877a12f7b540e776561f31aa7f670fec6cd94587de2eb73
Notes ArticleID:ADFM201505342
ark:/67375/WNG-XZLQHWGW-H
istex:FF2C6802EBE6E81B21AB1E829BB7FD9658525271
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825526762
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1825526762
crossref_primary_10_1002_adfm_201505342
wiley_primary_10_1002_adfm_201505342_ADFM201505342
istex_primary_ark_67375_WNG_XZLQHWGW_H
PublicationCentury 2000
PublicationDate June 27, 2016
PublicationDateYYYYMMDD 2016-06-27
PublicationDate_xml – month: 06
  year: 2016
  text: June 27, 2016
  day: 27
PublicationDecade 2010
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References c) R. Eelkema, M. M. Pollard, N. Katsonis, J. Vicario, D. J. Broer, B. L. Feringa, J. Am. Chem. Soc. 2006, 128, 14397.
b) A. Ryabchun, A. Bobrovsky, J. Stumpe, V. Shibaev, Adv. Opt. Mater. 2015, 3, 1273
b) J. Hu, D. Zhang, S. Jin, S. Z. D. Cheng, F. W. Harris, Chem. Mater. 2004, 16, 4912
e) Y.-J. Choi, M. Park, D.-Y. Kim, C.-H. Hsu, S.-H. Hwang, K.-U. Jeong, J. Phys. Chem. Lett. 2015, 6, 887.
a) O. T. Picot, M. Dai, D. J. Broer, T. Peijs, C. W. M. Bastiaansen, ACS Appl. Mater. Interfaces 2013, 5, 7117
Y. Norikane, Y. Hirai, M. Yoshida, Chem. Commun. 2011, 47, 1770.
d) J.-H. Kim, E. Lee, Y.-H. Jeong, W.-D. Jang, Chem. Mater. 2012, 24, 2356
a) M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, T. J. Bunning, Adv. Opt. Mater. 2013, 1, 417
b) H. Singh, A. Balamurugan, M. Jayakannan, ACS Appl. Mater. Interfaces 2013, 5, 5578
c) G. M. Stewart, M. A. Fox, Chem. Mater. 1998, 10, 860
a) Q. Li, Y. Li, J. Ma, D. K. Yang, T. J. White, T. J. Bunning, Adv. Mater. 2011, 23, 5069
d) M. Alaasar, M. Prehm, M. Brautzsch, C. Tschierske, Soft Matter 2014, 10, 7285.
b) B. L. Feringa, N. P. Huck, H. A. V. Doren, J. Am. Chem. Soc. 1995, 117, 9929.
c) K.-U. Jeong, B. S. Knapp, J. J. Ge, S. Jin, M. J. Graham, H. Xiong, F. W. Harris, S. Z. D. Cheng, Macromolecules 2005, 38, 8333
K.-U. Jeong, B. S. Knapp, J. J. Ge, S. Jin, M. J. Graham, F. W. Harris, S. Z. D. Cheng, Chem. Mater. 2006, 18, 680.
A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, L. Oriol, Adv. Mater. 2004, 16, 791.
b) D.-Y. Kim, S. Kim, S.-A Lee, Y.-E. Choi, W.-J. Yoon, S.-W. Kuo, C.-H. Hsu, M. Huang, S. H. Lee, K.-U. Jeong, J. Phys. Chem. C 2014, 118, 6300
c) A. Bobrovsky, A. Ryabchun, M. Cigl, V. Hamplová, M. Kašpar, R. Hampl, V. Shibaev, J. Mater. Chem. C 2014, 2, 8622
R. M. Tejedor, L. Oriol, J. L. Serrano, T. Sierra, J. Mater. Chem. 2008, 18, 2899.
a) J. Lub, W. P. M. Nijssen, R. T. Wegh, J. P. A. Vogels, A. Ferrer, Adv. Funct. Mater. 2005, 15, 1961
b) K. Kishikawa, H. Itoh, S. Akiyama, T. Kobayashi, S. Kohmoto, J. Mater. Chem. 2012, 22, 8484.
I. Dierking, Textures of Liquid Crystals, Wiley-VCH, Weinheim 2003.
L. Green, Y. Li, T. J. White, A. Urbas, T. J. Bunning, Q. Li, Org. Biomol. Chem. 2009, 7, 3930.
a) L. Wang, W. He, X. Xiao, Q. Yang, B. Li, P. Yang, H. Yang, J. Mater. Chem. 2012, 22, 2383
c) Z. Dogic, S. Fraden, Langmuir 2000, 16, 7820
H.-J. Sun, C.-L. Wang, I.-F. Hsieh, C.-H. Hsu, R. M. V. Horn, C.-C. Tsai, K.-U. Jeong, B. Lotz, S. Z. D. Cheng, Soft Matter 2012, 8, 4767.
S.-K. Park, S.-E. Kim, D.-Y. Kim, S.-W. Kang, S. Shin, S.-W. Kuo, S.-H. Hwang, S. H. Lee, M.-H. Lee, K.-U. Jeong, Adv. Funct. Mater. 2011, 21, 2129.
b) S. Das, N. Gopinathan, S. Abraham, N. Jayaraman, M. K. Singh, S. K. Prasad, D. S. S. Rao, Adv. Funct. Mater. 2008, 18, 1632
c) M. Park, Y.-J. Choi, D.-Y. Kim, S.-H. Hwang, K.-U. Jeong, Cryst. Growth Des. 2015, 15, 900.
a) J. Vergara, N. Gimeno, M. Cano, J. Barberá, P. Romero, J. L. Serrano, M. B. Ros, Chem. Mater. 2011, 23, 4931
a) I. Dierking, W. Blenkhorn, E. Credland, W. Drake, R. Kociuruba, B. Kayser, T. Michael, Soft Matter 2012, 8, 4355
c) D.-Y. Kim, S.-A Lee, M. Park, Y.-J. Choi, S.-W. Kang, K.-U. Jeong, Soft Matter 2015, 11, 2924.
d) R. Bardet, N. Belgacem, J. Bras, ACS Appl. Mater. Interfaces 2015, 7, 4010
A. Zep, M. M. Wojcik, W. Lewandowski, K. Sitkowska, A. Prominski, J. Mieczkowski, D. Pociecha, E. Gorecka, Angew. Chem., Int. Ed. 2014, 53, 13725.
c) Y. Wang, Q. Chen, Y. Li, Y. Liu, H. Tan, J. Yu, M. Zhu, H. Wu, W. Zhu, Y. Cao, J. Phys. Chem. C 2012, 116, 5908.
P. Nayek, A. Mukherjee, H. Jeong, S.-W. Kang, S. H. Lee, H. Yokoyama, J. Nanosci. Nanotechnol. 2013, 13, 4072.
e) K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, T. J. White, ACS Photonics 2014, 1, 1033.
b) X. Chen, L. Wang, C. Li, J. Xiao, H. Ding, X. Liu, X. Zhang, W. He, H. Yang, Chem. Commun. 2013, 49, 10097.
D.-Y. Kim, L. Wang, Y. Cao, X. Yu, S. Z. D. Cheng, S.-W. Kuo, D.-H. Song, S. H. Lee, M.-H. Lee, K.-U. Jeong, J. Mater. Chem. 2012, 22, 16382.
E. Uchida, K. Sakaki, Y. Nakamura, R. Azumi, Y. Hirai, H. Akiyama, M. Yoshida, Y. Norikane, Chem. Eur. J. 2013, 19, 17391.
a) R. A. Reddy, C. Tschierske, J. Mater. Chem. 2006, 16, 907
a) G. Shanker, M. Nagaraj, A. Kocot, J. K. Vij, M. Prehm, C. Tschierske, Adv. Funct. Mater. 2012, 22, 1671
d) C.-C. Chien, J.-H. Liu, Langmuir 2015, 31, 13410.
b) H. Kitzerow, C. Bahr, Chirality in Liquid Crystals, Springer, New York 2001.
D.-Y. Kim, S.-A Lee, H. Kim, S. M. Kim, N. Kim, K.-U. Jeong, Chem. Commun. 2015, 51, 11080.
D.-Y. Kim, S.-A Lee, D.-G. Kang, M. Park, Y.-J. Choi, K.-U. Jeong, ACS Appl. Mater. Interfaces 2015, 7, 6195.
D.-Y. Kim, S.-A Lee, H. J. Choi, L.-C. Chien, M.-H. Lee, K.-U. Jeong, J. Mater. Chem. C 2013, 1, 1375.
H. Akiyama, M. Yoshida, Adv. Mater. 2012, 24, 2353.
b) F. Vita, T. Tauscher, F. Speetjens, E. T. Samulski, E. Scharrer, O. Francescangeli, Chem. Mater. 2014, 26, 4671.
Y. Wen, Z. Zheng, H. Wang, D. Shen, Liq. Cryst. 2012, 39, 509.
Y.-J. Kim, D.-Y. Kim, J.-H. Lee, C. Nah, J. H. Lee, M.-H. Lee, H. Y. Kim, S.-W. Kuo, S. Shin, K.-U. Jeong, J. Mater. Chem. 2012, 22, 13477.
a) S. Taushanoff, K. V. Le, J. Williams, R. J. Twieg, B. Sadashiva, H. Takezoe, A. Jákli, J. Mater. Chem. 2010, 20, 5893
N. Kim, D.-Y. Kim, M. Park, Y.-J. Choi, S. Kim, S. H. Lee, K.-U. Jeong, J. Phys. Chem. C 2014, 119, 766.
c) J.-M. Wong, J.-Y. Hwang, L.-C. Chien, Soft Matter 2011, 7, 7956.
b) C. Dressel, T. Reppe, M. Prehm, M. Brautzsch, C. Tschierske, Nat. Chem. 2014, 6, 971.
b) M. Alam, T. Yoshioka, T. Ogata, T. Nonaka, S. Kurihara, Chem. Eur. J. 2007, 13, 2641
b) G. Chen, L. Wang, Q. Wang, J. Sun, P. Song, X. Chen, X. Liu, S. Guan, X. Zhang, L. Wang, H. Yang, H. Yu, ACS Appl. Mater. Interfaces 2014, 6, 1380
D.-Y. Kim, S.-A Lee, M. Park, K.-U. Jeong, Chem. Eur. J. 2015, 21, 545.
b) J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, S.-T. Wu, J. Mater. Chem. 2011, 21, 7870
a) V. Percec, B. C. Won, M. Peterca, P. A. Heiney, J. Am. Chem. Soc. 2007, 129, 11265
G. Wang, M. Zhang, T. Zhang, J. Guan, H. Yang, RSC Adv. 2012, 2, 487.
a) G. D. Filpo, F. P. Nicoletta, G. Chidichimo, Adv. Mater. 2005, 17, 1150
S. Shibayama, H. Higuchi, Y. Okumura, H. Kikuch, Adv. Funct. Mater. 2013, 23, 2387.
D.-Y. Kim, S.-A Lee, Y.-J. Choi, S.-H. Hwang, S.-W. Kuo, C. Nah, M.-H. Lee, K.-U. Jeong, Chem. Eur. J. 2014, 20, 5689.
a) H. Ocak, B. Bilgin-Eran, D. Güzeller, M. Prehm, C. Tschierske, Chem. Commun. 2015, 51, 7512
N. Kim, L. Wang, D.-Y. Kim, S.-H. Hwang, S.-W. Kuo, M.-H. Lee, K.-U. Jeong, Soft Matter 2012, 8, 9183.
a) W. Hu, H. Zhao, L. Song, Z. Yang, H. Cao, Z. Cheng, Q. Liu, H. Yang, Adv. Mater. 2010, 22, 468
a) U. Z. Hrozhyk, S. V. Serak, N. V. Tairyan, T. J. Bunning, Adv. Funct. Mater. 2007, 17, 1735
S. Yagai, S. Okamura, Y. Nakano, M. Yamauchi, K. Kishikawa, T. Karatsu, A. Kitamura, A. Ueno, D. Kuzuhara, H. Yamada, Nat. Commun. 2014, 5, 4013.
H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, T. Kajiyama, Nat. Mater. 2002, 1, 64.
a) T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, T. J. Bunning, Adv. Funct. Mater. 2009, 19, 3484
c) N. Kim, D.-Y. Kim, M. Park, Y.-J. Choi, S. Kim, S. H. Lee, K.-U. Jeong, Soft Matter 2015, 11, 3772.
b) M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, T. J. White, T. J. Bunning, Chem. Commun. 2011, 47, 505
D.-Y. Kim, M. Park, S.-A Lee, S. Kim, C.-H. Hsu, N. Kim, S.-W. Kuo, T.-H. Yoon, K.-U. Jeong, Soft Matter 2015, 11, 58.
c) S. Kurihara, S. Nomiyama, T. Nonaka, Chem. Mater. 2000, 12, 9.
b) V. A. Mallia, N. Tamaoki, Chem. Mater. 2003, 15, 3237
K.-U. Jeong, S. Jin, J. J. Ge, B. S. Knapp, M. J. Graham, J. Ruan, M. Guo, H. Xiong, F. W. Harris, S. Z. D. Cheng, Chem. Mater. 2005, 17, 2852.
a) T. J. White, M. E. McConney, T. J. Bunning, J. Mater. Chem. 2010, 20, 9832
b) M. Goh, T. Matsushita, M. Kyotani, K. Akagi, Macromolecules 2007, 40, 4762
O. Jin, D. Fu, J. Wei, H. Yang, J. Guo, RSC Adv. 2014, 4, 28597.
2005 2014 1998 2012 2015; 17 118 10 24 6
2014; 119
2007 2011 2000 2015 2014; 17 47 16 7 1
2013 2004 2015; 5 16 11
2013; 1
2013 2007 2006; 1 40 128
2015; 51
2013; 23
2008; 18
2010 2014 2015; 20 6 11
2015; 11
2012 2013; 8 49
2002; 1
2006; 18
2012 2014; 22 26
2012; 39
2005 2015 2014 2015; 15 3 2 31
2003
2011 2013 2005 2014; 23 5 38 10
2015; 7
2012 2012; 22 22
2010 2011 2011; 20 21 7
2010 2007 2012; 22 13 116
2014; 20
2015 2014; 51 6
2013; 19
2014; 5
2012; 2
2014; 4
2006 2001; 16
2011 1995; 23 117
2004; 16
2013; 13
2015; 21
2009 2003 2000; 19 15 12
2011; 21
2007 2008 2015; 129 18 15
2009; 7
2011; 47
2012; 24
2005; 17
2012; 22
2012; 8
2014; 53
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_11_3
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_4
e_1_2_6_13_2
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_11_2
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_41_3
e_1_2_6_20_1
e_1_2_6_41_2
e_1_2_6_41_1
e_1_2_6_7_3
e_1_2_6_9_1
e_1_2_6_7_2
e_1_2_6_9_3
e_1_2_6_9_2
e_1_2_6_3_3
e_1_2_6_5_1
e_1_2_6_3_2
e_1_2_6_7_1
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_1_3
e_1_2_6_3_1
e_1_2_6_1_2
e_1_2_6_22_1
e_1_2_6_43_2
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_10_4
e_1_2_6_10_5
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_10_2
e_1_2_6_10_3
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_16_2
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_42_2
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_2
e_1_2_6_4_5
e_1_2_6_6_3
e_1_2_6_8_1
e_1_2_6_4_2
e_1_2_6_2_3
e_1_2_6_4_1
e_1_2_6_4_4
e_1_2_6_6_2
e_1_2_6_4_3
e_1_2_6_6_1
e_1_2_6_23_3
e_1_2_6_25_1
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_23_4
References_xml – volume: 21
  start-page: 2129
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 58
  year: 2015
  publication-title: Soft Matter
– volume: 17
  start-page: 2852
  year: 2005
  publication-title: Chem. Mater.
– volume: 22 22
  start-page: 2383 8484
  year: 2012 2012
  publication-title: J. Mater. Chem. J. Mater. Chem.
– volume: 1 40 128
  start-page: 417 4762 14397
  year: 2013 2007 2006
  publication-title: Adv. Opt. Mater. Macromolecules J. Am. Chem. Soc.
– volume: 19 15 12
  start-page: 3484 3237 9
  year: 2009 2003 2000
  publication-title: Adv. Funct. Mater. Chem. Mater. Chem. Mater.
– volume: 129 18 15
  start-page: 11265 1632 900
  year: 2007 2008 2015
  publication-title: J. Am. Chem. Soc. Adv. Funct. Mater. Cryst. Growth Des.
– volume: 23 5 38 10
  start-page: 4931 5578 8333 7285
  year: 2011 2013 2005 2014
  publication-title: Chem. Mater. ACS Appl. Mater. Interfaces Macromolecules Soft Matter
– volume: 8
  start-page: 9183
  year: 2012
  publication-title: Soft Matter
– year: 2003
– volume: 22 13 116
  start-page: 468 2641 5908
  year: 2010 2007 2012
  publication-title: Adv. Mater. Chem. Eur. J. J. Phys. Chem. C
– volume: 1
  start-page: 1375
  year: 2013
  publication-title: J. Mater. Chem. C
– volume: 24
  start-page: 2353
  year: 2012
  publication-title: Adv. Mater.
– volume: 20 6 11
  start-page: 9832 1380 2924
  year: 2010 2014 2015
  publication-title: J. Mater. Chem. ACS Appl. Mater. Interfaces Soft Matter
– volume: 22
  start-page: 13477
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 5 16 11
  start-page: 7117 4912 3772
  year: 2013 2004 2015
  publication-title: ACS Appl. Mater. Interfaces Chem. Mater. Soft Matter
– volume: 51
  start-page: 11080
  year: 2015
  publication-title: Chem. Commun.
– volume: 4
  start-page: 28597
  year: 2014
  publication-title: RSC Adv.
– volume: 13
  start-page: 4072
  year: 2013
  publication-title: J. Nanosci. Nanotechnol.
– volume: 1
  start-page: 64
  year: 2002
  publication-title: Nat. Mater.
– volume: 21
  start-page: 545
  year: 2015
  publication-title: Chem. Eur. J.
– volume: 7
  start-page: 3930
  year: 2009
  publication-title: Org. Biomol. Chem.
– volume: 2
  start-page: 487
  year: 2012
  publication-title: RSC Adv.
– volume: 23 117
  start-page: 5069 9929
  year: 2011 1995
  publication-title: Adv. Mater. J. Am. Chem. Soc.
– volume: 22 26
  start-page: 1671 4671
  year: 2012 2014
  publication-title: Adv. Funct. Mater. Chem. Mater.
– volume: 18
  start-page: 2899
  year: 2008
  publication-title: J. Mater. Chem.
– volume: 16
  start-page: 907
  year: 2006 2001
  publication-title: J. Mater. Chem.
– volume: 18
  start-page: 680
  year: 2006
  publication-title: Chem. Mater.
– volume: 53
  start-page: 13725
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 20
  start-page: 5689
  year: 2014
  publication-title: Chem. Eur. J.
– volume: 15 3 2 31
  start-page: 1961 1273 8622 13410
  year: 2005 2015 2014 2015
  publication-title: Adv. Funct. Mater. Adv. Opt. Mater. J. Mater. Chem. C Langmuir
– volume: 19
  start-page: 17391
  year: 2013
  publication-title: Chem. Eur. J.
– volume: 8 49
  start-page: 4355 10097
  year: 2012 2013
  publication-title: Soft Matter Chem. Commun.
– volume: 119
  start-page: 766
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 17 47 16 7 1
  start-page: 1735 505 7820 4010 1033
  year: 2007 2011 2000 2015 2014
  publication-title: Adv. Funct. Mater. Chem. Commun. Langmuir ACS Appl. Mater. Interfaces ACS Photonics
– volume: 20 21 7
  start-page: 5893 7870 7956
  year: 2010 2011 2011
  publication-title: J. Mater. Chem. J. Mater. Chem. Soft Matter
– volume: 51 6
  start-page: 7512 971
  year: 2015 2014
  publication-title: Chem. Commun. Nat. Chem.
– volume: 22
  start-page: 16382
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 8
  start-page: 4767
  year: 2012
  publication-title: Soft Matter
– volume: 23
  start-page: 2387
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 4013
  year: 2014
  publication-title: Nat. Commun.
– volume: 16
  start-page: 791
  year: 2004
  publication-title: Adv. Mater.
– volume: 47
  start-page: 1770
  year: 2011
  publication-title: Chem. Commun.
– volume: 39
  start-page: 509
  year: 2012
  publication-title: Liq. Cryst.
– volume: 17 118 10 24 6
  start-page: 1150 6300 860 2356 887
  year: 2005 2014 1998 2012 2015
  publication-title: Adv. Mater. J. Phys. Chem. C Chem. Mater. Chem. Mater. J. Phys. Chem. Lett.
– volume: 7
  start-page: 6195
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_6_7_1
  doi: 10.1002/adfm.200900396
– ident: e_1_2_6_23_4
  doi: 10.1021/acs.langmuir.5b03201
– ident: e_1_2_6_37_1
  doi: 10.1039/b803561j
– ident: e_1_2_6_43_1
  doi: 10.1039/c2sm07155j
– ident: e_1_2_6_42_1
  doi: 10.1039/C2JM15461G
– ident: e_1_2_6_16_2
  doi: 10.1038/nchem.2039
– ident: e_1_2_6_21_1
  doi: 10.1002/chem.201303924
– ident: e_1_2_6_11_3
  doi: 10.1021/ma051389j
– ident: e_1_2_6_10_4
  doi: 10.1021/am506786t
– ident: e_1_2_6_1_2
  doi: 10.1002/adfm.200701181
– ident: e_1_2_6_17_1
  doi: 10.1039/c2tc00506a
– ident: e_1_2_6_31_1
  doi: 10.1002/adfm.201002546
– ident: e_1_2_6_33_1
  doi: 10.1002/chem.201302674
– ident: e_1_2_6_11_2
  doi: 10.1021/am400868e
– ident: e_1_2_6_10_1
  doi: 10.1002/adfm.200600776
– ident: e_1_2_6_3_3
  doi: 10.1021/jp211976x
– ident: e_1_2_6_4_1
  doi: 10.1002/adma.200401912
– ident: e_1_2_6_12_1
  doi: 10.1002/adma.200306542
– ident: e_1_2_6_24_1
  doi: 10.1039/c2jm32070c
– ident: e_1_2_6_11_1
  doi: 10.1021/cm201809r
– ident: e_1_2_6_15_1
  doi: 10.1021/cm0518832
– ident: e_1_2_6_3_1
  doi: 10.1002/adma.200902213
– ident: e_1_2_6_16_1
  doi: 10.1039/C5CC01592H
– ident: e_1_2_6_27_1
  doi: 10.1021/jp5099574
– ident: e_1_2_6_5_2
  doi: 10.1007/b97374
– ident: e_1_2_6_1_1
  doi: 10.1021/ja073714j
– ident: e_1_2_6_20_1
  doi: 10.1021/acsami.5b00259
– ident: e_1_2_6_10_3
  doi: 10.1021/la000446t
– ident: e_1_2_6_10_5
  doi: 10.1021/ph500259h
– ident: e_1_2_6_39_1
  doi: 10.1002/aenm.201100527
– ident: e_1_2_6_29_1
  doi: 10.1002/3527602054
– ident: e_1_2_6_7_3
  doi: 10.1021/cm9901616
– ident: e_1_2_6_45_1
  doi: 10.1002/adfm.201202497
– ident: e_1_2_6_38_1
  doi: 10.1039/b910583b
– ident: e_1_2_6_40_1
  doi: 10.1166/jnn.2013.6687
– ident: e_1_2_6_4_3
  doi: 10.1021/cm970624c
– ident: e_1_2_6_23_3
  doi: 10.1039/C4TC01167H
– ident: e_1_2_6_35_1
  doi: 10.1039/C0CC04052E
– ident: e_1_2_6_2_2
  doi: 10.1021/cm0492179
– ident: e_1_2_6_44_1
  doi: 10.1038/nmat712
– ident: e_1_2_6_3_2
  doi: 10.1002/chem.200600954
– ident: e_1_2_6_36_1
  doi: 10.1080/02678292.2012.660202
– ident: e_1_2_6_18_1
  doi: 10.1002/chem.201405461
– ident: e_1_2_6_6_3
  doi: 10.1021/ja065334o
– ident: e_1_2_6_34_1
  doi: 10.1002/anie.201407497
– ident: e_1_2_6_4_5
  doi: 10.1021/acs.jpclett.5b00062
– ident: e_1_2_6_23_2
  doi: 10.1002/adom.201500159
– ident: e_1_2_6_2_3
  doi: 10.1039/C5SM00005J
– ident: e_1_2_6_11_4
  doi: 10.1039/C4SM01255K
– ident: e_1_2_6_2_1
  doi: 10.1021/am401438z
– ident: e_1_2_6_13_2
  doi: 10.1021/cm5019822
– ident: e_1_2_6_41_1
  doi: 10.1039/c0jm00690d
– ident: e_1_2_6_41_2
  doi: 10.1039/c1jm10711a
– ident: e_1_2_6_8_1
  doi: 10.1002/adma.201103362
– ident: e_1_2_6_4_2
  doi: 10.1021/jp4126396
– ident: e_1_2_6_6_2
  doi: 10.1021/ma0703655
– ident: e_1_2_6_9_2
  doi: 10.1021/am405471e
– ident: e_1_2_6_42_2
  doi: 10.1039/c2jm16359d
– ident: e_1_2_6_10_2
  doi: 10.1039/C0CC02215B
– ident: e_1_2_6_14_1
  doi: 10.1021/cm050338y
– ident: e_1_2_6_8_2
  doi: 10.1021/ja00144a027
– ident: e_1_2_6_22_1
  doi: 10.1038/ncomms5013
– ident: e_1_2_6_41_3
  doi: 10.1039/c1sm05764b
– ident: e_1_2_6_32_1
  doi: 10.1002/adma.201104880
– ident: e_1_2_6_46_1
  doi: 10.1039/C4RA02680B
– ident: e_1_2_6_13_1
  doi: 10.1002/adfm.201101770
– ident: e_1_2_6_1_3
  doi: 10.1021/cg501697q
– ident: e_1_2_6_23_1
  doi: 10.1002/adfm.200500127
– ident: e_1_2_6_43_2
  doi: 10.1039/c3cc46117c
– ident: e_1_2_6_7_2
  doi: 10.1021/cm034127
– ident: e_1_2_6_4_4
  doi: 10.1021/cm300762j
– ident: e_1_2_6_25_1
  doi: 10.1039/c2sm26458g
– ident: e_1_2_6_6_1
  doi: 10.1002/adom.201300111
– ident: e_1_2_6_9_3
  doi: 10.1039/C5SM00073D
– ident: e_1_2_6_9_1
  doi: 10.1039/c0jm00843e
– ident: e_1_2_6_19_1
  doi: 10.1039/C5CC02834E
– ident: e_1_2_6_5_1
  doi: 10.1039/B504400F
– ident: e_1_2_6_26_1
  doi: 10.1039/C4SM02239D
– ident: e_1_2_6_30_1
  doi: 10.1039/c2jm31092a
– ident: e_1_2_6_28_1
  doi: 10.1039/c2sm07332c
SSID ssj0017734
Score 2.4141686
Snippet A programed light‐responsive chiral liquid crystal (LC) containing four photochromic azobenzene moieties covalently connected to a central bicyclic chiral core...
A programed light-responsive chiral liquid crystal (LC) containing four photochromic azobenzene moieties covalently connected to a central bicyclic chiral core...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 4242
SubjectTerms Doping
Helical
helical superstructure
Knobs
layer structure
light-responsive
liquid crystal
Liquid crystals
Molecular structure
Nematic
self-assembly
Superstructures
Tuning
Title Remote-Controllable Molecular Knob in the Mesomorphic Helical Superstructures
URI https://api.istex.fr/ark:/67375/WNG-XZLQHWGW-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201505342
https://search.proquest.com/docview/1825526762
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQe6EHKNCK5U9GQnBKu3ZsT3qs2m5XwBbRH-2qF8uOHWlVSCq2K6Ge-gg8I0_CTNKE3V4qwS2RYiWZ8cx89sx8ZuydyTPIAojEGVcklAlMMiV8YnYCeAmIwBU1J4-OzPBMfZzoyUIXf8MP0W24kWXU_poM3PnZ9l_SUBcK6iRHQKNTRU6Y2PQIFR13_FECoEkrG0EFXmLSsjb25fby8KWotEoC_rkEOReBax15Bo-Za7-5KTi52Jpf-a38-g6d4__81Dp7dAtL-W4zj56wB7F8ytYWyAqfsS_HEdUaf9_82mvK279R1xUftefr8k9l5fm05Agp-SjOqu8V6nCac4xsNBP4yfySsCbx1c5xkb_BzgYHp3vD5PY4hiRXaZ-oDUPqpcu18qEI0jn0T-CELMAj7IsACA1FkQrnoDDQL2Ju8rCjdAYhyugh3WQrZVXG54zjotWoEL32iC5SlbssYtDMjDOgQiZ0j31o1WEvG9YN2_ArS0sisp2Ieux9ra3uMffjgmrVQNvx0aGdnH_-Ohwfju2wx9626rRoQZQWcWWs5jOLKyytpcGo0GOyVs4977S7-4NRd_fiXwa9ZA_x2lDNmYRXbAVlH18jurnyb-oZ_Af0wPHC
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQewAOfCOWTyMhOKVdO7YnPVYt20A3iyitdsXFsmNHqgpJRbsS4sRP4DfyS5hJmtDlggTHRLGSzPN4nu2ZZ8ZemDKDLIBInHFVQjuBSaaET8xWAC8BGbii4uRiZvIj9Xah-2xCqoXp9CGGBTfyjHa8JgenBenN36qhLlRUSo6MRqcKR-F19HlNvrl7MChICYBuY9kISvESi163cSw3V9uvxKV1MvHXFdJ5mbq2sWdyk_n-q7uUk5ON5bnfKL_9Iej4X791i924YKZ8u-tKt9mVWN9h1y_pFd5l7w4iIht_fv-x02W4f6LCK170R-zy_brx_LjmyCp5Ec-azw3CeFxyDG7UGfiH5SnRTZKsXeI8_x47mrw-3MmTixMZklKlY1I3DKmXrtTKhypI53CIAidkBR6ZXwRAdiiqVDgHlYFxFUtThi2lMwhRRg_pfbZWN3V8wDjOW40K0WuPBCNVpcsixs3MOAMqZEKP2KseD3vaCW_YTmJZWjKRHUw0Yi9buIbH3JcTSlcDbeezPbv4OH2fz_fmNh-x5z2eFp2IdkZcHZvlmcVJltbSYGAYMdmi85d32u3dSTFcPfyXRs_Y1fywmNrpm9n-I3YN7xtKQZPwmK0hDvEJkp1z_7Ttzr8AI4714g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2hVkJwoHyKhQJGQnBKu3b8kR6rLtuFdhcoVLviYtmxI1WFZEW7UtUTP4HfyC9hJmnCLhckOCaKlWSe7XljzzwDvNB5ZrJgeOK0KxLaCUwyyX2id4LxwiADl1ScPJ7o0bF8O1OzpSr-Rh-iW3CjkVHP1zTA56HY_i0a6kJBleRIaFQqcRJelzoVFH4NjjoBKW5Ms6-sOWV48Vkr29gX26vtV9zSOln4YoVzLjPX2vUMN8C1H91knJxuLc79Vn75h57j__zVbbh1xUvZbtOR7sC1WN6Fm0tqhffg3VFEXOPP7z_2mvz2L1R2xcbtAbvsoKw8OykZcko2jmfV1wpBPMkZujbqCuzjYk5kkwRrFxjl34fj4etPe6Pk6jyGJJdpn7QNQ-qFy5X0oQjCOZygjOOiMB55XzQGuSEvUu6cKbTpFzHXediRKjMhiuhN-gDWyqqMD4Fh1KpliF55pBepzF0W0Wtm2mkjQ8ZVD161cNh5I7thG4FlYclEtjNRD17WaHWPuW-nlKxmlJ1O9u3s8-GH0XR_akc9eN7CaXEI0b6IK2O1OLMYYiklNLqFHoganL-80-4OhuPu6tG_NHoG198PhvbwzeTgMdzA25ryz4TZhDWEIT5BpnPun9ad-RdJFfSR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remote%E2%80%90Controllable+Molecular+Knob+in+the+Mesomorphic+Helical+Superstructures&rft.jtitle=Advanced+functional+materials&rft.au=Kim%2C+Dae%E2%80%90Yoon&rft.au=Lee%2C+Sang%E2%80%90A&rft.au=Park%2C+Minwook&rft.au=Choi%2C+Yu%E2%80%90Jin&rft.date=2016-06-27&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=26&rft.issue=24&rft.spage=4242&rft.epage=4251&rft_id=info:doi/10.1002%2Fadfm.201505342&rft.externalDBID=10.1002%252Fadfm.201505342&rft.externalDocID=ADFM201505342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon